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Abstract

Susceptibility, original developed experimentally in the context of magnetic systems,

is here applied to the magnetic octupole and two-dimensional electric quadrupole.

PrV2Al20 and PrT i2Al20 are motivated as model systems, realizations of electric

quadrupole and magnetic octupole order without significant competing lower-order

multipolar order (such as magnetic order). Basic methods to probe the susceptibilities

are then discussed, with emphasis on the careful use of properties of cubic symmetry

to isolate the desired multipolar moments.

A variety of experimental methods to probe the octupolar susceptibility are out-

lined, using combinations of strain and magnetic field to induce an octupolar moment.

Limitations and advantages of each are noted. The AC elastocaloric effect, wherein

oscillating strain is used to induce temperature oscillations in a material based on the

entropy landscape thereof, is then motivated as a particularly powerful tool for prob-

ing the octupolar susceptibility. Experimental data using this technique on PrV2Al20,

a system with realized magnetic octupolar order, is presented and analyzed, with a

temperature-derivative of the octupolar susceptibility extracted. Lastly, the unique

symmetry properties of the two-dimensional electric quadrupole and their implica-

tions are discussed in depth. Data is presented using the elastocaloric effect to probe

the associated susceptibility in PrT i2Al20.

The efficacy of the techniques used, and limitations thereof, are then discussed,

along with potential means of improvement. Further potential applications of the

techniques herein developed are briefly noted.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Multipolar Order

Multipolar order is foundational to condensed matter physics, with all manner of

magnetic (dipole) ordered states and interactions having been studied for decades.

Higher-order multipoles, such as quadrupoles and octupoles, remain somewhat less

studied, due to the smaller number of relevant materials and the relative difficulty

in probing them. Nonetheless, they present a variety of interesting states that have

drawn significant attention.

The simplest phenomenon of interest is the ordering of higher-order multipoles.

While some quadrupolar systems are quite well characterized, other orders can be

quite difficult to detect. Systems with ’hidden order’, wherein thermodynamic sig-

natures of a phase transition are discovered but the exact nature of the symmetry-

breaking is elusive, have been proposed as candidates for very high-order multipoles

[1, 2, 3]; URu2Si2 was proposed as an example of hexadecapole order, a fifth-order

multipole [4].

The Kondo effect, first understood in the context of magnetic (dipole) impurities

[5], also has generalizations to higher-order multipoles. Quadrupolar Kondo physics

1



CHAPTER 1. INTRODUCTION 2

remains an active area of study, with theoretical predictions regarding scaling behav-

iors still being realized [6]. Higher-order multipoles can also potentially offer a path

to two-channel Kondo behaviors in bulk crystals [7].

The iron pnictide superconductor family often has a spin-density-wave ground

state, but has also been noted to have a ’vestigial nematic’ phase [8], wherein the

rotational symmetry of the tetragonal lattice is broken before the onset of the spin

density wave and the breaking of time-reversal and translational symmetries. As this

vestigial nematic order, and associated nematic fluctuations, are considered poten-

tially significant in the high-temperature superconductivity [9], the study of nematic

order and fluctuations is then of interest in the study of superconductivity. Electric

quadrupoles provide one of the simplest realizations of such order, via Jahn-Teller

systems such as TmV O4 [10]. Systems even exist containing quadrupolar order,

i.e. nematic order, onsetting before a spin-density-wave [11], allowing nematic inter-

actions in systems with magnetic order to be studied within more well-understood

phase diagrams.

However, as evidenced by the mere existence of systems with ’hidden order’, prob-

ing these higher order multipoles is generally not as simple as probing their lower-order

magnetic analogues, with magnetization and other well-understood probes being in-

adequate to the task.

1.1.2 Development of Tools to Study Multipolar Order

All of these phenomena of interest then motivate development of new experimental

tools that can probe the associated susceptibility of the higher rank multipole, a

quantity with numerous benefits in the context of higher-order multipoles. First, it is

finite for all temperatures; though it is potentially large only at lower temperatures,

the temperature regime wherein it can be measured is nevertheless invariably larger

than that of the corresponding ordered state. Next, the divergence of the suscepti-

bility provides evidence for growing fluctuations, providing evidence for a given order

parameter without needing to probe the ordered state directly. Finally, it can be

measured for a variety of multipoles within the same material, and in the presence
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of any order parameter, including simple magnetic order: quadrupolar and octupo-

lar fluctuations can be probed even in systems which ultimately order via magnetic

dipole, with strong fluctuations potentially demonstrating conditions that might allow

realized quadrupolar/octupolar order within other materials.

To develop such tools, use of a relatively simple system is motivated. Here 4f

ion systems are ideal, with their tendency toward localization and the potential Γ3

doublet CEF ground state for cubic systems. For systems of this ground state, the

doublet can be split by Γ3 electric quadrupoles (3J2
z − J2, J2

x − J2
y ) or a Γ2 magnetic

octupole (JxJyJz). In particular, the Pr3+ ion is the most common host for such a

ground state, with PrTr2Al20 compounds having been experimentally demonstrated

to have this Γ3 ground state [12]. PrT i2Al20 and PrV2Al20 are then of interest here,

for their well-separated Γ3 ground state (40K between ground and first excited states

[12]), electric quadrupole ordering at 2K (Ti) and 0.75K (V) [12], and potential

octupolar ordering at 0.65K in higher-quality PrV2Al20 crystals [13]; these materials

are then ideal testbeds to develop tools to study higher-order multipoles without the

potential complications arising from lower-order interactions.

Here, we then seek to use Pr(Ti, V )2Al20 to test methods to probe susceptibili-

ties of the magnetic octupole and the multi-dimensional electric quadrupole, via AC

elastocaloric effect measurements.

1.2 Multipolar Order Background

Before discussing material and experimental methods, a brief discussion on gener-

alized multipolar order is merited. First, the multipole expansion itself is outlined

briefly, before specializing to 4f systems, including symmetry properties thereof and

how they may be used in the pursuit of higher-order multipoles.

1.2.1 The Multipole Expansion

The multipole expansion represents a basis for describing a local electromagnetic

charge distribution, representing it as a sum of simply-defined multipolar moments,
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with each multipolar moment having separate electric and magnetic versions. The

zeroth order multipole is the monopole, representing the mere existence of an electric

or magnetic charge; it is then represented by a zeroth order tensor, or simply a scalar

value. The first order multipole is then the dipole, representing linear gradients in

electric or magnetic charge. It is represented by a vector, or three scalar compo-

nents (x, y, z), and gives rise to the traditional vector electric or magnetic field. The

quadrupole is then represented by a second-order tensor, and represents the lowest-

order correction to a distribution that cannot be described entirely via a dipole and

monopole moment. n-th order multipoles (with prefixes corresponding to 2n) are then

generally represented by an n-th order tensor, with the electric or magnetic multi-

polar moment then needing 2n + 1 independent terms to be fully described. Figure

1.1 provides an illustration of such multipoles in terms of monopole charge distribu-

tions. The series provides a complete basis for describing a given (angular) charge

distribution:

Q(θ, ϕ) =
∞∑
l=0

l∑
m=−l

Cm
l R

m
l (1.1)

Here Cm
l represents simply the magnitude of a given multipolar moment, with l

representing the order of the multipole (0 for monopole, 1 for dipole, etc.), and m

representing the 2l + 1 independent/orthogonal components of that multipole. Rm
l

here represents the real spherical harmonics, sometimes called the tesseral spheri-

cal harmonics, each corresponding to a different (orthogonal) multipolar moment;

they are defined by adding the standard spherical harmonics Y m
l with their complex

conjugates Y −m
l :

Rm
l =


1√
2
(Y −m

l + (−1)mY m
l ) m > 0

Y m
l m = 0
i√
2
(Y m

l − (−1)mY −m
l ) m < 0

(1.2)

where phase is not physically significant, and chosen for visual clarity of Figure 1.1.

Equation 1.2 can then represent either the electric or magnetic charge distribution,

which, while related, are generally defined separately for convenience.
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Figure 1.1: Multipolar moments up to 3rd order (octupolar), labeled via their real
spherical harmonic Rm

l (see text). Alternating colors then represent alternating mag-
netic or electric charge, where describing the distributions in terms of charge renders
the multipoles visually equivalent.
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Of brief note are the varying properties of the two multipole types (electric and

magnetic) under inversion symmetry. As the electric field, and similarly the elec-

tric dipole, is a vector, and thus odd under inversion, inversion moves the monopole

moments without altering them. This causes no change to even-order multipoles

(monopole, quadrupole, etc.) while causing a sign change on odd-order multipoles

(dipole, octupole, etc), as can be seen via Figure 1.1, where monopole charge is op-

posite the inversion center of identical or opposing monopole charge for even and odd

order multipoles respectively. In contrast, given the magnetic field and dipole are

pseudovectors, the magnetic dipole is instead the invariant moment under inversion,

moving spatially but not changing sign; in a magnetic charge description, this is equiv-

alent to the magnetic (monopole) charge changing sign under inversion. Thus, the

even-order magnetic multipoles are affected by this sign change, while the variation in

the odd-order multipoles cancels out with that caused by the spatial inversion itself,

and odd-order magnetic multipoles are ultimately invariant under inversion. Here,

we restrict ourselves to the more common inversion-invariant multipoles, including

even-order electric multipoles (monopole, quadrupole, etc) and odd-order magnetic

multipoles (dipole, octupole, etc.); these multipoles can then all be described in terms

of J l operators (where l is the order of the multipole), which will be of significant

utility in later descriptions.

The multipole expansion can be viewed as a complete basis of potential symmetry-

breaking order parameters. Magnetic dipole order, or simply magnetism, is a corner-

stone of condensed-matter physics, but the material exemplars generally fall off as a

function of order of the multipole, with the electric quadrupole being a somewhat less

frequent subject of study, and the magnetic octupole and higher being quite minimally

studied due to the relative rarity. Higher-order multipoles and their interactions are

then in a sense a natural continuation from/generalization of the study of magnetism.

1.2.2 Utility of 4f Systems in the Study of Multipolar Order

Crystalline structures containing Lanthanide elements are of significant interest in

the study of multipolar order for both their tendency to remain relatively localized
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and the high angular momentum of 4f electrons. First, 4f electrons tend not to form

bands, or only weakly hybridize with conduction electrons; this means that they can

often be considered somewhat independently, with local 4f multipolar moments inter-

acting through the lattice or conduction electrons but not forming more complicated

Bloch states. Mean-field descriptions are then often particularly apt, and 4f electron

behavior can frequently be conceptually described as single ions being acted on by or

communicating with each other through some external field.

Next, higher-order multipolar moments require higher angular momentum values

to exist, with angular momentum of 1 being required for quadrupolar polarization,

for example. Spin-orbit coupling tends to be the dominant interaction, so the ex-

perimentally accessible states usually fall within a single (2J + 1)-fold degenerate J

manifold. With J being a good quantum number, and being generally large (J = 4

for the Pr3+ ion of interest here), large multipolar moments may be supported and

adequately described by a single-ion Hamiltonian. The 2J + 1 degeneracy is then

often helpfully reduced by interactions with the surrounding crystalline electric field

(CEF), leaving a reduced ground-state space of 1-6 states (depending on the ion and

local crystal symmetry) to be dealt with, provided temperature is small relative to

the CEF splitting. The CEF can then be used to find ground states that support

only a limited, specific set of multipoles, which can occasionally allow higher-order

multipoles to flourish, if the CEF splitting is large and dipole degrees of freedom are

sequestered in energetically-disfavored states.

It should then be briefly noted that Actinides, with partially-filled 5f shells, often

have similar properties, such as well-defined, large J values and a tendency not to

form bands. However, due to the larger radii of the 5f orbitals, hybridization with

conduction electrons can be stronger. This can lead to states of significant physical

interest, such as the aforementioned URu2Si2 [4], but of greater complexity than 4f

counterparts; this is then less conducive to testing new methods for probing multipolar

order. These electronic properties, combined with the radioactivity of all Actinide

elements, leave Lanthanide ions a better candidate for the proposed measurements.
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1.2.3 Group Theory and CEF Basics

The exact nature of the CEF splitting of a given rare-earth ion is best described in

the context of group theory, as applied to crystalline solids. If the ions surrounding

a given 4f ion create a symmetry corresponding to a specific point group at the

ion site, then the CEF they generate, which splits the 2J + 1 degeneracy, must

maintain that symmetry. The corresponding Hamiltonian will respect the symmetries

of this point group, and thus the energy eigenbasis will consist of states unchanged

(to within a phase) by the symmetries of the point group, i.e., states belonging to

irreducible representations of the point group, for integer values of J . Should the

given J value be half-integer, the physics of fermions demands the energy eigenstates

instead belong to representations of the double group associated with said point group,

and these and Kramers’ theorem equivalently imply any potential CEF ground state

must have a magnetic dipole degree of freedom, unless time reversal symmetry is

already broken. Given the aforementioned tendency of magnetism to dominate, and

the present interest in isolating higher-order interactions, ions with integer J values

are then of more interest, and shall be the focus of this discussion.

While coincidental near-degeneracies of different eigenstates can occur, it then fol-

lows that any true multiplet eigenstates, and thus multiplet ground states, can only

arise from systems of sufficiently high symmetry, where the local point group sym-

metry of the 4f ion has at least one 2-dimensional irreducible representation. When

such multiplets exist, generally only in systems of tetragonal or higher symmetry

(hexagonal and cubic), the opportunity arises for spontaneous symmetry-breaking

to reduce the degeneracy, which can then be described in terms of multipolar inter-

actions. Group theory and symmetry then demand that multipolar moments that

could arise to break this degeneracy belong to specific irreducible representations, i.e.

break specific point group symmetries while preserving others. Given the underly-

ing degeneracy arises from point group symmetries, rather than from time-reversal

symmetry (Kramers’ Theorem), the multipolar interactions which dominate are then

often non-magnetic.

To illustrate with a relatively simple example, 4f ions (of integer J) experiencing a

CEF of tetragonal D2d symmetry, such as the Tm3+ of the aforementioned TmV O4,
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have only one symmetry option for a potential multiplet ground state, a doublet, as

illustrated in Table 1.1. Any doublet ground state must then be of Γ5 symmetry (sin-

glet ground states have no degeneracy to allow for spontaneous symmetry-breaking

multipolar order, and are not of interest here). In the case of point-group induced

degeneracies, any multipole which would remove the degeneracy must belong to an

irreducible representation arising from the product of the ground-state irreducible

representation with itself, i.e.

Γ5 ⊗ Γ5 = Γ1 ⊕ [Γ2]⊕ Γ3 ⊕ Γ4 (1.3)

The Γ1 component, a symmetry-preserving term present in all such irreducible repre-

sentation products, represents multipoles such as the monopole, which cannot break

the symmetry or the degeneracy, and can thus be safely ignored for the present dis-

cussion. Analogously to the case of a 1
2
spin doublet, we then expect three multipoles,

represented by 3 corresponding operators, to be capable of breaking the degeneracy,

and potentially giving rise to an ordered state. For Γ2, the irreducible representation

product requires it be time-reversal-symmetry odd, for reasons best left to a dedicated

group theory text. As can be seen in Table 1.1, the simplest multipole operator of this

symmetry is Jz, corresponding to a magnetic dipole (along the z axis). However, no

such Ji functions exist for Γ3 and Γ4, and the remaining magnetic analogues, Jx and

Jy, are of Γ5 symmetry; as Γ5 is not part of the sum composing Γ5 ⊗ Γ5, the doublet

states cannot support a magnetic dipole along these axes (should the energy splitting

of the CEF be weak enough, or an applied magnetic field strong enough, magnetic in-

teractions may occur via admixing of other, higher-energy CEF eigenstates). Hence,

the other two operators capable of splitting the doublet, of Γ3 and Γ4 symmetries,

are non-magnetic.

Specifically, the lowest-order (inversion-invariant) operators corresponding to Γ3

and Γ4 are J
2
x−J2

y and JxJy+JyJx, corresponding to electric quadrupoles of the given

symmetries. The three operators capable of splitting the doublet, in the pseudo-spin

analogy, are the Γ2 magnetic dipole along the c-axis Jz and the electric quadrupoles

of Γ3 and Γ4 symmetries, J2
x − J2

y and JxJy + JyJx respectively. Which symmetry
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D2d E 2S4 C2(z) 2C ′
2 2σd Lowest-order Multipole

Γ1 +1 +1 +1 +1 +1 J2,J2
z

Γ2 +1 +1 +1 −1 −1 Jz
Γ3 +1 −1 +1 +1 −1 J2

x − J2
y

Γ4 +1 −1 +1 −1 +1 JxJy
Γ5 +2 0 −2 0 0 (Jx, Jy)

Table 1.1: Character table for point group D2d, with lowest-order (inversion-even)
multipole via J operators. Lines over operators represent symmetrized products
thereof.

channel/operator ultimately orders is material-dependent, as is the relation between

different 4f ions; TmV O4 ultimately reduces the degeneracy via a cooperative Jahn-

Teller effect breaking Γ4 [10] symmetries, acquiring a ferro-quadrupolar order param-

eter. Other tetragonal materials could (and do [11]) order in the Γ2 or Γ3 channels,

and could potentially order in an anti-ferro manner; the local ion symmetry has little

to say on how ions interact with each other.

1.2.4 Conditions for Higher-Order Multipoles

To continue the tetragonal example, higher-order multipoles, such as octupoles, while

not strictly forbidden, are unlikely; in whatever symmetry channel the system has a

tendency to order in, there will be a lower-order multipole which the given higher-

order multipole must out-compete, an unlikely prospect given the energy scales of

multipolar interactions tend to decrease as the order of the multipole increases. To

pursue more exotic multipoles, examining the generally less-studied systems of higher

symmetry is then motivated.

Cubic symmetry, in particular, is an ideal candidate for the exploration of higher-

order multipoles in 4f systems due to one potential CEF ground state. For the specific

ion symmetry Td, as can be seen in Table 1.2, there exist three potential multiplet

ground states: Γ3, Γ4, and Γ5. Magnetic dipoles here belong to the Γ4 symmetry; as

such, the Γ4 and Γ5 triplets are of less interest here, given their potential to support

magnetic dipole moments:
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Td E 8C3 3C2 6S4 6σd Lowest-order Multipole
Γ1 +1 +1 +1 +1 +1 J2

Γ2 +1 +1 +1 −1 −1 JxJyJz
Γ3 +2 −1 +2 0 0 (2J2

z − J2
x − J2

y , J
2
x − J2

y )

Γ4 +3 0 −1 +1 −1 (Jx,Jy,Jz)

Γ5 +3 0 −1 −1 +1 (JyJz, JzJx, JxJy)

Table 1.2: Character table for point group Td, with lowest-order (inversion-even) mul-
tipole via J operators. Lines over operators represent symmetrized products thereof.

Γ4 ⊗ Γ4 = Γ5 ⊗ Γ5 = Γ1 ⊕ Γ3 ⊕ [Γ4]⊕ Γ5 (1.4)

The Γ3 doublet, however, offers a more limited potential slate of order parameters:

Γ3 ⊗ Γ3 = Γ1 ⊕ [Γ2]⊕ Γ3 (1.5)

The lowest-order multipoles in the available channels are then the magnetic oc-

tupole JxJyJz in Γ2 and the two-dimensional electric quadrupole space spanned by

3J2
z − J2 and J2

x − J2
y in Γ3. The Γ3 doublet is then a ’non-magnetic’ doublet, in

the sense that magnetic field cannot, to first order, split the doublet; the states can-

not carry a magnetic dipole moment, and magnetic polarization requires admixture of

other CEF eigenstates. This creates ideal conditions for higher-order multipolar inter-

actions to dominate, provided the doublet is both the ground state and well-separated

energetically from other eigenstates.

