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Nonuniversal magnetization at the BEC critical field: Application to the spin dimer
compound Ba3Mn2O8
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Ba3Mn2O8 is a hexagonally coordinated Mn5+ S = 1 spin dimer system with small uniaxial single-ion
anisotropy. 135,137Ba NMR spectroscopy is used to measure the longitudinal (M�) magnetization in the vicinity
of the critical field at Hc1 for the onset of magnetic order for H ‖ c and H ⊥ c. M�‖(T ,Hc1), M�⊥(T ,Hc1) are
reproduced by solving a low-energy model for a dilute gas of interacting bosons.
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Recent investigations of field-induced phases in S = 1/2
magnetic insulators typify the opportunities for studying the
problem of Bose-Einstein condensates (BECs) specifically,1

and quantum criticality more generally. In spin-dimer, and
other spin-gapped systems, the ground state is a singlet while
the lowest energy excited states are triplets.2,3 The magnetic
field tunes the chemical potential for triplets through zero at
the critical field Hc1, that either condense or crystallize into
a superlattice depending on the balance between kinetic and
potential energies.4,5 In some special cases, a coexistence of
these two phases is also possible.6,7 The Hamiltonian has U (1)
rotational symmetry for an idealized case, and this symmetry
is spontaneously broken in the condensed phase with the
development of a finite transverse magnetization Mt .

From what is known about the spin-dimer system
Ba3Mn2O8,8 these conditions hold for H ‖ c,9 although the
evolution of the phases in a magnetic field is known to
deviate from the simplest S = 1/2 isotropic case in a number
of ways.9–11 Two magnetization plateaus with 〈Sz〉 = 1 (per
dimer) and 〈Sz〉 = 2 are a consequence of the S = 1 state of
the Mn5+ ions.10,12 In addition, a small single-ion uniaxial
anisotropy is understood to produce new boundaries in the
ordered phases for H tilted from the c axis. While this
anisotropy is not relevant for H ‖ c, its influence is evident
for H ⊥ c, producing an additional phase II stabilized only
near Hc1⊥ and the other critical fields. Further, the hexagonal
coordination of the layers leads to geometric frustration. The
near-neighbor transverse spin components would be rotated by
α = 120◦ in an isolated triangular layer.13,14 The stacking of
the layers for the trigonal crystal is abc (Fig. 1), and interlayer
coupling changes the value of α to α = 120◦ + ε with ε ∼ 9◦
(i.e., it induces an incommensurate spin ordering to partially
relieve the interlayer frustration).

Presented here are results of 135,137Ba NMR spectroscopy
studies in the high symmetry phase near Hc1 for orientations
H ‖ c and H ⊥ c. The NMR shifts give the magnetization as a
function of temperature at H = Hc1. The focus here is on the
nonuniversal regime, but note that otherwise the results are not
inconsistent with the expectations for a BEC quantum critical
point (QCP) for H ‖ c[i.e., M(T → 0,Hc1) ∼ T 3/2]. Both the
universal and the nonuniversal (T > 100 mK) regimes are
well described by using an effective low-energy theory for a
dilute gas of bosons, and we expect this result is applicable

to other systems. Quantitative differences are observed for
H ⊥ c, in agreement with the expectation for an Ising-like
(Z2) broken symmetry (phase II). Key to our successful
description of the magnetization data is the inclusion of the
bare offsite repulsions between triplets, in addition to the
hardcore repulsion. As we show below, these contributions
to the effective triplet-triplet repulsion are crucial to derive a
quantitatively correct low-energy effective theory in the dilute
limit. This is an important conclusion that applies to any other
quantum magnet in the proximity of a BEC-QCP.

