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Dimensional reduction at a quantum critical point
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Competition between electronic ground states near a quantum
critical point1,2 (QCP)—the location of a zero-temperature phase
transition driven solely by quantum-mechanical fluctuations—is
expected to lead to unconventional behaviour in low-dimensional
systems3. New electronic phases of matter have been predicted to
occur in the vicinity of a QCP by two-dimensional theories3–8, and
explanations based on these ideas have been proposed for signifi-
cant unsolved problems in condensed-matter physics, such as
non-Fermi-liquid behaviour and high-temperature superconduc-
tivity. But the real materials to which these ideas have been applied
are usually rendered three-dimensional by a finite electronic
coupling between their component layers; a two-dimensional
QCP has not been experimentally observed in any bulk three-
dimensional system, and mechanisms for dimensional reduction
have remained the subject of theoretical conjecture9–11. Here we
show evidence that the Bose–Einstein condensate of spin triplets
in the three-dimensional Mott insulator BaCuSi2O6 (refs 12–16)
provides an experimentally verifiable example of dimensional
reduction at a QCP. The interplay of correlations on a geometri-
cally frustrated lattice causes the individual two-dimensional
layers of spin-1

2 Cu21 pairs (spin dimers) to become decoupled at
the QCP, giving rise to a two-dimensional QCP characterized
by linear power law scaling distinctly different from that of its
three-dimensional counterpart. Thus the very notion of dimen-
sionality can be said to acquire an ‘emergent’ nature: although the
individual particles move on a three-dimensional lattice, their
collective behaviour occurs in lower-dimensional space.
BaCuSi2O6 is a spin dimer system whose highly symmetric crystal

structure17,18 (Fig. 1 inset) gives it unique advantages for tackling the
fundamental role of dimensionality in the field of quantum criti-
cality. The material consists of layers of spin dimers arranged
vertically on an essentially square lattice in which exchange inter-
actions are rotationally invariant around the crystalline c axis—
providing the ideal conditions for Bose–Einstein condensation.
However, the dimer plaquettes are staggered between consecutive
layers, as shown in Fig. 1 inset. This leads to geometrical frustration
of the inter-layer antiferromagnetic interaction, J f (that is, the
antiparallel arrangement of spins within and between layers conflict).
In zero magnetic field, each spin dimer has a singlet (spin s ¼ 0)

ground state comprising s ¼ 1
2 Cu2þ ions paired by an antiferro-

magnetic coupling constant J ¼ 4.45meV (refs 12, 13, 19), with three
degenerate triplet excited levels (s ¼ 1, s z ¼ 1, 0, 21). Hence the
ground state of the system is a quantum paramagnet consisting of a
direct product of singlets, while the single triplet excitations become
dispersive owing to the moderate intra-layer coupling J 0

¼ 0.51
meV ,, J (refs 12, 13), but remain gapped. The effect of a magnetic
field is to Zeeman-split the triplet bands in a linear fashion, closing
the gap between the singlet level and the lowest energy s z ¼ 1 triplet
excitation (at wavevector kx ¼ ky ¼ p) at a critical magnetic field
H c1, which leads to an ordered state with a precisely field-tunable
concentration (or density) r ; m z ; ks zl of triplets aboveH c1 (here

mz is the uniform magnetization and ks zl is the expectation value
of s z).
Figure 1 shows the measured phase boundary separating the

quantum paramagnetic phase from the magnetically ordered state.
Ordering transitions are measured by torque magnetometry13 in
static magnetic fields of up to 28 T in the temperature range 30mK to
1K in a dilution refrigerator in the National High Magnetic Field
Laboratory, Tallahassee. A finite torque is obtained by incliningH at a
small (,108) angle to the crystalline c axis, from which m z ; r is
extracted (see below).
We extract the critical scaling behaviour from the phase boundary

in Fig.1 to determine the universality class of the QCP. Figure 2 shows
the experimental value of the critical exponent n determined from
fitting points on the phase boundary in a sliding window. The
exponent n characterizes the power law1,13 relating the ordering
temperature to the proximity to the critical magnetic field H c1:
T c / (H 2 H c1)

n. As the temperature is lowered, the system enters
the region of universal behaviour (bright yellow shading). The value
of n tends to 2

3 in this region as T tends to 0.5 K from above
(Twin < 0.9 K), consistent with previous measurements13. However,

LETTERS

Figure 1 | Experimentally obtained phase boundary of BaCuSi2O6. The
phase transition to the magnetically ordered state is shown over the entire
temperature range (error bars are smaller than the symbol size); the shading
varies radially from dark to light, reflecting the reduction in dimensionality
near the QCP. Experimental data obtained from torque magnetometry in a
dilution refrigerator are in yellow, previous experimental data from ref. 13
are in red (torque magnetometry and magnetocaloric effect in a 3He
refrigerator) and blue (specific heat in a 4He cryostat). The inset shows a
schematic diagram representing the body-centred tetragonal BaCuSi2O6

crystal lattice (the lattice exhibits a subtle incommensurate distortion below
85K, ref. 18), dimers formed fromCu2þs ¼ 1

