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Abstract. Gaining insights into the mechanisms of how order and broken
symmetry emerges from many-particle interactions is a major challenge in
solid state physics. Most experimental techniques—such as angle-resolved
photoemission spectroscopy (ARPES)—probe the single-particle excitation
spectrum and extract information about the ordering mechanism and
collective effects, often indirectly through theory. Time-resolved ARPES
(tr-ARPES) makes collective dynamics of a system after optical excitation
directly visible through their influence on the quasi-particle band structure. Using
this technique, we present a systematic study of TbTe3, a metal that exhibits
a charge-density wave (CDW) transition. We discuss time-resolved data taken
at different positions in the Brillouin zone (BZ) and at different temperatures.
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The transient change in the band structure due to the excitation is qualitatively
different between the region gapped by the CDW order vector and an ungapped
but otherwise equivalent region. Also, we discovered two distinct collective
modes at roughly 3.5 and 2.5 THz, the latter of which only occurs in the
CDW band near the gapped region, demonstrating the strength of tr-ARPES in
discerning the origin of the modes from the way in which they couple to the
quasi-particle bands. In addition, a systematic pump fluence dependence in the
gapped region documents the crossover from a weakly perturbed to a strongly
perturbed regime, which can be related to a crossover from a regime where
mainly the amplitude mode gets excited to a regime where the CDW gap closes
at least partially.
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1. Introduction

Competition between order and fluctuations is central to the field of solid state physics. While
the interaction between pairs of (quasi-)particles can sometimes be cast into simple terms and
pictures, the inclusion of many particles and the competition between two or more interactions
and/or fluctuations lead to the emergence of rich and complex kinds of broken symmetry states
in solids. One of the competing forces can be thermal fluctuations, but quantum fluctuations
are also possible in the case of a quantum critical point at T = 0 [1]. The possible interactions
leading to order are numerous. For example, coulomb repulsion between electrons is responsible
for Mott physics [2–4], as observed in e.g. the high-temperature superconducting cuprates [5].
The interaction of electron spins can lead to spin density waves and antiferromagnetism, and
it causes a wide variety of states of matter in heavy fermion systems due to the competition
between the Kondo and Ruderman–Kittel–Kasuya–Yosida (RKKY) interactions [6–9]. The
interaction between electrons and the lattice is the basis for conventional superconductivity
[10, 11] and charge density waves [6], just to name a few. Hence, an understanding of the
microscopic mechanisms that couple these quasi-particle excitations and the manner in which
they lead to ordered ground states is vital for understanding many-body effects in solids in
general [1, 2, 4].

It is not trivial to separate the contributions of individual degrees of freedom from the
ordering mechanism in thermodynamic equilibrium. One approach is to use angle-resolved
photoelectron spectroscopy (ARPES) to study the renormalization of quasi-particle band
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dispersions due to the interaction with bosonic modes, such as phonons and magnons [5].
In ARPES, ultraviolet (UV) light excites bound quasi-particle states via multipole matrix
elements, which are then projected into free-electron vacuum states. Therefore, ARPES is
a powerful tool for obtaining the single-particle spectral function A( Ek‖, ω) as a function of
electron momentum Ek‖ and energy ω [12]. Depending on the details of the bosonic coupling, this
dispersion renormalization can be detected as abrupt changes of the slope, the so-called kinks in
the electronic dispersion relation [5, 13]. A careful analysis of this dispersion renormalization
allows one to establish an energy scale for the involved boson modes, and provides information
about the momentum dependence of the electron–boson coupling. The renormalization of the
spectral function can be expressed [5] in terms of an electronic self-energy 6(Ek, ω),

A(Ek, ω) = −
1

π

6′′(Ek, ω)

[ω − ε(Ek) − 6′(Ek, ω)]2 + [6′′(Ek, ω)]2
. (1)

Here, 6′
= Re(6) and 6′′

= Im(6) are the real and imaginary parts of the electronic self-
energy. For a given bare band dispersion ε(Ek), Re(6) can be extracted from the ARPES spectra
by subtracting ε(Ek) from the band position extracted from the data, while Im(6) corresponds to
the line width (or inverse quasi-particle lifetime) of the ARPES data [5].

However, a precise knowledge of the bare, unrenormalized band is required but not always
available. Furthermore, it is not necessarily easy to determine what causes the renormalization.
Often enough, there exist many different kinds of interactions simultaneously in correlated
materials, all of which can contribute to the renormalization to various degrees, making it
hard to distinguish between them. In recent years, the complementary approach of time-
resolved ARPES (tr-ARPES) has been developed [14–16]. In tr-ARPES, an intense ultrashort
femtosecond (1 fs = 10−15 s) pump laser pulse first excites the electronic system and the effect
on the spectral function is probed by ARPES with a time-delayed femtosecond UV probe laser
pulse. This approach allows one to obtain the spectral function A(Ek, ω, t) as a function of both
electron energy ω and pump–probe time delay t .

In combining information from the frequency and time domains, tr-ARPES provides access
to both single-particle properties and collective many-body phenomena at once. By observing
the time-dependent changes in the transient spectral function A(t), correlations and many
particle excitations become visible via their influence on the quasi-particles. In favorable cases,
a dominant single mode of frequency � is detected by a periodic modification of A(t). For this
to be observable, a mode has to be excited with phase coherence with respect to an impulsive
excitation: this can be achieved in several ways [17], but with the exception of infrared (IR)
resonant vibrational excitations where a Fourier component of the pump pulse is in resonance
with a vibration, the duration of the optical excitation is required to be shorter than half the
oscillation period T/2 = π/� [17]. Since typical collective excitations, such as optical phonons
or spin waves, have energies h̄� of about 10–100 meV, their period T = 2π/� is well in the
femtosecond regime. Furthermore, electron and hole lifetimes can be detected; the decay of
electronic excitations in metals occurs on timescales of several fs to a few hundreds of fs [18].

Hence, an experimental tool that probes these collective excitations in real time would
require femtosecond time-resolution. This can be achieved by the use of Ti:sapphire lasers,
which emit femtosecond laser pulses centered near 800 nm wavelength (i.e. photon energies of
hν ≈ 1.5 eV) by mode locking of the broadband Ti:sapphire emission. Photoemission studies
require femtosecond laser pulses in the UV spectral range that are generated by 800 nm laser
pulses in nonlinear optical crystals up to the fourth harmonic [19, 20], or in rare gases to even
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Figure 1. (a) The crystal structure of RTe3 [25] is composed of square Te planes
and buckled RTe slabs (R = lanthanide). Note that the b-axis in the space group
Cmcm of RTe3 is perpendicular to the Te plane with b = 25.7 Å � a ≈ c =

4.3 . . . 4.5 Å [26]. The crystals cleave between two RTe slabs. (b) Real-space
model of the square-planar Te sheet with 2D (solid purple line) and 3D (dashed
green line) unit cells of the Te planes and the RTe slab, respectively. The Te
px (red) and pz (blue) orbitals as well as the lattice distortion 1z due to the
CDW are depicted. (c) FS calculated in the tight-binding model. The extended
2D (dashed) and reduced 3D BZ (solid) are indicated. The small perpendicular
coupling between the px and pz orbitals results in two sets of quasi-1D bands
and an almost square FS. The nesting of the phonon mode with nesting vector
QCDW opens two bandgaps along the z-direction [27].

higher harmonics [21, 22]. Optical excitation by the fundamental IR laser pulse at hν ≈ 1.5 eV
and subsequent probing of the dynamics of bound electrons via photoemission by the UV
laser pulse at 4 · hν ≈ 6.0 eV will allow us to monitor the periodic binding energy variations
of localized electronic states: a coherently excited phonon modulates internuclear distances in
the lattice, leading to modulations in the electronic band structure [14, 23]. Angular-dependent
studies of high-temperature superconductors [24] and CDW materials [16] establish tr-ARPES
as a powerful tool for the investigation of collective excitation modes in complex materials.