The measurements were performed on a single crystal of
Ba3Mn2O8 placed inside the mixing chamber of a dilution
refrigerator for cooling to T � 30 mK. For reference, the
maximum temperature of the ordered phases is Tm ≡ 0.9 K.10

135,137Ba (135,137I = 3/2) NMR spectroscopy was performed in
magnetic fields H � 120 kOe using a top-tuned configuration.
The platform holding the sample and coil is rotated by an
Attocube piezoelectric motor, whereas the crystal orientation
was determined by the spectroscopic rotation patterns and
verified using Hall sensors. At the higher fields available
at the National High Magnetic Field Laboratory (NHMFL),
we used a bottom-tuned 3He system. The diagonal hyperfine
couplings were determined by comparing high-temperature
measurements of the shift (T � 20 K) to susceptibility
measurements,10 with the exception of the Ba(I) site in the
H ‖ c configuration; for that case, the coupling was inferred
from field-induced shifts recorded at T = 100 mK. Orbital
and quadrupolar couplings were determined from the shifts
measured at the lowest temperatures for H < Hc1, and the site
identification was established from the intensity ratio for the
Ba(II) site relative to the Ba(I) site (i.e., 2 : 1). χ is modelled
by using the mean-field expression12

χ = χ0

1 + γχ0
, (1)

where χ0 is the single dimer susceptibility

χ0 = 2Nβg2μ2
B(1 + 5e−4βJ0 )

3 + e2βJ0 + 5e−4βJ0
, (2)

γ = 3J ′/Ng2μ2
B , J0 = 19.0 K, J ′ = J1 + J4 + 2(J2 +

J3) = 7.4 K, and g = 1.98.9,15 These results appear in Fig. 2,
and the relevant NMR parameters are summarized in Table I.
In extending the analysis to higher magnetic fields, Eq. (1) is
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FIG. 1. (Color online) Ionic arrangement of Ba3Mn2O8showing
location of Ba sites relative to the Mn ions; oxygen ions are not
shown. The exchange couplings are indicated by solid (J0, J3) and
dashed-dotted (J1, J2) lines. J4 is the next-near-neighbor interlayer
coupling (not shown).

expected to be valid for T � 20 K in the field range that we
used (e.g., 70 kOe, as in Fig. 2).

The established minimal spin Hamiltonian for arbitrarily
oriented field direction in Ba3Mn2O8 is

H =
∑

i,j,μ,ν

Jiμjν

2
Siμ · Sjν + D

∑
i,μ

(
Sz

iμ cos θ − Sx
iμ sin θ

)2

−μBH
∑
iμαβ

(
g̃zzS

z
iμ + g̃xzS

x
iμ

)
, (3)

where g̃zz = gaa sin2 θ + gcc cos2 θ , g̃xz = (gcc − gaa) sin θ

cos θ , gαβ is the diagonal gyromagnetic tensor with compo-
nents gcc, gaa = gbb, and θ is the angle between the applied
field and the c axis. The quantization z axis is set along the
field direction. Here i, j designate the dimer coordinates,
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FIG. 2. (Color online) The temperature dependence of the shifts
are compared to the dc susceptibility presented in Ref. 12 for the
purpose of extracting the diagonal hyperfine couplings for Ba(II)
sites. The solid red lines are Eq. (1) (see text), using parameters
J0 = 19.0 K, J ′ = 7.5 K.

TABLE I. Diagonal NMR hyperfine coupling parameters and
quadrupole frequencies for the Ba(I, II) sites shown in Fig. 1. νQ ≡
e2qQ/4, with 135Q(137Q) = 0.18(0.28) × 10−24 cm2. The hyperfine
coupling constants are reported in kG/μB -Mn5+.

137νQ

Aaa Acc (MHz)

Ba(I) 26(1) 35(2) 54.7(2)
Ba(II) 18(1) 11(1) 10.8(2)

α,β = {x,y,z}, μ,ν = {1,2} denote each of the two S = 1
spins in each dimer. The various exchange constants are shown
in Fig. 1(a) and are defined as follows: the exchange within a
dimer is J0 = Ji,1,i,2; the dominant out-of-plane exchange is
J1 = Ji,2,j,1 for i,j nearest neighbor dimers between planes;
the dominant in-plane exchanges between dimers is J2 =
Ji,μ,j,μ and J3 = Ji,μ,j,ν for i,j in plane nearest neighbor
dimers and μ �= ν; and finally the second largest out-of-plane
exchange is J4 = Ji,2,j,1 for i,j next nearest neighbor dimers
between planes.