1.2.5 Associated Susceptibilities

With the quadrupole and octupole order parameters thus isolated via careful selection

of CEF ground state, means to measure the susceptibility are of interest. Taken in a

general sense, a susceptibility is the derivative of an order parameter (ψ) with respect

to some conjugate field (h), evaluated at 0 field, i.e.

χψ =
dψ

dh

∣∣∣∣
h=0

(1.6)
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The two essential components to determining the susceptibility are then a con-

jugate field capable of coupling to the order parameter and a means of measuring

the order parameter. To have a linear relationship with the order parameter, the

field must be of identical symmetry; thus, the field must be of Γ2 symmetry for the

octupole, and Γ3 symmetry for the quadrupole. As will be discussed in Chapters 3-5,

this can be achieved via a Γ3 strain for the quadrupole, or the careful combination

of Γ4 magnetic field and Γ5 strain into a Γ2 product field for the octupole. A variety

of methods for measuring the octupole, specifically, are then discussed in chapter 3.

The elastocaloric effect is then utilized to directly probe octupolar and quadrupolar

susceptibilities in chapters 4 and 5 respectively. The fundamental mathematics of the

experimental technique are outlined in chapter 2, and the details of its application to

the order parameters in question covered in chapters 4 and 5. Briefly, the technique is

capable of measuring the strain-derivative of entropy, ∂S
∂ϵ
. Entropy can then be deter-

mined as a function of applied field, allowing the energetic splitting of the Γ3 doublet

states, and thus the magnitude of the induced order parameter, to be measured.

It is then of brief note that, given the elastocaloric effect measures ∂S
∂ϵ
, it is effec-

tively a probe of the temperature derivative of an associated elastic stiffness constant.

Given the entropy can be defined via the Helmholtz free energy F , via S = dF
dT

∣∣
V
, one

can note that, in the limit of vanishing strain,

∂S

∂ϵ
= − ∂

∂ϵ

(
dF

dT

)
= − d

dT

(
∂2F

∂ϵ2
dϵ

)
(1.7)

where ∂2F
∂ϵ2

is then the associated elastic stiffness component Cϵ,ϵ for the given

strain component ϵ, which may be any single strain-tensor component, expressed in

an arbitrary basis.
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1.3 PrV2Al20 and PrT i2Al20

1.3.1 Pr3+ Ion

The Γ3 doublet, thus motivated as an ideal ground state for probing higher-order

multipoles, must then be found in a physical system. Beyond the aforementioned

constraint of cubic symmetry, the ground state must then be Γ3, rather than any

other eigenstate, and would ideally be well-separated. As discussed earlier, J is

generally a good quantum number. Thus, CEF Hamiltonians of cubic symmetry can

be constructed for a variety of (integer) J values, and the CEF parameters varied so

as to see which J values lead to Hamiltonians that can achieve the desired ground

state, or where the doublet ground state exists across the widest range of parameters.

This calculation, performed by Lea, Leasq, and Wolfe [14], suggests J = 4 as the

ideal candidate for such a system, with J = 6, 8 being alternative options wherein

the doublet ground state is less well-separated from excited states and exists over a

somewhat smaller Hamiltonian parameter space. Viewing the rare earth ions, Pr3+

and Pm3+, will generally take the J = 4 state. Given the radioactivity of Pm3+,

Pr3+ becomes the preferred candidate.

With the focus thus narrowed to Pr3+ materials, here we choose to focus on

PrT i2Al20 and PrV2Al20. These compounds are notable for their cubic symmetry, Γ3

ground state, quadrupolar ordering at 2K (Ti) and 0.75K (V), and proposed octupolar

ordering at 0.65K in PrV2Al20.

1.3.2 Structure and Crystalline Electric Field

Both compounds share an identical structure, wherein the Pr and V or Ti ions are

encased in Al Frank-Kasper shells [15]; see Figure 1.2. The Pr sublattice, in partic-

ular, forms a diamond structure, giving each Pr ion the aforementioned tetrahedral

symmetry of point group Td (Al and Ti/V ions do not reduce this local symmetry).

This gives rise to two distinct crystallographic sites for the Pr ion, and makes the

crystal as a whole Oh symmetry. The sites, being related by an inversion operation,

could then potentially react differently to applied fields breaking inversion symmetry.



CHAPTER 1. INTRODUCTION 14

Figure 1.2: Structure of PrT i2Al20 via Okuyama et al [15]

Such fields are not of interest herein, and thus the sites can be considered identical

for the purposes of discussing the related experiments. An inversion-even field will

induce an equivalent distortion on all sites, and thus a ferro-type order parameter, in

a manner well-described by a single-ion Hamiltonian with mean-field components.

The CEF splitting of the J = 4 manifold, via inelastic neutron scattering exper-

iments [15], creates a Γ3 ground state. Inelastic neutron scattering, heat capacity

Schottky peaks [12], and magnetization anisotropy [17] suggest a first excited state

of Γ4 for Ti, separated by 60K, and Γ5 for V, separated by 40K (Figure 1.3).

1.3.3 Ordered States and Related Properties

Both systems have quadrupolar order onset at low temperatures, with a ferro-quadrupolar

phase transition in PrT i2Al20 at∼ 2K, and an anti-ferro-quadrupolar phase transition

in PrV2Al20 at ∼ 0.75K [12, 13], as shown in heat capacity data (Figure 1.4). Both

phase transitions are necessarily first-order due to symmetry considerations. Soften-

ing of elastic modes associated with these quadrupolar phase transitions is minimal,

suggesting the quadrupolar interactions are primarily mediated by conduction elec-

trons, rather than the lattice [18]. PrV2Al20 additionally has a proposed octupolar

phase transition at ∼ 0.65K [13], evidenced in heat capacity data (Figure 1.5). This
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Figure 1.3: CEF Splitting for PrT i2Al20 (left) via Sato et al [16] and PrT i2Al20
(right) via Araki et al [17]
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is, however, not observed in anything but the highest-quality crystals, as defined by

residual resistivity ratio (RRR) [13], suggesting it is quite sensitive to disorder.

PrV2Al20 additionally has well-documented quadrupolar Kondo behavior [19],

likely partially responsible for its relatively lower quadrupolar transition tempera-

ture [12]. Both systems also contain superconducting phase transitions, at 200mK

for PrT i2Al20 [20] and 50mK for PrV2Al20 [21], notable for the potential role of

quadrupolar and/or octupolar fluctuations. While the techniques herein developed

may be of some interest in studying these phenomena, probing of Kondo behaviors

and the superconducting states is outside the scope of the present work.

1.4 Summary

Higher-order multipolar interactions are of interest for a variety of reasons, from

exotic interactions and ordered states to model nematic systems potentially relevant to

superconductivity. They can be considered an extension or generalization of magnetic

order, but with a substantially less developed set of experimental tools. Susceptibility,

in particular, is then of interest in this context due to the extensive information it can

provide about these interactions above, or even in the absence of, a phase transition.

The development of such tools is best achieved through comparatively simple

model systems. Localized 4f systems provide a platform capable of supporting such

higher-order multipoles, and, through the Crystalline Electric Field (CEF), mate-

rials that can have well-defined symmetry properties. The unique symmetry prop-

erties of cubic systems, and specifically the allowed Γ3 doublet ground state, allow

these higher-order multipoles to be energetically separated from lower-order multipo-

lar interactions which would otherwise generally dominate. The combination of these

concepts then presents a model system in the form of cubic Pr3+ compounds.

PrV2Al20 and PrT i2Al20 then present themselves as realizations of the unique Γ3

doublet ground state. Both compounds have realized quadrupolar ordering at low

temperatures, with PrV2Al20 additionally having potential octupolar order at even

lower temperatures. Both systems additionally have a variety of exotic behaviors asso-

ciated with these ordered states, including Kondo effects and superconductivity. They
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Figure 1.4: Heat Capacity for PrT i2Al20 and PrV2Al20, and their lanthanum ana-
logues (with no 4f electrons). Reproduced from: Akito Sakai and Satoru Nakatsuji
2012 J. Phys.: Conf. Ser. 391 012058. Used without modification under the terms
of Creative Commons Attribution 3.0 (CC BY 3.0) license.
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Figure 1.5: Heat Capacity for PrV2Al20 crystals of varying quality, as defined by RRR
(residual resistivity ratio). Reproduced from: M Tsujimoto et al. Anomalous specific
heat behaviour in the quadrupolar Kondo system PrV2Al20. 2015 J. Phys.: Conf.
Ser. 592 012023. Used without modification under the terms of Creative Commons
Attribution 3.0 (CC BY 3.0) license.
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are thus ideal candidates for susceptibility measurements, both as realizations of mul-

tipolar order wherein susceptibility techniques may be tested, and as systems where

measuring susceptibilities, and thus fluctuation strength, could eventually provide a

unique perspective on more exotic phenomena that are not as firmly understood.

1.5 Layout of this Dissertation

This dissertation consists primarily of three papers, chapters 3-5, in varying stages

of publication, edited lightly for inclusion herein. Chapter 2 discusses the experi-

mental methods used, including the AC elastocaloric effect, in more depth than the

individual papers. Chapter 3 contains various potential methods for isolating and

probing the octupolar susceptibility within cubic Pr3+ compounds. Chapter 4 dis-

cusses utilizing the elastocaloric effect to probe PrV2Al20 and ultimately extract a

quantity proportional to the octupolar susceptibility. Chapter 5 will explain some of

the unique characteristics of quadrupolar order with multi-dimensional symmetry, be-

fore using the elastocaloric effect to probe quantities proportional to the quadrupolar

susceptibility, and ultimately drawing conclusions on the form of these quadrupolar

fluctuations in PrT i2Al20. Finally, chapter 6 will discuss broader conclusions from

all 3 publications and briefly touch upon potential future directions for continuation

of the work done thus far.



Chapter 2

Experimental Methods

2.1 Single-Crystal PrV2Al20 and PrT i2Al20

2.1.1 Crystal Growth

Crystals were grown via the self-flux method, as outlined by Sakai and Nakatsuji

[12]. Aluminum shot (Puratronic, 99.999%), praesodymium chunk (Ames Laboratory,

99.99%), titanium sponge (Alfa Aesar, 99.95%), and vanadium pellets (ESPI Metals,

99.9%) were used. Elements were placed into 2mL alumina ”Canfield” crucibles [22]

(LSP Ceramics), consisting of two identical crucibles (13mm outer diameter, 25mm

height) separated by a sieve, in ratios 97:2:1 Al:(Ti,V):Pr. The full crucibles were

then placed in 2mm-thick quartz tubes (inner diameter 14mm) with one end sealed,

with approximately 1 cm of quartz wool (gently compressed) placed above and below

the crucibles. The unsealed end of the quartz tube was then narrowed via hydrogen

torch just above the crucibles. The half-tubes of quartz were then placed under

vacuum and purged three times by filling with argon gas (Ultra High Purity/UHP,

99.999%, Airgas) and reducing to vacuum each time (30mTorr base pressure), before

filling again with approximately 0.4 barr argon and finally sealing the quartz tube.

Extra-thick quartz and argon gas were used to reduce the effects of aluminum vapor

attack on quartz.

20
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Figure 2.1: Typical PrT i2Al20 (left) and PrV2Al20 (right) crystals, on millimeter
paper for scale, with triangular octahedron facets clearly visible.

The sealed ampoules were placed in high-temperature furnaces, with the element-

containing crucible below the sieve and (upside-down) secondary crucible. Tempera-

ture was raised from room temperature to 1200C over approximately 12 hours, then

held at 1200C for another 12 hours, to allow the praesodymium and vanadium or ti-

tanium to fully dissolve within the molten aluminum. Temperature was then reduced

at a rate of 1C/.5C per hour (for PrT i2Al20 and PrV2Al20, respectively) to 1000C,

at which point the quartz ampoules were removed from the furnaces as quickly as

possible and placed into centrifuges, upside-down relative to their original/furnace

orientation. The ampoules were then spun at 2k RPM (causing them to orient hor-

izontally), with the centrifuges being disabled upon the centrifuge reaching the set

spin-rate. This caused much of the molten aluminum to flow outward through the

sieve to the secondary crucible, while any solids of adequate size were caught on said

sieve and remained within their original crucible. The quartz was then broken with

sufficient pressure, and the crystals gently chipped off of the sieve or crucible, which

residual solidified aluminum had often attached them to.
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2.1.2 Characterization

Crystals grew with an octahedral morphology, with varying degrees of perfection,

with edge lengths ranging from .2-1mm for PrT i2Al20 or 1-5mm for PrV2Al20 (Figure

2.1). PrV2Al20 crystals generally grew as well-separated crystals, or as part of a twin,

while PrT i2Al20 were occasionally found as single well-separated crystals but were

generally more likely to grow in ’rafts,’ wherein many crystals were joined together

along a 2d plane. Structure was verified via powder x-ray, and composition via energy

dispersive spectroscopy (EDS). No other phases were found within the PrV2Al20

growths, though crystals viewed under a scanning electron microscope had occasional

microscopic inclusions of aluminum flux of diameter 1-50 µm. PrT i2Al20 growths

were found to sometimes contain the contaminant TiAl3 phase, which was identifiable

by its tendency to grow in wide 2d plates, with very flat surfaces, rather than the

’pyramid’ covered surfaces of PrT i2Al20 rafts. The contaminant phase could then be

reliably avoided simply by choosing crystals based on crystal habit.

2.1.3 Preparation of Samples for Elastocaloric Effect Mea-

surements

AC elastocaloric effect measurements generally required specific sample dimensions,

with rectangular prism shapes being preferred. The need to secure the crystal in

clamps, and further to attach thermometry to a region of the sample not covered by

said clamps, imposed a minimum length requirement of 1mm, with additional length

generally helping the process. The orthogonal dimensions were then limited by the

blocking force of the piezoelectric mechanisms used to induce strain. Finite width

was needed for attaching the aforementioned thermometry, so minimal thickness was

preferred.

Crystals were thus prepared for measurement via polishing into bar shapes, gen-

erally 1.5-2mm in length, .5-1mm in width, and .05-.1mm thickness. Crystals were

attached to a flat surface, usually a glass microscope slide, via wax. They were then

polished with sandpaper of progressively higher grits until the bar was formed with

thickness of 500 µm, at which point diamond lapping film of progressively smaller
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sizes was used, culminating in .1 µm lapping film being used to bring the bar to

approximately 50 µm in thickness, so as to reduce required force per unit strain.

The long axis was chosen to be either the [111] (octupolar measurement) or [110]

(quadrupolar measurement) crystal axis. [111] was reliably chosen by constructing a

bar with long axis perpendicular to a facet. This was generally done by attaching

the facet to a glass microscope slide such that it hung over the edge, then polishing

until a surface was created flush with the side of the glass slide. This surface then

contained the desired long axis, and could be attached to another slide and polished

down in the standard way into a bar shape. [110] was most easily achieved simply by

constructing a bar whose long axis was parallel to an edge, and thus could be created

simply by polishing down from any given triangular facet. The precise orientation of

the plane perpendicular to the long axis of the bar was generally not significant and

not controlled for, though its orientation was recorded. Orientation was confirmed

by x-ray for [111] samples given their somewhat more involved process.

2.2 AC Elastocaloric Effect Measurements

Elastocaloric effect (ECE) measurements were carried out in a manner similar to

that of Ikeda et al [23], using a commercial Razorbill CS-100 uniaxial strain cell. The

process is reproduced here briefly for completeness.

2.2.1 Theory of Measurement

In materials with strong responses to strain of any given symmetry, be it a highly

strain-dependent phase transition temperature or a strain-coupling order parameter,

changes in strain must induce changes in entropy. However, if the strain is applied

quickly enough, via an AC strain at a sufficiently high frequency, heat may not be able

to flow fast enough to equilibrate, and for sufficiently high frequencies, the change in

entropy must then be zero (see section 2.2.6). This implies that any strain-induced

change in entropy must be converted into a temperature fluctuation:
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dS =
∂S

∂ϵ
dϵ+

∂S

∂T
dT = 0 (2.1)(

dT

dϵ

)
S

= −∂S
∂ϵ

(
∂S

∂T

)−1

= −∂S
∂ϵ

T

CV
(2.2)

It then follows that, should this adiabatic condition be achieved, the strain-

dependence of the entropy, ∂S
∂ϵ
, can be probed via this temperature fluctuation, pro-

vided the constant-volume heat capacity CV is known or can be approximated.

Here, we define the uniaxial strain via the deformation, ϵ = ∆L
L
, where L is the

length of the sample along the primary strain axis. Strain is a second-rank tensor,

and so there are 6 total independent components. Defining the primary strain axis

as x for convenience, the relations above then reflect the effects of ϵxx; equation 5.3 is

strictly accurate only when all 5 orthogonal strain tensor components (ϵij for i ̸= j,

ϵyy ϵzz) are held constant, though different strain bases may be used.

Experimentally, however, the actual thermodynamic constraint is instead that all

orthogonal components of the stress tensor are held constant, i.e. σii for i ̸= x and σij

for i ̸= j are held constant. This gives rise to a more complicated relation involving

the experimentally-measured strain (stress is not directly probed):

dS =
∂S

∂ϵxx
dϵxx +

∂S

∂ϵyy
dϵyy +

∂S

∂ϵzz
dϵzz +

∂S

∂T
dT = 0 (2.3)

(
dT

dϵxx

)
S

= −(
∂S

∂ϵxx
+

∂S

∂ϵyy

dϵyy
dϵxx

+
∂S

∂ϵzz

dϵzz
dϵxx

)

(
∂S

∂T

)−1

(2.4)

The temperature fluctuation dT then depends on multiple entropy derivatives in

a slightly complicated fashion. However, when the partial derivative of the entropy

with respect to one specific strain is significantly larger than the others, or otherwise

distinguishable via unique dependencies, this can simplify to equation 5.3, though po-

tentially with an additional multiplier in the form of a Poisson ratio. This comes with

the caveat that dependencies of the Poisson ratios dϵyy
dϵxx

and dϵzz
dϵxx

on various factors,

such as temperature, could then be introduced into the measured temperature fluctu-

ation, given the measured dT is normalized via a measured dϵxx, and dϵyy and dϵzz are
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Figure 2.2: Schematic diagram of Razorbill CS-100 strain cell from profile (a) and
top-down (b), with example sample of BaFe2As2 (c) for scale. Reprinted from M.S.
Ikeda et al. “AC elastocaloric effect as a probe for thermodynamic signatures of
continuous phase transitions”. In: Rev. Sci. Instrum. 90 (2019), p. 083902, with the
permission of AIP Publishing.

not measured; this is especially true if the entropy derivatives ∂S
∂ϵii

are distinguished by

functional form rather than by some having negligible amplitude, as will be the case

in the experiments conducted in chapters 4 and 5 (although a different strain basis

will be used, that of irreducible representations). This complication will be discussed

in more depth in the relevant chapters, wherein the change of basis is introduced and

justified, and the entropy derivatives distinguished within this alternative basis.

2.2.2 Experimental Setup

The Razorbill CS-100 commercial strain cell was utilized as the primary means of

applying strain, used in the manner prescribed by Ikeda et al [23]. The cell is il-

lustrated in figure 2.2. The three piezoelectric stacks are arranged so as to cancel

the effects of their thermal contraction on the sample. The sample then experiences

thermal-contraction-induced stress only via the difference between the natural ther-

mal contraction of the sample and the titanium used in the construction of the cell
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body; thermal contraction of the piezoelectric stacks does not affect the sample. The

cell additionally contains flexures (not pictured) to reduce motion of the central island

(wherein one side of the sample is mounted) towards either outer piezoelectric stack,

and thus minimize stress on the sample along axes orthogonal to the piezoelectric

stack axis.