Here, we present a tr-ARPES investigation of the quasi-two-dimensional (quasi-2D) CDW
model system TbTe3 where we study the collective excitation modes after ultrafast optical laser
excitation. In general, CDW materials are among the well-established model systems that have
had a considerable impact on our understanding of quantum many-body problems [6]. In brief,
a CDW is a broken symmetry ground state with spatially modulated electron and corresponding
ion densities. It can form at low temperatures in low-dimensional materials with high densities
of states at the Fermi level EF due to a combination of an electron susceptibility that is strongly
enhanced at EF and strong, possibly anisotropic, electron–phonon coupling. The driving force of
this coupled electron–lattice instability is the minimization of the system’s total energy, which
is achieved by the reduction of the kinetic electron energy due to an opening of a bandgap at the
Fermi surface (FS). This is a consequence of a spontaneous periodic lattice modulation 1z (see
figure 1(b)) with an appropriate wave vector QCDW (see figure 1(c)) that nests parts of the FS.
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The coupled electron–lattice dynamics of CDW systems are characterized by well-defined
collective excitation modes: phase and amplitude modes. In a phase mode (phason), the CDW
phase propagates in space, whereas in an amplitude mode (amplitudon), the CDW amplitude
oscillates. When the CDW is incommensurate, phason and amplitudon dispersion relations are
analogous to the ones of acoustical and an optical phonons. The phason has an oscillation energy
of 0 for q = 0 for incommensurate CDWs and does not change the magnitude of the CDW
gap, whereas the amplitudon changes the CDW amplitude and the size of the CDW bandgap
periodically in time [6]. The CDW amplitude mode modulates the electronic structure in the
nesting region near the Fermi wave vector kF below the CDW phase transition temperature
TCDW and exhibits a characteristic mode softening upon approaching TCDW [6]. It can thus
be anticipated that the signature of the amplitude mode is directly observable in tr-ARPES
experiments by a modulation of the CDW bandgap near kF.

The CDW model system TbTe3 is a member of a family of rare-earth tritellurides RTe3,
where R can be substituted with most lanthanides. RTe3 is a quasi-1D model system and is well
suited to the study of CDW formation [26–33]. The RTe3 unit cell as depicted in figure 1(a) is
constructed from the basic building block of square Te planes and buckled RTe slabs, where one
RTe slab resides between two largely decoupled Te planes. Two of these building blocks are
stacked up along the b-axis. The crystal structure and band dispersion of RTe3 near EF are well
described in a tight-binding model [27, 32, 33] with weakly hybridized 5px - and 5pz-orbitals of
the Te-plane, as shown in figure 1(b). Since the planar square net of Te atoms is rotated through
45◦ with respect to the RTe slab, two different unit cells in real space are appropriate: the larger
3D unit cell is defined by the Tb atoms of the buckled slab (solid green line in figure 1(b)),
whereas the smaller 2D unit cell is given by the square Te plane (dashed purple line). For the
band structure in reciprocal space (see figure 1(c)), this results in a larger 2D Brillouin zone (BZ)
(dashed purple line) corresponding to the Te square, which is rotated through 45◦ with respect
to the smaller 3D BZ (solid green line). The underlying RTe bilayer with its finite 3D character
reduces the BZ to

√
2 ×

√
2-R45◦ symmetry and determines the diamond-like shape of the FS

with quasi-1D lines that are slightly curved due to the weak hybridization perpendicular to the
5px and 5pz Te orbitals [31, 32, 34]. Below the CDW phase transition temperature TCDW (335 K
for TbTe3), the FS nesting with a nesting vector QCDW opens up a bandgap at the tip of the FS
along the c-axis, indicated by dashed curves in figure 1(c). QCDW lines up with the reciprocal
lattice vector c∗, is about 2/7c∗ in magnitude, incommensurable, and believed to be nesting-
driven [26, 27, 32, 35, 36]. In real space, this freezes the associated lattice vibration, which is
equivalent to a displacement 1z of the ion positions (see the schematic sketch in figure 1(b)).

2. Experimental methods

The TbTe3 samples were grown by slowly cooling a binary melt at Stanford University [25]. In
order to perform ARPES, the samples are aligned with Laue diffractometry, which also confirms
their single-crystalline quality. For the tr-ARPES measurements, the TbTe3 crystals are mounted
on a 45◦ slanted post (see figure 2(b)) in order to access the FS at hν = 6 eV (see figure 3, left
panels). The samples are cleaved in situ at pressures better than 5 × 10−11 mbar to prepare the
surface for measurement.

The tr-ARPES setup at the Freie Universität Berlin is based on a regeneratively amplified
laser system (Coherent RegA 9050) and an ultrahigh vacuum (UHV) chamber, which are
described in detail elsewhere [15, 37, 38]. The RegA system operates at a 300 kHz repetition

New Journal of Physics 13 (2011) 063022 (http://www.njp.org/)

http://www.njp.org/


6

Figure 2. (a) Schematic geometry of the tr-ARPES setup, indicating the
rotational degrees of freedom. Taken from [16], supporting online material.
(b) Photograph of the sample (1) in front of the TOF analyzer (2). The end
of the wire retaining the cleaved top post is visible (3); see text. (c) XC of
the hot electron distribution at F = 0.35 mJ cm−2 pump fluence integrated over
E − EF = 1.4–1.5 eV and a Gaussian line fit, which serves as a measure of the
temporal resolution and determines zero delay.

rate, hν1 = 1.50 eV and up to 5 µJ pulse energy. Of its fundamental IR output, 60% is used to
excite the sample, after further variable attenuation with a filter wheel. The UV probe pulses at
hν2 = 6 eV and ∼100 pJ pulse energy, corresponding to ∼1013 photons s−1 (∼3 × 108 photons
per pulse), are generated by frequency-doubling the remaining 40% of the RegA output twice
in β-bariumborate crystals and subsequent compression in prism pairs.

The IR pump pulses present a pulse duration of 55 fs, whereas the UV probe pulses are
slightly longer with 80 fs due to uncompressed higher order group velocity dispersions. The
cross-correlation (XC) of pump and probe pulses at E − EF = 1.5 eV results in an overall time-
resolution of 100 fs (see figure 2(c)).

