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Anharmonic order-parameter oscillations and lattice coupling in strongly driven
1 T-TaS2 and TbTe3 charge-density-wave compounds: A multiple-pulse femtosecond

laser spectroscopy study
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The anharmonic response of charge-density wave (CDW) order to strong laser-pulse perturbations in 1 T -TaS2

and TbTe3 is investigated by means of multiple-pump-pulse time-resolved femtosecond optical spectroscopy. We
observe remarkable anharmonic effects hitherto undetected in systems exhibiting collective charge ordering. The
efficiency for additional excitation of the amplitude mode by a laser pulse becomes periodically modulated after
the mode is strongly excited into a coherently oscillating state. A similar effect is observed also for some other
phonons, where the cross-modulation at the amplitude-mode frequency indicates anharmonic interaction of those
phonons with the amplitude mode. By analyzing the observed phenomena in the framework of time-dependent
Ginzburg-Landau theory we attribute the effects to the anharmonicity of the mode potentials inherent in the
broken symmetry state of the CDW systems.
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I. INTRODUCTION

Ultrashort laser pulses are a convenient tool for coherent
excitation of phonons1,2 and collective electronic-lattice modes
in CDW systems.3–6 Due to the availability of strong laser
pulses the phonons can be driven far from equilibrium,
exposing anharmonic effects. The high-excitation region has
already been investigated with single-pump-pulse7–10 and
double-pump-pulse8,11,12 sequences, mainly in elemental Bi,
Sn, and Te.

In charge density wave (CDW) systems the phonon-mode
potentials are inherently anharmonic due to their coupling
to the electron density modulation.13 The anharmonicity is
the strongest for the Kohn-anomaly14 modes, which become
the amplitude and phase modes in the CDW state. While
amplitude modes (AM) have been extensively investigated in
near-equilibrium conditions by Raman14,15 and time-resolved
spectroscopy3–6,16 as well as in the highly driven nonequi-
librium conditions, where the CDW order is destroyed,17–20

so far little attention has been paid to the region in
between.18

Here we report on an investigation of a hitherto unex-
plored aspect of the CDW amplitude mode behavior under
strongly driven nonequilibrium conditions in the ordered
phase below the CDW photoinduced destruction threshold.
Contrary to previous standard double-pump pulse (SDPP)
high-excitation work,8,11,12 where a pair of balanced pump
pulses was used, we introduce an unbalanced double-pump-
pulse (UDPP) approach in which we use the first and
strongest pump pulse (P1) to excite large-amplitude coherent
oscillations of the AM and other phonon modes and then use a
standard pump-probe (P2-p3) pulse sequence to interrogate
the system. By means of this approach we are able to
directly investigate the anharmonicity of the effective AM
potential, as well as detect the anharmonic coupling of the
collective bosonic mode (the AM) of the CDW to other lattice
modes.

II. EXPERIMENTAL

To establish generality, two layered chalcogenides which
show different types of CDW ordering and also different
electronic properties were investigated: TbTe3 and 1T -TaS2.
(Sample growth is described in Ref. 21 for TbTe3 and Ref. 22
for 1T -TaS2.) TbTe3 is a two-dimensional (2D) metal which
shows a unidirectional incommensurate CDW state at the
temperature used in our experiment (15 K),23,24 while 1T -TaS2

is in a commensurate insulating CDW state at the relevant
temperature (77 K).25 In both systems, in addition to the AM,
several new Raman modes appear in the CDW state due to
Brillouin-zone folding.4,6,14,26,27

In our experiments the three pulse trains were derived from
a 50-fs 250-kHz Ti:Al2O3 regenerative amplifier, with h̄ωP =
1.55 eV photon energy. The p3 polarization was perpendicular
to P1 and P2, which were parallel to each other. To study the
reflectivity change induced by the weaker P2 pulse, �R2(t),
we eliminate the P1 contribution �R1(t) to the total transient
reflectivity �R(t) by means of the homodyne detection locked
to the modulation of the P2 pulse train. [The P1 pulse train was
unmodulated, as shown in Fig. 1(b).]