A Quantum Design Physical Property Measurement System (PPMS), with 14T

maximum magnetic field, was used to achieve cryogenic temperatures. The base tem-

perature of the system was approximately 1.8K, meaning the transition temperatures

of the PrV2Al20, 0.75K and 0.65K [12], were not accessible, and the ability to probe

the transition of PrT i2Al20 at 2K [12] was limited. This was not considered a ma-

jor drawback, given the purpose of the measurements described in this thesis was to

study the relevant multipolar susceptibilities above the critical temperatures.

2.2.3 Sample Mounting

First, two of the Razorbill sample plates were secured to the cell body in their standard

position, with Loctite Stycast 2850FT epoxy being added for additional stability. The

sample was then secured to the sample plates via Stycast (Figure 2.3). The final two

mounting plates were placed above and their respective mounting screws tightened,

with additional stycast being added via the holes in the mounting plates to ensure

the sample was well-connected mechanically with all mounting plates. Finally, a

thermometer, anchored to the rest of the cell via gold wires, was gently manipulated

into place, and a gold wire used to connect the sample to the thermometer. Con-

nections between gold wires and thermometer/sample were secured with EPO-TEK

H20E conductive epoxy. See 2.2.5 for more information on thermometry utilized.

2.2.4 Strain Application and Measurement

Strain was applied via the piezoelectric stacks of the CS-100 cell. Applying voltage

to the three stacks caused each to apply stress, and by applying voltages of opposite

signs to the inner stack and the outer stacks, the effects of multiple piezoelectric stacks

could be effectively added together. DC voltage could then be applied to create large
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Figure 2.3: Photographs of a sample after being attached to the Razorbill Cell (left),
with additional sample mounting plates on top (center), and with an attached ther-
mometer (right).

constant uniaxial strains, while AC voltage could be applied to induce the oscillatory

strains necessary for the technique. Stanford Research SR860 lock-in amplifiers were

then used to drive the piezoelectric stacks. The two outer stacks were connected in

parallel and received a DC voltage with a small AC component from the SR860 via a

Tegam 2350 precision power amplifier, while the inner stack received a separate DC

voltage, usually of opposite sign to that applied to the outer stacks, via a piezosystem

jena SVR 350-1 bipolar voltage amplifier.

A capacitive sensor was then used to measure the resulting separation between

the sample mounting plates, allowing calculation of ∆L
L

for the portion of the sample

between the two jaws of the strain cell. The changes in capacitance were measured

via an Andeen-Hagerling AH2550A capacitance bridge.

As discussed in Ref. [23], strain will not necessarily be uniform throughout the

sample, and some strain will relax through the adhesives used; thus, the capacitive

sensor generally overestimated the applied strain, but in a consistent manner. Strain

relaxation in the glue layer used to attach the sample to the cell reduces the strain ϵxx

to approximately 70% of ∆L
L
, via finite element simulations done by Ikeda et al [23].

Additionally, strain in the sample itself is not generally uniform, relaxing near to the

jaws over some finite distance. The thermometer was thus placed near the center of

the sample, such that the region probed by the thermometer experienced as uniform

a strain as possible.
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2.2.5 Thermometry

Lakeshore Cernox resistive thermometers were used to measure both the sample tem-

perature and the strain-dependent fluctuations thereof. Five Cernox thermometers,

from the same manufacturing batch (so as to have similar resistances), were polished

together to approximately 100 µm thickness. One was then suspended from gold wires

near the sample, as shown in Figure 2.3. These gold wires were anchored elsewhere

on the cell body, far from the sample, and at their location a wheatstone bridge was

constructed using the other 4 thermometers, with the sample thermometer serving as

one of the legs. Current was then directed through the wheatstone bridge, usually of

amplitude 50-100 µA and frequency of 1-2 kHz. The sample thermometer was then

probed directly with the SR860 lock-in amplifier, measuring at the frequency of the

applied current, to determine the sample temperature itself. The central thermometer

of the bridge was then used to more sensitively measure small variations in the sample

thermometer’s resistance; by using the dual-mode of the SR 860 lock-in, the sideband

voltage across this thermometer was measured at the sum of the current and strain

frequencies. Changes in the relative resistances of the legs occurring at the strain

frequency, and thus temperature changes in the sample thermometer occurring at the

strain frequency, could then be more precisely measured, allowing the temperature

fluctuation to be determined with higher accuracy than could be achieved measuring

the sample thermometer alone.

2.2.6 Adiabatic Condition

To briefly demonstrate how the adiabatic condition is considered and achieved, a

simplified thermal model is presented from Ikeda et al [23] (Figure 2.4). This model

includes the thermometer, the sample (representing the region of interest), and the

thermal bath, representing unstrained parts of the sample (edges encased in glue)

and the titanium cell body together. It can then be used to calculate the relation-

ship between measured thermal fluctuations (via the thermometer) and the intrinsic

thermal fluctuation, induced by AC strain and described by equation 2.2.

In this thermal model, two relevant timescales present themselves: the timescale of



CHAPTER 2. EXPERIMENTAL METHODS 29

Figure 2.4: A heavily simplified thermal model for the elastocaloric effect, showing
the sample (S), thermometer (θ), and bath (B). T , C, and K represent temperature,
heat capacity, and thermal conductivity, respectively. Reprinted from M.S. Ikeda et
al. “AC elastocaloric effect as a probe for thermodynamic signatures of continuous
phase transitions”. In: Rev. Sci. Instrum. 90 (2019), p. 083902, with the permission
of AIP Publishing.

thermalization of the thermometer to the sample τθ =
Cθ

Kθ
(where Cθ is thermometer

heat capacity and Kθ is the thermal conductivity between thermometer and sam-

ple; see Figure 2.4) and the timescale of thermalization of the sample to unstrained

portions of the sample, τi = CS

Ki
(where CS represents sample heat capacity and

Ki represents thermal conductance between portions of the sample). Assuming the

strain-induced temperature fluctuation described earlier occurs within the sample,

the thermometer will then read, as a function of frequency and the parameters of the

thermal model [23]:

Tθ(t) = TB +
E0ϵ√
a2 + b2

sin(ωt+ ϕ)

ϕ = arctan(
a

b
)

a =
1

ωτi
− ωτθ

b = 1 +
Cθ
CS

+
τθ
τi

(2.5)
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Here E0 represents the intrinsic temperature fluctuation described by equation

2.2, and ϵ represents the magnitude of the applied AC strain. As can be seen, the

intrinsic signal is most fully realized (and thus the adiabatic condition most completely

achieved) when the timescale ω−1 is significantly larger than τθ and significantly

smaller than τi; this implies thermalization occurs without issue between the sample

and thermometer, but is unable to occur quickly enough between the sample and the

bath for significant heat to flow. As the timescale τi =
CS

Ki
is determined primarily by

the sample, this sets a lower bound on the frequency ω that can be used for the AC

strain without significant signal loss due to heat flow. It is then desirable that the

timescale τi be made as small as possible via minimization of the thermometer heat

capacity and maximization of the thermal conductance between the thermometer

and sample. In the limit that τθ << ω−1 << τi and Cθ << CS, we then have

Tθ(t) = TB + E0ϵsin(ωt), where the measured temperature will be purely a function

of the intrinsic temperature fluctuation of equation 2.2, dT
dϵ
, and the amplitude of the

applied AC strain ϵ.

Failure to fully realize the adiabatic condition will then reduce the measured

temperature fluctuations compared to the ideal fluctuations expected from the in-

trinsic properties of the sample. The reduction will then be a function of CS,

which in turn may depend heavily on temperature and strain, creating a compli-

cated thermalization-based dependence of the measured signal on T and ϵ in addi-

tion to any intrinsic dependence expected from Equation 2.2, and potentially render-

ing difficult or impossible the task of separating the intrinsic dependencies from the

thermalization-based dependencies. These limitations are discussed individually for

each measurement in chapters 4 and 5.



Chapter 3

Methods to Measure Octupolar

Susceptibility

3.1 Preface

The following chapter was originally published as: M.E. Sorensen and I.R. Fisher.

”Proposal for methods to measure the octupole susceptibility in certain cubic Pr

compounds.” Phys. Rev. B. 103, 155106 (2021). Copyright © 2021 by the American

Physical Society. Adapted for use here consistent with APS copyright policies. Light

changes were made for inclusion herein, but the work is presented mostly as-published.

3.2 Abstract

Direct means of measuring the susceptibility towards an octupole order parameter

are proposed via a sixth-rank tensor property. Equivalent derivatives of more con-

ventionally measured tensor properties, including elastic stiffness, magnetic suscep-

tibility, and elastoresistivity, are written in full, as constrained by the symmetry of

the experimentally-motivated Oh point group. For simplicity, we consider the specific

case of Pr3+ ions in a cubic point symmetry with a Γ3 crystal field ground state, but

the ideas are somewhat general. Experimental feasibility of measuring these various

derivatives of tensor quantities is discussed.

31
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3.3 Introduction

Quantum states of localized electrons can have a variety of well-defined electromag-

netic multipole moments; indeed, within higher angular-momentum states, partic-

ularly those that often arise from f-orbitals, higher-order multipolar moments fre-

quently have some non-zero expectation value in the presence of simple magnetic

(dipole) order. Of course, multipolar moments are subject to higher-order interac-

tions amongst themselves, and can thus order independently of any dipole moment,

but this is uncommon: the dipole typically dominates in energy scale whenever a

variety of multipoles are present or allowed. This motivates the use of the associated

multipole susceptibility as a powerful tool for analyzing these higher-order multipoles,

as the strength and character of specific multipolar interactions can be probed with-

out requiring a simple ordered state of such a multipole. For higher-rank multipoles,

however, it is a non-trivial task to relate the multipole susceptibility to physically

measurable quantities.

It is well established that a (q = 0) magnetic susceptibility may be measured via

an applied uniform magnetic field. Specifically, a magnetic field couples bilinearly

to the magnetization (magnetic dipole moments per unit volume), and hence is an

appropriate conjugate field. Similarly, antisymmetric strain couples bilinearly to elec-

tric quadrupoles, providing access to the quadrupole strain susceptibility [11]. Here,

we focus on the magnetic octupole, the next in the multipole series 1.

Magnetic octupole order has been proposed for many f-orbital systems, but is often

hard to verify or probe directly[1, 2, 3]. Given the time-reversal symmetry breaking

inherent in a magnetic moment (of any rank), a bilinear coupling of an octupole to

strain, like that of the electric quadrupole, is not possible; similarly, a magnetic field

will couple bilinearly only to the magnetic dipole moments, with symmetry forbidding

a bilinear octupole coupling. As shown in the work of A.S. Patri et. al. [24], however,

the combination of the two provides a conjugate field which, by symmetry, can couple

1The electric dipole, magnetic quadrupole, and electric octupole break inversion symmetry, and
are thus less common: Crystalline Electric Field ground states that preserve inversion do not include
these multipoles as degrees of freedom, leaving them often (but not always) high-energy excited states
in 4f systems, rather than potentially ordered ground states
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directly to the octupole, allowing one to define and measure a susceptibility. This

susceptibility most naturally manifests itself in a 6th-rank tensor, in contrast to the

2nd-rank (magnetic susceptibility) tensor for dipoles and the various 4th-rank tensor

components representative of quadrupole susceptibilities; the octupole susceptibility

can thus be measured independently of the behavior of the lower-order multipoles in

the system, at least under certain restrictions.

Measurement of an octupole susceptibility is then possible whenever the specifics

of the system render it finite, but possibly quite difficult if lower-order multipoles are

present. In particular, lower-order terms in a material’s tensor properties invoking

the strain or magnetic field individually could potentially drown out any higher-order

effects associated with the octupolar degrees of freedom. Thus, the use of Neumann’s

principle 2 to significantly constrain the symmetry-allowed tensor terms is motivated,

as terms can potentially be identified which have fewer lower-order components or

other possible experimental impediments.

Furthermore, we choose to restrict our focus to intermetallic compounds with Pr3+

ions in a cubic point symmetry, and for which the crystalline electric field ground state

is a Γ3 doublet. The specific symmetries of this system forbid all magnetic dipoles

and three of the five electric quadrupoles, allowing the octupole’s conjugate field

to be applied without inducing any lower-order multipoles. This system has been

theoretically shown to allow and potentially favor an octupole order parameter [24],

and has been experimentally shown to order in a manner suggestive of an octupole

order parameter [24, 25], making a measurement of the octupole susceptibility almost

certainly feasible.

Thus, herein we propose and elucidate upon the measurement of various tensor

components to identify the associated susceptibility of a given octupole, separating it

from the susceptibilities of other multipoles and probing interaction strengths of the

octupole directly.

2Neumann’s principle essentially states that a crystal’s physical properties must be invariant
under the symmetry operations of the crystal



CHAPTER 3. METHODS TO MEASURE OCTUPOLAR SUSCEPTIBILITY 34

Table 3.1: Effects of various mirror planes (σ) and rotations (C) contained in Oh on
a generic 2nd-rank tensor

Symmetry Effect(s) Implied Equality
σi i→ −i Fij = −Fij(= 0)

σi=±j i→ ∓j → i Fij = Fji
C4k i→ j → −i Fij = −Fji
C3(111) i→ j → k → i Fij = Fjk

3.3.1 Background

Introduction to the Oh Point Group

While any cubic point group can give rise to a Γ3 doublet ground state, the most

prominent experimentally realized case for an octupole order parameter has an Oh

point group [25, 15]. TheOh point group, being the most highly symmetric cubic point

group, contains 48 symmetry elements, many of which are redundant in constraining

the various tensor properties (see Appendix A for full list of symmetries via a character

table). A convenient, less redundant basis to work in is then shown in Table 3.1, where

σi represents a mirror plane defined by the i axis, Cxi represents an x-fold rotation

about the i axis, and Fij represents some generic 2nd-rank material property tensor.

These symmetry elements of the point group place constraints on tensor properties

of the material via Neumann’s principle: the tensor properties must be invariant under

the symmetry operations of the point group. In the absence of perturbative fields,

these are calculated trivially by applying the symmetries to a given tensor element

and observing how they affect the various indices; for example, under C3(111) rotation,

x→ y, so

Fxx = C3(111)Fxx = Fyy

Fxx = Fyy (3.1)

Additional examples are shown in Table 3.1. The presence of additional perturbative

fields, such as magnetic field in the elastic tensors or elastic strains in the magnetic

susceptibility, breaks the symmetries of the material and allows otherwise forbidden
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terms. This can be accounted for by simply incorporating the symmetry transforma-

tions of the perturbative fields [26].The symmetries of the strain tensor and magnetic

field are then relevant to all other tensors, and worth some brief discussion. The

strain tensor is defined in a manifestly symmetric manner,

ϵij ≡
∂µi
∂xj

+
∂µj
∂xi

(3.2)

where µi represents the displacement of an atom along the i axis from the unstrained

position xi. The inherent symmetry of the strain tensor then requires ϵij = ϵji, but

otherwise elements of the strain tensor will transform similarly to any other tensor, via

applications of the symmetry operations to their indices 3. Magnetic field, on the other

hand, is a pseudovector, invariant under inversion; thus, it transforms as expected

under the various rotations, but under mirror planes, which can be considered as a

combined rotation and inversion, it effectively experiences only the rotation. Hence,

σx(Hx, Hy, Hz) yields (Hx,−Hy,−Hz), for example, in contrast to an arbitrary normal

vector σx(Ax, Ay, Az) = (−Ax, Ay, Az). One can see the effect of these external fields

with a brief example: without magnetic field, for instance, one sees

Fxy = C4zFxy = −Fyx
Fxy = −Fyx

σx=yFxy = σx=y(−Fyx) = −Fxy
Fxy = −Fxy = 0 (3.3)

i.e. χxy (and, by similar symmetries, all χij terms for i ̸= j) is constrained to be 0.

3Herein, all proposed measurements treat strain as an extrinsic property, controllable via appli-
cation of external force; as such, it is not constrained by Neumann’s principle
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However, introducing a magnetic-field dependency to these terms yields

C4zFxy(Hz) = −Fyx(Hz)

σx=y(−Fyx(Hz)) = −Fxy(−Hz)

σx=yC4zFxy(Hz) = Fxy(Hz) = −Fxy(−Hz) (3.4)

Thus, Fxy is no longer constrained to be zero, but merely constrained to be odd in

Hz, the external field that breaks the symmetry (σx=y) that constrained it to be zero.

Terms constrained to be equal in the absence of perturbative fields can have depen-

dencies in fields with slight variation in sign and ordering, but will maintain identical

sets of coefficients; for example, while Fxy = Fyz without field, Fyz(Hx) need not be

identical Fxy(Hx), but must instead be identical to Fxy(Hz) (via C3(111)), leaving the

two terms with identical, if differently ordered, sets of coefficients. Similarly, using

the above example, Fxy(Hz) = −Fyx(Hz), implying Fxy and Fyx will have the same

linear Hz coefficients, but with opposite sign. These symmetry principles will be used

in section 3.4 to determine allowed terms in several higher rank tensors. Complete

descriptions of how these symmetries apply to the various tensors examined in the

text can be found in Appendix B.

3.3.2 The Γ3 Doublet

While strong spin-orbit coupling among local 4f electrons often makes J a good quan-

tum number, the crystalline electric field (CEF) splitting in 4f materials can substan-

tially reduce the number of available states within a given J multiplet, at least in a

low-temperature regime. One of these CEF eigenstates, the Γ3 doublet, is generally

present in cubic systems, but is rarely the ground state, meaning it cannot often be

experimentally isolated. However, calculations have shown that in the special case

J = 4, associated with the Pr3+ ion (with 4f 2 orbital) 4, the doublet is a potential

ground state [14].

4Using the Russell-Saunders coupling scheme, U4+ (5f2) can also manifest a J=4 state. However,
the extended nature of 5f orbitals often smears out the CEF eigenstates. Furthermore, in some cases
j-j coupling is more appropriate. Hence, Pr3+ is the clearest manifestation of a J=4 state
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The Pr3+ ions in the most prominent octupole case exist on a diamond lattice

[15], so the symmetry of the CEF eigenstates is determined by the Td point group, as

this is the local symmetry an individual ion experiences. The Γ3 doublet, with basis

states (in J = 4), is then given by,

Γ
(1)
3 =

1

2
(

√
7

6
|4⟩ −

√
5

3
|0⟩+

√
7

6
|−4⟩)

Γ
(2)
3 =

1√
(2)

(|2⟩+ |−2⟩) (3.5)

As a two-state space, this can be treated as a pseudo-spin [24], and analogously

three operators can potentially split the doublet and create a finite order parameter.

Group theory decomposition of the doublet in Td suggests the symmetry of the allowed

operators:

Γ3 ⊗ Γ3 = Γ3 ⊕ Γ2 ⊕ Γ1 (3.6)

Thus, of the three operators that would act as Pauli matrices in this pseudo-half-spin

two-state space, two have the symmetry of Γ3 (E) and one has the Γ2 (A2) symmetry.

One might thus expect one of these operators to break time-reversal symmetry analo-

gously to the Pauli Sy matrix, and indeed the lowest-order multipole of Γ2 symmetry

is then time-reversal odd. Thus, from the angular-momentum operators Jx, Jy, Jz

and their various products (the Stevens operators), the allowed order parameters are

represented by two time-reversal-even quadrupole operators of Γ3 symmetry

O2
2 =

√
3

2
(J2
x − J2

y )

O0
2 =

1

2
(2J2

z − J2
x − J2

y ) (3.7)

and one time-reversal-odd octupole operator of A2 symmetry

τxyz =

√
15

6
JxJyJz (3.8)
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where JxJyJz denotes all permutations of the indices x, y, z, i.e. a six-term object.