For the determination of zero pump–probe delay, XCs of the hot electron signal at
E − EF = 1.4–1.5 eV are evaluated (see figure 2(c)). In this procedure, two different regimes
for the decay of the hot electron signal are encountered and treated accordingly. First, at low
fluences of F . 1 mJ cm−2, the determination of zero pump–probe delay is straightforward since
the density of hot electrons is �1% of the conduction electrons near EF. Thus, the phase space
for electron–electron (e–e) scattering is not affected by the optical excitation and the excited
electron population decays via e–e scattering in the limit of single-particle interactions. Under
such low excitation conditions, typical hot electron lifetimes in metals amount to 2–25 fs at
E − EF = 1.5 eV [18] and hence are much smaller than the width of the XC trace. This allows
one to neglect the finite hot electron lifetime in the evaluation of zero delay and the pulse
duration and to approximate the response function by a Dirac δ-function. This simplification is
justified a posteriori by the symmetric XC traces (see figure 2(c)). Secondly, at larger fluences of
F > 1 mJ cm−2, the excitation densities exceed 1%. This reduces the phase space available for
e–e scattering as secondary electrons populate the energy interval of interest at later times [39].
This results in a fluence-dependent decrease in the observed hot electron relaxation rates. For
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Figure 3. The FS of TbTe3 at 100 K (a) and 300 K (f) is obtained by integration
of the photoemission intensity over an energy window of 20 meV width centered
around EF. At 300 K, the CDW gap is almost closed. The CDW nesting vector
QCDW (white arrow) and the paths of the band dispersion through the FS in the
ungapped metallic region (red arrow) and the gapped CDW region (green arrow)
are indicated. The bold and thin dashed lines indicate the FS and the back-folded
bands, respectively, calculated within a tight-binding approximation [27, 32, 33].
Panels (b), (d) and (g), (i): band dispersion in the gapped region at 100 and 300 K,
respectively. Panels (c), (e) and (h), (j): band dispersion in the ungapped region
at 100 and 300 K, respectively. Measurements at hν = 6 eV are acquired with the
tr-ARPES setup without IR excitation, while those at hν = 23 eV are measured
with a conventional ARPES setup. The vertical black and purple dashed lines in
(d), (e), (i) and (j) indicate the positions at which time-resolved data were taken
(cf figures 4 and 6). The white arrow in panel (e) indicates the TOF acceptance
angle. For the curved cuts presented in panels (b)–(e) and (g)–(j), the BZ position
is given in pairs of kx , ky coordinates. The intensity scale used for all false color
plots in this figure and throughout this paper is seen in the inset of panel (a).
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the evaluation of zero delay and the pulse duration, these apparent lifetimes were taken into
account. The time-correlated pairs of femtosecond pump and probe laser pulses, hν1 and hν2,
respectively, are focused into the UHV chamber and spatially overlapped on the sample surface.

Typical pump fluences are of the order of F = 0.35–3 mJ cm−2 and below the damage
threshold of TbTe3 as no irreversible spectral changes were encountered. At pump fluences
above F > 1 mJ cm−2, the photoelectron count rate from only the IR pump pulse increases
nonlinearly to up to 15 kHz at 3 mJ cm−2. The fluence of the 6 eV probe pulse is adjusted so that
the spectral broadening due to space charging is below the spectrometer resolution of 10 meV,
resulting in typical count rates of 200–400 kHz.

The binding energy of the photoemitted electrons is determined from their kinetic energy
Ekin analyzed in a time-of-flight (TOF) spectrometer: E − EF = Ekin + 8 − hν. Here, 8 denotes
the spectrometer work function and hν = hν2 the photon energy of the probing UV laser pulse.
The work function of TbTe3 was determined to be around 5.23 ± 0.1 eV.8 Biasing the sample
compensated for the work function difference between the sample and the spectrometer in
order to avoid electrostatic fields that would affect the angular distribution of the photoemitted
electrons. The spectrometer with an acceptance angle of ±3.5◦ features an energy resolution
of ∼10 meV at Ekin = 1 eV. The photograph in figure 2(a) shows how the (cleaved) sample is
placed ∼3 mm in front of the TOF spectrometer opening.

As a reference, we also carried out conventional high-resolution ARPES measurements at
beamline 5–4 at the Stanford Synchrotron Radiation Laboratory with a similar UHV chamber
and sample preparation system, but without slanted posts. A Scienta R4000 hemispherical
electron analyzer with a total energy resolution of 10 meV and an angular resolution of better
than 0.3◦ is used in this experiment. In the synchrotron-based experiments, we used a photon
energy of 23 eV, as in previous studies [27, 32, 33].

The schematic tr-ARPES measurement geometry is shown in figure 2(a). For a given
sample orientation, the manipulator angle 2 is rotated, yielding a series of measurements that
constitute a path through the BZ, which reveals the band dispersion (see figure 3). The samples
are mounted on 45◦ slanted posts to shift the accessible BZ region away from the 0̄-point and
enable measurements at TbTe3 at hν = 6 eV. Due to the limited BZ access in the tr-ARPES
experiments at such low photon energies, only a curved path through either the gapped or
the ungapped region is accessible by taking multiple measurements while rotating around 2

(cf figure 2(a)). The Laue diffraction we used for sample orientation before the measurements
cannot distinguish between the lattice a and c vectors since they are nearly identical [25, 26].
Therefore, two consecutive ARPES measurements are obtained from the same sample: first, the
sample is cleaved and the band dispersion is measured for T � TCDW and for T ≈ TCDW. Then,
the top post, which is retained by a Ta wire (see figure 2(a)) and holds a second part of the same
sample, is carefully rotated through 90◦ along α, glued on a slanted sample post, cleaved and the
measurement at the above two temperatures is repeated in a second experiment. This approach
allows us to access both the gapped and the ungapped parts of the BZ from the same sample.

The strength of conventional ARPES setups in combination with synchrotron light sources
is the excellent angle- and energy-resolution and a tunable photon energy. This enables access
to the entire BZ and choosing appropriate photon energies. On the other hand, the introduction
of femtosecond time resolution into ARPES opens up a new field for the study of collective
excitations, especially the effects of electron–boson coupling, in real time. However, the

8 We measured the work functions on two of our samples to be 5.33 ± 0.03 eV and 5.13 ± 0.03 eV, respectively.
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bandwidth of the femtosecond laser pulses of several 10 meV limits the energy resolution.
However, as we shall see later, this restriction only applies to frequency domain properties such
as the (equilibrium) electron band width, but to a much lesser degree to time domain properties
such as coherent oscillations. Hence, it is important to achieve a sufficiently high signal-to-
noise ratio that allows us to detect very small changes in the transient spectra. This requires
a careful trade-off between the acceptance angle and the transmission of the spectrometer.
The currently employed UV photon energy of 6 eV also limits the accessible BZ. However,
the ongoing development of femtosecond high-harmonic light sources [21, 22] might lift the
limitation to low photon energies in the near future. In this respect, the current state-of-the-
art ARPES and tr-ARPES experiments provide complementary information because they are
optimized for measurements in the frequency and time domains, respectively.

3. Results

We begin with a discussion of the band structure of TbTe3 in thermal equilibrium. Figures 3(a)
and (f) show color-coded plots of the photoemission intensity at EF probed by conventional
ARPES at hν = 23 eV. The data reveal the diamond-shaped FS of TbTe3, which is highlighted
by the bold and thin dashed lines that indicate the FS and the back-folded bands calculated
within a tight-binding approximation [27, 32, 33]. The FS in figure 3(a) was measured at 100 K
and presents a band gap due to the FS nesting by the CDW vector QCDW. The FS in figure 3(f)
was acquired at 300 K, near TCDW = 335 K [26], and indicates an almost entirely closed CDW
bandgap, which is in agreement with previous works [27], [32–34].

In the right panels of figure 3, we compare the band dispersion measured with the ARPES
and tr-ARPES setups to investigate the CDW bandgap in more detail. The cuts through the
BZ along curved paths defined by the tr-ARPES geometry are indicated by red and green
arrows in figures 3(a) and (f). The conventional ARPES data are interpolated along these
paths. In general, the ARPES data at hν = 23 eV and hν = 6 eV agree well near EF, although
some deviations are encountered for lower-lying bands. Since the two data sets were obtained
with two different photon energies in different experimental geometries, these deviations could
have several origins. The photoemission matrix elements and cross sections are different.
Furthermore, changes in escape depth lead to different surface/bulk sensitivities for the two
light energies. Lastly, final state effects might be more pronounced at lower photon energies.

