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Multiple-channel wavelength conversion by use of engineered
quasi-phase-matching structures in LiNbO3 waveguides
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We report difference frequency generation –based wavelength converters with multiple phase-matching
wavelengths that use engineered quasi-phase-matching structures in LiNbO3 waveguides. Multiple-channel
wavelength conversion is demonstrated within the 1.5-mm band and between the 1.3- and 1.5-mm bands. With
simultaneous use of M pump wavelengths, these devices can also be used to perform wavelength broadcasting,
in which each of N input signals is converted into M output wavelengths.  1999 Optical Society of America
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Nonlinear optical frequency mixing, such as four-
wave mixing and difference-frequency generation,
is an attractive method for wavelength conversion
and dispersion compensation in wavelength-division-
multiplexed optical networks.1,2 It can also be used
to perform signal-processing functions in optical
time-division-multiplexed systems.3 Such frequency-
mixing processes provide a signal bandwidth of several
terahertz, can simultaneously upconvert and down-
convert multiple signal channels, perform spectral
inversion of the signal, and add negligible spontaneous-
emission noise.

Quasi phase matching (QPM) allows for tailoring of
the nonlinear optical frequency-mixing process through
engineerable grating structures.4,5 Wavelength con-
version by use of QPM–difference-frequency genera-
tion has been demonstrated in AlGaAs (Ref. 1) and
LiNbO3 (Refs. 6–8) waveguides. Efficient wave-
length conversion has also been demonstrated in
devices based on QPM with a cascaded second-order
nonlinearity �x �2� : x �2��.9,10 In this Letter we report
multiple-channel wavelength converters that use engi-
neered QPM structures in periodically poled LiNbO3
waveguides, in which the application of M pumps
allows for simultaneous conversion of each of N input
signals to M output wavelengths (wavelength broad-
cast). Efficient wavelength conversion within the
1.5-mm band and between the 1.3- and 1.5-mm bands is
demonstrated.

The difference frequency generation–based device
for 1.5-mm-band wavelength conversion uses a pump
at a wavelength of �780 nm. This pump at frequency
vp mixes with a signal at frequency vs through the
second-order nonlinearity x �2� to generate an output at
shifted frequency vout � vp 2 vs. Phase matching is
accomplished by choice of an appropriate QPM grating
period. The wavelength-tuning curve, i.e., conversion
eff iciency versus wavelength, for nonlinear frequency-
conversion processes is related to the interacting wave-
lengths through the Fourier transform (FT) of the
spatial distribution of the effective nonlinearity. Ar-
bitrary wavelength-response functions can be obtained
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by design of appropriate spatial grating structures.
In this Letter we use QPM structures with multiple
phase-matching wavelengths for wavelength-division-
multiplexed wavelength conversion.

We designed structures with a phase-reversal se-
quence superimposed upon a uniform QPM grating, as
shown in Fig. 1.4 The FT of the new structure can be
viewed as the convolution of a sinc function (a FT of a
finite uniform grating) and a comb function (with some
high-order harmonics, since it is the FT of a square
wave). The output power can be expressed as

Pvout � hnormPvpPvs
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where Pvp , Pvs , and Pvout are the pump, input signal,
and converted output powers, respectively. hnorm is
the device’s normalized eff iciency in units of percent
per watt. Dbm � 2p�np�lp 2 ns�ls 2 nout�lout 2

1�LQPM� is the phase mismatch among the interact-
ing waves �lp, ls, lout� and the uniform QPM grat-
ing �LQPM�. P�z� is the superimposed phase-reversal
sequence. As an example of a two-channel device,
let P�z� be a periodic phase-reversal sequence with
a grating period of Lphase and a duty cycle of 50%.
The superimposed phase-reversal sequence can be
written as P�z� �

P`
n�1�2�pn�sin�pn�2� �exp� jKnz� 1

exp�2jKnz��, where Kn � 2pn�Lphase. Insertion of

Fig. 1. Multiple-channel QPM structure formed by super-
imposition of a phase-reversal grating upon a uniform QPM
grating.
 1999 Optical Society of America
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P�z� into relation (1) yields

Pout � hnormPsPp
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This results in a tuning curve with multiple phase-
matching wavelengths, whose locations and spacing
can be engineered to standard wavelength-division-
multiplexed channel wavelengths that conform to the
International Telecommunication Union grid.

We fabricated the waveguides by annealed proton ex-
change in periodically poled LiNbO3. The device in-
cludes integrated waveguide structures for efficient
mode coupling7 and has a 42-mm-long wavelength-
conversion section with a uniform QPM grating pe-
riod of 14.75 mm and superimposed phase-reversal
sequences. The phase-reversal period Lphase of the
two-channel device is 14 mm. The three-channel de-
vice is implemented by control of the duty cycle of
the phase-reversal sequence on a two-channel device
(Lphase � 7 mm; duty cycle, 26.5%), which changes the
ratio of center-channel efficiency relative to the other
two channels. The four-channel device is implemented
by superimposition of another phase-reversal sequence
�Lphase � 14 mm� on a two-channel device (Lphase �
7 mm; the relative phase of 14-mm-period grating to
the 7-mm-period grating is 0.1364p), splitting the two
channels into four.

