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generation with Fourier
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We describe a pulse-shaping technique that uses second-harmonic generation with Fourier synthetic quasi-
phase-matching gratings. We demonstrate both amplitude and phase tailoring by generating a picosecond
squarelike pulse as well as trains of femtosecond pulses with a terahertz-range repetition rate from either a
compressed or a chirped pump pulse.  1998 Optical Society of America
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Manipulation of the temporal shape of ultrashort
optical pulses is important for many applications, such
as communications, remote sensing, signal process-
ing, and spectroscopy. Conventional pulse-shaping
techniques use filtering of optical frequency com-
ponents that are spatially dispersed with a grating
apparatus.1 Here we propose an alternative ap-
proach to pulse shaping that uses second-harmonic
generation (SHG) with Fourier synthetic quasi-phase-
matching (QPM) gratings. These monolithic and
compact devices allow generation of almost arbi-
trary second-harmonic (SH) waveforms, because the
lithographically defined nature of the structure intrin-
sically allows engineering of its amplitude and phase
response.

The utility of Fourier synthetic QPM gratings for
generation of arbitrary SH waveforms can best be
understood in the frequency domain. For plane-wave
QPM SHG, when we neglect pump depletion and
the intrapulse group-velocity dispersion (GVD), the
Fourier transform of the output SH pulse, cA2sVd, is
related to the Fourier transform of the square of the
first-harmonic (FH) pulse, dA1

2sVd, through the simple
transfer-function relation2

cA2sVd  bDsVddA1
2sVd , (1)

where V  v 2 vn is the detuning of the angular
frequency from the spectral centers of the FH svn  v1d
and the SH svn  v2  2v1d pulses. bDsVd is the QPM
transfer function related to the spatially modulated
nonlinear coeff icient, dszd, by the Fourier transform

bDsVd  G
Z `

2`

dsz0dexpfisDk0 1 Vdndz0gdz0, (2)

with G  2ipyl1n2. The group-velocity mismatch
(GVM) parameter is dn  1yu1 2 1yu2, where u1 and
u2 are the group velocities of the FH and the SH,
respectively. The k-vector mismatch is Dk0  4psn2 2
0146-9592/98/110864-03$15.00/0
n1dyl1, where the refractive indices n1 and n2 are
evaluated at the center frequencies for FH and SH
pulses, respectively, and l1 is the center wavelength
of the FH pulse.

Given the temporal shape of the FH pulse, we
can obtain the desired shape of the SH pulse by
choosing dszd as an inverse Fourier transform of the
desired transfer function bDsVd. The pertinent Fourier
component of the grating, dmszd, can be represented in
the most general form as

dmszd  jdmszdjexpf2iKmz 2 iFszdg , (3)

where we explicitly factored out the linear component
of the total phase of the grating, Kmz, because for
efficient mth-order QPM SHG with a uniform grat-
ing fFszd ; 0g the condition Km  Dk0 must be satis-
fied.3 We can obtain any desired phase of the grating,
Fszd, beyond the Kmz component, by choosing the local
k vector of the grating, Kszd, as Kszd  Km 1 dFydz.
jdmszdj in Eq. (3) is the amplitude of the mth Fourier
component of the grating, so we can achieve a con-
tinuous modulation of jdmszdj by varying the local
duty cycle of the grating, Gszd. For a square grating,3

jdmszdj  s2ypmddeffsinfpmGszdg, where deff is the ma-
terial’s intrinsic nonlinear coefficient. If G  0, i.e.,
the material is unmodulated, then jdmj  0, indicating
that there is no modulated component of the QPM grat-
ing. The maximum value of jdmj is s2ypmddeff and is
achieved at G  0.5 for an odd-order or at G  0.25 for
an even-order QPM process.

In the time domain, pulse shaping with Fourier syn-
thetic QPM gratings can be explained by the combi-
nation of the group-velocity walk-off effect and the
spatial localization of the SHG process.2 A particu-
lar frequency component of the FH generates a corre-
sponding SH frequency component at spatial positions
at which SHG is phase matched. Because of the GVM
this SH frequency component undergoes a particular
time delay relative to the FH pulse, as observed at
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the output of the grating. This time delay is deter-
mined by the GVM parameter dn and the spatial po-
sition at which the SH is generated; the former is a
material property, whereas the latter is defined by the
grating design.

The Fourier synthetic QPM gratings were fabri-
cated in a single 25-mm-long chip from a 0.5-mm-
thick LiNbO3 wafer by the electric-field poling
technique.4 All devices were designed for f irst-order
QPM sm  1d and used binary modulation of the
amplitude of the gratings, i.e., the local duty cycle was
either G  0 or G  0.5, corresponding to jdj  0 or
jdj  s2ypddeff, respectively. We self-phase modu-
lated output pulses from an amplified Er:fiber laser
to produce 2.5-nJ pulses with 22-nm-wide spectra
at 1560 nm. These pulses were compressible in a
diffraction-grating compressor to 250 fs FWHM, with
a resulting time–bandwidth product that was 1.6
times above the bandwidth limit. The pump beam
was loosely focused through the sample to a spot with
a 1ye electric-field radius of 85 mm.