Focusing on the upper band dispersing from E − EF ≈ −0.25 eV to EF, its band dispersion
in figures 3(b) and (d) clearly exhibits a CDW bandgap in the CDW nesting region at 100 K. This
is in contrast to the continuous dispersion of the conduction band through EF in figures 3(c) and
(e), taken in the ungapped region, not nested by QCDW. At 300 K, where the CDW bandgap has
almost closed, figures 3(h) and (j) show very little change in the band dispersion in the ungapped
(‘metallic’) region except for thermal broadening. On the other hand, the band dispersion in
the gapped (‘CDW’) region in figures 3(g) and (i) has changed qualitatively and disperses
through EF. This qualitative difference of the temperature-dependent dispersion allows one to
unambiguously assign the two sets of ARPES measurements to the gapped and the ungapped
region of the FS. The dispersion in the CDW nesting region is characterized by a bandgap that
closes with increasing temperature, whereas the metallic region exhibits bands that cross EF

independent of temperature.
All band dispersions in figures 3(b)–(e) and (g)–(j) present the strongly temperature-

dependent conduction band and a weakly dispersing band at about 0.5 eV binding energy.
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Neglecting the CDW bandgap, the conduction band can be described well by a tight-binding
model of 5px and 5pz Te orbitals [27, 32, 33]. Conversely, the weakly dispersing band at E −

EF ∼ −0.5 eV cannot be matched well to the tight-binding model. Local density approximation
(LDA) calculations [31] can be scaled and shifted to agree with this lower band [27], but this
agreement is limited to a small region in the BZ. This might be because the LDA calculation
neglects the rare-earth 4 f orbitals. In order to fully reproduce the ARPES data, it would be
desirable to perform an LDA+U calculation, which takes into account the orbital dependence
of the Coulomb and exchange interactions between the 4 f orbitals that are absent in LDA.
This approach is suited for correlated materials, would include the rare-earth 4 f electrons and
would reproduce their energy levels more appropriately. Such a calculation is currently under
investigation. In short, the lower-lying, weakly dispersing band cannot be directly assigned
to any specific orbital, but might be of Te 5py character with some overlap of a Tb 4 f
orbital. Henceforth, we will refer to the two bands as the upper band or CDW band and the
lower band.

A priori, the reasonable correspondence the ARPES data at hν = 23 eV between and
hν = 6 eV is not self-evident, since the photoemission signal might differ due to energy-
dependent matrix elements and a different escape depth of the photoelectrons. The good
agreement between the two experiments observed here ensures that the same position in the
BZ is probed in tr-ARPES as in conventional ARPES. Thus, the collective excitations in TbTe3

can safely be analyzed with tr-ARPES in the following.

3.1. Dynamics in the ungapped region

We now turn to the tr-ARPES measurements and begin with a discussion of transient ARPES
spectra recorded in the ungapped region of the FS. With this data, we establish a direct
comparison with the dynamics observed in the gapped CDW region. This systematic approach
allows us to draw further conclusions about the underlying e–ph coupling as an ingredient of
the CDW mechanism and its fundamental collective excitations.

Figure 4 shows the color-coded photoemission intensity as a function of binding energy
and pump–probe delay for 300 and 100 K at different locations in the BZ, as indicated in
figures 3(e) and (j). Before we turn to the coherent dynamics of the occupied states, we briefly
discuss the dynamics of the excited electron distribution above EF. At a pump–probe delay of
0 fs, the photoemission intensity above EF increases since the IR pump pulse generates excited
electrons due to electron–hole (e–h) pair excitation. After ∼200 fs, the distribution function
has significantly broadened because the initially non-thermal electron distribution thermalizes
due to e–e scattering, resulting in an equilibrated electron distribution with elevated electron
temperature [40]. On a timescale of a few ps, the intensity above EF decreases and the Fermi
edge regains sharpness as the hot electron distribution relaxes via e–ph scattering and transfers
energy to the lattice. We detect this behavior in all transient spectra of TbTe3. These processes
can be rationalized by the two-temperature model [40] and are typically observed in metals that
have been photoexcited by intense femtosecond laser pulses [15].

Turning to the dynamics in the occupied part of the band structure, we note that the pump-
induced variations do not exhibit qualitative changes as a function of temperature, nor as a
function of position in the BZ, where the upper band disperses below kF (figures 4(a) and
(c)) or at kF (figures 4(b) and (d)). Focusing on the transient binding energies, two effects
are visible in all spectra of figure 4: the upper band shifts towards EF, i.e. lowers its binding
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Figure 4. Momentum dependence of the photo-induced excitations in the
ungapped metallic region of TbTe3. Time-dependent photoemission intensity as
a function of binding energy for an incident pump fluence of F = 2.6 mJ cm−2

and T = 100 and 300 K. The solid lines indicate the transient binding energy
obtained from Lorentzian line fits of the upper band at E − EF = −0.05 eV and
the lower band at E − EF ≈ −0.5 eV; see text and figure 5. The BZ locations
of (a) and (b) are indicated by the vertical black and purple dashed lines in
figure 3(e), and the locations of (c) and (d) are indicated by the vertical black
and purple dashed lines in figure 3(j), respectively.

energy. Furthermore, we are able to resolve periodic variations of the energy and intensity of
the lower band. These oscillations are attributed to a coherent collective excitation of the coupled
electron–lattice system as we detail in the following.

In order to examine the transient binding energy changes quantitatively, the time-dependent
spectra are fitted with two Lorentzians, one for each of the two observed bands. This description
is justified as long as the pump-induced changes are small so that the Lorentzian line shape is
retained at all delays, which we found verified for the spectra in the ungapped region.

Figures 5(a) and (d) show the resulting transient binding energy changes 1E in the
ungapped region for the CDW band and the lower band, respectively. As evident from the raw
data in figure 4, the CDW band responds to the laser excitation by shifting 5–35 meV towards
EF, which occurs on the timescale of the laser pulse duration of 100 fs. Subsequently, 1E
relaxes within a few ps, but, without fully recovering after 5 ps. The distinct timescales for the
rise and decay of 1E allow one to disentangle the fundamental interactions during and after
ultrafast laser excitation: the 100 fs timescale for the rise in 1E suggests that the initial binding
energy shift is driven by the e–h pair creation due to the IR pump laser pulse and the resulting
change in the electronic energy landscape. The subsequent energy relaxation can be fitted by a
double exponential decay, as shown exemplarily by the solid green line in figure 5(d). The first
decay constant ranges from 0.4 to 1 ps and the second decay constant amounts to several ps.

In contrast to the hot electron dynamics of the CDW band, the dynamics of the lower
band are governed by a pronounced coherent mode (see figure 5(d)). Note that the lower
band exhibits not only oscillations of 1E but also oscillations of amplitude and width of the
Lorentzian line (not shown). This mode is analyzed by Fourier transformation (FT) of 1E , as
shown in figures 5(b) and (c). The FT indicates a pronounced coherent mode at 3.5(5) THz. The
CDW band does not show the binding energy oscillations as clearly and a double exponential
background (see solid green line in figure 5(a)) was subtracted prior to the Fourier analysis.
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Figure 5. Transient binding energy changes, 1E , from the Lorentzian line
fits of the tr-ARPES data in figure 4 (i.e. in the ungapped region). (a) The
transient binding energy change in the lower band reveals coherent oscillations.
For clarity, the traces have been offset. (d) At 0 fs, the binding energy of the
upper band shifts towards EF on the timescale of the laser pulse duration
of 100 fs and subsequently recovers. The solid green line indicates a double
exponential fit; see text. The respective insets show the magnified, background-
subtracted data in order to visualize the oscillations more clearly. (b, c) FTs of
the transient binding energies of the lower and CDW bands, respectively, taken
after a pump–probe delay of 0.5 ps. The oscillations in the upper and lower bands
exhibit a comparable frequency of 3.5(5) THz and do not depend systematically
on temperature and position in the BZ.