2 spins are shown as dumb-bells.
It is apparent that this lattice structure leads to geometrical frustration. J is
the intra-dimer antiferromagnetic interaction, J 0 the antiferromagnetic
interaction between in-plane dimers, and J f the inter-layer
antiferromagnetic interaction that leads to geometric frustration.
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below these temperatures there is a clear crossover to a value of n ¼ 1
for the fitting range T , 1K (Twin , 0.65 K). We show below that
these exponents are characteristic of the three- and two-dimensional
Bose–Einstein condensate (3D and 2D BEC) universality classes,
respectively.
The system can be considered as a 3D Bose gas of interacting

particles by neglecting the unoccupied higher energy s z ¼ 21, 0
triplet states (since J f , J

0
,, J), and replacing each dimer by an

effective site that can be either empty (singlet state) or occupied by a
hardcore boson (s z ¼ 1 triplet state)12,20,21. H acts as a chemical
potential, which at low magnetic fields is prohibitively high, and
prevents population of the Bose gas, permitting population only
aboveH c1. The interacting bosonsmove on the frustrated lattice with
kinetic energy provided by the xy-component of the inter-dimer
Heisenberg interaction (which determines the effective mass), while
the short range repulsion arises from the Ising or z-component. The
kinetic energy term dominates in BaCuSi2O6, resulting in a BEC
ordered state12,22 characterized by a quantum-coherent superposition
of the singlet and the s z ¼ 1 triplet on all sites. This can be described
as a canted XY-antiferromagnet in terms of the original spin degrees
of freedom (shown in Fig. 1 inset), with the in-plane staggered
magnetizationmxy determining the amplitude and phase of the BEC
order parameter kb†l.
At the QCP (H c1), the characteristic length of the amplitude

fluctuations of kb †l diverges. Taking the scaling limit (lattice
parameter ! 0), the original microscopic theory becomes an effec-
tive continuous field theory describing a dilute Bose gas1,23. In this
field theory, the dynamical critical exponent z ¼ 2, and hence the

upper critical dimension of this QCP is d c ¼ 2. The correct critical
exponents for d $ 2 are therefore obtained using a mean-field
theory, which leads to the following universal power laws for
measurable quantities on approaching the QCP:

rðT ¼ 0Þ;mzðT ¼ 0Þ/ ðH2Hc1Þ ð1aÞ

mzðHc1Þ/Td=2 ð1bÞ

Tc /ðH2Hc1Þ
2=d ð1cÞ

that is, the critical exponent n ; 2/d for the BEC universality class.
According to equation (1c), the experimentally measured value of

n ¼ 2
3 asT tends to 0.5K from above (Twin < 0.9K, Fig. 2) is consistent

with a 3D BEC3,23–25, in agreement with previous measurements13. In
contrast, the unexpected crossover to n ¼ 1 in the fitting range

Figure 3 | 2DBEC power law behaviour. Power laws extracted from uniform
magnetization obtained from torque measurements on BaCuSi2O6 in an
external magnetic field applied at a small angle (,108) to the crystalline c
axis. Error bars are smaller than the symbol size. A small background
subtraction has been made to account for the cantilever response; absolute
values of magnetization were obtained by comparison with pulsed magnetic
field data. a, Uniform magnetization (m z) ; particle density (r) obtained
from torque measured as a function of rising magnetic field at 35mK. The
ordering transition determined from a sharp feature in the second
derivative13 (shown in the inset) is indicated on the magnetization curve (b)
m z ; r as a function of temperature extracted from the magnetization
curves in a measured at various temperatures. Representative curves are
shown at magnetic fields above, below and at the critical magnetic field
H c1 ¼ 23.17 T. T c ¼ 0K at H c1, and corresponds to the dip in mz at fields
above H c1. The solid line shows a linear fit to mz at H c1. c, Points on the
phase boundary obtained from ordering transitions determined from the
magnetization curves in a. The solid squares represent data previously
reported13. The open symbols represent data reported in this work which are
measured at lower temperatures in a dilution refrigerator. The open circles
and diamonds represent data taken with the sample in slightly different
orientations (the angle was changed by ,108 and the field accordingly
rescaled by a 0.5% change in g-factor) to verify that the results are
independent of orientation. The solid line shows a linear fit to the phase
boundary below 1K.