III. RESULTS

In Fig. 1(a) we plot the raw UDPP photoinduced reflectivity
transients �R2(t23)/R in 1 T -TaS2 at different delays t12

between the pump pulses. The intensity of the P2 pulse train,
I2, was set in the linear response region while the intensity
of the P1 pulse train was four times larger, corresponding
to ∼30% of the CDW destruction threshold fluence. For
comparison the raw total photoinduced reflectivity transients
�R(t23)/R, measured in SDPP configuration, are shown
in Fig. 1(c). In both cases the amplitude of the coherent
oscillations periodically varies as t12 is increased, with a
clear periodic suppression of the oscillations. Note that the
suppression appears at different t12 for each case. While the

035104-11098-0121/2011/83(3)/035104(5) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.83.035104


P. KUSAR et al. PHYSICAL REVIEW B 83, 035104 (2011)

(a) (b)

(c)

(d) (e) 

FIG. 1. (Color online) �R/R transients as a function of t12 in
1 T -TaS2 (a) in the UDPP configuration shown in the schematics (b);
L = lens, S = sample, C = chopper, H.D. = homodyne detection
system. For comparison, �R/R transients in the SDPP configuration
are shown in (c). The lower graphs show UDPP power spectra in
1 T -TaS2 around the fundamental frequency of the strongest mode
(d) and around the second harmonic of the fundamental frequency
(e). The thin curve in (d) and (e) is the standard single-pump-pulse
spectrum.

linear SDPP effect [Fig. 1(c)] is well known,16,28–30 and is
understood as an interference due to the linear superposition
of two independently excited coherent oscillations,16,29,30 the
nonlinear effects observed by UDPP have not been detected
before.

In Figs. 1(d) and 1(e) we plot the power spectra of the UDPP
transients from Fig. 1(a). In addition to the AM mode with
the frequency 2.41 THz we observe several weaker phonon
modes above 3 THz and a weak second harmonic of the AM
mode [see Fig. 1(e)]. The periodic intensity modulation of
the modes, which strongly increases with increasing I2 (see
Fig. 2), is accompanied by a small periodic frequency shift.
The shift is absent in the low-excitation SDPP configuration
[see Figs. 2(c) and 2(f)]. The modulation amplitude and phase
vary among the modes, and there is a ∼π/2 shift between the
modulation phases of the UDPP and SDPP cases, similar to the
observations in the high-excitation-density SDPP experiment
in Te.11 In our case however, the phase shift persists down to
the lowest excitation density.

The periodic intensity modulation and the phase shift are
observed also in TbTe3, where in addition a beating in the

FIG. 2. (Color online) Spectra of the strongest mode (a), (b), and
weaker modes (d), (e), as functions of t12 in the UDPP configuration at
different intensities of the P1 pulse train in 1 T -TaS2. For comparison
the low-excitation SDPP-configuration spectra are shown in (c)
and (f).

t12 dependence of the modulation amplitudes is observed [see
Fig. 3(c)].

The modulation frequency of each mode [see Figs. 3(b)
and 3(d)] is correlated to the respective mode eigenfrequency.
Surprisingly, in the UDPP configuration there is also a
clear cross-modulation of the 3.38-THz and 3.85-THz mode
intensities with the 2.41-THz AM frequency, and of the

FIG. 3. (Color online) Integrated intensities of the strongest
modes as functions of t12 in UDPP configuration (a) at I1 = 4 × I2

in 1 T -TaS2 and (c) at I1 = 2.4 × I2 in TbTe3. Normalized power
spectra of the traces are shown in panels (b) and (d). Open symbols
correspond to the low-intensity SDPP response. Note the difference in
the modulation frequency for the 3.38-THz mode in 1T -TaS2 (b) and
the 2.63-THz mode in TbTe3 (d) between the UDPP (full triangles)
and SDPP (open triangles) cases.
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2.63-THz mode intensity with the 2.20-THz AM frequency, in
1 T -TaS2 and TbTe3, respectively.