The oscillations track the same mode at 3.5(5) THz observed in the lower band. The collective
mode at 3.5 THz, which is most clearly observed in the lower band, does not depend on the
details of the probed BZ region, temperature and binding energy of the band. This points to the
3.5 THz mode being a coherent phonon of TbTe3, similar to what has been reported for other
materials before [15], [41–43]: it is a ‘generic’ lattice vibration; that is to say, it does not seem
to have any ties to CDW physics. Interestingly, the dynamics of the CDW band are governed
by the incoherent hot electron dynamics, and the weak coherent oscillations in the CDW band
are close to the detection limit. In contrast, the dynamics of the lower band are dominated by
coherent oscillations and binding energy shifts due to incoherent processes are negligible. At
least qualitatively, this distinct response can be understood by the different binding energies of
the bands: the CDW band is close to EF and thus more susceptible to e–h pairs excited by laser
excitation and subsequently created secondary electrons and holes. For the same reason, the
lower band with its higher binding energy is less affected by the hot electron population. On the
other hand, the pronounced coherent oscillations in the lower band suggest a stronger coupling
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Figure 6. Momentum dependence of the electronic excitations in the gapped
CDW region of TbTe3. Time-dependent photoemission intensity as a function of
binding energy for an incident pump fluence of F = 2.6 mJ cm−2, and T = 100
and 300 K. In contrast to the ungapped metallic region (see figure 4), the response
of the CDW band depends strongly on the BZ position and is maximal for
k = kF. The solid lines indicate the transient binding energy obtained from
Lorentzian line fits of the upper band at E − EF ≈ −0.25 eV and the lower band
at E − EF ≈ −0.5 eV. The line fit for the upper band is only displayed where
such a fit was possible. The BZ locations of (a) and (b) are indicated by the
vertical black and purple dashed lines in figure 3(d), and the locations of (c)
and (d) are indicated by the vertical black and purple dashed lines in figure 3(i),
respectively.

to the lattice mode at 3.5(5) THz, which might be related to the symmetry of the electronic wave
function and the phonon mode.

3.2. Dynamics in the gapped charge-density wave (CDW) region

We now focus on the gapped CDW region in order to compare it to the dynamics of the ungapped
region of the BZ. The data were obtained from the same sample after rotation by 90◦ (see
section 2) under identical experimental conditions.

Figure 6 shows tr-ARPES spectra at 100 and 300 K taken at BZ positions indicated in
figures 3(d) and (i) for a pump fluence of F = 2.6 mJ cm−2. The striking difference between the
gapped and ungapped BZ regions is the response of the upper CDW band to the laser excitation.
As shown in figures 6(a) and (c), the pump-induced band shift, band depletion, and change
in band shape is similar to the metallic region for k < kF (compare with figure 4). This is in
contrast to the significantly larger response when the CDW band is at kF (see figures 6(b) and
(d)): the hot electron density above EF increases notably. The CDW band shifts towards EF and
its spectral weight is redistributed strongly, weakening the band intensity. The band intensity,
width, Lorentzian shape and amplitude slowly recover for delays > 1 ps. For k = kF and 100 K
(figure 6(b)), the CDW band exhibits a new collective excitation mode strongly disturbing the
CDW band. The modulations of the lower band, however, resemble those of the ungapped
region, regardless of BZ position. A quantitative analysis is presented in the following, where
we consider the pump fluence dependence of these pump-induced transient changes.
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Figure 7. The transient binding energy changes, 1E , in the CDW region at 300 K
for the lower (a) and the upper (d) CDW band were derived from Lorentzian line
fits for different incident fluences. For clarity, the data in (a) have been offset.
Panels (b) and (c) depict FT of 1E for delays > 200 fs after subtraction of a
smooth background function. The dominant mode at 3.5(5) THz is independent
of the excitation density and binding energy of the band.

3.2.1. Fluence-dependent relaxation dynamics in the gapped region. Next, we present
evidence for the phase coherent excitation of the CDW amplitude mode and closing of the
CDW bandgap by analyzing the transient binding energies at kF in the CDW nesting region
as function of excitation density. This systematic study enables us to gain further insights into
the transition between weak perturbations, which feature small responses and excite collective
modes in the CDW band, and strong perturbations, which drive the transition from the gapped
CDW state to a metal-like ungapped state.

Figures 7(a) and (d) depict the transient binding energies, 1E , of the lower and the upper
CDW band, respectively, as a function of incident pump laser fluence at 300 K. 1E has been
extracted by Lorentzian line fits, as described in section 3.1. The overall behavior of 1E at
300 K is similar to the data from the ungapped region (compare with figure 5). Turning to the
coherent excitations, a coherent mode at 3.5(5) THz is observed in the lower band as well as in
the CDW band, being phase-locked with respect to the lower band. The quantitative analysis is
performed by FT of 1E for delays > 200 fs after subtraction of a smooth, phenomenological
background. The background describes incoherent contributions to transient heating of the
electron and phonon subsystems [15, 23]. The oscillation amplitude in both bands increases
monotonically with excitation density, as seen from the FT amplitudes in figures 7(b) and
(c). Although 1E exhibits a high statistical background, the oscillations are clearly resolved,
even for oscillation amplitudes of < 1 meV, which are one order of magnitude below the
nominal instrumental energy resolution of 10 meV. The high degree of similarity displayed
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in all transients and the smooth change in the oscillation amplitude with fluence—while the
phase of the oscillations remains at the same delays—proves that our sensitivity is < 1 meV.
This is because the fitting of the transient spectra for many consecutive delays allows a highly
systematic extraction of the Lorentzian line parameters.

Interestingly, a 2.5 THz mode, which we will discuss to be the amplitude mode of the CDW,
is not detected at 300 K in the CDW nesting region. This is not immediately obvious since
at 300 K < TCDW = 335 K the CDW amplitude mode should in principle still be present and
detectable. However, since the excitation densities are sufficient to drive an ultrafast transition
from the CDW state to an ungapped transient state at an equilibrium temperature of 100 K—
significantly below TCDW—it is plausible that near TCDW at 300 K, even the lowest pump
fluence excites the system out of the CDW state and thus quenches the CDW amplitude mode.
Alternatively, this mode could be so weak at 300 K that it eludes detection. Therefore, the
transition between high and low pump fluences is best studied at temperatures significantly
below the phase transition temperature.

Figure 8 shows the photoemission intensity as a function of pump–probe delay and
binding energy at kF and 100 K for various fluences. These data present a systematic, fluence-
dependent crossover between a strongly excited regime (figures 8(a)–(c)), which drives an
ultrafast transition from the gapped CDW state to a transient metallic state, to a weak excitation
regime, in which collective oscillations in the CDW band are detected (figures 8(d) and (e)).
As a function of excitation density, the transient CDW band position shifts towards EF and
the bandwidth broadens significantly for the three largest fluences (see figures 8(a)–(c)). The
response changes towards lower fluences, depicted in figures 8(d) and (e), where the shift and
broadening are significantly less pronounced. Before we proceed to further evaluate the data in
figure 8, we would like to point out that all coherent modes presented henceforth already reveal
themselves in a striking manner in the raw data; frequencies can be determined by counting the
temporal peak distances.