Since the dominant exchange interaction is the intradimer
coupling J0, it is more convenient to express H in a basis
that diagonalizes the single dimer Hamiltonian. The single
dimer spectrum consists of the singlet ground state, a triplet
with energy gap J0, and a quintuplet of states with energy 3J0

relative to the singlet. Since the interdimer exchange is much
smaller than J0 and we are only interested in describing the
field region around Hc1, to lowest order in perturbation theory,
we can eliminate the high-energy quintuplets and restrict H
to the subspace generated by the singlet and the triplets. We
note that the energy of the Sz = 2 quintuplet at H = Hc1 is of
order J0 higher than the energy of the singlet and the Sz = 1
triplet. Moreover, the Sz = 2 quintuplet states are induced
by the interdimer exchange terms only when two Sz = 1
triplets occupy nearest-neighbor dimers: The pair of triplets
is transformed into a singlet and an Sz = 2 quintuplet (a pair
of quintuplets with opposite values of Sz can be generated
from a pair of nearest-neighbor singlets but the energy cost
of that process is of order 6J0). Therefore, since the density
of Sz = 1 triplet states is very low near Hc1, we can safely
neglect the Sz = 2 quintuplets in this region of magnetic field.

Based on the previous observations, it is convenient to
express the low-energy Hamiltonian in terms of bosonic bond
operators that create the singlet (s†i ) and each of the three
triplets (t†i↑, t

†
i0, and t

†
i↓) on the bond i

1√
3

(| ↑↓〉i − |00〉i + | ↓↑〉i) = s
†
i |∅〉,

1√
2

(| ↑ 0〉i − |0 ↑〉i) = t
†
i↑|∅〉,

(4)
1√
2

(| ↑↓〉i − | ↓↑〉i) = t
†
i0|∅〉,

1√
2

(| ↓ 0〉i − |0 ↓〉i) = t
†
i↓|∅〉.

The states |sz
i1s

z
i2〉i on the left-hand side are direct products

of eigenstates of Sz
i1 and Sz

i2, while sz
i1 and sz

i2 are the corre-
sponding eigenvalues. ↑ (↓) corresponds to sz

i = 1 (sz
i = −1).
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Since the four states on the left-hand side form a basis for the
low-energy Hilbert space of the dimer i, the bond operators
satisfy the local constraint

s
†
j sj +

∑
ν

t
†
jν tjν = 1, (5)

where ν = {↓ ,0, ↑}.
The singlets are condensed for H � Hc1. Therefore, the

corresponding creation and annihilation operators can be
approximated by using the Holstein-Primakoff approximation

s
†
j =

√
1 −

∑
ν

t
†
jν tjν, (6)

where we have used the constraint Eq. (5). The spin-wave
Hamiltonian is obtained by replacing this expression for s

†
j

and sj in H and keeping only the terms that are quadratic in
the triplet operators. By introducing the triplet operators in
momentum space,

t†qν = 1

N

∑
j

eiq·rj t
†
jν, (7)

where N is the total number of dimers, we obtain the following
spin-wave Hamiltonian for H parallel (θ = 0) or perpendicular
to the c axis (θ = π/2):

H̃sw =
∑
q,μ,ν

εμν(q)t†qμt†qν + γμν(q)

2
(t†qμt

†
−qν + t−qν tqμ), (8)

where μ,ν = {↓ ,0, ↑}, and

εμν(q) =
[
J0 + D

(
1 − 3a2

ν/2
)
[(cos θ )2 − 1/3] + 4

3
Jq

− gααμBHaν

]
δμ,ν + D

2
(sin θ )2δ|μ−ν|,2,

γμν(q) = 4

3
Jqδaμ+aν ,0 (9)

Jq = 2(J2 − J3)γ 2
q + J1

2
γ 1

q + J4

2
γ 3

q

γ 1
q = cos q3 + cos (q3 − q1) + cos (q3 − q2),

γ 2
q = cos q1 + cos q2 + cos (q1 − q2),

γ 3
q = cos (q3 − q2 + q1) + cos (q3 − q1 + q2)

+ cos (q3 − q1 − q2).