We first characterized the devices by measuring
second-harmonic generation versus fundamental
wavelength. Figure 2(a) shows a normalized sinc2
wavelength-tuning curve for a device with a single
phase-matching wavelength (channel) of 1550.4 nm
and peak internal normalized efficiency (output
second-harmonic-generation power divided by the
square of the input pump power) of �500%�W.
Figures 2(b), 2(c), and 2(d) show the normalized
tuning curves of devices with two, three, and four
phase-matching channels, respectively. The phase-
matching wavelengths are centered around 1550.4 nm
and separated by �1.6 nm (200 GHz). The efficiency
for the individual channels is �41%, 22%, and 17%
relative to the one-channel device with the same
interaction length in the two, three, and four channel
devices, respectively. The unwanted phase-matching
peaks can be suppressed by further optimization of
grating structures.

We performed wavelength conversion, using a cw
Ti-sapphire laser operating at �780 nm as a pump,
and chose to operate the device at �120 ±C to avoid
photorefractive effects. The 780-nm pump and the
1.5-mm-band signal were free-space launched into
two different waveguides and combined into the
wavelength-conversion section by an integrated di-
rectional coupler.7 Figure 3(a) shows the measured
output spectrum for a single-channel device. The
internal conversion efficiency is �24 dB with a pump
at a wavelength of 781 nm and �90 mW of pump
power coupled into the waveguide. Figures 3(b), 3(c),
and 3(d) show the results with internal conversion
eff iciencies of �27, 29, and 210 dB for two-, three-,
and four-channel devices, respectively. We obtained
these curves by tuning the pump to each individual
phase-matching wavelength and combining the results
in the same graph, since four pump lasers were not
available. However, by use of multiple pump wave-
lengths, these devices can convert one or more inputs
to multiple output wavelengths simultaneously.

We measured the bandwidth of the wavelength con-
verters by tuning the input signal wavelength with the
pump fixed at each individual phase-matching wave-
length. The 3-dB conversion bandwidth is the same
��56 nm� for both the single-channel device and each
individual channel in the multiple-channel devices.
Figure 4 shows the bandwidth of each individual chan-
nel in the one- and two-channel devices.

We also fabricated similar multiple-channel devices
for wavelength conversion between the 1.3- and 1.5-mm
bands.8 These devices have a QPM period of 12.4 mm

Fig. 2. SHG wavelength-tuning curves for (a) one-
channel, (b) two-channel, (c) three-channel, and (d) four-
channel devices. The filled circles are measured results,
and the solid curves are theoretical fits. The efficiencies
are relative to the peak efficiency ��500%�W� of a one-
channel device.

Fig. 3. Measured multiple-channel wavelength conversion
of (a) one-channel, (b) two-channel, (c) three-channel, and
(d) four-channel devices. Wavelength conversions of the
individual channels were combined to form these plots.
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Fig. 4. Signal bandwidth of each individual channel in the
(a) one-channel and (b) two-channel devices. The filled
circles are measured results, and the solid curves are
theoretical fits.

Fig. 5. 1.5 1.3-mm multiple-channel wavelength conver-
sion of (a) one-channel, (b) two-channel, (c) three-channel,
and (d) four-channel devices. These plots were formed in
the same way as those in Fig. 3.

Fig. 6. Bandwidth of each individual channel for a
1.3 1.5-mm device: (a) one-channel device at two dif-
ferent pump wavelengths (717.9 and 718.2 nm), (b) two-
channel device at a fixed pump wavelength (718.1 nm).

and a 36-mm-long wavelength-conversion section. We
performed the wavelength-conversion experiment by
mixing a signal at a wavelength of �1540 nm and the
pump from the Ti:sapphire laser at a wavelength of
�718 nm. Figure 5 shows the measured output spec-
trum that we obtained by tuning the pump wave-
length to each individual phase-matching wavelength
and combining the results in the same graph. The
conversion efficiencies are �27, 210, 212, and 214 dB
for the one-, two-, three-, and four-channel devices,
respectively, with �50-mW pump power coupled into
the waveguides. The same devices can also perform
multiple-wavelength conversion from the 1.3-mm band
to the 1.5-mm band.

The 1.3 1.5-mm device has a 3-dB bandwidth of
�6 nm, which is approximately one-tenth that in the
1.5-mm-band device. Hence with a fixed pump wave-
length the device can accommodate only a limited
number of signal channels for 1.3 1.5-mm conversion.
The narrower bandwidth is due to the off-degenerate
operation, in contrast to the near-degenerate opera-
tion for the 1.5-mm-band device. However, a very
wide signal bandwidth can be obtained by use of
a tunable pump, since any input signal wavelength
(channel) can be phase matched to a particular pump
wavelength by use of a fixed QPM period. Figure 6(a)
shows the signal bandwidth of a single-channel device
at two different pump wavelengths. We shifted the
signal phase-matching wavelengths by �20 nm by tun-
ing the pump wavelength by �0.3 nm. One can also
use multiple-channel devices to obtain a range of sig-
nal bandwidths with a single pump wavelength, since
each phase-matching peak allows for the generation of
a separate signal band. Figure 6(b) shows the signal
bands of a two-channel device that uses a pump fixed
at �718.1 nm.

In summary, we have demonstrated 1.5- and
1.3 1.5-mm multiple-channel wavelength converters
that use engineered QPM structures in LiNbO3 wave-
guides. 1.5-mm-band multiple-channel converters can
also be operated by use of x �2� : x �2�, which allows for
the use of a pump within the 1.5-mm-band. These
devices allow for selecting the desired output wave-
length by choice of an appropriate pump wavelength.
Wavelength broadcast can be done by use of multiple
pump wavelengths simultaneously.
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