A quantitative analysis concerning the CDW band shift and the bandwidth turns out
to be difficult. The transient binding energy shift of the CDW band is one to two orders
of magnitude larger than the superimposed coherent oscillations. The electronic system—
especially at high fluences—is far out of equilibrium and the decay does not follow simple
exponentials, precluding a background subtraction for the frequency analysis prior to FT. Also,
the CDW band becomes asymmetric and deviates strongly from a simple Lorentzian line shape.
Therefore, in the following analysis of the CDW band position, we avoid specific assumptions
about the line shape and employ a center-of-mass analysis, while using a Lorentzian line for the
lower band. Furthermore, a Fourier analysis might present difficulties as the high excitation
densities are well known to lead to shifts in the frequency �, which then becomes time
dependent due to anharmonic effects [17].

In figure 9, we present the time-dependent binding energy determined by Lorentzian fits
for the lower band and the center-of-mass analysis for the CDW band. The oscillation amplitude
in the lower band (figure 9(a)) increases continuously with increasing pump fluence. Phase and
frequency remain the same throughout the entire fluence range. Thus, the response of the lower
band at 100 K is similar to the corresponding data at 300 K (compare with figure 7(a)). The
FTs for the lower band (figure 9(c)) consistently show a peak at 3.5(5) THz and are comparable
to the 300 K data (see figure 7(b)). These results confirm the assignment of the 3.5 THz mode
being a generic coherent phonon of TbTe3 since no pronounced dependence on the temperature,
BZ position and excitation density is observed.
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Figure 8. Photoemission intensity as a function of binding energy and
pump–probe delay at various pump fluences ranging from 3 mJ cm−2 (a) to
0.35 mJ cm−2 (e). (a–c) Strongly perturbative regime that transiently melts the
CDW state. (d, e) Weakly perturbative regime in which the CDW amplitude
mode is observable.

This is in marked contrast to the fluence- and temperature-dependent response of the upper
CDW band shown in figure 9(b). In comparison to the data at 300 K (see figure 7(b)), the decay
time of the binding energy shift 1E strongly depends on the excitation density and increases
with increasing fluence. The superimposed coherent oscillations present a complex behavior
that depends on fluence and pump–probe delay. For the lowest fluence of 0.35 mJ cm−2, the
period of the oscillations, as indicated by vertical lines in figure 9(b), is essentially constant
as a function of delay and amounts to τ = 480(50) fs, corresponding to a frequency of
f = 1/τ = 2.1(2) THz. The situation becomes more complicated at an intermediate fluence
of 1 mJ cm−2, where no oscillation of a clear single frequency is discernible. For the largest
fluences of 3 mJ cm−2, the oscillation period depends on the pump–probe delay: the oscillation
periods increase with increasing delay from 240(50) fs (4.2(9) THz) for the first to 300(50) fs
(3.3(6) THz) for the second and 400(50) fs (2.5(4) THz) for the third oscillation. The subsequent
oscillations are again shorter and constant with a period of 280(50) fs (3.6(7) THz). The response
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Figure 9. Fluence-dependent transient binding energy changes 1E in the CDW
region at 100 K for the lower (a) and the upper (b) CDW band are derived from
a Lorentzian line fit and a center-of-mass analysis, respectively. For clarity, the
traces in panels (a) are offset by 1 meV and the ones in (b) by 15 meV. The
peak maxima of the coherent mode in (b) are indicated (vertical lines). Panel
(c) depicts FT of 1E for delays > 500 fs of the lower band plotted in (a).
Panel (d) shows the oscillations of the upper band displayed in (b) after
background subtraction (see text). Panel (e) plots the FTs of the background-
subtracted center-of-mass of the upper band displayed in (d). For each fluence
dependence, panels (d) and (e) show the results of background subtraction with
different choices of the cutoff time (black arrows in (b) and (d)) and number
of spline nodes (see text). The spectral intensity is suppressed towards zero
frequency by the background subtraction (grayed region). While the lower band
is dominated by a 3.5(5) THz coherent mode at all fluences, the CDW band
exhibits a collective mode at 2.5(5) THz at low fluences and a 3.5 THz mode
emerges for increasing pump fluences.
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of the CDW band showcases the transition between CDW melting at high fluences and a more
gentle excitation that results in the observation of a new mode in the CDW band.

Fourier transforming the transient binding energy of the CDW band turns out to be
challenging. Ideally, one would determine a smooth background from the data, subtract the
background and Fourier transform the result. Sometimes, exponentially decaying functions
resulting from decay rate equations constitute a good choice for a background function [24].
But since the pumping drives the CDW transition and therefore pushes the system into a
highly excited state, it is not surprising that exponentials do not provide a good background
subtraction. Moreover, the strong fluence dependence and the non-analytical behavior of
1E do not point to an obvious choice for a smooth background function. Certainly, a
great deal of interesting physics is hidden in this incoherent background; electron–electron
and electron–phonon scattering as well as transport effects contribute to thermalization and
equilibration [44]. However, the electron–phonon scattering also contains CDW physics that
contributes significantly. It will certainly be interesting to see what insights will be gained
by theoretically modeling the relaxation dynamics, but this is beyond the scope of this paper,
and we will focus more on the coherent oscillations. In order to extract these, we implement
data processing techniques common to the field of extended x-ray absorption fine structure
(EXAFS) [45], since this field is faced with the same challenge of having to extract oscillations
superimposed on an edge, which rises at least an order of magnitude higher than the amplitudes
of the oscillations.

Lee et al [45] describe the EXAFS data analysis procedure and suggest fitting a spline or
B-spline to the data with a χ2 test and then using that for background subtraction. The data
treated thus are subsequently zero-padded and then Fourier transformed, after which a band pass
filter is applied in Fourier space and the result then back-transformed. The obtained, filtered data
are finally analyzed. Here, we only apply a cubical spline-fitted background subtraction and the
FT (without zero padding9). Lee et al also mention that fitting a single polynomial to the entire
data range does not work well because it introduces systematic errors in the FT [45], which we
confirm for our data.

In order to see how stable the obtained FTs are with respect to the background subtraction,
we performed the background subtraction for different time intervals starting between 600
and 1400 fs and ending at 2900 fs, and for cubical splines with 5, 6 and 7 nodes distributed
evenly in the time interval. The FTs became stable only for start times > 1000 fs. The resulting
background subtracted transient binding energy change for the upper CDW band is plotted
in figure 9(d) for different time intervals > 1000 fs and the mentioned node numbers, and
the resulting FTs are shown in figure 9(e). The fact that the FTs stop changing only for time
intervals starting at > 1000 fs becomes more plausible considering the following. First, at the
highest pump fluence, the frequencies do not remain constant during the first three or four
oscillation periods (cf figure 9(b)). This is related to the second point; the system needs time for
the electrons to thermalize and possibly for the CDW state to melt, during which the system is
highly nonlinear and anharmonic. Here we note that, consistently, for the lowest fluence, the FT
remained stable for time intervals starting as low as 600 fs (not shown). Thirdly, from a technical
point of view, the traces become less smooth the closer one approaches the sharp rising edge at
zero pump–probe delay, making it harder and harder to fit a well-behaved spline.

9 Even though zero padding smoothes the FT, it does not actually increase frequency resolution and can
furthermore introduce artifacts, such as the picket-fence effect. We found that zero padding does not reveal any
more information than what the unpadded spectrum already shows.
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The oscillations are clearly visible in the background-subtracted data (cf figure 9(d)), and
so is a change in frequency when proceeding from lowest to highest fluences (cf figure 9(e)).
The different background subtractions and FTs are relatively stable except for the curve at
0.5 mJ cm−2 fluence.

