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We report an experimental determination of the phase boundary approaching the quantum critical point
separating a quantum paramagnetic state and the proposed spin Bose-Einstein condensate of triplons in the spin
dimer compound BaCuSi2O6. The ordering temperature is related to the proximity to a quantum critical point
at the lower critical magnetic field Hc1=23.52±0.03 T by a power law parametrized by critical exponent �. We
obtain an experimental estimate of �=0.63±0.03 down to a temperature of 0.61 K, which is in good agreement
with the mean-field prediction of �=2/3 for the three-dimensional Bose-Einstein condensation universality
class.
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The class of spin dimer compounds, including
BaCuSi2O6,1,2 TlCuCl3,3–7 and Sr2Cu�BO3�2,8 have a singlet
ground state in zero magnetic field with a gap to the lowest
excited triplet state. The spin gap can be closed by an applied
magnetic field, such that a quantum critical point �QCP� at a
magnetic field Hc1 separates the quantum paramagnetic state
from a state characterized by long-range magnetic order. The
order parameter for this transition is �b†��Mst

x + iMst
y , where

�b†� is the creation operator for a triplet state, and Mst
x and

Mst
y are the x and y components of the staggered magnetiza-

tion in the plane perpendicular to the applied field. In the
limit of weak interdimer exchange coupling, the system may
be described as an interacting gas of hardcore bosons, with
kinetic energy and potential energy provided by the Heisen-
berg and Ising components of the interdimer exchange, re-
spectively. In the absence of U�1� rotational symmetry-
breaking anisotropy, the ordering transition may be
interpreted as a Bose-Einstein condensation �BEC� of
triplons.9 The applied magnetic field functions as a chemical
potential for the triplons, and thereby provides a convenient
means to tune the BEC to criticality at the QCP.

BaCuSi2O6 has a simple and well-characterized quasi-
two-dimensional structure1,2,10 consisting of vertical Cu2+

dimers in a square lattice arrangement on each layer,
and staggered between vertical layers. The intra-
dimer, interdimer, and interlayer exchange couplings have
been estimated from high field magnetization data1 to be
J=4.45 meV, J��0.58 meV, J��0.116 meV, respect-
ively.1,2 The exchange couplings in the lattice are clearly
identifiable, and the small ratio of interdimer to intradimer
coupling J� /J places the compound well into the strong-
coupling limit, such that it is well described by the effective
Hamiltonian in Ref. 1. In addition, the simple arrangement of
spins on each layer in a square lattice connected only by
vertical and horizontal rungs, and coupled between layers,
indicates a U�1� rotationally spin symmetric Hamiltonian,

which makes this a prototypical system to study the triplet
analog of BEC, for which U�1� symmetry is a prerequisite.
The particle-hole symmetry implicit in the effective Hamil-
tonian, which is experimentally observed in Ref. 1 and con-
firmed by the experimental data presented here, serves to
constrain the shape of the phase boundary in the vicinity of
the QCP. This is captured in the form of a refined power law
�described below�, and used in this work to more accurately
extract an experimental estimate of the critical exponent �.

In this paper, we present results of a set of experiments on
BaCuSi2O6 down to 0.61 K from which we are able to ex-
tract critical scaling exponents describing the approach to the
QCP. The experimental results are found to be consistent
with the �=2/3 BEC critical exponent.

The proximity to the QCP is expected to be related to the
ordering temperature �Tc� by a power law Tc��H−Hc1��,11

which can be expressed in reduced form

t = f�h��1 − h��, �1�

where t=Tc /Tmax, h= �Hmax−H� / �Hmax−Hc1� �Hmax and Tmax

represent the point on the phase boundary halfway between
Hc1 and Hc2, where Hc2 is the field at which the magnetiza-
tion saturates� and f�h�h=1 is finite. The mean-field critical
exponent �=2/3 is characteristic of the three-dimensional
�3D� BEC universality class, and describes the scaling be-
havior of a 3D dilute interacting Bose gas near the QCP. The
mean-field estimate is appropriate since the upper critical
space dimension of 2 �dc=2 because z=2 for this universal-
ity class� is exceeded.9,12–14