Figure 2 | Crossover from 3D to 2D BEC critical exponent. a, Values of the
critical exponent n obtained from fitting experimental points on the phase
boundary in a sliding window centred at Twin (K). A two-parameter least
squares regression of equation (1c) with n and critical field H c1 varying is
used to fit the data. Error bars show the standard errors in the least squares
fit. The window size varies from 0.05 to 1.4K, as indicated by different
symbols. The data approach n ¼ 2

3 in the intermediate regime, and there is a
distinct crossover toward n ¼ 1 before the QCP is reached. b, Estimates of
H c1 obtained along with n during the fit.H c1 approaches a transient value of
23.52 T in the intermediate regime, and crosses over to the true low
temperature value of 23.17 T before the QCP is reached. The shading reflects
the crossover toward the n ¼ 1 exponent as the QCP is approached both as a
function of field and temperature. The dark yellow shading indicates the
high temperature (field) non-universal regime, the bright yellow the
intermediate regime, and the light yellow the 2D regime. c, Best fits to the
phase boundary in the intermediate and low temperature regimes
represented on a logarithmic scale. The solid lines show that the data in the
intermediate temperature range are consistent with the values of
H c1 ¼ 23.52 T and n ¼ 2

3, which does not fit the lower temperature points;
whereas data in the lower temperature range are consistent with
H c1 ¼ 23.17 Tand n ¼ 1, which does not fit the higher temperature points.
We observe a crossover from one regime to the other in the temperature
range 0.65K , Twin , 0.9 K.
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T , 1K (Twin , 0.65 K, Fig. 2) is a signature of 2D BEC behaviour.
All experimental results for T , 1K in Fig. 3a–c are consistent with
the linear power law behaviours predicted by equation (1) for d ¼ 2,
thus demonstrating that the measured critical behaviour of the
system in the temperature range 30mK to 1K belongs to the 2D
BEC universality class. Ising-like order due to U(1) symmetry break-
ing terms can be ruled out, as this would lead to a critical exponent of
0.5 (ref. 1). The effect of disorder would be either a critical exponent
satisfying the Harris criterion24,26,27 (n . 4/3), or a smeared phase
transition. Neither the experimentally measured exponent (n ¼ 1),
nor the sharp non-hysteretic transition in the magnetization charac-
terized by the narrow peak in d2mz/dH

2 which sharpens at low
temperatures, are consistent with a disordered system.
To understand the origin of the dimensional reduction, we

consider the effect of geometrical frustration as a consequence of
the body-centred tetragonal lattice onwhich the Bose gas moves. The
single particle dispersion relation comprises a term arising from the
intra-layer exchange, J 0(coskx þ cosky), and a term reflecting the
inter-layer hopping, 2J f cosk z cos(kx/2) cos(ky/2), as shown in Fig. 4a.
At the dispersion minimum (kx ¼ k y ¼ p) where the bosons con-
dense, the inter-layer hopping is always zero (that is, there is no
dispersion along the c axis). Equivalently, the phase of a single boson
(with kx ¼ ky ¼ p) alternates cyclically on a plaquette of neighbour-
ing lattice sites (shown in Fig. 4b), resulting in phase cancellation at
each site of the adjacent layer. Hence the effect of geometrical
frustration is to decouple adjacent layers, leading to a highly
degenerate ground state, which can be described as an array of 2D
BEC layers.
A competing effect arises from zero-point phase fluctuations,

which generate an effective inter-layer coupling (K) and restore
phase coherence along the c axis28,29. However, because K can
equivalently be considered to be a consequence of pair tunnelling
(as shown in Fig. 4c) and hence biquadratic in the order parameter,
its strength decreases as r2 for low densities of bosons (as recently

shown using a spin-wave approach on the same spin lattice28). A
measure of the ‘3D-ness’ of the system is given by the size of the
effective coupling K relative to the temperature scale kBT c. As T c is
proportional to r in the proximity of the QCP (from equation (1) for
d ¼ 2), the ratio K/kBT c (which is / r) is arbitrarily small close
enough to the QCP, and inter-layer tunnelling is too small for the
system to be observably 3D. By field tuning toward H c1, we
experimentally access this region, and hence observe critical power
law behaviour consistent with the 2D BEC universality class. The
energy scale of this 2D-critical behaviour is well separated from the
very low temperatures at which weak longer range inter-layer
interactions are anticipated to restore 3D behaviour; and hence 2D
behaviour is observed over a significant range of temperature.
Away from the QCP, the fluctuation-induced inter-layer tunnel-

ling increases rapidly with particle density, leading to distinctly 3D
behaviour when K(r) becomes comparable to T c. The system may
then be described by an effective unfrustrated model for the subsets
of odd and even layers that assumes a constant effective inter-layer
coupling, J

00
(refs 12, 13). Tuning the system by means of the applied

magnetic field from this unfrustrated region toward the QCP where
geometrical frustration becomes effective therefore results in a
marked crossover from 3D to 2D BEC power law behaviour (Fig. 2).
BaCuSi2O6 therefore provides a clear example of a system inwhich

geometrical frustration causes the effective dimensionality to become
reduced at the QCP, leading to 2D collective excitations despite the
3D nature of the system. Although inter-layer decoupling due to
geometrical frustration features as a possible explanation for the
puzzling experimental observation of non-Fermi-liquid behaviour at
the QCP in body-centred tetragonal heavy fermion intermetallics3–8,
theoretical reasoning28 has been used to assert that it is impossible to
realize reduced dimensionality in any system by the mechanism of
geometrical frustration. The experimentally observed dimensional
reduction in BaCuSi2O6 provides a counter-example, and constitutes
a proof of principle that dimensionality can become an emergent
property of a QCP.
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