In typical pseudo-spin fashion, one can note the eigenstates of the three operators in

the aforementioned basis: Γ
(1)
3 and Γ

(2)
3 for O0

2, Γ
(1)
3 ± Γ

(2)
3 for O2

2, and Γ
(1)
3 ± iΓ

(2)
3 for

τxyz. It can then be noted that none of these three operators represent and/or com-

mute with a magnetic dipole operator. Indeed, in Td and other cubic point groups,

magnetic dipoles belong to a triply-degenerate Γ4 (T1) irreducible representation,

an object that, as seen in the group theory decomposition, one cannot construct

from the two Γ3 (E) basis states. More intuitively, this can be explained by the

Γ3 doublet basis states Γ
(1)
3 and Γ

(2)
3 both having three (primary-axis) C2 rotational

symmetries, which are universally broken by a dipole order parameter. Thus, cubic

praseodymium compounds are of particular interest in the study of higher-order mul-

tipoles, as they provide the opportunity to directly probe time-reversal-odd octupolar

signatures without (magnetic) dipole signatures; dipole moments are forbidden, to the

extent that the energy separation between the Γ3 CEF ground state and any triplet

excited states is large relative to the temperature and/or magnetic field.

3.3.3 Defining an Octupole Susceptibility

Given the presence of a potential octupolar moment, the natural question is how best

to access it experimentally. As was noted by A.S. Patri et. al. [24], an octupolar

susceptibility can easily be defined for a variety of potential order parameters. Here

we choose to focus on a q = 0 order parameter, as this presents the most experi-

mentally accessible possibility. It is also, however, of interest for a broader set of

potential order parameters; analogously to the magnetic case, finite-q octupole order

parameters would likely appear via a sharp feature of some kind in the q = 0 octupole

susceptibility at or near the relevant ordering temperature.

Based on the symmetry properties of the τxyz octupole, one can quickly note that

a time-reversal-odd conjugate field would be necessary to couple to it. Utilizing two

experimentally-common external fields, strain and magnetic field, it can couple bilin-

early to two objects, Hxϵyz +Hyϵzx+Hzϵxy and HxHyHz
5 (here these are considered

5Looking to a character table quickly shows these two objects to be of A2 symmetry in Td, when
H is properly acknowledged as a pseudovector
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uniform, but a finite-q order parameter could be coupled to via similar but staggered

fields). Choosing to focus on the former for the moment, one might then expect

application of this field

Hϵ ≡ Hxϵyz +Hyϵzx +Hzϵxy (3.9)

could induce a finite octupolar moment in an originally unordered state,

O ≡< τxyz > (3.10)

and one could thus define a susceptibility

χO ≡ ∂O

∂(Hϵ)
(3.11)

Here it is worth noting that the octupole has thus far been examined in the Td

point group corresponding to the local symmetry of the 4f ion, while discussion

on material properties has centered on the Oh point group of the specific material

(wherein the Pr sites sit on a diamond lattice [15]), which defines the symmetries

of the material’s tensor properties. Given the chosen coupling field will only induce

a ferro-octupolar order parameter, one can note that, while an individual octupole

has Γ2 symmetry in Td, a pair of aligned octupoles on the two independent ion sites

in the greater Oh unit cell correspond to a Γ+
2 symmetry6. Thus, for Oh and for

a susceptibility as has been described, the order parameter and conjugate field can

be more specifically defined as being Γ+
2 . More broadly, it can be seen that, given

the basis states are invariant under inversion (to within an overall phase), and all

three operators are similarly invariant, any ferro-aligned Γ3 order parameter in Td

will couple as Γ+
3 in the larger Oh unit cell 7 (Γ−

3 objects can couple bilinearly only

to non-ferro-aligned Γ3 order parameters, which break the inversion symmetry of the

6The magnetic octupole is itself invariant under inversion symmetry, while inversion swaps the two
independent ion sites in the broader Oh unit cell (equivalent to the two diamond sublattices); thus,
if the local octupoles are aligned identically on the two sites, i.e. a ferro-octupolar configuration,
the system is invariant under inversion symmetry (Γ+

2 in Oh has the same symmetries as Γ2 in Td,
plus inversion, owing to Td being a subgroup of Oh).

7analogously to the Γ2 case, Γ+
3 in Oh is equivalent to Γ3 in Td with added inversion symmetry
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larger Oh cell).

3.3.4 Basic Landau Theory

With this Hϵ-type conjugate field, a motivational, simplified model can be established

by looking purely at a potential octupolar order parameter. This choice of longitudinal

field does leave the aforementioned issues: strain, a second rank tensor, can couple to

a quadrupole moment, while magnetic field can couple to a magnetic dipole, leaving

any octupole interactions potentially masked. Here we again take advantage of the

Γ3 doublet: the two Γ3 quadrupole moments couple bilinearly only to the two Γ3

strains, ϵxx − ϵyy and 2ϵzz − ϵxx − ϵyy, while the ϵij strains present in the octupole

conjugate field are of Γ+
5 type; they can couple to quadrupoles, but only to the Γ+

5 -

type quadrupoles, which are, like the aforementioned magnetic dipoles, forbidden

to the extent that the CEF gap is large relative to temperature and strain. Thus,

no CEF-allowed multipoles will couple with any of the objects within the octupole

conjugate field, allowing one to safely write a lowest-order free energy for just the

octupole moment without ignoring any cross-coupling terms not already ’forbidden’

by the CEF splitting:

F =
a

2
O2 − λ(Hϵ)O +

C0
44

2
(ϵ2xy + ϵ2yz + ϵ2zx) (3.12)

where a is then assumed to be of the standard form a0(T − θ), so as to allow for a

continuous octupole phase transition, and C0
44 is the un-renormalized elastic stiffness.

Assuming the case of a controlled conjugate field 8, one can then note that mini-

mizing free energy requires a finite order parameter,

O =
λHϵ

a
(3.13)

8Strain is a thermodynamic quantity and the material will adopt a value that minimizes the free
energy subject to a given set of stresses. However, experimental configurations can be established in
which stresses are applied such that given (measured) strains are established. From a thermodynamic
perspective, this is equivalent to a Legendre transformation in which strain now becomes a forced
(controllable) parameter.
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thus allowing one to solve for the octupole susceptibility

χO ≡ dO

d(Hϵ)

∣∣∣∣
Hϵ=0

=
λ

a0(T − θ)
(3.14)

Presuming a temperature-independent coupling of the moment and the field λ,

the octupole susceptibility may then follow a simple Curie-Weiss functional form,

particularly in systems with a tendency toward an explicit octupole ordering. More

generally (i.e. beyond just Γ3 doublet cases), this can be taken as the primary proof-

of-existence of a measurable octupole susceptibility: more complicated temperature

dependencies will naturally arise from higher-order terms, but can do so both in sys-

tems with and without an independent octupole, given other allowed terms invoking

other (biquadratic) multipole couplings. Any free-energy term of the form H2ϵ2 (af-

ter minimization with respect to the various order parameters) must either invoke

the octupole or a product of order parameters (a biquadratic dipole-quadrupole cou-

pling, for instance), and thus will have a more complicated lowest-order temperature

dependence, excepting coincidental cancellations. The Γ3 case is, of course, already

simplified by the necessary components of such a composite term, the three mag-

netic dipoles and the xy/yz/zx quadrupoles, requiring excited CEF states. A simple

1/(T − θ) dependence in the relevant free energy term is then a reliable indicator of

an independent octupolar order parameter, or one with a tendency to order in the

absence of competing phases.

One can then note that the octupole susceptibility, to within some proportionality

constant, can be extracted by taking appropriate derivatives of the free energy:

∂2F

∂(Hϵ)2

∣∣∣∣
Hϵ→0

= −λ
2

a
(3.15)

This presents the octupolar susceptibility as being proportional to a term in a

sixth-rank magneto-elastic tensor. Of course, simpler and similar quantities also

present themselves; one can quickly note that a similar quantity (off by a factor of
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2) could be found by taking the derivatives separately, and that ∂2F
∂ϵ2

corresponds

to the elastic stiffness tensor, while ∂2F
∂H2 corresponds to a magnetic susceptibility.

We therefore propose measuring the relevant sixth-rank tensor term, and thus the

(q = 0) octupole susceptibility, via field and/or strain derivatives of more commonly

measured tensor quantities; in doing so, the more complicated sixth-rank tensor term

can be accessed by well-established and understood experimental methods designed

for various second- and fourth-rank tensor quantities.

3.4 Thermodynamic Tensors

Thermodynamic quantities, quantities explicitly representative of derivatives of the

free energy, are the most direct potential measurements to capture the octupolar

susceptibility. Thus, the most obvious tensor quantities involving strain and magnetic

field, elastic stiffness and magnetic susceptibility, are herein enumerated.

It should be noted that all tensors herein are general for the Oh point group; while

a given term within a tensor may be of specific interest for the octupole here, the

allowed and disallowed terms, and their equalities, are a function solely of the point

group (and the definitions of the tensors), and not the details of any given system.

The symmetric constraints which allow and/or disallow various terms are detailed in

Appendix B. Additionally, it should be noted that none of the coefficients are implied

to be equal across tensors, with the exception of a handful of identically-labelled co-

efficients between the elastic stiffness and (strain-dependent) magnetic susceptibility

tensors.

3.4.1 Elastic Stiffness Tensor

The elastic stiffness tensor, defined by Cij,kl ≡ ∂2F
∂ϵij∂ϵkl

, represents the stress (i.e. force)

necessary to produce a given set of strains in a material. It inherits several symmetries

from its definition and that of the strain tensor, ϵij ≡ ∂µi
∂xj

+
∂µj
∂xi

. Namely, the definition

of the strain tensor requires ϵij, and thus Cij,kl, is invariant under exchange of i and

j (or k and l), while the definition of Cij,kl requires it be invariant under exchange
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Table 3.2: The full elastic stiffness tensor in Oh, in compactified Voigt notation and
to second order in magnetic field, color-coded to indicate which terms are identical.

xx yy zz yz zx xy

xx C
(0)
11 + A1H

2
x+ C

(0)
12 + A4H

2
z+ C

(0)
12 + A4H

2
y+ B1Hy −B1Hz

A2(H
2
y +H2

z ) A3(H
2
x +H2

y ) A3(H
2
x +H2

z ) +D1HyHz +D2HzHx +D2HxHy

yy C
(0)
12 + A4H

2
z+ C

(0)
11 + A1H

2
y+ C

(0)
12 + A4H

2
x+ −B1Hx B1Hz

A3(H
2
y +H2

x) A2(H
2
z +H2

x) A3(H
2
y +H2

z ) +D2HyHz +D1HzHx +D2HxHy

zz C
(0)
12 + A4H

2
y+ C

(0)
12 + A4H

2
x+ C

(0)
11 + A1H

2
z+ B1Hx −B1Hy

A3(H
2
z +H2

x) A3(H
2
z +H2

y ) A2(H
2
x +H2

y ) +D2HyHz +D2HzHx +D1HxHy

yz −B1Hx B1Hx C
(0)
44 + A5H

2
x+

+D1HyHz +D2HyHz +D2HyHz A6(H
2
y +H2

z ) +D3HxHy +D3HzHx

zx B1Hy −B1Hy C
(0)
44 + A5H

2
y+

+D2HzHx +D1HzHx +D2HzHx +D3HxHy A6(H
2
z +H2

x) +D3HyHz

xy −B1Hz B1Hz C
(0)
44 + A5H

2
z+

+D2HxHy +D2HxHy +D1HxHy +D3HzHx +D3HyHz A6(H
2
x +H2

y )

of ij and kl. These taken together motivate the use of compactified Voigt notation

rather than a full 9x9 matrix, as many terms are exactly identical to their neighbors

in such a full construct (e.g. Cxy,xy = Cxy,yx = Cyx,xy = Cyx,yx).

Taking two field derivatives then reconstructs the desired χO ≡ ∂O
∂(Hϵ)

∝ ∂2F
∂(Hϵ)2

,

and thus the field-dependence of the tensor is the primary point of interest. The

aforementioned inherent symmetries combined with those of the point group leave 3

independent non-zero terms in the absence of magnetic field, with arbitrary magnetic

fields breaking the point-group symmetries and allowing 10 additional independent

coefficients (to second order in field), as can be seen in Table 3.2. The A5 (yellow,

diagonal boxes) and D3 (blue, off-diagonal boxes) coefficients would then represent

the desired direct probe of octupolar susceptibility:

A5 =
∂2F

∂2(Hiϵjk)
∝ χO (3.16)

D3 =
∂2F

∂(Hiϵjk)∂(Hjϵki)
∝ χO (3.17)
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Practical Considerations

A number of considerations present themselves in potential measurements of the

relevant coefficients 9. First, it should be noted that while A5 is unconstrained in its

sign by symmetry, the octupole contribution to A5 would necessarily be negative, or

correspond to a softening of the lattice:

F = −λ
2(Hϵ)2

2a
+
C0

44

2
(ϵ2xy + ϵ2yz + ϵ2zx)

C44 =
∂2F

∂ϵ2ij
= C0

44 −
λ2H2

k

a
(3.18)

In short, a finite field allows a finite octupole moment, and thus a finite shear strain,

to reduce the free energy, reducing the energy cost associated with strain via the C0
44

term and thus making the lattice more susceptible to said strain, or softer.

As far as conducting the measurement, a [111] oriented field could be used to

measure a combination of A5 and D3 via intermixing the 9 terms in the lower-right

quadrant. The A6 coefficient would be induced, but is likely small, as it corresponds

to the lowest-order interaction of CEF-forbidden octupoles, or a higher-order interac-

tion invoking CEF-forbidden quadrupoles and dipoles. Alternatively, a [001] aligned

magnetic field could be used for measuring a specific elastic constant for the orthog-

onal shear plane. This, however, would break the degeneracy typical of these three

coefficients, inducing the A5 term within only one (Cxyxy for Hz), meaning the mea-

surement may need to distinguish a newly-differentiated Cijij from the still-equal

Cjkjk and Cikik.

Generally, associated changes in sound velocities/resonant frequencies would likely

invoke nearly all C and D coefficients from Table 3.2. However, assuming a [111]-

oriented magnetic field, all (field-dependent) contributions associated with the allowed

Γ3 quadrupoles would cancel (the allowed couplings to field would be to H2
x−H2

y and

2H2
z−H2

x−H2
y ). Thus, the remaining coefficients would correspond to CEF-forbidden

9Many experimental methods are available to probe such a quantity, and the specific method of
choice is of little import to the statements made here. The elastocaloric effect, however, presents
one such method, and will be discussed in greater detail in chapter 4, wherein it will be used to
measure the specific coefficients of interest
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multipoles, and would likely be small. In contrast, a field aligned along a single

principle axis would have a symmetry-allowed coupling to an allowed quadrupole,

though the coupling of this quadrupole and the field to shear strains specifically

would be higher order and not likely to be significant. Field-independent effects from

the Γ3 quadrupoles would naturally remain, which would manifest via C11 − C12, or

C
(0)
11 − C

(0)
12 using coefficients from Table 3.2.

Lastly, it should be noted that the B1 coefficients are constrained to be time-

reversal odd/imaginary, and thus linear contaminants would likely be either absent

or out-of-phase (and thus easily filtered).

3.4.2 Magnetic Susceptibility Tensor

Magnetic susceptibility, herein defined (in slight contrast to convention, and for para-

/diamagnetic states) via

χij ≡
∂2F

∂Hi∂Hj

∣∣∣∣
H→0

∝ −∂Mi

∂Hj

= −∂Mj

∂Hi

(3.19)

is a frequently measured quantity, characterizing the linear response of induced mag-

netic moment to external magnetic field. While the octupole would not produce the

simple dipole response typically dominant in susceptibility, the dependence of mag-

netic susceptibility (quadratically) on strain would give an effective Hϵ conjugate field

and recover χO ≡ ∂O
∂(Hϵ)

∝ ∂2F
∂(Hϵ)2

, similarly to the aforementioned tensors.

For Oh symmetry, there is a single independent (non-zero) term in the suscepti-

bility tensor in the absence of strain, χ0
ii. Externally induced strains introduce 12

additional independent coefficients (to second order in strain). Thus, for i ̸= j
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χii = χ
(0)
ii + Eϵii + F (ϵjj + ϵkk) + A1ϵ

2
ii +

A2(ϵ
2
jj + ϵ2kk) + A3ϵii(ϵjj + ϵkk) +

A4ϵjjϵkk + A6(ϵ
2
ij + ϵ2ik) + A5ϵ

2
jk (3.20)

χij = Gϵij +D3ϵikϵjk +D1ϵijϵkk +

D2ϵij(ϵii + ϵjj) (3.21)

where A5 and D3 again represent the desired coefficients proportional to the octupole

susceptibility, ∂2F
∂(Hiϵjk)2

and ∂2F
∂(Hiϵjk)∂(Hjϵik)

respectively. As implied by the labeling,

many coefficients here are constrained by the definition of the tensors (as derivatives

of free energy) to be identical to counterparts in the elastic stiffness tensor.

Practical Considerations

Two experimental configurations are suggested. First, to recover the A5 coefficient,

susceptibility could be measured along any principal axis, while a shear strain is ap-

plied in a plane perpendicular to said axis. The likely application of a net compressive

or tensile strain, as opposed to pure shear strain, would induce several other coeffi-

cients. The E and F coefficients, in particular, would correspond to allowed bilinear

couplings of the Γ3 quadrupoles, but are easily experimentally distinguished by their

representing linear strain dependencies (as opposed to quadratic). The rest are un-

likely to be large, given they do not represent the lowest-order allowed coupling to

either allowed quadrupole.

Alternatively, the D3 coefficient could potentially be measured by applying two

simultaneous shear strains, and measuring the transverse susceptibility using the two

axes perpendicular to said shear strains. In practice, a simpler method would be to

use a [111]-aligned magnetic field and a [111] uniaxial stress, inducing all three shear

strains simultaneously to measure a combination of A5 and D3. Unfortunately this

would likely induce all the coefficients simultaneously, but, again, they would likely
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be small compared to A5 and D3 given their connection to no multipoles and/or CEF-

forbidden multipoles (excepting potentially E and F , which would again distinguish

themselves from the terms of interest by their linearity in strain).

Many common measurements for magnetic susceptibility involve centering a sam-

ple in a detection solenoid and varying field (AC), or setting a field and moving a

sample through a detection solenoid (DC), to measure its moment via the response

in said solenoid. In either case, unexpected sample movement relative to the detec-

tor would generate a spurious signal. Thus, the use of DC strains is motivated, as

effects of AC strains would be very difficult to decouple from the effects of sample

movements (relative to a detector) that most strain-applying techniques are likely to

produce. Unfortunately, this means the susceptibility would have to be measured as

a function of strain, with the zero-strain term presenting itself as a constant back-

ground; measuring only the strain-dependent term, rather than its sum with the zero-

strain susceptibility, would require AC strains. However, with the Γ3 doublet being

non-magnetic, the strain-independent term should be both generally small and not

strongly enhanced by low temperatures, potentially allowing easily-realized strains to

drive the octupolar contribution to dominance over any background. Experimental

apparatus capable of measuring magnetic moments while compensating for the effects

of sample movement, via careful strain application or a detector with significant po-

sitional tolerance (perhaps an optical probe or a detector mounted on the strain cell,

for instance), may then further apply AC strain and AC magnetic field; an octupole

susceptibility could then be isolated from much of the background by measuring the

component of the magnetic moment varying with the sum or difference frequency of

the strain and magnetic field frequencies.