Here α = c (α = a) for H parallel (perpendicular) to the c axis,
a↑ = 1, a↓ = −1, and a0 = 0. We note that the expression
in Eq. (8) is not valid for intermediate values of θ (i.e., for
0 < θ < π/2).16 The diagonal form of H̃sw,

Hsw =
∑
qμ

[
ωqμ

(
b†qμbqμ + 1

2

)
− εμμ

2

]
, (10)

is obtained by means of a standard Bogoliubov transformation.
The z component of the magnetization is a good quantum
number for θ = 0 because H is invariant under a uniform
spin rotation along the z axis. Therefore, the three branches of
Bogoliubov quasiparticles have the same label ν = {↑ ,0, ↓}

of the triplet bond operators. In this case, the three dispersion
relations are given by

ω0
qν =

√

2

ν + 8
3
νJ (q) + gccμBHaν, (11)

where 
ν = J0 + 2D
3 − Da2

ν . Equation (11) shows that the
ν = 0 branch does not change in presence of the field, while
the full ν =↑ (ν =↓) branch increases (decreases) linearly in
field without changing its shape. This is a direct consequence
of the invariance of H under a uniform spin rotation along
the z axis. The low-temperature properties close to Hc1 are
determined by the lowest energy branch ν =↑ that becomes
gapless at the critical point

Hc1(θ = 0) =
√(

J0 − D

3

)2

+ 8

3

(
J0 − D

3

)
J (Q)/gccμB.

Q = (αm,−αm,0) is the wave vector that minimizes ω0
q↑ with

αm determined by

cos αm = J1 − 2(J2 − J3)

4(J2 − J3 − J4)
. (12)

Since the shape of ω0
qν does not change with field, ω0

q↑
increases quadratically in |q − Q|.

The situation is qualitatively different for θ = π/2 because
the magnetization along the field axis is no longer conserved.
The continuous U (1) symmetry group of rotations around the
z axis is replaced by a Z2 symmetry. Consequently, the
field-induced critical point is Ising-like instead of the BEC-
QCP obtained for θ = 0. Another consequence of this
reduction in the symmetry of H is that the index ν of
the Bogoliubov quasiparticles does not correspond to a
well defined magnetization. To write down the dispersion
relations associated with the three branches of Bogoliubov
quasiparticles, it is convenient to introduce the following
functions:

Fq = ε2
↑↑(q) + ε2

↓↓(q) + 2
(
D2/4 − 16J 2

q /9
)

Gq = [ε2
↑↑(q) − ε2

↓↓(q)]2/4

− 2ε↑↑(q)ε↓↓(q)
(
D2/4 + 16J 2

q /9
)

+ [ε2
↑↑(q) + ε2

↓↓(q)]
(
D2/4 − 16J 2

q /9
)
, (13)

where the functions εμν(q) are evaluated at θ = π/2. The
resulting expressions for the three dispersion relations are

ω
π/2
q↑ =

√
Fq − √

Gq

ω
π/2
q0 =

√
ε2

00(q) − 16J 2
q /9 (14)

ω
π/2
q↓ =

√
Fq + √

Gq.[3pt]

The lowest energy branch, ωπ/2
q↑ , becomes gapless at the critical

field

[gaaμBHc1(θ = π/2)]2 =
(
J0 + D

6

)2

+ 8

3

(
J0 + D

6

)
J (Q)

− D2

4
− 4

3
|D||J (Q)|. (15)
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The minimum is still at q = Q but, in contrast to the θ = 0
case, ω

π/2
q↑ increases linearly in |q − Q| for H = Hc1. This is

the expected behavior for an Ising-like quantum critical point
(the dynamical exponent is z = 1).