While not being able to capture the dependences of the frequencies on pump–probe
delay, especially in the first ≈ 1 ps, the FTs do reveal pump fluence-dependent changes on the
frequency spectrum. In agreement with the analysis of the oscillation periods above, the FTs in
figure 9(e) exhibit a peak at 2.5(5) THz for the lowest fluences. When going to higher fluences,
a peak at 3.5(5) THz starts to emerge, while the peak at 2.5(5) THz slowly loses intensity
and almost vanishes at the highest fluence. This hints at the 2.5 THz mode being intimately
connected to the CDW state: it is only observed at low temperatures T � TCDW, in the CDW
nesting region of the BZ and low excitation densities, where the CDW state is not driven into a
transient metallic state.

A note about final state effects seems appropriate at this point. Due to the fact that the
data have been obtained under a large angle away from the surface normal (about 45◦ due
to the slanted sample post mentioned earlier), surface refraction of the detected electrons can
play a role. A periodic modulation due to a coherent mode can modulate the final state energy
and emission angle as well. However, these final state modulations would show up equally in
the entire energy range measured. The fact that we observe different oscillation frequencies in
different bands in the same data set cannot be explained by this kind of final state modulation.

3.3. The CDW gap around EF

The technique of tr-ARPES not only allows us to measure the transient spectral function but
also probes transiently populated states above EF due to the pump excitation, comparable
to two-photon photoemission (2PPE) experiments [44, 46]. At probe times immediately after
pumping, ionic rearrangements and strong electron–electron correlations are neglected. Then,
the populated states above EF closely resemble states that are unoccupied in equilibrium. As the
system dissipates the stored excitation energy, the potential energy surface changes. Therefore,
the probed states below and above EF depart from the equilibrium configuration and provide
information about the relaxation dynamics.

Figure 10 shows spectra at the CDW gap maximum for different pump–probe delays to
illustrate how the CDW gap evolves after pumping. At zero pump–probe delay, the peaks of the
lower and upper parts of the CDW gapped band are indeed clearly visible. In agreement with
previous work [27], the CDW gap amounts to 0.40 eV. For the lowest fluence (cf figure 10(d)),
the occupied and the unoccupied part of the CDW band remain visible for delays > 200 fs. The
band positions of the occupied and unoccupied CDW bands move slightly towards EF with
time. A Lorentzian fit of the occupied and unoccupied CDW bands (not shown) confirms that
at the lowest fluence, the unoccupied CDW band position shifts downwards by 60 meV and the
occupied CDW band position shifts upwards by 25 meV in the first 200 fs. After 500 fs, spectral
intensity is detected at EF while the unoccupied CDW band is not visible anymore since the
excited electrons have formed a Fermi–Dirac distribution with elevated temperature through
e–e scattering.

Note, however, that the occupied part of the CDW band decreases only slightly in intensity
over time, while simultaneously intensity at EF increases. This could represent a mixed state
where the CDW gap is closed, while the CDW peak has changed only little in binding energy.
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Figure 10. Half-logarithmic plot of EDCs at pump–probe delays of −200, 0,
100, 200 and 500 fs, measured at 100 K. The EDCs are taken from the data
already seen in figure 8, and are presented here for fluences of 2 mJ cm−2 (a)
down to 0.35 mJ cm−2 (d). The non-zero background above EF before pumping
is due to secondary electrons emitted from the IR pump pulse. The CDW gap was
determined by the energy distance of the maxima of the band’s second derivative
at t = 0 and is indicated.

Alternatively, a non-uniform, ‘patch-like’ melting might also be possible. Although the occupied
part of the CDW band vanishes almost completely at high fluences (cf figure 10(a)), still no
well-defined quasi-particle band appears at EF at later delays. The absence of a well-defined
CDW peak at later delays—even at high fluences where the charge order melts—is contrary
to an adiabatic melting of the charge order, since that would give rise to a Lorentzian peak
at EF. This observation points out where the simple equilibrium analogy describing the CDW
transition fails. Thus we conclude that the transient photoinduced metallic state we observe here
is qualitatively different from the metallic equilibrium state above TCDW.
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Turning to the dynamics of the peak of the unoccupied CDW band, we note that this feature
disappears faster with increasing fluence. This might be explained by the increasingly intense
hot electron distribution function, which conceals the unoccupied CDW peak. Also, the excited
electrons in the unoccupied CDW band thermalize much quicker because of the increased e–e
scattering phase space due to the higher excitation density. Still, it is unclear whether this
can explain the fast disappearance at high fluences, since even though the thermalization is
quicker, the overall energy relaxation towards EF is slower, as empty states above EF needed
for electron–hole pair creation are increasingly occupied with photoexited electrons at higher
pump fluences.

4. Discussion

The qualitative differences observed in the response of the CDW band between the gapped and
ungapped (cf figures 5, 7 and 9) regions in the BZ and the appearance of a new collective
mode as a function of the BZ position, temperature and fluence allow us to draw further
conclusions. The transient changes in the binding energies result from a combination of a
dynamic electronic susceptibility and coupling of electrons with bosonic modes. The essence of
our observations can be captured by invoking a simple picture of basic CDW physics [6]: it is
already known that the electron–phonon coupling must be large and possibly anisotropic [47]
in TbTe3 in order to open CDW bandgaps of the order of several hundreds of meVs as observed
by ARPES [27, 34, 48] and optical conductivity [49]. Furthermore, the unscreened electronic
susceptibility χ(E, Ek), which contributes to a nesting-driven CDW [26, 33, 35], peaks at EF.

Comparing the band dispersion of the low-temperature, gapped CDW state (figures 3(b)
and (d)) to the high-temperature, mostly ungapped state (figures 3(g) and (i)) in thermal
equilibrium, it is evident that the largest changes in the band structure occur directly at EF

in the CDW nesting region due to the closing of the CDW gap. In turn, the transient spectra
also present the largest changes in the CDW band at EF in the nesting region. This transient
closing of the CDW bandgap occurs on a timescale of ∼100 fs and can be interpreted as an
ultrafast transition from the gapped CDW state to an ungapped state, which resembles the
metallic, ungapped high-temperature state. In general, this analogy holds since the bands retain a
quasi-particle-like character even though the excitations are strong enough to induce an ultrafast
closing, or ‘melting’ of the CDW bandgap [16].

This simple analogy to equilibrium physics can explain two of our major observations.
Firstly, the response of the CDW system is strongly anisotropic and maximal at EF in the
nesting region, accounting for the pronounced momentum-dependent response and the closing
of the CDW bandgap upon femtosecond laser excitation. Secondly, the emergence of a collective
mode that is exclusively observed in the gapped CDW state points to the excitation of the CDW
amplitude mode.

Considering that CDW formation requires FS nesting and freezing out of a particular
vibration at momentum QCDW, melting requires ‘reactivation’ of that specific mode, i.e. ion
core motion. This interpretation implies a finite timescale for the closing of the CDW bandgap,
i.e. a delayed response to the laser excitation (cf figures 8 and 9(b)). Since the timescale of
the closing of the bandgap is closely related to the frequency of the CDW amplitude mode of
frequency f [6], one might anticipate that it takes a time of at least 1

4 f to close the bandgap.
Taking the first maximum of the coherent oscillations as an estimate, a continuous decrease
in the peak position from ∼300 fs at low fluences to about 150 fs at high fluences is detected.
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This observation is consistent with the idea that the timescale of the CDW bandgap closing is
governed by the frequency of the amplitude mode, i.e. the collective oscillations in the upper
CDW band. However, a detailed discussion of the correlation of the timescale of the bandgap
closing and coherent oscillations will be presented in future work [50].