Lastly, it should be noted that controlling strain would be a potential difficulty,

as a measurable octupole susceptibility would lead to a softening of the shear mode

with field. Thus, application of constant stress would lead to increasing strain with

increasing field. Careful and direct measurement of strain, or the use of a fairly small

AC magnetic field for susceptibility measurements, could help mitigate this softening.
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3.4.3 Non-Linear Magnetic Susceptibility

While not the primary focus of this paper, the aforementioned Hϵ product is not the

unique lowest-order object the octupole can couple to within the limits of strain and

magnetic field; an object of identical symmetry can be constructed simply with a cubic

magnetic field term, HxHyHz
10. Thus, higher-order magnetization effects can often

capture the same information as strain dependencies. Using the same susceptibility

definition (albeit without the H → 0 limit), but expanding in magnetic field rather

than in strain, this introduces 5 new independent terms to 4th order; for i ̸= j,

χ
(0)
ii + AH2

i +B(H2
j +H2

k) +

CH4
i +D(H4

j +H4
k) +

+6DH2
i (H

2
j +H2

k) + EH2
jH

2
k (3.22)

χij = 2BHiHj + 2EHiHjH
2
k

+4DHiHj(H
2
i +H2

j ) (3.23)

where the E coefficient represents the desired ∂2F
∂(HxHyHz)2

. None of these coefficients

are implied by symmetry to be identical to any from the previous tensors.

Practical Considerations

Experimentally, the obvious complication is that the high fields potentially necessary

to accurately fit a quartic or higher function could render the higher CEF states

relevant to the result. Magnetic energy would become comparable to the gap for

fields of ∼15T-30T depending on the material (likely ∼.42T/K for a given CEF gap,

which are in the 40-60K range [25]).

Two methods present themselves: a simple magnetization-vs-field measurement

for a [111]-aligned field and thus [111]-aligned magnetization, and a simple [100]

susceptibility measurement with a secondary transverse field along an [011]-type axis.

10though microscopics may vary, in pure symmetry terms, ϵii and ϵij transform equivalently to
H2

i and HiHj respectively; Hi belongs to a T1 representation, and the product of two different field
components HiHj creates a T2 object symmetrically analogous to a shear strain
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In the [111] case, magnetization would be expected to be ∝ H5, or dM
dH

∝ H4. Thus,

magnetization would have to be sensitively plotted against a fairly wide field range,

with a background from the simple dipolar susceptibility being present (but again,

likely small for appropriately low field strengths and temperatures, given the CEF

splitting). Alternatively, this method would also potentially lend itself to an AC

measurement scheme; an AC magnetic field could be applied and the magnetization

measured at the fifth harmonic, potentially providing a dramatic improvement in

signal-to-background ratio for the octupolar signal.

The alternative [100] case may represent a simpler measurement with a more com-

plicated apparatus. If a strong field could be applied along the [011] axis, a traditional

magnetic susceptibility measurement could then be performed along the [100] axis,

with the results plotted against H011 and fit to a quartic function. Using an AC tech-

nique for the [100] susceptibility measurement would eliminate much of the contami-

nation from field misalignment, though background susceptibility from non-octupolar

sources would remain a potential issue; in particular, a quadratic dependence on field

could potentially arise from a coupling to the O2
2 quadrupole, forbidden with the

previous alignment scheme but potentially induced here.

3.5 Resistivity

Resistivity is not a thermodynamic quantity, but terms in the resistivity tensor can

nevertheless contain information about the onset of order parameters. Appropriate

derivatives of resisitivity tensor elements can then sometimes capture information

similar to that in derivatives of the free energy, i.e. thermodynamic probes [26]. In

particular, perturbations that break symmetries of the crystallographic point group

can induce changes in resistivity tensor terms, should the perturbation(s) or some

product thereof belong to the same irreducible representation as a given resistivity

tensor term. Should the applied perturbation also then match the irreducible rep-

resentation of the order parameter, a term in the change in resistivity will then be

linearly proportional to the order parameter, allowing the change in the resistivity to

reflect the associated susceptibility to within some proportionality constant.
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Thus, higher rank tensors describing derivatives of resistivity often contain in-

formation regarding susceptibility toward symmetry-breaking instabilities, to within

some coupling constant. This constant can potentially depend on temperature, or

allow certain order parameters to more strongly influence resistivity than others.

These complications are generally not insurmountable in extracting the dependence

of the underlying order parameter on strain/field. This, combined with the fact that

resistivity is, generally, more easily accessed experimentally than many thermody-

namic quantities, particularly when trying to measure in a symmetry-selective way,

motivates a thorough evaluation.

In the specific context of the τxyz octupole allowed in the Γ3 doublet, the cyclic

permutations of Hzϵxy can couple bilinearly to the octupole, but both of these objects

are of Γ+
2 symmetry in Oh, a symmetry that cannot be constructed purely via ele-

ments of the resistivity tensor (Γ+
2 has no quadratic basis functions in Oh). However,

expanding a Γ5-type term in the resistivity tensor ρxy, one can note that two objects

already present, Hz and τxyz, together form an object of of appropriate Γ5 symmetry.

The symmetry-allowed dependency is therefore

∆ρxy(Hz, ϵxy) ∝ Hzτxyz

∆ρxy(Hz, ϵxy) ∝ H2
z ϵxyχO (3.24)

and thus, the object of relevance is a first derivative with respect to strain and

second derivative with respect to magnetic field of a resistivity tensor term, i.e. a

term in a 6th rank tensor. This object is most easily approached by considering

either the second field derivative of the 4th rank elastoresistivity tensor, or the first

strain derivative of the 4th rank second-order magnetoresistance tensor. We focus

here primarily on the former.

3.5.1 Elastoresistivity Tensor

Elastoresistivity is defined via [26]
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mij,kl ≡
∂(∆ρ

ρ
)ij

∂ϵkl
(3.25)

Herein the normalized resistivity tensor is defined in a manifestly symmetric man-

ner for convenience, (∆ρ
ρ
) = ρ−1/2(∆ρ)ρ−1/2[26], enabling the use of the symmetry

(∆ρ
ρ
)ij(H) = (∆ρ

ρ
)ji(−H). Thus, the overall tensor is similar, but not identical to,

the elastic stiffness tensor; for example, it is not symmetric under exchange of ij

and kl, and purely dynamic contaminants such as the simple Hall Effect appear in

several terms. The full tensor is shown in Table 3.3, to second order in magnetic

field; there are only 3 allowed unique field-independent terms, with an additional 15

being induced by applied field. The use of compactified Voigt notation is motivated

by this high level of symmetry; excluded terms have identical coefficients to those

included on the table, but may have some sign differences, which can be calculated

trivially via the symmetries of ρij (switching coefficients adds a sign change to each H

term) and ϵij (switching coefficients changes nothing); e.g. via the symmetry of ρij,

mzyyy would be −B2Hx +D2HyHz, in slight contrast to myzyy = +B2Hx +D2HyHz.

The A6 (yellow boxes) and D5 (blue boxes) coefficients then represent the desired

susceptibility:

A6 =
∂2mij,ij

∂H2
k

∝ χO (3.26)

D5 =
∂2mij,jk

∂Hk∂Hi

∝ χO (3.27)

It should be further noted that similar notation to previous tensors was chosen

for convenience, but that none of these coefficients are constrained by symmetry to

have any relationship with those in any of the thermodynamic tensors.
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Table 3.3: The full elastoresistivity tensor in Oh in compactified Voigt notation,
color-coded to indicate which terms have identical or differing coefficients

xx yy zz yz zx xy

xx m
(0)
11 + A1H

2
x+ m

(0)
12 + A3H

2
z+ m

(0)
12 + A3H

2
y+ D1HyHz D2HzHx D2HxHy

A2(H
2
y +H2

z ) A4H
2
x + A5H

2
y A4H

2
x + A5H

2
z

yy m
(0)
12 + A3H

2
z+ m

(0)
11 + A1H

2
y+ m

(0)
12 + A3H

2
x+ D2HyHz D1HzHx D2HxHy

A4H
2
y + A5H

2
x A2(H

2
z +H2

x) A4H
2
y + A5H

2
z

zz m
(0)
12 + A3H

2
y+ m

(0)
12 + A3H

2
x+ m

(0)
11 + A1H

2
z+ D2HyHz D2HzHx D1HxHy

A4H
2
z + A5H

2
x A4H

2
z + A5H

2
y A2(H

2
x +H2

y )

yz B1Hx B2Hx B2Hx m
(0)
44 + A6H

2
x+ B3Hz B3Hy

+D3HyHz +D4HyHz +D4HyHz A7(H
2
y +H2

z ) +D5HxHy +D5HzHx

zx B2Hy B1Hy B2Hy B3Hz m
(0)
44 + A6H

2
y+ B3Hx

+D4HzHx +D3HzHx +D4HzHx +D5HxHy A7(H
2
z +H2

x) +D5HyHz

xy B2Hz B2Hz B1Hz B3Hy B3Hx m
(0)
44 + A6H

2
z+

+D4HxHy +D4HxHy +D3HxHy +D5HzHx +D5HyHz A7(H
2
x +H2

y )

Practical Considerations

The tensor presents several obvious experimental opportunities and challenges. First,

inspection of the yellow boxes in Table 3.3 makes clear that the mxyxy elastoresistivity

coefficient is even in Hz, and hence that measurement of the A6 coefficient is possible

without a linear-in-field contaminant, meaning that it could potentially be extracted

as the sole fit parameter of elastoresistivity vs field data. This, in turn, would mean

that the coefficient could potentially be extracted with a fairly limited field range,

limiting issues arising from high fields (i.e. non-negligible mixing of CEF states).

Most experimental methods of probing elastoresistivity, however, do not apply

pure shear strains, but also induce normal strains ϵxx, ϵyy, ϵzz. The associated

symmetry-preserving strain component couples directly to a simple Hall Effect via

changing the carrier density; with small strains, charge carrier count would remain

constant against an increasing/decreasing volume. Thus, even without a linear-in-

field term in the desired mijij elastoresistivity term, a successful measurement would

likely still show a strain-dependent Hall Effect that would need to be accounted for

via the traditional methods (this would correspond to an admixture of the B1 and B2

coefficients in the table). For fields aligned precisely along one of the crystal axes k,

measurement of ρij in positive and negative fields would, in principle, allow cancella-

tion of this linear contaminant. Contact misalignment, which can result in admixture
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of ρii in an attempt to measure ρij, can be subtracted using ideas developed earlier

in Ref. [27].

Perhaps more importantly, elastoresistivity requires controlling/measuring the

strain experienced by a crystal. If an experiment failed to hold strain constant as

a function of field, the octupole susceptibility would not be faithfully measured. An

example would be the case where stress is held fixed, i.e. a piezoresistance mea-

surement. Given the octupole susceptibility can manifest in the elastic stiffness (see

section 3.4.1), the very application of field would change the stiffness independently

of temperature, thus changing the strain under conditions of constant stress. Such an

effect can be minimized via the use of a strain-applying apparatus that is very stiff

relative to the sample, or nearly eliminated by directly measuring and controlling for

strain. Appropriate experimental apparatus for such a task have been developed [28].

It should be further noted that Table 3.3 represents a general compilation of terms

allowed in an expansion of resistivity in terms of strain and magnetic field (to first

order in strain, second order in field); the order of derivatives is not particularly

relevant, and thus strain dependencies of the magnetoresistance would draw from

the same set of allowed terms, though high fields (or high strains) would potentially

render relevant higher terms than those contemplated here.

3.6 Conclusion

The Γ3 doublet ground state for local 4f orbitals in a cubic point symmetry was

motivated as an ideal system to study octupole order parameters and their associ-

ated susceptibility, given the allowed τxyz octupole and the energetic disfavoring of

magnetic dipoles. Considering the allowed couplings of such an order parameter, sev-

eral commonly-measured tensor quantities in which it might appear were discussed.

These were fully elucidated in the Oh point group, the point group of potential exper-

imental realizations of an octupolar order parameter [25, 15]. Specific terms within

external-field-dependent elastic stiffness, elastoresistivity, and magnetic susceptibility

tensors which would be linearly proportional to a potential τxyz octupole susceptibility

were identified. Potential measurements, and complications arising from contaminant
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terms, were discussed for each individual tensor, with several octupole-isolating ex-

periments ultimately proposed.

More broadly, similar ideas could be used to isolate contributions of a variety of

higher-order local multipoles and in any number of material systems. The chosen

system was convenient for both being relatively simple (a doublet ground state) and

having no overlap in conjugate fields (the strain component of the octupole conju-

gate field coupled to no other order parameters allowed by the CEF ground state).

Nonetheless, the core idea of isolating specific multipolar contributions to potentially

rich phase diagrams via higher-rank tensor properties is applicable to a variety of

localized 4f systems.
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3.A Character Table

See Table 3.4. For convenience, a series of symmetrized cubic rotation products have

been added. These have the same spatial symmetries as the magnetic octupole, and

thus indicate the irreducible representations of the various possible magnetic octupole

moments.

3.B Table Symmetries

Herein, terms are defined by ”types,” where a given type is defined by having a unique

index composition (i.e. ii, ii vs ii, jj), and i ̸= j ̸= k holds for all types. A type then
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Oh E 8C3 6C2 6C4 3(C4)
2 i 6S4 8S6 3σh 6σd linear functions quadratic functions cubic functions and

and rotations cubic rotation products
Γ+
1 A1g +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 - x2 + y2 + z2 -

Γ+
2 A2g +1 +1 -1 -1 +1 +1 -1 +1 +1 -1 - - RxRyRz

Γ+
3 Eg +2 -1 0 0 +2 +2 0 -1 +2 0 - (2z2 − x2 − y2, -

x2 − y2)
Γ+
4 T1g +3 0 -1 +1 -1 +3 -1 0 -1 -1 (Rx, Ry, Rz) - (R3

x, R
3
y, R

3
z)

(RxR2
z +RxR2

y, RyR2
x +RyR2

z,

RzR2
y +RzR2

x)

Γ+
5 T2g +3 0 +1 -1 -1 +3 -1 0 -1 +1 - (yz, zx, xy) (RxR2

z −RxR2
y, RyR2

x −RyR2
z,

RzR2
y −RzR2

x)

Γ−
1 A1u +1 +1 +1 +1 +1 -1 -1 -1 -1 -1 - - -

Γ−
2 A2u +1 +1 -1 -1 +1 -1 +1 -1 -1 +1 - - xyz

Γ−
3 Eu +2 -1 0 0 +2 -2 0 +1 -2 0 - - -

Γ−
4 T1u +3 0 -1 +1 -1 -3 -1 0 +1 +1 (x, y, z) - (x3, y3, z3)

(xz2 + xy2, yx2 + yz2, zy2 + zx2)
Γ−
5 T2u +3 0 +1 -1 -1 -3 +1 0 +1 -1 - - (xz2 − xy2, yx2 − yz2, zy2 − zx2)

Table 3.4: Oh Character Table

constitutes a term and all terms that can be generated from that (arbitrary) original

term by various symmetries, which can be simplified to include only the symmetries

of a given tensor, the 3-fold rotational symmetry, and the various 4-fold rotations. For

example, Type II for the elastic stiffness tensor, Cii,jj, includes Cxx,yy, Cyy,xx (owing

to the symmetry of the tensor; see relevant section below), Cyy,zz, etc. The wording

”sign change” is used to indicate the operation (x) → (−x) for a given variable a

tensor depends on, such as magnetic field.

3.B.1 Elastic Stiffness

Here the C symmetry is defined as that which exchanges the two subsets of indices

(i.e. Cab,cd → Ccd,ab), while the ϵ symmetry is defined as that which switches indices

within a subset (Cab,cd → Cba,cd).

Type I: Cii,ii (Red Boxes in Table 3.2)

1. Invariant under simultaneous sign change of any two field components (σi/σj/σk)

2. Invariant under simultaneous exchange of Hj and Hk and sign change of Hi (σj=k)

Final Form: C0
11 + A1H

2
i + A2(H

2
j +H2

k)

Type II: Cii,jj (Green Boxes in Table 3.2)

1. Invariant under simultaneous sign change of any two field components (σi/σj/σk)

2. Invariant under simultaneous exchange ofHi andHj and sign change ofHk (σi=j,C)

Final Form: C0
12 + A3(H

2
i +H2

j ) + A4(H
2
k)

Type III: Cij,ij (Yellow Boxes in Table 3.2)
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1. Invariant under simultaneous sign change of any two field components (σi/σj/σk)

2. Invariant under simultaneous exchange of Hi and Hj and sign change of Hk (σi=j,ϵ)

Final Form: C0
44 + A6(H

2
i +H2

j ) + A5(H
2
k)

Type IV: Cii,ij (Orange Boxes in Table 3.2)

1. Zero in the absence of symmetry-breaking field, magnetic or otherwise (σi or σj)

2. Antisymmetric under simultaneous sign change of Hk and Hj/Hi (σi/σj)

Final Form: B1Hk +D2HiHj

Type V: Cij,kk (Purple Boxes in Table 3.2)

1. Zero in the absence of symmetry-breaking field, magnetic or otherwise (σi or σj)

2. Invariant under simultaneous exchange ofHi andHj and sign change ofHk (σj=k,ϵ)

3. Antisymmetric under exchange of Hi and Hj followed by sign change of Hi (C4k,ϵ)

Final Form: D1HiHj

Type VI: Cij,jk (Blue Boxes in Table 3.2)

1. Zero in the absence of symmetry-breaking field, magnetic or otherwise (σi or σk)

2. Invariant under simultaneous exchange of Hi and Hk and sign change of Hj

(σi=k,C,ϵ)

3. Antisymmetric under exchange of Hi and Hk followed by sign change of Hi (C4j,

C)

Final Form: D3HiHk

3.B.2 Strain-dependent Magnetic Susceptibility

The magnetic susceptibility tensor, again defined by

χij ≡
∂2F

∂Hi∂Hj

∣∣∣∣
H→0

∝ −∂Mi

∂Hj

= −∂Mj

∂Hi

(3.28)

has one obvious symmetry. This symmetry, herein defined as ”χ” symmetry,

implies invariance under simple exchange of indices, i.e. χij → χji

Type I: χii

1. Invariant under sign-change of i/j/k indices (σi/σj/σk)

2. Symmetric under exchange of j and k indices (σj=−k)
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Final Form: χii = χ
(0)
ii + Aϵii +B(ϵjj + ϵkk) + Cϵ2ii +

D(ϵ2jj + ϵ2kk) + Eϵii(ϵjj + ϵkk) +

Fϵjjϵkk +G(ϵ2ij + ϵ2ik) + Lϵ2jk

Type II: χij

1. Zero in the absence of symmetry-breaking field, strain or otherwise (σi or σj)

2. Antisymmetric under sign change of i/j (σi/σj)

3. Invariant under exchange of i and j coefficients (σi=−j. χ)

Final Form: Mϵij +Nϵikϵjk +Oϵijϵkk + Pϵij(ϵii + ϵjj)

It can then be noted that, given the definition of C and the definition of χ, each

of these terms corresponds to some allowed term in the free energy, and the terms

which give rise to many of the C tensor terms are identical to many that give rise to

the strain-dependent χ tensor terms. Thus, the terms can be rewritten as

χii = χ
(0)
ii + Eϵii + F (ϵjj + ϵkk) + A1ϵ

2
ii + A2(ϵ

2
jj + ϵ2kk) + A3ϵii(ϵjj + ϵkk) + A4ϵjjϵkk +

A6(ϵ
2
ij + ϵ2ik) + A5ϵ

2
jk

χij = Gϵij +D3ϵikϵjk +D1ϵijϵkk +D2ϵij(ϵii + ϵjj)

3.B.3 Non-linear Magnetic Susceptibility

The inherent symmetry of the tensor here remains χij → χji, as in the previous case.