Magnetic torque, magnetocaloric effect, and specific heat
measurements were performed to obtain points on the phase
boundary into the ordered state. Features in these thermody-
namic quantities characterize the classical 3D-XY phase tran-
sition into the ordered state at finite temperatures. Single
crystal samples of BaCuSi2O6 grown by a flux-growth tech-
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nique were used for these experiments, whereas previous
measurements on this material1,2,10 used single crystals
grown by a floating zone technique. Flux grown crystals
were chosen because of a lower impurity content, a clearly
defined Schottky anomaly in the zero field heat capacity, and
narrower nuclear magnetic resonance lines.

The specific heat, measured at 36 T in a 4He cryostat in
the hybrid magnet at Tallahassee, is shown in the inset to Fig.
1�a�, and shows the characteristic lambda anomaly indicating
a second-order phase transition. The shape is identical to that
in Ref. 1, which has been fit using directed-loop Monte Carlo
simulations. The ordering temperature at 36 T is plotted on
the phase diagram in Fig. 1�a�.

Magnetic torque measurements to probe the ordering tran-
sition were performed in static magnetic fields up to 33 T in
a 3He fridge in Tallahassee. Samples were mounted on the
moving plate of a capacitance cantilever, attached to a rigid
plate rotatable about an axis parallel to the torque axis and
perpendicular to the applied magnetic field. The sample is
mounted with a small angle ��10°� between the applied

field and the normal to the sample plane �easy axis ĉ�, such
that the applied field exerts a torque on the crystal due to the
difference in g factor between the â and ĉ orientations
with ga�2.053 and gc�2.303.15 The anisotropy in g results
in an anisotropy in Hc1=� /g�B �where � is the spin gap�.
Hence, on entering the magnetically ordered phase with in-
creasing magnetic field, the anisotropy in magnetization
causes a sudden increase in torque, as the field attempts to
align the ĉ axis more closely with the applied field. Torque
was measured during field sweeps across the ordering tran-
sition at different temperatures.

The ordering transition is seen in field dependent torque
curves in a temperature range 0.61–3.3 K �sample curves
shown in Fig. 1�b��. The field at which the phase transition
occurs is obtained from a sharp feature in the second deriva-
tive of the torque �an example shown in the inset to Fig.
1�b��. This is shown16 using thermodynamic arguments to be
the appropriate signature of the ordering transition, thus re-
solving the uncertainty in the literature over the correct
technique.3–7 The feature becomes weaker at higher tempera-
tures, but can be extracted up to T=3.3 K. Examples of the
ordering transitions thus obtained are indicated by solid sym-
bols on the torque curves in Fig. 1�b�. Points on the phase
diagram obtained from torque measurements are shown as
solid circles in the phase diagram in Fig. 1�a� �the experi-
mental uncertainty is smaller than the symbol size.�

The magnetocaloric effect describes the temperature
change of a magnetic material associated with an external
magnetic field change in an adiabatic process. An abrupt
change in the temperature with the changing magnetic field
indicates a large field variation of the isothermal magnetic
entropy, and is associated with an ordering transition. These
measurements are a good probe of ordering transitions in a
rapidly changing magnetic field.17 Magnetocaloric effect
measurements were performed in fields up to 45 T in a 4He
cryostat in the hybrid magnet in Tallahassee. Temperature
changes are detected during magnetic field sweeps at differ-
ent temperatures �shown in Fig. 1�c��. The upturn in lattice
temperature at Hc1 �Hc2� in a rising �falling� field indicates a
drop in magnetic entropy with ordering. Similarly, a dip in
temperature in a falling �rising� field indicates the transition
out of the ordered phase at Hc1�Hc2�. The position of the
ordering transition for H�Hmax is obtained from the onset of
the peak �as defined by the maximum in the first derivative�
in a rising field and for H�Hmax from the onset of the dip in
a falling field. The ordering transition thus obtained for a
representative field sweep is shown in Fig. 1�c�. Points on
the phase diagram obtained from magnetocaloric effect mea-
surements are shown by open symbols in the phase diagram
in Fig. 1�a�.