IV. DISCUSSION

To understand the observed phenomena we start with the
simplest Ginzburg-Landau expansion of the free energy:

F = F0 +
(

T

Tc

− 1

)
|A|2 + 1

2
|A|4 + g(t)|A|2, (1)

in terms of the normalized complex order parameter A. Tc

is the critical temperature and g(t) represents the external
laser excitation. Due to the symmetry g(t) can couple only
to |A|2. To describe the dynamics we introduce the T = 0 AM
frequency ω0 and the dimensionless damping γ = �ω0/ω0,
and obtain using Eq. (1)

2
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0

∂2

∂t2
A+ 4γ
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∂
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A+

(
T

Tc

− 1

)
A+ |A|2A= − g(t)A. (2)

Since g(t)A cannot excite phase fluctuations, only the AM
needs to be considered. (In the equilibrium, A can always be
set real by a proper choice of the phase.) According to Ref. 31,
the dielectric constant depends in the lowest order on |A|2:

ε = ε0 + c1|A|2, (3)

so the reflectivity change in the UDPP configuration is written
as

�R2(t) = �R(t) − �R1(t) ∝ |A(t)|2 − |A1(t)|2, (4)

where A1(t) is the solution of Eq. (2) with excitation from the
P1 pulse only and A(t) is the solution with the excitation from
both pump pulses.

There are two terms in Eq. (2) that are of interest: g(t)A and
|A|2A. The term g(t)A leads to a periodic modulation of the
coupling of A to the P2 pulse when the oscillation amplitude
after the P1 pulse is large. This effect, however, does not explain
the main features of our observations: (i) if the oscillation
amplitude is large, a significant AM-overtone intensity is
expected due to |A|2 in Eq. (3), which is not observed in
the experiment; (ii) because the laser excitation initially drives
A toward zero an intermediate amplitude of the oscillations at
t12 = 0 followed by a minimum at ω0t12 � π/2, where A(t)
is closest to 0, is expected. (The term g(t) couples to A as
T so a positive g(t) decreases A.) Instead, the first minimum
is observed around ω0t12 � 3π/2 and the amplitude is the
largest at t12 = 0 in 1 T -TaS2 and at ω0t12 � π/2 in TbTe3.
The anharmonic term |A|2A in Eq. (2) remains therefore the
only possible origin of the observed behavior.

The solutions of Eq. (2) with γ = 0 can be represented
as closed periodic orbits in the phase space [see Fig. 4(a)].
Due to the anharmonicity, the frequency of the orbit decreases
with the oscillation amplitude. The P2 pulse transfers the
system from the initial orbit, set by the P1 pulse, to a final
orbit with a different frequency, which depends on t12. This
results in a beating of the �R2(t) oscillations due to an
interference of the second and the first term in the right-hand
side of Eq. (4), corresponding to the initial and final orbits,
respectively. The frequency of the final orbit periodically
oscillates with increasing t12 [see Fig. 4(b)]. Within a single
initial orbit period there exist two delays, ω0t12 ∼ φ0 + π/2

(a)

(b)

(c)

(d)

(e)

FIG. 4. (Color online) (a) Orbits of Eq. (2) in the phase space in
the absence of damping (γ = 0). The long arrow represents the initial
excitation by the P1 pulse. The short arrows represent the additional
excitation by the P2 pulse, which transfers the system to different
orbits depending on t12. Simulated power spectrum as a function of
t12 in the absence of damping is shown in (b); with damping (γ =
0.01) and short excitation pulses, ω0τg = 0.2π , (c); with damping and
long excitation pulses ω0τg = 2π , (d); with damping, long excitation
pulses, and a finite laser penetration depth, λ/ξ = 16, (e).

and ∼ φ0 + 3π/2, at which the only effect of the P2 pulse is
a phase shift within the initial orbit. In the vicinity of these
delays the beating is very slow, resulting in a slow increase
of the �R2(t) oscillations amplitude with t . This slow rise
is suppressed when γ is finite since the oscillations die out
before a significant phase shift between the orbits builds
up, and the �R2(t) oscillations amplitude remains small.
As a result a periodic modulation of the �R2(t) oscillations
amplitude is observed in the simulations with finite γ [see
Fig. 4(c)]. In addition to the more intensive maximum,
reminiscent of the experimental observations, an additional
weak maximum is observed within a single period corre-
sponding to t12 with the larger final-orbit frequency [see
Fig. 4(b)]. The weak maximum is strongly sensitive to the
characteristic timescale of the external laser perturbation, τg ,
and is completely suppressed by setting τg = 2π/ω0, as shown
in Fig. 4(d). (In simulations g(t) = g1f (t) + g2f (t − t12),
with f (t) = exp(−t/τg)/[1 + exp(−10t/τg)], was used to
represent P1 and P2.)