Type I:χii

1. Invariant under simultaneous sign change of any two field components (σi/σj/σk)

2. Invariant under simultaneous exchange of Hj,Hk and sign change of Hi (σj=−k)

Final Form: χ
(0)
ii +AH2

i +B(H2
j +H

2
k)+CH

4
i +D(H4

j +H
4
k)+EH

2
i (H

2
j +H

2
k)+FH

2
jH

2
k

Type II:χij

1. Zero in the absence of symmetry-breaking field, magnetic or otherwise (σi or σj)

2. Invariant under simultaneous sign change of Hi,Hj (σk)

2. Antisymmetric under simultaneous sign change of Hj,Hk/Hk,Hi (σi/σj)

3. Invariant under simultaneous exchange of Hi,Hj and sign change of Hk (σi=−j,χ)

Final Form: χij = GHiHj + LHiHjH
2
k +NHiHj(H

2
i +H2

j ) +OHk(H
2
i −H2

j )
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Furthermore, moving beyond Neumann’s Principle, it can be noted that the afore-

mentioned definition of magnetic susceptibility implies each term derives from a cor-

responding term in the free energy. Some of these χ tensor terms are then implied to

derive from the same allowed term within the free energy, and are thus constrained to

be equal, to within a numerical factor (given different derivative orders). Additionally,

one term allowed by Neumann’s principle in χij, OHk(H
2
i −H2

j ), implies a term in χii,

HiHjHk, that is forbidden, and is thus not allowed (alternatively, the free-energy term

implied by OHk(H
2
i −H2

j ) is found to cancel if the equivalent free-energy terms from

χij,χjk, and χki are added together, yielding HiHjHk(H
2
i −H2

j +H
2
j −H2

k+H
2
k−H2

i ).

Thus, the allowed terms can be further simplified to:

χ
(0)
ii + AH2

i +B(H2
j +H2

k) + CH4
i +D(H4

j +H4
k) + 6DH2

i (H
2
j +H2

k) + EH2
jH

2
k

χij = 2BHiHj + 2EHiHjH
2
k + 4DHiHj(H

2
i +H2

j )

3.B.4 Elastoresistivity

Elastoresistivity, defined again by

mij,kl ≡
∂(∆ρ

ρ
)ij

∂ϵkl

does not admit the exchange of the index pairs, i.e. mij,kl → mkl,ij. Thus, the

symmetries of the constituent components are the only major symmetries of the tensor

itself. First, the inherent ”ϵ” symmetry implies invariance undermij,kl → mij,lk. Next,

the symmetry of the normalized resistivity tensor, defined here (for the purposes of

symmetry [26]) via

(
∆ρ

ρ
) = ρ−1/2(∆ρ)ρ−1/2 (3.29)

implies invariance under the ”ρ” symmetry operation, mij,kl → −mji,kl, as noted in

the relevant section above.
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Type I: mii,ii (Red Boxes in Table 3.3)

1. Even in Hi/Hj/Hk (σi/σj/σk,ρ)

2. Invariant under exchange of Hj,Hk (σj=k,ρ)

Final Form: m0
11 + A1H

2
i + A2(H

2
j +H2

k)

Type II: mii,jj (Green Boxes in Table 3.3)

1. Even in Hi/Hj/Hk (σi/σj/σk,ρ)

Final Form: m0
12 + A3H

2
k + A4H

2
i + A5H

2
j

Type III: mij,ij (Yellow Boxes in Table 3.3) 1. Invariant under simultaneous sign

change of any two field components (σi/σj/σk)

2. Invariant under exchange of Hi,Hj (σi=−j,ρ,ϵ)

Final Form: m0
44 + A6H

2
k + A7(H

2
i +H2

j )

Type IV: mii,ij (Peach Boxes in Table 3.3)

1. Zero in the absence of symmetry-breaking field, magnetic or otherwise (σi or σj)

2. Antisymmetric under simultaneous sign change of Hj,Hk/Hk,Hi (σi/σj)

3. Invariant under simultaneous sign change of Hi,Hj (σk)

4. Invariant under simultaneous sign change of Hi,Hj,Hk (ρ)

Final Form: D2HiHj

Type V: mij,jj (Orange Boxes in Table 3.3)

1. Zero in the absence of symmetry-breaking field, magnetic or otherwise (σi or σj)

2. Antisymmetric under simultaneous sign change of Hj,Hk/Hk,Hi (σi/σj)

3. Invariant under simultaneous sign change of Hi,Hj (σk)

Final Form: B2Hk +D4HiHj

Type VI:mij,kk (Purple Boxes in Table 3.3)

1. Zero in the absence of symmetry-breaking field, magnetic or otherwise (σi or σj)

2. Antisymmetric under simultaneous sign change of Hj,Hk/Hk,Hi (σi/σj)

3. Invariant under simultaneous sign change of Hi,Hj (σk)

4. Invariant under exchange of Hi,Hj (σx=−y,ρ)

Final Form: B1Hk +D3HiHj

Type VII: mii,jk (Violet Boxes in Table 3.3)

1. Zero in the absence of symmetry-breaking field, magnetic or otherwise (σj or σk)

2. Odd in Hj/Hk (σj/σk,ρ)
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3. Even in Hi (σi,ρ)

Final Form:D1HjHk

Class VIII: mij,jk (Blue Boxes in Table 3.3)

1. Zero in the absence of symmetry-breaking field, magnetic or otherwise (σi or σk)

2. Antisymmetric under simultaneous sign change of Hj,Hk/Hi,Hj (σi/σk)

3. Invariant under simultaneous sign change of Hi,Hk (σj)

Final Form: B3Hj +D5HkHi



Chapter 4

ECE Measurements of Octupolar

Susceptibility

4.1 Preface

The following chapter represents an as-yet unpublished paper in the process of pub-

lication, titled ”Measurement of the magnetic octupole susceptibility of PrV2Al20.”

The authorship includes Linda Ye, Matthew E. Sorensen, Maja Bachmann, and Ian

R. Fisher, with Linda Ye and Matthew Sorensen having contributed equally to this

work.

4.2 Abstract

AC elastocaloric effect measurements under magnetic field were used to probe the

octupolar susceptibility of single crystals of PrV2Al20, a cubic system proposed to

have a non-Kramers doublet ground state and realized magnetic octupolar order [12,

13, 29]. Through carefully chosen geometry, magnetic field and strain were applied so

as to couple to a magnetic octupolar moment and split the ground state doublet. AC

elastocaloric effect was then measured across a range of strains, magnetic fields, and

temperatures. A simple Landau model was used to fit data, with fits to functions of

magnetic field and strain allowing for the extraction of a quantity proportional to the

61
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octupolar susceptibility. The extracted dχO

dT
was then presented as a thermodynamic

property of the material, dependent only on temperature, and plotted for a number

of temperatures.

4.3 Introduction

A wide variety of ordered electronic/magnetic states have been observed, character-

ized within the Landau paradigm by the symmetries that they break. Considering

ordered states based on local atomic orbitals, various types of ordered states based

on magnetic dipoles (ferromagnets, ferrimagnets, and antiferromagnets of all sorts)

are extremely common. While ordered states between higher rank multipoles are also

possible, interactions fall off progressively more rapidly for successively higher rank

multipoles, such that while there are numerous examples of quadrupole order, there

are relatively few candidates for yet higher rank order, including octupolar. Further-

more, identifying such ‘hidden order’ states can itself be a challenge, since the specific

broken symmetry can be challenging to identify/determine. Such systems, if they can

be correctly identified, would not only be of interest due to their rather unique and

subtle order, but also because such states, when allowed to interact with conduction

electrons, have been shown theoretically to be connect to novel types of non-Fermi

liquid behavior [30] and unconventional superconductivity [31].

All of these points of interest motivate development of new experimental tools that

can probe the associated susceptibility of the higher rank multipole – a quantity that

(a) is finite for all temperatures (though possibly only large at low T), even above

Tc, (b) the divergence of which directly attests to the presence of growing fluctua-

tions, (c) and which can be directly compared to other competing symmetry channels

(i.e. even in cases where a lower rank multipole ‘wins’, identifying the presence of

strong fluctuations of the competing higher rank multipole state can help determine

pathways to realizing such a state in other related materials). Here we experimentally

identify strong octupolar fluctuations in the cubic compound PrV2Al20, by measuring

the temperature-dependence of the octupolar susceptibility.
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While appropriate conjugate fields for uniform magnetic and quadrupolar mo-

ments can be readily obtained, for higher order multipoles, such as the magnetic

octupole, simple/single conjugate fields do not exist. In such cases, multiple exter-

nal fields may be necessary to adequately simulate the higher-order octupolar field.

For example, the magnetic octupole can generally couple to the product of magnetic

field and strain, as discussed in Ref. [32], via multiple fields. The susceptibilities

associated with any individual constituent field then become of concern, however.

To sidestep this and other complications, 4f ion systems are ideal, with their ten-

dency toward localization and the potential Γ3 doublet CEF ground state for cubic

systems. For systems of this ground state, the doublet can be split by Γ3 electric

quadrupoles (3J2
z − J2, J2

x − J2
y ) or a Γ2 magnetic octupole (JxJyJz). In particular,

the Pr3+ ion is the most common host for such a ground state, with PrTr2Al20 com-

pounds having been experimentally demonstrated to have this Γ3 ground state [12].

PrV2Al20 is chosen here, for its noted, well-separated Γ3 ground state (40K between

ground and first excited states [12]), its electric quadrupole ordering at 0.75K [12],

and its octupolar ordering at 0.65K in higher-quality crystals [13]; it is then ideal for

susceptibility measurements, which can potentially identify octupolar fluctuations a)

at higher temperatures, b) despite the dominant/higher energy quadrupolar ordering

and interactions and c) in crystals where disorder may prevent the octupolar ordering

from manifesting at all.

4.3.1 Coupling Considerations

As pointed out by Yong-Baek Kim et al [24], one potential conjugate field for the

octupole here, Hiϵjk, incorporates a Γ4 magnetic field (Hi) and a Γ5 strain (ϵjk),

where i, j, k ∈ x, y, z and i ̸= j ̸= k. The corresponding order parameters for these

two fields on their own, the Γ4 magnetic dipole and Γ5 electric quadrupole (xy, yz

and zx symmetries), then do not split the Γ3 doublet ground state to lowest order,

and are effectively forbidden so long as the energy gap between the CEF ground state

and excited states is large relative to the coupling energy.
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While the idea of creating an ’octupolar field’ to couple with the octupolar mo-

ment of the Γ3 doublet may imply miniscule energy scales, an ’octupolar field’ is not

the most accurate description of the coupling involved. It is perhaps more insight-

ful to consider the interaction of the octupolar moment with either one of the fields

individually. Taking the magnetic field as the first example, if we apply a magnetic

field (of Γ4 symmetry) of arbitrary direction, the interaction with the octupolar mo-

ment (Γ2 symmetry) will then indicate Γ4 ⊗ Γ2 = Γ5. In other words, the octupolar

moment, of positive or negative sign, will interact with a (magnetic field) vector in

the Γ4 manifold to generate an object characterized by a vector in the Γ5 manifold,

in this case a quadrupolar moment. The same effect can be applied in reverse, as

Γ5 ⊗ Γ2 = Γ4.

Thus, while either field (magnetic or quadrupolar) individually may not bilinearly

couple to the octupole, either field will distort the two (positive and negative) octupo-

lar moments carried by the Γ3 states to give them moments (quadrupolar or magnetic,

respectively) of opposite sign that the other field (strain or magnetic, respectively)

can then couple to bilinearly to split the doublet (see Figure 4.1a). As seen in Figure

4.1b, this means the energy of the ground state doublet splits quite dramatically in

the presence of both fields, but relatively minimally in the presence of only one. We

then restrict ourselves to the case of 111 magnetic field and uniaxial stress to avoid

allowed couplings of the magnetic field to the energetically dominant Γ3 quadrupolar

moments, and so the necessary Γ5 strain can be applied without Γ3 strain.
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Figure 4.1: (a): Example magnetic charge density of the positive and negative Γ2

octupolar moments shown via contours of constant magnetic charge, (i) for ϵ,H = 0,
(ii) in the presence of a z-axis magnetic field Hz, and (iii) in the presence of a Γ5

strain ϵxy. Note that the two octupolar moments acquire quadrupolar moments (ii)
and magnetic moments (iii) (for applied field and strain respectively) of opposite sign,
and hence can be split by applied strain and field respectively. (b)Energetic splitting
of the ground state doublet for selected linear cuts in the 2D space of applied strain
and magnetic field, calculated using the simple H = HCEF − ϵQ −HJ for Q and J
representing 111 quadrupole and magnetic moments, respectively (HCEF taken from
Ref. [13]). Strain-based splitting in the absence of field is negligible when considering
experimentally relevant strain amplitudes. While splitting exists at finite magnetic
field, it is negligible compared to that achieved with combined strain and field.
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To use said field to probe the octupolar moment, we choose to use the AC Elas-

tocaloric Effect, as pioneered by Ikeda et al [23, 33]. Stress and magnetic field were

applied in parallel along the 111 axis (see Appendix A for geometry). In the mea-

surement, an AC stress is applied to the sample at a frequency such that the sample

cannot thermalize with the surrounding cell (277.7 Hz here), and is considered to be

approximately adiabatic (Appendix C). Provided strain splits the doublet or other-

wise reduces entropy in an isothermal environment, the temperature must then shift

in the isentropic environment to compensate for any such loss of degeneracy. The

adiabatic elastocaloric temperature oscillation is given by(
dT

dϵ

)
S

= −∂S
∂ϵ

T

Cϵ
(4.1)

To measure the temperature oscillation, an AC current is applied to a thermometer

attached to the sample at some frequency, and the thermometer voltage is measured

with a lock-in amplifier attuned to the sum frequency of the current and strain to

isolate the strain-induced change in the thermometer resistance, i.e. the strain de-

pendent temperature fluctuation, as the primary experimental output. A commercial

CS100 strain cell from Razorbill Insruments was used to induce strain, measurable

via the change in sample length ∆L/L; this generally overestimates the total uniaxial

strain, but in a consistent manner (see Appendix B).

Uniaxial stress then naturally creates strains of Γ1 and Γ5 character. Γ1 strain,

equivalent to the effect of pressure, will generally have a lesser effect on dT
dϵ

than the

symmetry-breaking Γ5 absent any phase transitions, with dependence of thermody-

namic properties (such as entropy or free energy) on Γ1 strains often being dominated

by the linear term (absent a Γ1-strain-induced phase transition); this then creates a

constant, strain-independent background on dT
dϵ
, which causes small deviations from

the dominant effect associated with the coupling to octupole desgrees of freedom (to

be discussed below), and can be ignored in simple models which accurately predict

much of the system’s behavior. In the following analysis, we use ϵ to refer to the Γ5

strain contribution, where ∆L/L is proportional to, but greater than, the Γ5 strain.
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4.3.2 Expectations

The energetic splitting (and thus the change in entropy) as a function of strain is

expected to be minimal in the absence of field, but to grow large as field is increased.

As a crude indicator of expectations, we suggest the simple Landau model

F =
a

2
O2 − λ1HϵO − λ2H

3O (4.2)

where O represents the octupolar moment and H is the magnetic field oriented

along the 111 crystallographic axis. This model is relevant for sufficiently high temper-

atures above any octupolar (or competing) phase transition, where a = a0(T −T∗) >
0, provided again that the strain and magnetic field do not couple to competing order

parameters, and for sufficiently small values of H and ϵ. Absorbing some constants

into ϵ for simplicity yields

F =
a

2
O2 − λH(ϵ−H2)O (4.3)

where it should be noted that the octupolar moment will be zero not at zero

applied strain, but at some finite strain wherein the two allowed couplings cancel;

the choice of relative sign between the two bilinear octupole couplings is then ex-

perimentally motivated, as this finite strain of cancellation is found to be, in the

convention used herein, positive. Minimizing this yields O = λH(ϵ−H2)
a

and thus

F = −λ2H2(ϵ−H2)2

2a
. We can then define an octupolar strain susceptibility

χO =
∂O

∂(Hϵ)

∣∣∣∣
Hϵ,H3=0

=
λ

a
(4.4)

We note here that susceptibilities are traditionally defined in the limit of vanishing

conjugate field, generally corresponding to zero order parameter. Here, we seek to

measure primarily using one component, Hϵ, of the full conjugate field, Hϵ−H3. The

traditional constraint then requires the limit where the total field Hϵ−H3 = 0, a limit

wherein the higher-order terms in O are necessarily negligible. It is then additionally

desirable, however, that the derivative be evaluated where the Hϵ field is zero, or
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more specifically that H = ϵ = 0, to avoid any potential minor distortions invoked by

allowed couplings of the form H2O2 or ϵ2O2. Achieving both limits, that of zero for

both our total Hϵ−H3 conjugate field and the Hϵ field we measure with, is however

somewhat experimentally unfeasible. Given the inequivalence of these two limits in

this scenario, we suggest the traditional limit of vanishing total field, or equivalently

vanishing order parameter, to be more physically relevant, as will be discussed in

more detail below.

S can then be solved for, followed by dS
dϵ

S = −∂F
∂T

=
dχO
dT

λH2(ϵ2 −H2)

2
(4.5)

∂S

∂ϵ
=
dχO
dT

H2(ϵ−H2) (4.6)

Thus, for small perturbations from the zero-octupole point, and sufficiently far

away from any phase transition, where the variance in heat capacity is likely small, the

elastocaloric signal is anticipated to be linearly dependent on strain, with a slope that

is quadratic in magnetic field. χO, as defined, will then have a (T−T ∗)−1 temperature

dependence typical of such susceptibilities, and the measured elastocaloric signal dT
dϵ

should have (T − T ∗)−2 dependence, in regimes where the heat capacity does not

significantly change and the Landau formulation holds.

4.4 Experimental Results

As a starting point for examining the validity of the simple model, the elastocaloric

signal dT
dϵ

was measured with and without field at low temperature (2.5K, Figure

4.2b). In the absence of field, the signal is weakly linear w.r.t. strain, likely repre-

senting the small but non-zero Γ5 quadrupolar susceptibility. The CEF splitting is

finite, so this will necessarily be present via contributions from excited CEF states,

despite being ’forbidden’ in the ground state Γ3 doublet itself. However, as magnetic

field is increased, the slope of dT
dϵ

as a function of ∆L
L

increases monotonically and

dramatically. Thus, the assumption of CEF-forbidden contributions being negligible
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relative to the octupolar contribution is made for the remainder of the analysis. Data

showing positive and negative fields, and thus ruling out more complicated magnetic

effects and hysteresis, can be found in Appendix D.

As was briefly discussed earlier, the zero intercept of the iso-magnetic curves

does indeed vary as field is increased, representing a shift in the strain required for

cancellation of Hϵ and H3 couplings with each other as a function of field.

Temperature dependence of dT
dϵ

for a representative field is then illustrated via

Figure 4.2a; as anticipated, the slope of the signal w.r.t. strain (at constant mag-

netic field) increases dramatically upon cooling. It should be noted that the traces

become significantly more curved as their average slope increases, i.e. with decreasing

temperature and increasing magnetic field. This is an effect of the lack of symmetry-

required equivalence of Γ5 quadrupoles of varying signs, which are, as discussed above,

induced by applying a strong magnetic field to the octupolar moments. This intro-

duces terms of cubic order and higher of the Γ5 quadrupole in the Landau model,

which will generally be proportional to HO. The simpler Landau picture, however,

can then be recovered by looking at the region where these higher order terms are

negligible, i.e. the zero of the order parameter, in this case reasonably approximated

(but not perfectly matched, due toe the effect of non-symmetry-breaking stress) by

the zero of the signal. For further insights, the earlier equations, namely those de-

scribing the measured signal (4.1) and the entropy derivative (4.6), motivate taking

a strain-derivative in the limit of vanishing octupolar moment.