Monte Carlo simulations for this system were performed
using the directed-loop algorithm18 �results are represented
by + symbols in Fig. 1�a��. Estimates of interdimer exchange
coupling are refined from Ref. 1, with revised values of J�
=0.51 meV and J�=0.168 meV yielding better agreement of
the Monte Carlo simulations with experimental points on the
phase diagram.

The particle-hole symmetry of the BaCuSi2O6 phase dia-
gram enables us to extend the region near the QCP in which
the power law can be fit. Equation �1� describes scaling near

FIG. 1. �a� Points on the phase boundary are determined from
magnetic torque �solid circles�, magnetocaloric effect �open circles�,
specific heat �solid square� measurements and Monte Carlo simula-
tion �+ symbols �the dotted line is a guide to the eye��. The inset
shows the lambda anomaly in specific heat measured at a magnetic
field of 36 T. �b� Torque measured as a function of rising magnetic
field at sample temperatures as indicated. The ordering transitions
determined from a sharp feature in the second derivative �shown in
the inset� are indicated on each of the torque curves. �c� Sample
curve indicating the temperature change due to the magnetocaloric
effect measured as a function of up and down sweeps in a magnetic
field. The ordering transition is indicated on the curve.
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Hc1 while t� �1+h�� describes scaling near Hc2. In other
words, the particle-hole symmetry of the system implies that
t is a function of h2

t = g�h2���1 − h��1 + h��� 	 g�h2��1 − h2��, �2�

where g�h2� varies more slowly than f�h� near the QCP.
An additional improvement in the analysis presented here

is an estimate of the universal region in which the power law
can be extracted. We performed Monte Carlo simulations to
identify the limit of the universal regime, and analyze data
within this region to extract power-law behavior. Experimen-
tal limitations restrict the data available in the universal re-
gion to perform a two-parameter fit to � and Hc1 in Eq. �1�.
The analysis technique we report here to overcome this limi-
tation is the independent determination of Hc1 from the ex-
perimental data. This fixed value is used to perform a one-
parameter fit to �, which therefore requires a smaller number
of data points in a limited range to obtain a statistically sig-
nificant fit.

We use an empirical convergence approach to determine
the best estimate of Hc1. Figure 2�a� shows the trend in the

estimate of Hc1 �denoted as ‘Hc1’� obtained by fitting the
lowest few experimental points on the phase boundary in
Fig. 1�a� in a window of increasing size tw to Eq. �2� �where
g�h2� is assumed to be constant to a first approximation� for
different fixed values of �. Near the QCP, it is empirically
observed from linear extrapolation to tw=0, that estimates of
‘Hc1’ become less dependent on �, and converge to a single
value irrespective of the value of � �Fig. 2�a��. Similar con-
vergence to Hc1 is observed for the Monte Carlo simulation
results �with a narrower spread since simulations were run to
lower temperatures than the experiments, thereby more
tightly constraining the estimates of ‘Hc1’.� The convergence
is due to the fact that the QCP is at Hc1, independent of the
path along which it is approached �characterized by ��. From
this ‘Hc1’ convergence, we obtain an estimate of Hc1
�23.52±0.03 T. This value of Hc1 is then used to estimate
the critical exponent �.

The critical exponent � is estimated from fitting Eq. �2�
�with g�h2�
const.� to the narrowest temperature range near
the QCP with a statistically significant number of experi-
mental data points. Figure 2�b� shows the variation in �
with the size of the temperature window that is fit to Eq. �2�
�points on the phase boundary are fit from the lowest value
of t=0.16 to a highest value of t= tw�. We fit the lowest
experimentally accessible temperature window containing
nine data points down to 0.61 K to obtain a value of
�=0.63±0.03. Performing a similar analysis on Monte Carlo
simulation results reveals the expected increase in � to the
mean-field value as the temperature window is further re-
duced below currently accessible experimental temperatures
�Fig. 2�b��. The experimental estimate of �=0.63±0.03
based on measurements down to temperature t=0.16 is con-
sistent with the theoretical mean field prediction of �=2/3 to
within experimental error.