The fluence dependence of the frequency seen in figure 9(e) is in agreement with the
photoinduced CDW melting. At excitation densities below the transition barrier, the CDW
amplitude mode is discerned well (F = 0.35 mJ cm−2) with 2.5(5) THz. Increasing F results
in a rather complex behavior, where the initial oscillations still resemble the 2.5 THz mode,
but at delays > 1 ps, the 3.5 THz mode is encountered (F = 0.5 mJ cm−2). This suggests that it
requires about 1 ps until the ungapped metal-like state is fully formed and the CDW amplitude
mode is fully lost. When going to even higher fluences (F = 1 mJ cm−2), a complex behavior
is encountered with no single discernible frequencies. The system seems to be in a mixed state,
and the crossover between weak and strong perturbations thus happens right at this fluence of
F = 1 mJ cm−2. At the highest fluences (F > 2 mJ cm−2), a fast oscillation is visible, which
softens over time. At these highest fluences, the gap seems to be fully closed (as marked by the
first maximum in the center-of-mass traces in figure 9(b)) at ≈ 100 fs.

Interestingly, not only is a strongly fluence-dependent initial response of the CDW peak
observed but also the timescale for the relaxation of the photoexcited state depends on the
fluence. As evident from figures 8 and 9(b), the initial binding energy shift has relaxed after
∼2 ps to about 15% of its maximum value for fluences 6 1 mJ cm−2. For fluences exceeding
1 mJ cm−2, where the strong perturbation regime is entered and the charge order melts, the
binding energy shift lasts much longer and even after 2 ps remains at ∼90% of its initial value
for 3 mJ cm−2. One might speculate that this nonlinear relaxation behavior as a function of
excitation density points to a transient change of the e–ph coupling strength. Since e–e scattering
merely redistributes the optically deposited excess energy in the thermalization process amongst
other electrons, the main energy dissipation channel for the excited electron system is e–ph
coupling. The large CDW band gap size of 400 meV underlines a large e–ph coupling as an
ingredient for the CDW formation. Under strong excitation conditions, the electronic screening
of the ion cores is altered, which initiates the excitation of the CDW amplitude mode and might
also affect the e–ph coupling strength, resulting in the observed threshold behavior of the energy
relaxation times when the CDW melts.

Clearly, the time-dependent frequency softening of the collective mode in the CDW
band for large excitation densities points to physics beyond the Born–Oppenheimer
approximation [51]. The initial softening of the mode can be understood by a change in the
excited potential energy surface in which the ions move. This change occurs during the first
0.8 ps, which corresponds to the timescale of the electron thermalization process. At later delays,
the CDW state is molten and we observe weak oscillations originating from the strong coherent
oscillations of the lower band.

Our temperature-, momentum- and fluence-dependent results allow an assignment of the
2.5 THz mode to the CDW amplitude mode. Other origins of this mode can be excluded, as we
detail in the following. Calculated phonon dispersions for RTe3 show modes at 2.3 THz [52].
However, these generic phonon modes do not exhibit the temperature-, momentum- or fluence
dependence we observe here. Another possibility is a phonon mode, which is created by the
symmetry breaking due to the CDW. Lavagnini et al observe a feature near 2.6 THz in LaTe3,
2.5 THz for SmTe3 [52] and 2.3 THz for DyTe3 [53] via Raman scattering. This feature weakens
when going from the distorted to the undistorted crystal structure. In principle, this could explain
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the temperature dependence, since this mode requires the CDW symmetry breaking. However,
our observation of a pronounced BZ-position dependence of the 2.5 THz mode and its exclusive
presence in the CDW band make this assignment unlikely. On the other hand, a collective
excitation of the CDW amplitude mode naturally explains the dependence of the excitations
on the BZ position, its temperature dependence and the fact that the mode is present exclusively
in the CDW band in the gapped region.

Moreover, a temperature-dependent softening of a mode at 2.3 THz in TbTe3 was observed
via time-resolved optical reflectivity measurements at pump fluences about 10 times smaller
than the ones used in our experiments [54] and via Raman scattering [53]. Close to TCDW, the
mode softening follows the predictions by mean field theory [6], but is suppressed at lower
temperatures, which was explained by resonant coupling to a mode at 1.75 THz [54] or as due
to interactions between two perpendicular CDW modes. However, below TCDW, a new mode
appears at 2.3 THz. Due to its characteristic temperature-dependent softening [6], it is assigned
to the CDW amplitude mode. These results are consistent with recent temperature-dependent
Raman studies [53], where modes near 2.2 THz are observed in DyTe3 and LaTe3, respectively,
which soften with increasing temperature and hence are assigned to the CDW amplitude mode.

In contrast, we observe the 3.5 THz mode independently of temperature, momentum and
pump fluence and thus assign this mode to a generic coherent phonon of TbTe3. However,
as tr-ARPES observes phonon modes through their coupling to the electronic band structure,
a knowledge of the band character and their coupling to particular modes is desirable for
identification. Since the lower band eludes a theoretical description so far, the 3.5 THz mode
is assigned via comparison to other experiments. Lavagnini et al observe a mode in DyTe3 at
3.9 THz [53]. Interestingly, this mode disappears with increasing temperature above TCDW but
does not exhibit mode softening with increasing temperature, which would be characteristic
of the CDW amplitude mode. Because the symmetry of this mode requires CDW symmetry
breaking to be observable in their Raman geometry, this mode might result from the super-
lattice periodicity induced by the CDW but does not constitute a collective excitation of the
CDW amplitude mode itself.

5. Conclusion and outlook

We have presented a temperature-, momentum- and fluence-dependent tr-ARPES study of the
ultrafast electron dynamics in the nesting-driven CDW compound TbTe3. Our main results are
as follows. (i) The identification of a coherent mode at 3.5 THz, which does not depend on the
BZ position, the temperature or the excitation density. Thus, it is assigned to a generic coherent
phonon of TbTe3. (ii) In contrast, we observe a coherent mode at 2.5 THz only for T � TCDW,
in the CDW nesting region and at low fluences, where the CDW state is not quenched. Its
close relation to the CDW state characterizes this mode as the collective excitation of the
CDW amplitude mode. Furthermore, we investigated the fluence-dependent crossover between
an ultrafast melting of the CDW phase at high excitation densities and a gentle perturbation,
resulting in the coherent excitation of the CDW amplitude mode.

Future investigations will consider (i) the detailed temperature dependence of the collective
mode in the CDW band to facilitate a comparison with mean-field theory; (ii) how the excited
electrons dissipate the excess energy to collective modes, i.e. which scattering channels are
favored due to phase space and symmetry arguments; (iii) where in the BZ optical transitions and
thus the creation of e–h pairs are allowed; and (iv) how the e–ph coupling changes as a function
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of energy and momentum [47]. Further interesting questions might be answered by our data
when compared to a more quantitative theory, such as dynamical mean-field theory employing
the two-time formalism of the Falicov–Kimball model [55–58]: (i) what is the microscopic
picture for the CDW melting, i.e. does it melt in ‘patches’ and to what degree are the fluctuations
that are excited by the laser excitation homogeneous or inhomogeneous (which has recently
been addressed by Yusupov et al? [59]); (ii) to what extent do surface termination effects play
a role?; (iii) could the CDW melting be induced by dissipation of the strong 3.5 THz phonon to
the lower band?
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