4.4.1 Extracting Susceptibility

Data were then considered in the original ECE vs strain traces across a variety of

constant fields and temperatures (see Appendix B). Motivated by the simple Landau

paradigm of going to higher-order terms as necessary, these traces were then fit with

a 2nd order polynomial, to account for the noted nonlinearity, and the polynomial

derivative evaluated at the polynomial’s zero intercept, so as to extract the slope in

the limit of vanishing order parameter and vanishing higher-order contribution. This

quantity is proportional to the temperature derivative of the octupolar susceptibility
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Figure 4.2: Representative data showing (a) dT
dϵ

as a function of ∆L
L

for a fixed field
(here 10T) for various temperatures from 2 to 10K (color bar in legend); and (b) dT

dϵ

as a function of ∆L
L

for a fixed temperature (here, 2.5K) for various fields from 0 to
14T (color bar in legend). In all cases, H is applied along the [111] axis, and ∆L

L
is

the measured strain in the [111] direction in response to uniaxial stress applied along
the same direction.
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Figure 4.3: Field-dependence of the slope of dT
dϵ

evaluated at zero ECE signal (i.e. at
approximate zero octupole moment; see main text) for 3 representative temperatures.
Each curve is fit to a quadratic function with zero slope at zero field (solid lines).
Deviations from perfect quadratic behavior are discussed in the main text.

χO multiplied by field squared,

d2T

dϵ2
= −∂

2S

∂ϵ2
T

Cϵ
= − T

Cϵ

dχO
dT

H2 (4.7)

The extracted fit value for the slope was then itself fit against field, at constant

temperature (Figure 4.3). The non-zero intercept is recognizable as the background

Γ5 quadrupolar susceptibility. It should be noted that the non-zero slope at zero

field is an error term, with several possible origins. It is most simply explained by

symmetry-preserving strain (pressure) effects on the entropy, which to leading order

create a flat background on the signal, thus causing the zero-signal point that is used
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to slightly but systematically deviate from the zero-octupole point that would more

accurately relate to our simple model; as the slope of the strain dependence increases

with increasing field, this flat background shifts the zero in the signal by smaller and

smaller distances, meaning this source of error is maximized at zero field. Fits were

thus created with an imposed zero slope at zero field, to more accurately reflect the

quadratic term dominating the higher-field, and less error-prone, data.

This yields a final result independent of H and ϵ, which can be plotted against T

(Figure 4.4):
1

2

d4T

dϵ2dH2
= − T

Cϵ

dχO
dT

(4.8)

To extract the temperature-dependence of dχO

dT
, it is necessary to multiply the

experimentally measured d4T
dϵ2dH2 by Cϵ

T
. While a more precise refinement would require

taking heat capacity in the limit of zero octupolar moment, i.e. at finite strain and

magnetic field, an approximation can nevertheless be made using values of the heat

capacity measured with zero field and strain, wherein the Γ3 doublet will remain

essentially un-split (as near the zero in octupolar moment), under the assumption

that strain and field do not strongly affect background heat capacity contributions,

such as those from phonons and excited CEF states. Heat capacity at constant

pressure (CP ) can then further be used to approximate the constant strain equivalent

(Cϵ ≈ CV ) [33]. The final result can then be taken to demonstrate a susceptibility

(right-hand axis, Figure 4.4) increasing with decreasing temperature. The maximum

in the signal observed near 2.5K is then attributed to experimental limitations, such

as the heat capacity approximation and the limited adiabaticity, or to physics beyond

the scope of our limited model, such as the Kondo screening known to be important

at lower temperatures [13].

4.5 Conclusion

In summary, a signal proportional to the octupolar susceptibility was extracted via the

elastocaloric effect by taking advantage of the unique constraints of a localized Pr3+

electronic system with Γ3 CEF ground state. These constraints allowed a composite
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Figure 4.4: (a): Extracted 1
2

d4T
dϵ2dH2 (left axis) and CP

2T
d4T

dϵ2dH2 (right axis) as a function
of temperature. Lines are a guide to the eye. (b) Cp as a function of T for zero
strain and zero field. As discussed in the main text, this measured value of the heat
capacity closely approximates the value that should be used in conjunction with the
measured −1

2
d4T

dϵ2dH2 (equation 4.8) to evaluate the octupole susceptibility. The strong

temperature dependence of the experimentally obtained −CP

2T
d4T

dϵ2dH2 indicates strong
octupolar fluctuations in this material.
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field to probe the octupole without significant background contributions from the

order parameters with direct bilinear couplings to the applied strain and magnetic

field. A simple Landau model provided a reasonably successful prediction of the

effects of these two fields on the signal, allowing them to be extracted from the final

result to yield physically intrinsic quantities dependent only on temperature.

4.A Adiabatic Condition

The adiabatic condition describes the extent to which the assumptions underpinning

interpretation of the data are accurate, and can be measured via frequency depen-

dence ([23]); a plateau indicates the desired condition of good thermal contact between

the thermometer and the sample and thermal decoupling from the broader cell, where

very low frequencies allow coupling to the cell which dampens the signal and very high

frequencies decouple the thermometer from the sample. If a plateau is absent in favor

of a more well-defined maximum, the adiabatic condition is not fully achieved, reduc-

ing the signal amplitude. However, so long as the cutoff frequencies for decoupling

from the strain cell and sample remain relatively constant, this is simply a constant

multiplicative factor decreasing the amplitude, and does not interfere with the depen-

dence of the amplitude on other factors, such as strain, temperature, and magnetic

field. Given the functional form defined by Ikeda et al [23], movement of the cutoff

frequencies would be evidenced by movement of the frequency of maximum signal.

Figure 4.5 then demonstrates the frequency dependence traces, for which movement

of the maximum is not observed to be significant w.r.t. the inherent noise of the data.

Given the predominant factor in such frequencies moving would likely be the heat

capacity, this suggests the sample heat capacity is not changing significantly as strain

and magnetic field are applied, consistent with the use of a fairly high-order coupling

and the generally lower energy scales of higher-order multipoles like octupoles. With

the frequency dependence not varying significantly across parameters, the frequency

can then be chosen near the maximum to avoid potential noise sources; in this case

277.7 Hz was used.

The phase of the ECE signal here presents the standard behavior: a monotonically
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Figure 4.5: In-phase ECE signal as a function of frequency, for a variety of tem-
peratures, and magnetic fields, at ∆L

L
values of approximately .0029 (top) and .0005

(bottom); no significant dependence of the functional form on these parameters, be-
yond its amplitude, is observed. The signal is dominated by noise for sufficiently low
fields and high temperatures. Functional dependence of the amplitude at a constant
strain, rather than at the zero-signal strain used elsewhere, is of a non-trivial form,
and not of interest here. Note again that the zero-strain point is crudely approxi-
mated herein, due to its irrelevance to the underlying analysis.
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decreasing function, with a zero at approximately the frequency of the maximum in

all cases. However, as can be seen by light manipulation of equation 2.5, this zero

is universally at a = 0, which itself corresponds to ω2 = 1
τiτθ

, the frequency which

is the geometric mean of the inverse of the two relevant timescales, or, equivalently,

the geometric mean of the two relevant cutoff frequencies. As this is also the univer-

sal maximum of the Tθ(t) function w.r.t. frequency, the phase thus cannot further

elucidate the quality of the adiabatic condition, and is of little interest here.

4.B Time Reversal Symmetry Breaking

To rule out time reversal symmetry-breaking impurities and potential magnetic hys-

teresis, magnetic field was swept at a constant strain, to demonstrate the even char-

acter of the dependence on magnetic field (Figure 4.6). As can be seen in the Landau-

derived formula for dS
dϵ

below, this can have a somewhat complicated functional form

dependent on the strain; hence, after demonstrating this paramagnetic character,

other forms of data collection, most notably sweeping strain under constant field,

were preferred.

dS

dϵ
=
dχO
dT

H2(ϵ−H2)

Data from positive and negative strain values are presented to demonstrate con-

trast; the function changes shape quite rapidly near 0 field as strain is altered, while

asymptotic high-field behaviors that are more consistent across strains exceed the

low-field limits of a Landau model.
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Figure 4.6: ECE signal as a function of magnetic field at a variety of constant tem-
peratures and ∆L

L
of approximately .0025 (top) and -.0033 (bottom); no hysteresis or

other evidence of intrinsic time reversal symmetry breaking is observed, though the
functional form is non-trivial and varies significantly with strain



Chapter 5

Quadrupole ECE Measurements

5.1 Preface

The following chapter represents an as-yet unpublished paper in the process of publi-

cation, titled ”Elastocaloric Measurements of Quadrupolar Fluctuations in PrT i2Al20”

The authorship includes Maja Bachmann, Matthew E. Sorensen, Linda Ye, and Ian

R. Fisher, with Maja Bachmann and Matthew Sorensen having contributed equally

to this work.

5.2 Abstract

The AC elastocaloric effect, wherein strain is applied at a finite frequency and the

resulting temperature fluctuation is used to probe the strain derivative of entropy,

has been used to great effect in tetragonal systems [23, 33]. Here, the adaptation of

such techniques to cubic systems is discussed, with particular focus on the symmetry

differences intrinsic to strain in the two systems. Resulting differences in expecta-

tions for elastocaloric effect measurements are outlined. Results are presented from

elastocaloric effect measurements on the cubic ferroquadrupolar-ordered compound

PrT i2Al20. Dependencies on temperature and strain are compared to expectations,

and limitations of the measurement noted. Improvements are proposed to allow for

more exact quantitative comparison.

78
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5.3 Introduction

Electronic nematic phases, or phases in which the electrons break rotational sym-

metries without breaking translational symmetries, have been widely examined as

both present and potentially relevant in high-temperature superconductors and as

a potential or proven order parameter in many localized 4f or 5f systems. While a

potential role for nematicity has been suggested for cuprate superconductors [34], it is

well-documented in many iron-based superconductors [35, 36], with FeSe in particular

realizing only a nematic phase outside of the superconducting state [37]. In 4f and 5f

systems, nematic order parameters, such as quadrupoles, are often the natural result

of orbital degeneracy imposed by the CEF potential surrounding the 4f ion, including

simple examples of a Jahn-Teller effect.

Symmetry-breaking strain has proven to be a highly useful tuning parameter

within tetragonal systems, both as a conjugate field [33] and a transverse field [23] to

a nematic order parameter. Susceptibility measurements, using strain to measure a

nematic susceptibility, have proven particularly useful, by bypassing domain physics

and generally allowing an examination of an ordered state above an ordering tem-

perature. The elastocaloric effect, in particular, has been recently employed to great

success as a strain-based thermodynamic probe in iron pnictide systems [33].

It is then natural to ask how such techniques might be applied to systems of other

symmetries, such as cubic materials. Effects of symmetry-breaking strains have been

somewhat less thoroughly studied in systems of higher symmetry. Here, we motivate

and demonstrate the application of symmetry-resolved strain measurements on the

cubic intermetallic compound PrT i2Al20, and discuss how the interpretation of such

data necessarily differs from the simpler tetragonal case.

5.4 Irreducible Representations of Strain in Cubic

and Tetragonal Systems

Symmetry-resolved strains have been used to great effect to probe and understand

nematic order parameters in tetragonal systems. In straining these systems, a simple
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Table 5.1: The six independent strain tensor components in the basis of irreducible
representations, for D4h and Oh

D4h

A1g ϵzz,
ϵxx+ϵyy√

2

B1g
ϵxx−ϵyy√

2

B2g
ϵxy+ϵyx√

2

Eg ( ϵyz+ϵzy√
2
, ϵzx+ϵxz√

2
)

Oh

A1g
ϵxx+ϵyy+ϵzz√

3

Eg (2ϵxx−ϵyy−ϵzz√
6

, ϵyy−ϵzz√
2

)

T2g ( ϵxy+ϵyx√
2
, ϵyz+ϵzy√

2
, ϵzx+ϵxz√

2
)

bilinear coupling between a nematic order parameter and strain is often the dominant

interaction, particularly above any extant ordering temperatures. This often allows

the nematic component of more complex order parameters to be isolated and exam-

ined more carefully via the use of strain, probing nematic fluctuations directly and

exclusively even in the presence of other interactions, such as magnetism.

It is then of interest to apply similar techniques and ideas to systems of different

symmetries, such as the cubic systems we discuss here. Despite being of higher sym-

metry, however, the symmetry-imposed constraints on the effects of strains, based on

their irreducible representations, are ultimately somewhat less stringent in cubic sys-

tems than their tetragonal equivalents, and behaviors forbidden in the latter must be

accounted for and even expected in the former. More directly, the bilinear interaction

between the strain and nematic order parameter no longer dominates, even well above

any ordering temperature. This is perhaps best illustrated by briefly examining the

symmetry decomposition of a given strain in both tetragonal and cubic systems.

As can be seen in Table 5.1, if one could apply a uniaxial strain ϵxx along the

100 axis in a tetragonal system, one will necessarily apply strains in two ’symmetry

channels’, ϵA1g and ϵB1g .

ϵxx =
ϵA1g + ϵB1g√

2
(5.1)

The symmetry-breaking component of the strain belongs to B1g, a one-dimensional

irreducible representation. Practically, this means the system must behave similarly

under a B1g strain of either sign; the difference between a positive and negative B1g
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Figure 5.1: Compressive and tensile strains in a tetragonal system, projected onto the
basis of irreducible representations, via symmetric (A1g, grey) and symmetry-breaking
(B1g, red/blue) components. The equivalence of the symmetry-breaking components
(red and blue) is noted.

strain is merely a matter of convention, and they are physically indistinguishable.

This is easily seen by comparing the two side by side; a rotation of the system turns

one B1g strain into the other (Figure 5.1). Among other things, this implies that a

B1g order parameter induced by the B1g strain must be odd as a function of the B1g

strain; two strains of the same magnitude and opposite sign should invoke two order

parameters of the same magnitude and opposite sign. This conveniently implies that

all bulk thermodynamic quantities (temperature, entropy, free energy, etc.) must be

even as a function of B1g strain. Any deviation from this behavior in any function

of strain can then be assumed to be an effect of the A1g strain, rather than the B1g

strain, and hence a decomposition of the effects of the two strains (ϵA1g and ϵB1g) can

be readily achieved. The B1g strain can couple bilinearly to a B1g order parameter, so

it will generally have a much stronger effect than the A1g strain when both are applied

simultaneously; A1g strain can only couple to even powers of the order parameter.

Similarly, via Table 5.1, the same strain ϵxx in a cubic system will induce strains

of two symmetries, ϵA1g and ϵEg .

ϵxx =
ϵA1g +

√
2ϵEg,1√

3
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Here, the symmetry-breaking component of the strain, the Eg,1 component, be-

longs to a two-dimensional irreducible representation, where 1 signifies a direction

within that 2D space, and is merely a choice of convention. For uniaxial strains,

the relevant component will essentially always be 2ϵxx−ϵyy−ϵzz√
6

, a volume-preserving

deformation along the x axis, for an x axis defined as the strain axis. Symmetry

does not protect the equivalence of a negative and positive strain here, as can be seen

by the varying deformations such strain produces (Fig. 5.2); these shapes cannot be

rendered equivalent with any rotation or other symmetry operation, and are thus not

required by symmetry to be physically equivalent.

The symmetry constraints on functions of quantities belonging to the Eg represen-

tation are somewhat more complicated, with the primary constraint being the 3-fold

rotation within the Eg subspace (Fig. 5.3), rather than an equivalence of positive

and negative values of the order parameter. The symmetry-required equivalence is

then between tensile strains along any primary axis or between compressive strains

along any primary axis, but not between compressive and tensile strains along a given

axis, even when the A1g strain component/effect is negligible or separated out. The

lowest-order allowed terms in a Hamiltonian or Landau expansion imply that one sign

of Eg,1 strain will induce a larger order parameter than a strain of similar magnitude

and opposite sign; compressive or tensile strain will have a larger effect, though which

causes a greater reaction is system-specific. In more mathematical terms, a coupling

of strain to the square of the order parameter now exists for the symmetry-breaking

strain, rather than just the A1g strain. This also means that distinguishing the effects

of the A1g strain and Eg strains is not as simple, though the Eg strain will still gen-

erally have a more noticeable effect given its more direct interaction with a nematic

order parameter.

It is worth briefly commenting on the existence of lines within the Eg subspace

for which order parameters are equivalent to their negative counterparts, the y2 − z2

axis within Figure 5.3, and its equivalents generated by the 3-fold rotation. Uniaxial

stress along any primary crystal axis will necessarily only distinguish one axis from the

other two; i.e., a stress along the x-axis distinguishes x from y and x from z, but does

not break the equivalence of y and z. Hence, uniaxial stress will typically generate
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Figure 5.2: Compressive and tensile strains in cubic systems, projected onto ir-
reducible representations, via symmetric (A1g, grey) and symmetry-breaking (Eg,
red/blue) components. Note that even when the symmetry-preserving A1g compo-
nent is separated out, the remaining symmetry-breaking Eg strains are not equivalent.

a strain of 2x2 − y2 − z2 symmetry; a strain of y2 − z2 symmetry would necessitate

breaking additional symmetries. Applying stress along y or z would simply create

strain of 2y2− z2−x2 or 2z2−x2−y2 symmetry, rather than the desired pure y2− z2

character. This axis of equivalence is thus functionally experimentally inaccessible.

The system will also never, barring a coincidence so extreme as to be functionally

impossible, choose to order along these axes; the lowest-order symmetry-allowed terms

will always favor an order parameter along the 2x2 − y2 − z2 type axes.

5.4.1 Susceptibility and complications

In tetragonal strain cases, the order parameter (quadrupole polarization, for ex-

ample) is an odd function of the applied strain, and susceptibility can be mea-

sured via the slope of said function at the limit of zero strain. The linear rela-

tionship/approximation between the order parameter and the conjugate field is then

often a reasonable approximation for a fairly wide range of applied strain. In the case

of nematic order parameters belonging to higher-dimensional irreducible represen-

tations, including any bilinearly-strain-coupling order parameter in a cubic system,
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Figure 5.3: A schematic diagram of the Eg subspace, with axes labelled with appro-
priate basis functions. The locations of specific symmetry-breaking strains within this
subspace are noted, with symmetrically equivalent strains having identical colors.

this is no longer a symmetry-protected property. The order parameter as a func-

tion of perturbing strain need no longer be odd, and thus the linear regime can be

rendered essentially negligible by symmetry-allowed curvature. Most precisely, the

second derivative of a nematic order parameter w.r.t. strain will be non-zero even at

zero strain. Practically, this might mean that, for example, applying a tensile strain

induces a large quadrupole moment, but applying a compressive strain of the same

magnitude produces a much smaller quadrupole moment. While susceptibility can

still be defined and measured via the derivative of quadrupole w.r.t. strain in the

limit of zero strain, its predictive capacity for the value of the order parameter at any

given temperature or field, and thus its usefulness, is greatly diminished, and the in-

formation is not sufficient to define even a heavily simplified Landau model. Crudely

speaking, while the first derivative might represent the strength of quadrupolar fluctu-

ations, the second derivative would contain information on the directional preference
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within the 2D plane in which the quadrupolar moment must be represented; with-

out the second derivative, susceptibility information would not even allow a complete

description of a ferroquadrupolar ground state. With the behavior thus complicated

(Fig. 5.4), a slightly more complex analysis is justified to more adequately describe

potential nematic fluctuations and related behaviors.

Figure 5.4: Order parameter vs symmetry-breaking strain for tetragonal vs cubic
systems.

To add some mathematical rigor, a potential free energy can be constructed on the

assumption of small strains, including all allowed terms up to linear order in strain

and 3rd order in quadrupolar moment, with a 4th order bounding term.

