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Adiabatic shaping of quadratic solitons
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We show the principle of operation of a setup to adiabatically shape solitons in quadratic nonlinear media
to different beam profiles and widths or different fractions of energy carried by the second-harmonic wave.
The shaping mechanism is based on soliton generation and propagation in chirped, quasi-phase-matched
samples.  1998 Optical Society of America
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Optical solitons in quadratic nonlinear media1 – 8 are
a topic of current intense investigation. Interest in
them is being fueled by new phenomena that are be-
ing uncovered and by potential applications of these
solitons in signal routing and switching devices, in
laser systems containing quadratic nonlinear crystals,
and beyond.2 For example, the unique features of soli-
tons might open the possibility to use them in systems
that require high-quality, well-controlled input signals,
such as in some areas of biophotonics or in quantum de-
vices.6 Solitons in quadratic nonlinear media might be
well suited for such purposes, because they form in both
planar waveguides and bulk crystals and because they
enjoy favorable amplitude–width relations that make
them robust against small absorption losses and ran-
dom perturbations. All applications might derive im-
portant benefits from the use of tailored signal shapes,
and in some cases such shaping might just be crucial.
Our goal in this Letter is to examine the properties of
the solitons that form in chirped, quasi-phase-matched
samples and to show the potential of such a geometry
to shape the properties of the solitons in terms of beam
profiles and widths or the fraction of the total energy
f low that is carried by each of the waves that form the
solitons.

The idea behind such behavior is similar to soliton
pulse compression in dispersion-varying f ibers9 and is
as follows. We consider soliton formation in a second-
harmonic generation configuration so that the solitons
form by the mutual trapping of fundamental-harmonic
(FH) and second-harmonic (SH) waves. Solitons ex-
ist at different values of the wave-vector mismatch
between both waves, but their properties are signifi-
cantly different at each value of the mismatch. In par-
ticular, the soliton shapes and related features depend
strongly on the value of the wave-vector mismatch
as well as on the light intensity.7,8 Quasi-phase-
matching (QPM) techniques rely on the periodic modu-
lation of the nonlinear properties of the medium to
compensate for the existing wave-vector mismatch be-
tween the waves.10 In the simplest QPM a constant
period is ideally maintained over the whole length of
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the sample. In chirped QPM the period of the modu-
lation is varied along the sample,11 hence yielding
a longitudinally varying wave-vector mismatch. The
ability of solitons to adapt themselves adiabatically to
the local wave-vector mismatch that they experience
allows shaping of the output beams in samples with
properly tailored chirps. Our aim here is to examine
the process numerically and to identify suitable condi-
tions for its implementation.

We consider spatial solitons in planar waveguides,
but the analysis can be extended to soliton propa-
gation in bulk media and to temporal solitons. The
normalized evolution equations for the slowly varying
envelopes of cw light beams in a quadratic nonlinear
medium under conditions for type I QPM SH genera-
tion can be written as1 – 8

i
≠a1

≠j
2

r
2

='
2a1 1 dsjda1

pa2 exps2ib0jd  0 ,

i
≠a2

≠j
2

a

2
='

2a2 1 dsjda1
2 expsib0jd  0 , (1)

where a1 and a2 are the normalized amplitudes of
the FH and the SH waves, respectively, r  21, and
a  2k1yk2. Here k1, 2 are the linear wave numbers
at each frequency. In all cases a . 20.5. The pa-
rameter b0 is the normalized wave-vector mismatch
given by b0  k1h2Dk, where Dk  2k1 2 k2 and h is
beam width. The transverse coordinates are given in
units of h, and the scaled propagation coordinate is j 
zy2ld1, where ld1  k1h2y2 is the diffraction length. A
beam width h , 15 mm and l , 1 mm yield ld1 , 1 mm,
and hence j  10 corresponds to ,2 cm. The function
dsjd describes the periodic sign reversal of the non-
linear coeff icients at given multiples of the coherence
length lc  pyjDkj involved in the QPM technique.
Typical materials and operating wavelengths give co-
herence lengths in the range 2 20 mm. For the above
values of the involved parameters a coherence length of
,10 mm corresponds to jb0j , 102 103. These are the
conditions encountered, e.g., in the QPM of the diago-
nal d33 nonlinear coefficient of LiNbO3 at l . 1.55 mm.
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We consider a general chirped first-order QPM and
expand dsjd into its Fourier series:
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where q0  2pyt0 is the spatial frequency of the
unchirped QPM; t0  2pyjb0j is the normalized period
of the unchirped QPM; Cn are the Fourier expansion
coeff icients of the unchirped QPM, given by C2n 
0 and C6s2n11d  62yfips2n 1 1dg; and Dn are the
coeff icients of the chirps. The local QPM period is
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Here we assume that all Dn  0, except D1 and D2.
Physically, when D1 . 0 and D2 , 0, this corresponds
to a sample whose domain lengths at j  0 are longer
than t0 and down the sample become shorter.

Substitution of the above expressions into Eqs. (1),
averaging out over the periodic fast varying terms and
keeping only the lowest-order terms, gives12,13
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with bsjd  D1 1 D2j. Therefore, under the condi-
tions in which Eqs. (4) hold, the chirped QPM geome-
try is equivalent to a type I phase-matching setup with
a longitudinally varying wave-vector mismatch.