Figure 3 shows the comparison between the Monte Carlo
simulation and the experimental data for Hc1=23.52 T. The
lines represent the power law �Eq. �2�� with �=2/3. The
universal region is indicated by the temperature range over
which �→2/3 in the Monte Carlo simulation. A significant

FIG. 2. �a� Circles represent estimates of ‘Hc1’ obtained from
fitting the lowest few experimental points on the phase boundary in
Fig. 1�c� in a window of increasing size tw, to Eq. �2� for different
fixed values of �. The x axis tw labels the highest reduced tempera-
ture of the fit window. The dotted lines show the linear convergence
of ‘Hc1’ values at tw=0. Triangles represent estimates of ‘Hc1’ simi-
larly obtained from Monte Carlo simulation data for corresponding
fixed values of �, and similar convergence is observed. �b� Circles
represent estimates of � from fitting the lowest few experimental
points on the phase boundary in Fig. 1�a� in a window of increasing
size tw, to Eq. �2� with Hc1=23.52 T determined from �a�. The error
bars are due to experimental uncertainty in determining values of
Hc. Triangles represent estimates of � from a similar fit to Monte
Carlo simulation data. The dotted line is a guide to the eye, illus-
trating the approach of the Monte Carlo simulation to the mean field
value as tw→0.

FIG. 3. Points on the phase boundary from magnetic torque
�solid circles�, magnetocaloric effect �open circles�, and heat capac-
ity �solid square� measurements for Hc1=23.52 T, Hmax=36.12 T,
Tmax=3.70 K, and from Monte Carlo simulations �crosses�. The
lines represent Eq. �2� with �=2/3.
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number of experimental data points lie within this region,
and we are able to obtain an experimental estimate of � from
the lowest statistically significant fit range �tw=0.38� con-
taining these data points �shown in Fig. 2�. The Monte Carlo
simulation and experimental data are in good agreement in
the lowest experimentally accessible temperature window.

In summary, we performed magnetic torque and magne-
tocaloric effect experiments to map out the phase diagram in
the vicinity of the QCP in the spin dimer system BaCuSi2O6.
Points down to 0.61 K are fit to the power law t=g�h2��1
−h2�� �with g�h2�
const.� to give a value �=0.63±0.03,
which is close to the theoretical value �=2/3. Experimental
measurements of � in the other prototypical spin dimer sys-
tem TlCuCl3 have resulted in lower values in the range
0.43–0.60.3–7 However, the complexity of the TlCuCl3 sys-
tem in terms of an anisotropic lattice with multiple exchange
constants, and a relatively large value of interdimer coupling
relative to intradimer coupling makes that material more
challenging to model. In addition, the presence of anisotropic
crystal field effects that break rotational symmetry in
TlCuCl3 have been unambiguously demonstrated by high-
field electron spin resonance �ESR� experiments.19 Hence it
has proved difficult to separate the physical origin of the
deviation in � from 2/3 in TlCuCl3 from sources of error in

the analysis technique. The other known experimental mea-
surements of the BEC critical exponent � have been on 4He
adsorbed in aerogel,20–23 which is a realization of a dilute
Bose gas, but is experimentally limited by the presence of a
random external potential. BaCuSi2O6 is a unique U�1� sym-
metric spin dimer compound that enables experimental ac-
cess to a QCP separating a quantum paramagnet from a
Bose-Einstein condensate.1 It provides an experimental real-
ization of a BEC in a grand canonical ensemble in the ab-
sence of an external potential, with the region around the
QCP accessible by a tuneable external magnetic field.
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