F =
a

2
|Q|2 − λ1ϵQx − λ2ϵ(Q

2
x −Q2

y)− bQx(Q
2
x − 3Q2

y) + d|Q|4 (5.2)

Here, Qx and Qy represent the value of the quadrupole moment along the two

axes of the two-dimensional order parameter space, with x representing the axis in

this space corresponding to our applied strain. We constrain ourselves to the singular

strain most likely to be experimentally applied, for simplicity and given the difficulty

of applying strain spanning the 2D space in one experiment. The terms of third order

in Q and/or ϵ, namely those with λ2 and b, would then influence the curvature of an

order parameter vs strain plot, via influencing the preference for the aforementioned

differing symmetry-breaking possibilities (red and blue in Fig. 5.3). More specifically,

in the zero-strain limit, the second derivative would appear as:
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d2Q

dϵ2
∝ λ2 − b

λ1
a

Here b would represent directional preference within the Eg subspace intrinsic to

the system, and thus would indicate how the system would order within the subspace if

it were cooled under no strain. Alternatively, λ2 would represent how that preference

might be changed with sufficient applied strain, potentially pushing the system from

one preference to the other under sufficient strain if λ2 were of appropriate sign.

5.4.2 Γ3 Doublet as a Model System

PrT i2Al20 is motivated as a material to test ECE measurements in cubic systems by

the characteristics of the Pr3+ ion. For localized 4f electrons, spin-orbit coupling is

usually strong enough to make J a good quantum number, with the ground state J

value being separated from other J values by thousands of Kelvin. The crystalline

electric field then further splits this 2J + 1 degenerate spin-orbit coupling ground

state into smaller subsets based on the local symmetry around the rare-earth ion. In

these systems, magnetism is often the dominant order parameter, or there is magnetic

order nearby or directly coupling to other order parameters in the phase diagram. For

the special case of J = 4, realized most readily in Praesodymium, the Γ3 doublet is

inevitably created by the CEF splitting in cubic systems, and can potentially be

the ground state [14]. This ground state is a non-Kramers doublet that, to first

order, cannot be split by magnetic field. This allows higher-order multipoles, like the

electric quadrupoles that couple to strain, to dominate CEF-constrained magnetic

competition. Thus, independent strain-coupling order parameters can be found and

readily probed, creating a relatively simple model system for examination of higher-

dimensional nematic order parameters.

5.5 Elastocaloric Effect

Herein we present data collected via AC Elastocaloric Effect measurements, via the

technique of Ikeda et al [23, 33]. Strain is applied at a given frequency, high enough
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such that the sample cannot fully thermalize with its surroundings, creating a quasi-

adiabatic condition. If the entropy is strongly strain-dependent, the sample will

necessarily undergo a temperature change to maintain constant entropy:

dS =
∂S

∂ϵ
dϵ+

∂S

∂T
dT = 0 (5.3)(

dT

dϵ

)
S

= −∂S
∂ϵ

(
∂S

∂T

)−1

= −∂S
∂ϵ

T

CV
(5.4)

The temperature oscillations of the sample are then measured via a thermometer

and lock-in amplifier set to the strain frequency. The desired susceptibility informa-

tion is then contained within the ∂S
∂ϵ

term.

Strictly speaking, the technique applies a uniaxial stress, rather than the uniax-

ial strain discussed above, inducing strain along the orthogonal axes via the Poisson

ratio of the material. However, this necessarily induces strain of the same irreducible

representations as a uniaxial strain, merely in different proportions than a truly uni-

axial strain would. The induced strains for a uniaxial x-axis stress would then be the

same A1g and Eg strains of a uniaxial x-axis strain. The A1g strain generally creates

a relatively flat background w.r.t. offset strain, allowing the Eg strain dependence

to be extracted via the strain dependence of the elastocaloric signal. The sample

deformation, ∆L
L
, used to quantify the strain (see section 2.2.4), will then represent

the sum of these Eg and A1g components.

It is then worth briefly noting that, due to the octahedral crystal habit, the strain

here was applied along the [011] crystallographic axis, rather than [100], owing to

the edges of the octahedral crystal facets being generally longer than [100] axes in

partially-formed octahedra, and given that a certain minimum length is necessary for

the elastocaloric measurements (approximately 1mm). This necessarily induces strain

of the form ϵyy = ϵzz, and thus still induces an Eg strain of 2x2 − y2 − z2 symmetry

but opposite sign - where as [100] tension would induce a positive Eg strain, [011]

tension will instead induce a negative Eg strain. This alternate stress axis then simply

reduces the Eg strain by a geometric factor (which varies with temperature via the

elastic stiffness coefficients), with a T2g strain ϵyz inheriting some of the amplitude.
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This T2g strain couples to a quadrupolar moment of similar symmetry, which cannot

split the Γ3 doublet; as such, the effect on the measurement is negligible, as verified

in section 5.5.2.

5.5.1 ECE Thermodynamics

In tetragonal systems, ECE in the appropriate channel is proportional to dχ
dT

for

a nematic susceptibility χ. This can be demonstrated most simply in the case

of a quadrupole order parameter, the onset of which represents a tetragonal-to-

orthorhombic phase transition:

F =
a

2
Q2 − λϵQ (5.5)

where a is assumed to be of the form a0(T − T∗) as is typical of Landau models.

Minimizing the free energy to solve for the quadrupolar moment Q yields the simple

result

F = −(λϵ)2

2a
(5.6)

from which entropy S = −dF
dT

can be calculated, allowing the ∂S
∂ϵ

of the elastocaloric

signal to be approximated as

∂S

∂ϵ
= −dχQ

dT
ϵ (5.7)

where the quadrupolar (nematic) susceptibility χQ = λ
a
. The elastocaloric effect

is thus expected to be linear w.r.t. strain for some finite strain range over which

the simplest Landau model is appropriate, with the slope of this line representing a

temperature derivative of the quadrupolar susceptibility.

The cubic equivalent free energy (equation 5.2) evades such simple solutions, as

the solution involves a higher-order polynomial with multiple roots, each of which

may or may not be the minimum at a given temperature and strain. With the

equivalence between positive and negative strains broken, however, the first-order

adaptation of the tetragonal is an extra term in ∂S
∂ϵ
. The equivalence in tetragonal



CHAPTER 5. QUADRUPOLE ECE MEASUREMENTS 89

systems mandates entropy be an even function of symmetry-breaking strain, and

thus that ∂S
∂ϵ

be an odd function in strain, with a leading-order linear term and

no quadratic term. Without this constraint, ∂S
∂ϵ

necessarily includes both a linear

and quadratic term, giving significant curvature to the measured result. Given the

zero-strain point is often a non-trivial point to locate, given the varying thermal

contractions of the sample and the strain cell, this makes it especially difficult to

isolate the linear component.

5.5.2 Expectations and Calculations

With the basic allowed interactions established, it is worth examining how this might

affect potential outcomes. Simple mean field calculations can be performed using

a model Hamiltonian (computationally simpler than a Landau model), motivated

by the method of Taniguchi et al [38] in their approach to magnetic field based

measurements of the same material. Such a Hamiltonian then includes similar terms

to the aforementioned Landau model:

H = HCEF − ϵQx − λ1(⟨Qx⟩Qx + ⟨Qy⟩Qy)− λ2ϵ(⟨Qx⟩Qx − ⟨Qy⟩Qy) (5.8)

where HCEF represents the crystalline electric field for PrT i2Al20, via Sato et

al, [16], ϵQz represents the allowed bilinear coupling between strain and the order

parameter, the λ1 term represents a (uniform) mean-field coupling within the two-

dimensional order parameter space, and λ2 represents the allowed coupling discussed

in the previous section. With Qx and Qy representing quadrupoles of the aforemen-

tioned 2x − y2 − z2 and y2 − z2 symmetries respectively, they are then represented

by 1
8
(2J2

x − J2
y − J2

z ) and

√
(3)

8
(J2
y − J2

z ) respectively. The expected values for the

quadrupolar moments can then be calculated using a simple convergence procedure.

Values are proposed for the expectation values, ⟨Qx⟩ and ⟨Qy⟩, the resulting Hamil-

tonian is diagonalized, and the thermal expectation values calculated, with the new

values being input into the process once again until the calculated output ⟨Qx⟩ and
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⟨Qy⟩ converge to the inputs; these values are then taken to represent the order pa-

rameter for whatever given temperature and strain (ϵ) were used in the calculation.

The final Hamiltonian could then be used to calculate a partition function, and by

extension an entropy value. Entropy calculated across a range of temperatures and

strains could then be used to approximate entropy derivatives with respect to these

variables, allowing an expected elastocaloric effect result to be found for a variety of

strains and temperatures.

For expediency of calculation, ϵ was written in terms of Kelvin, incorporating the

relevant coupling constant, given the calculation cares only for the product λϵ and

not for either factor individually. λ1 was then set to 2K to create a ferroquadrupolar

order at approximately 2.2K, reminiscent of the material in question, and λ2 could be

varied to see the effects on the order parameter. The resulting behavior across strain,

temperature, and λ2 values are then most easily seen via plots of the calculated elas-

tocaloric signal vs strain (Figure 5.5). Most notable is the asymmetry of the expected

elastocaloric effect as a function of strain. The simplest result then, assuming higher

order effects are generally negligible, i.e. λ2 = 0, is then a relatively non-symmetric

response, with a much larger effect for one sign of strain, induced primarily via the

CEF anisotropy. A more symmetric response, rather than indicating that the vary-

ing cubic effects are negligible, would then indicate higher-order effects are relatively

strong, and cancel out the intrinsic Eg quadrupole anisotropy of the CEF.

Discontinuities in the calculated results are then indicative of spontaneous symmetry-

breaking phase transitions, generally inspired by strain pushing the system strongly

towards the disfavored order parameter; the symmetry is then spontaneously broken

(from tetragonal to orthorhombic) to allow the order parameter to relax within the

Eg subspace towards a more energetically favorable order parameter (in Figure 5.3,

one of the two red deformations located on either side of the blue deformation along

the strain axis, for example, or vice versa).

It is worth noting that the calculation here neglects the effects of A1g strain,

necessarily induced in any uniaxial stress measurement. The aforementioned effects

of the T2g strain, ϵyz, can be incorporated into the Hamiltonian on the assumption of

similar coupling constants, i.e. ϵQx becomes ϵ(Qx + Qyz), where Qyz represents the
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T2g quadrupole (JyJz + JzJy), and no additional strain term ϵ need be added given

we assume the two strains scale in parallel. Doing so changes the end result by no

more than 1%, verifying the original assumption regarding the negligible effect of a

T2g strain of similar magnitude to the Eg strain, owing largely to the T2g quadrupole

being CEF-forbidden.

Figure 5.5: Calculation with differing λ2 terms for anticipated elastocaloric effect
results (see equation 5.8), with temperatures ranging from 10K (red) to 3K (blue),
for relevant strain ranges.

5.6 Results

As can be seen in Figure 5.6, the data follow the generally expected trend of a

susceptibility-like curve proportional to the applied strain, with the maximum/rollover
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Figure 5.6: Elastocaloric effect vs temperature for a variety of offset strains.

likely being attributable to the onset of the phase transition and/or crossover and en-

suing domain formation. While the functional form is not particularly close to a

Curie Law for reasons both experimental and theoretical, the result nonetheless indi-

cates that a quadrupole strain-susceptibility can be readily measured in the system,

while asymmetry of the curves w.r.t. strain indicates the aforementioned cubic terms.

Note that zero strain is an approximation; the most accurate means of identifying

the zero strain is generally the zero in the signal, as the elastocaloric response to the

symmetry-breaking strain is there mandated to be zero, but the aforementioned A1g

background will necessarily shift this, and will generally vary with temperature.

With elastic stiffness coefficients, and thus the relative proportions of Eg and A1g

strain, shifting with temperature, it is motivated to probe the strain dependence,

rather than the temperature dependence, in deriving any conclusions regarding the

material. To this end, the signal was recorded as a function of strain at a variety of
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Figure 5.7: Elastocaloric oscillation vs strain, for a variety of (constant) temperatures.

static temperatures (Figure 5.7). The anisotropy in the signal is visible, and can be

compared to calculated expectations. Note that the (first-order) phase transition is

anticipated at approximately 2K [12], and so measurements at the lowest tempera-

tures may probe domain movement, rendering them less ideal for comparison to the

calculated expectations. Based on Figure 5.5, the material is then likely possessed of

a λ2 coefficient that is small and negative, as the anisotropy is slightly less than the

CEF-induced anisotropy predicted by the simplest model; the signal on the dominant

side has only 35% higher amplitude than that of the disfavored side at 2.2K, where

both maxima are most visible, as opposed to roughly 54% in the simplest model at

3K. More precise statements, however, are limited by the imperfect adiabaticity and

somewhat limited strain range achieved.
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5.6.1 Limitations

As can be seen in Figure 5.8, the frequency dependence of the ECE signal undergoes

significant changes as both temperature and offset strain are changed. Changes in

the maximum of the signal, in particular, necessarily imply changes to at least one of

the two relevant thermalization timescales τi and τθ discussed in section 2.2.6. The

resulting shifts then induce a change in the magnitude of the thermal transfer func-

tion Tθ(t) as a function of strain and temperature, both at constant frequency and at

the maximum frequency, which are not trivially separated from the dependencies of

the intrinsic material response on strain and temperature. Precise quantitative state-

ments are thus difficult to make. This limitation is, however, a tractable problem,

with improvements to thermometry and (thermal) contact to the sample potentially

allowing τθ to be reduced, and the frequency dependence resolved into a reasonably

flat plateau. In such a scenario, a large swathe of frequencies have approximately

equivalent ECE amplitudes, and small perturbations to τi or τθ do not affect ampli-

tudes of frequencies well within the plateau.

The strain range was additionally insufficient to reach the maximum amplitude in

the elastocaloric signal w.r.t. positive strains, limiting the potential to probe the order

parameter anisotropy and search for potential phase transitions, whose locations in

strain and temperature space would provide information unaffected by the frequency

dependence issue. This, however, is also a tractable problem; crystals of adequate

size and quality could be strained along the [100] axis, rather than the [011] axis,

where the resulting increased Eg strain component for any given total strain would

allow greater Eg strain to be applied before the sample begins to mechanically fail.

5.7 Conclusions

The data suggests that the strain susceptibility is measurable and diverging. Some-

what lower than expected anisotropy of the Eg order parameter response suggests

that the interactions probed by Taniguchi et al [38] may have measurable strain

analogues, which could have a significant impact on the behavior under high strain.
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Figure 5.8: Frequency dependence of the elastocaloric effect at several temperatures
and offset strains. Note the movement of the frequency of maximum signal.

Unfortunately, measurement shortcomings preclude attempting to fit a more precise

and specific phenomenological model to describe this behavior, or to more fully probe

it across a wider range of parameters. All issues, however, are solvable problems

with thermometry or crystal growth, and the technique thus demonstrates potential

to illuminate significant information on anisotropic multi-dimensional quadrupolar

order parameters. The measurement is adequately sensitive to detect the increasing

quadrupolar fluctuations at temperatures well above the ordering temeprature. Ob-

served order-parameter anisotropy, while in this case expected via the known CEF

splitting of the material, could potentially be used in other materials to identify the

sign of the order parameter, and could even provide significant information on CEF

schemes in other materials, given the CEF is a prime driver of anisotropy within the

order parameter space. The necessary experimental optimizations are thus highly

motivated by the unique information potentially provided by the technique.



Chapter 6

Conclusion

6.1 Outlook

This thesis has sought to develop techniques to probe higher-order multipolar sus-

ceptibilities, most notably those that may not have readily available single conju-

gate fields, such as the magnetic octupole, and those that exist in multi-dimensional

spaces, such as the cubic Γ3 quadrupole; many techniques have been discussed, and

the elastocaloric effect in particular was utilized to demonstrate the relevant princi-

ples. These techniques were developed in the context of the model systems PrV2Al20

and PrT i2Al20, systems possessing the unique Γ3 doublet ground state capable of

hosting such higher-order multipoles. It is thus worth briefly discussing potential fu-

ture directions for technique development, study of the specific materials in question,

and potential applications for such susceptibility measurements in other materials.

6.1.1 Elastocaloric Effect Improvements

Two obvious areas for improvement present themselves in the elastocaloric effect

measurements herein used: imperfections in the adiabatic condition, and lack of heat

capacity data across the space of potential parameters (most notably strain) with

which to normalize the signal.

For the adiabatic condition, as discussed in section 2.2.6, there exist two timescales,

96
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with τi =
Cs

Ki
representing heat flow within the sample, which sets a lower bound on

viable measurement frequencies, and τθ =
Cθ

Kθ
, which represents thermalization of the

thermometry within the sample and sets an upper bound on viable measurement

frequencies. With τi being primarily intrinsic to whatever material is of interest, τθ

is then the experimental parameter which must be optimized, and specifically mini-

mized, to more perfectly achieve the adiabatic condition. Potential areas for future

improvement include thin film thermometry deposited directly onto the sample, via

sputtering, lithography, or any of the other usual techniques, as initially suggested

by Matthias Ikeda [23] and elaborated upon in unpublished talks; such thermometry

could have substantially reduced heat capacity (Cθ) by virtue of greater thinness than

any pre-fabricated thermometry, alongside dramatically enhanced thermal conductiv-

ity via direct thermal contact across a large surface of the sample.

Heat capacity, used to normalize the elastocaloric data and exactly calculate ∂S
∂ϵ

via Equation 2.2, is then the other major limitation of the technique. While zero-

strain heat capacity can be used as an approximation, as discussed in chapter 4, a

more exact correction would require heat capacity as a function of strain. To this

end, the work of Y.S. Li et al [39], wherein AC heat capacity is utilized to probe a

strained sample, presents an excellent counterpart to the elastocaloric effect. While

such a measurement would likely need to be done separately, the pairing of the two

measurements would allow a complete entropy landscape, as a function of strain,

temperature, and potentially magnetic field, to be mapped out for any given material,

fully realizing the potential of the elastocaloric effect to probe strain-induced changes

in entropy.

6.1.2 Further Material Applications

The techniques herein developed could be quite helpful in elucidating the nature of

many ’hidden’ orders. URu2Si2 presents itself as the prototypical example, with the

magnetic octupole being one of many proposed order parameters [3]. Other, less-well-

studied materials, however, may provide better opportunities, including additional

cubic Pr3+ compounds. PrFe4P12, for example, has a ground state of some interest;
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while some evidence exists of an anti-ferro quadrupolar ordering at approximately

6K [40], other measurements explain a different, high-field ordered state via a Γ1

singlet ground state and Γ4 excited state [41]. While explanations have been proposed

for the quadrupolar order within the Γ1 ground state scenario via admixture of the

excited state [42], the exact nature of the ground state remains a matter of some

contention [43]; susceptibility measurements could help determine the exact broken

symmetries, or find evidence of anti-ferro order parameters via behaviors of ferro-type

susceptibilities.

PrOs4Sb12, another cubic Pr
3+ compound, then presents itself as a material with

one [44] or two [45] superconducting transitions, depending on the literature refer-

enced. While the susceptibility measurements developed herein are not an ideal probe

for the superconducting states themselves, they could be used to identify or rule out

fluctuations in specific symmetry channels, potentially narrowing the potential sym-

metries for pairing mechanisms. Fluctuations in multiple channels, with susceptibil-

ities diverging at different temperatures, could even potentially identify symmetry

differences between the two superconducting states, should they both prove intrinsic.

More broadly, susceptibility measurements targeting higher-order multipoles offer

a means to systematically examine multipoles and their corresponding symmetry

channels. Hidden order parameter candidates can thus be methodically tested and

potentially ruled out, providing the sort of detailed symmetry information that has

historically been difficult to acquire.

6.2 Concluding Remarks

This dissertation aimed to expand the susceptibility paradigm to examine higher-

order multipoles, and has offered several methods for doing so. Multiple means

of probing the magnetic octupolar susceptibility were discussed, and one, the elas-

tocaloric effect, was demonstrated and proven viable. Measurements of multi-dimensional

quadrupoles were demonstrated and, despite current limitations, proven to be viable.

This work thus offers foundations for probing more exotic multipoles, and expanding

and generalizing one of the most powerful probes of magnetism, the susceptibility.
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