The potential of the chirped QPM samples as shaping
devices is based on the dependence of the soliton
properties on the mismatch.7,8 Stable solitons exist at
all values of b. For a given mismatch and beam width,
solitons exist above a threshold light intensity. The
threshold increases with the mismatch. At positive
b the solitons are constituted by a large FH and a
small SH; the larger the mismatch, the smaller the
SH. Near phase matching, the SH is comparable with
the FH. At negative b the SH becomes the largest.
Figure 1(a) shows the fraction of the total energy f low
I 

R
sja1j2 1 ja2j2ddr' carried by each of the waves

as a function of b for two values of I . For a given I
the solitons are wider at large b and narrower near
phase matching, as shown in Fig. 1(b). With these
features in mind, the idea is to consider a variation
of the mismatch such that a soliton is formed at the
beginning of the sample after a short transient and
that at the end of the sample the local mismatch gives
the desired soliton shape. The question is whether the
solitons are robust enough to evolve adiabatically in the
medium without losing a great deal of their energy in
the process or even being destroyed.

To predict that such is the case under experimen-
tally feasible conditions and to study the dynamics of
the process, we performed series of numerical simula-
tions in which we solved relations (4) for a variety of
material and input light conditions. Here we report
our findings for the geometry in which the initial value
of b is positive and reasonably large, and hence only
FH light is input in the sample. In the simulations
shown here we set a1sj  0d  A sechsr'd, bs0d  25,
and bsLd  25, where L is the sample length in units
of j. When we set jb0j , 500 and an actual QPM pe-
riod t0 of ,20 mm, such values correspond to a domain-
length deviation relative to t0 of ,1.2 mm over the
sample length.

First, we show the typical outcome for an ideally
long sample sL  50d that has a correspondingly
slow variation of the mismatch. Figure 2 shows the
variation of the fraction of energy and the width of the
evolving FH and SH beams for representative input
conditions. The adiabatic evolution of the solitons,
which implies that they follow the properties of the
family at the local wave-vector mismatch, is clearly
visible. That is, power is converted to the SH and
the beams are compressed, as predicted by Fig. 1.
During the adiabatic reshaping, the solitons shed a
small fraction of energy in the form of radiation, but
because bsjd is smooth such losses are negligible. The
oscillations of the width of the generated SH beams
occur in the transient region in which the soliton is
formed out of the input. The adiabatic evolution takes
place until the value of the local mismatch reaches the
threshold for the soliton energy considered, something
that in the conditions shown in Fig. 2 occurs beyond
L  50. Beyond that value the solitons enter the
no-trapping regime, and the beams spread quickly
owing to diffraction. Features similar to those shown
in Fig. 2 were obtained for other values of the input
energy f low and the initial and final values of bsjd.

For the adiabatic shaping that we are describing
to be of potential practical importance, it has to
occur under a variety of conditions with short-enough

Fig. 1. Variation of the width (FWHM) and the fraction
of energy carried by FH and SH beams forming a soliton
with a given total energy f low as a function of wave-vector
mismatch. Solid curves, I  15; dashed curves, I  30.
Only stable solitons are plotted.

Fig. 2. Evolution of (a) the energy fraction and (b) the
beam width of the energy for sample length L  50. A  7,
bs0d  25, and bsLd  25. For a nominal QPM period of
20 mm, such values of b correspond to a domain length
variation of ,1.2 mm over the sample.
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Fig. 3. Same as in Fig. 2 but for L  10. For the experi-
mental conditions discussed in the text, this corresponds to
a sample length of ,2 cm.

Fig. 4. Detail of the beam-amplitude profiles for the case
L  10. Solid curves, output SH; dashed curves, output
FH; dotted curves, input FH. (a) Output of a chirped QPM
sample. (b) Output of a sample with constant mismatch
b  25.

samples. To show that this indeed seems to be the
case, next we present simulations for a sample with
L  10, which for the above values of the parameters
corresponds to an actual length of ,2 cm. Figure 3
shows the outcome of a typical simulation. The figure
shows that even in the presence of the much faster
variation of bsjd the beams follow the soliton families
with no significant energy loss. Figure 4(a) shows the
shapes of the input and output soliton beams.

The results of Figs. 2–4 correspond to almost the
maximum variation of bsjd and hence the strongest
beam reshaping possible for the conditions considered.
When the sought-after soliton shape corresponds to
an intermediate value of bsjd, the soliton reshaping
is weaker and thus more adiabatic. Also, here we
have considered the simplest possible variation of the
QPM domain lengths. Engineered higher-order QPM
chirps in which, e.g., the period changes faster at the
beginning of the sample than at the end might help
to optimize the shaping process. For example, they
might shorten the sample length required. Finally, a
crucial point that needs to be stressed is that to excite
the output solitons shown in Fig. 4(a) in a sample with
a constant b  25 with reasonable energy losses, both
a FH and a strong coherent in-phase SH seed ought to
be initially supplied. Otherwise, one gets the output
shown in Fig. 4(b).
In conclusion, we have investigated the evolution
of spatial solitons in properly tailored, chirped QPM
samples made of quadratic nonlinear materials. We
showed that one can use such a geometry to adiabati-
cally shape the solitons into different beam profiles and
widths or into different fractions of energy carried by
each of the waves that form the solitons. Engineered
higher-order QPM chirps might optimize the shaping
process. Here we focused on spatial solitons in pla-
nar waveguides, but the idea can be extended to soliton
propagation in bulk media, temporal solitons, light bul-
lets, and quadratic solitons existing in optical cavities.
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