To compute the low-temperature properties close to Hc1 we
will only keep the lowest energy branch ω

η

q↑ (η = 0,π/2) of
bosonic quasiparticles. Therefore, close to Hc1 the problem is
reduced to a dilute gas of interacting bosons with dispersion
relation ω

η

q↑. Since gααμBHc1 is much bigger than any of the
interdimer exchange couplings, the Bogoliubov quasiparticles
do not differ significantly from the triplet bond operators.
Therefore, we will approximate the interaction between
Bogoliubov quasiparticles by the interaction between triplets.
The triplet particles t

†
j↑ are hardcore bosons that in addition

have an offsite repulsion produced by the Ising component
of the interdimer exchange. The exchange constants15 and
the g factors are J1 = 0.118 meV, J2 − J3 = 0.114 meV,
J4 = 0.037 meV, gcc = 1.98, and gaa = 1.97. The effective
repulsive interaction v0 = �0(Q,Q) results for summing the
ladder diagrams for the bare interaction vertex17 Vq

�q(k,k′) = Vq −
∫ π

−π

d3p

8π3
Vq−p

�p(k,k′)
ω0

k+p + ω0
k′−p

(16)

For Ba3Mn2O8, we have Vq = U + (J2 + J3)γ 2
q + J1

2 γ 1
q +

J4
2 γ 3

q , where U → ∞ comes from the hardcore repulsion,
while the rest of the terms correspond to the offsite repulsive
interactions. By solving Eq. (16), we obtain v0 = 0.9 meV
for J2 + J3 = 2.82 K, obtained by fitting Hc2 � 27 T for
H ‖ c.

The longitudinal magnetization for H ‖ c is shown in
Fig. 3(a) for several fields near Hc1. The curve measured
at H = Hc1 = 89.3 kOe is consistent with the expectation
M�‖ ∼ T 3/2 for T → 0, even if the range of temperatures
is too limited to demonstrate the universal exponent. The
red line is the result of a Hartree-Fock decoupling of the
interacting v0 term whose only effect in the disordered phase is
a renormalization of the chemical potential μeff = μ − 2v0ρ

(ρ is the density of bosons).2 Calculations for field values
differing from Hc1, H = Hc1 − 1.3 kOe (blue) and H =
Hc1 + 1.5 kOe (green), also match the NMR shift data well.
We note that there is a 20% disagreement if only the hardcore
repulsion is included in Eq. (16).

When the applied field is rotated to the a-b plane, the
ordered phase II bordering the paramagnet is believed to be
Ising-like, with transverse spins confined to the c direction.
The measured magnetization shown in Fig. 3(b) is also in very
good agreement with the magnetization curve obtained from
the dilute gas approach. The anisotropy term also has the effect
of lowering the critical field Hc1. In confining the transverse
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FIG. 3. (Color online) (a) Ml‖ vs T for selected magnetic fields
close to Hc1‖. The inset shows a sequence of spectra for the Ba(II)
site recorded at different temperatures. The solid curve is from ladder
diagram calculations (see text). (b) The same as (a), for H ⊥ c.

spins to the c axis, the energy gain associated with the
broken symmetry is reduced slightly, and consequently M�⊥<

M�‖. The outcome is consistent with the anisotropy param-
eter D = 32 μeV as established by electron paramagnetic
resonance.18

The 135,137Ba spectroscopy reported here summarizes the
behavior near to the critical field at H = Hc1 for two directions
of applied magnetic field. For the longitudinal magnetization,
the data is well described by including interdimer (near-
neighbor) repulsions in the ladder calculation.
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