To improve agreement of the model with the experiment
we extended the Ginzburg-Landau expansion [Eq. (1)] with
the gradient term ξ 2|∂A/∂z|2 (see Ref. 20) to allow for
space variations of the order parameter perpendicular to
the sample surface due to the finite penetration depth λ

of the laser pulses. The result of a simulation with the
inhomogeneous order parameter [Fig. 4(e)] better reproduces
the main experimental features for the AM. Similarly to the
homogeneous case, the weak maximum, which is not observed
in the experiment, is absent only as long as ω0τg ∼ 2π .
In our experiment ω0τl ∼ 0.2π , where τl is the length of
the laser pulses, indicating that the coherent oscillations are
not excited by the impulsive stimulated-Raman-scattering
mechanism,2 but rather by the displacive one,1 which can lead
to τg > τl .
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Counterintuitively, the experimentally observed small peri-
odic frequency modulation of the AM is not reproduced in any
simulation with a finite damping, so the origin of the effect is
beyond the present model.

Next we turn to analysis of the weaker modes, with
displacements denoted Qi . As in the case of the AM we can
exclude the direct driving terms |Qi |2g(t) and �(QiA

∗)g(t)
as the sources of the modulation because of the relatively
small displacements. However, in addition to the AM other
modes can also be coupled to the CDW charge modulation.
As a result, mode displacements Qi become mixed with the
AM displacement A, and the effective mixed-mode potentials
become anharmonic. [The terms �(QiA

∗) must be added
to the total free energy.] This leads to the cross-modulation
of mode intensities with the AM frequency in addition to
the self-modulation at the particular mode eigenfrequency.
The relative amounts of the modulation at both frequencies
depend on the couplings to the AM and to the external laser
perturbation. If after the P1 pulse the amplitude of a particular
mode is small, the main contribution to the modulation is due
to the cross-modulation at the AM frequency, as is the case
for the 3.38-THz mode in 1 T -TaS2 and the 2.63-THz mode
in TbTe3. If, on the other hand, the amplitude is large enough,
a significant self-modulation is expected as in the case of the
3.85-THz mode in 1 T -TaS2.

The observed modulation and cross-modulation can be
related to the recent proposal of Schäfer et al.13 for quasi-
1D CDW in K0.3MoO3. According to Schäfer et al. the
overdamped electronic part of the order parameter is linearly
coupled to several different modes of the same symmetry
in the CDW state. In K0.3MoO3 the three strongest Raman

active modes show rather similar couplings. No distinction
can be made among them and no clear lattice soft mode
can be identified in this case on the basis of the linear
response. The determination of the cross-modulation among
different phonon modes at larger excitation levels could
therefore further clarify their roles in the CDW transition.
Indeed, some difference between the intensity modulation
of different modes in K0.3MoO3 has recently been ob-
served after the destruction of the CDW by a laser pulse.20

We therefore believe that the determination of the cross-
modulation among different modes in other CDW compounds
could further clarify the roles of different phonons in CDW
transitions.

V. CONCLUSIONS

In conclusion, by means of unbalanced double-pump-
pulse time-resolved optical spectroscopy, we were able to
detect the inherent broken-symmetry-state anharmonicity of
the amplitude-mode effective potential in two distinct CDW
systems. We also found clear evidence of the anharmonic
mixing of certain phonon modes with the amplitude mode
originating from their mutual coupling to the electronic-
density CDW modulation. We showed that the observed
effects can be described in the framework of time-dependent
Ginzburg-Landau theory.
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13H. Schäfer, V. V. Kabanov, M. Beyer, K. Biljakovic, and J. Demsar,
Phys. Rev. Lett. 105, 066402 (2010).

14S. Sugai, Phys. Status Solidi B 129, 13 (1985).
15M. Lavagnini et al., Phys. Rev. B 78, 201101 (2008).
16T. Onozaki, Y. Toda, S. Tanda, and R. Morita, Jpn. J. Appl. Phys.

46, 870 (2007).
17L. Perfetti, P. A. Loukakos, M. Lisowski, U. Bovensiepen,

H. Berger, S. Biermann, P. S. Cornaglia, A. Georges, and M. Wolf,
Phys. Rev. Lett. 97, 067402 (2006).

18F. Schmitt et al., Science 321, 1649 (2008).
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