As an example of Fourier synthetic QPM shapers,
we demonstrated three devices, labeled (a), (b), and (c)
in Fig. 1. Device (a) was simply a uniform grating
for which we chose the QPM period L0  19 mm
to achieve phase matching at 98 ±C when the device
was pumped at 1560 nm. The length of this device,
L  25 mm, was much longer than the group-velocity
walk-off length, Lgr, which is defined as the distance
at which the SH pulse becomes delayed with respect
to the transform-limited FH pulse by its initial pulse
length t0; Lgr  t0ydn. For SHG of a 1560-nm FH in
LiNbO3, dn  0.30 psymm, and hence Lgr  0.8 mm for
250-fs pulses. SH autocorrelation trace (a) in Fig. 2
has a triangular profile, which implies that the pulse
has a squarelike shape. The FWHM of the trace is
7.4 ps, in agreement with the expected pulse length
dnL  7.5 ps.

Device (b) consisted of 13 uniform grating segments
of length Ls  0.5 mm with a QPM period of L0 
19 mm, alternating with segments of unmodulated ma-
terial of length Lu  1.5 mm. Because by design Ls ,

Lgr , Lu, each segment generated a short transform-
limited SH pulse, and these pulses did not overlap
temporally at the output. Autocorrelation trace (b) in
Fig. 2 consists of 25 pulses with an interpulse separa-
tion of 0.59 ps and has a triangular envelope. Thus
the underlying SH waveform has 13 uniformly spaced
pulses of equal amplitude with a repetition rate of
1.69 THz. This result agrees with the expected spac-
ing between peaks of adjacent pulses dnsLs 1 Lud 
0.60 ps. The individual pulses in the train are 210 fs
long, as estimated with a numerically calculated decon-
volution factor 0.77.

Device (c) consisted of five identical chirped grating
segments of length Ls  5 mm with no gap of unmodu-
lated material between them. The QPM period of
each segment varied linearly from 18.6 to 19.4 mm.
Different spectral components of the chirped pump
pulse were frequency doubled at different locations
along each chirped segment, and hence the correspond-
ing SH frequency components experienced different de-
lays relative to the FH pulse. We chose the chirp of the
FH pulse to match the chirp of the grating segment,
resulting in a compressed SH pulse.2 Autocorrelation
trace (c) in Fig. 2 indicates the train of five pulses with
a repetition rate of 0.67 THz and separation between
peaks of 1.49 ns, in agreement with dnLs  1.50 ps.
Individual pulses in the train are 190 fs long, as we
determined by using the same deconvolution factor as
in device (b).

The spectra of the shaped SH pulses are shown
in traces (a)–(c) of Fig. 3. For comparison we also
include the spectrum obtained with a single short
uniform grating segment of length 0.5 mm (b); see
trace (d). The acceptance bandwidth of this device
is broader than the bandwidth of the pump pulse,
so the SH spectrum is proportional to the Fourier
transform of the square of the FH pulse. Thus trace
(d) indicates the maximum bandwidth available for
the SH, whereas shaped pulses (a)–(c) reveal spectral
filtering associated with pulse shaping.

The SH spectrum obtained with device (a) shows a
single narrow peak, consistent with the long SH pulse

Fig. 1. Schematics of the pulse-shaping devices used in
experiment: (a) a long uniform grating for generation
of a transform-limited picosecond SH pulse, (b) uniform
grating segments separated by unmodulated material for
generation of a train of femtosecond transform-limited
pulses; devices (a) and (b) are pumped by a transform-
limited femtosecond FH pulse; (c) chirped grating segments
for generation of a train of transform-limited femtosecond
SH pulses from a chirped FH pulse.

Fig. 2. Autocorrelation traces of the shaped SH pulses.
Traces (a), (b), and (c) correspond to devices (a), (b), and
(c) of Fig. 1.
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Fig. 3. Spectra of the shaped pulses: Traces (a), (b),
and (c) correspond to traces (a), (b), and (c) of Fig. 2.
Spectrum (d) was obtained with a single uniform gating
segment whose acceptance bandwidth was broader than the
bandwidth of the pump pulse.

that was obtained. Spectra obtained with devices (b)
and (c) consist of several narrow peaks separated by 3.4
and 1.43 nm, respectively. From the temporal separa-
tion between pulses [0.59 ps for device (b) and 1.50 ps
for device (c)], we f ind that the spectral spacing should
be 3.4 and 1.36 nm, respectively, in agreement with di-
rectly measured values. It should be noted here that
relative phases of the generated SH pulses are de-
fined by the relative phases of the grating segments.
Devices (b) and (c) were designed such that the ad-
jacent grating segments are offset by exactly 2.000
and 5.000 mm, respectively, which are not the inte-
gral number of L0  19 mm. Therefore the SH pulses
in the trains have different phases and the spectra
[traces (b) and (c) in Fig. 3] consist of narrow peaks
whose amplitudes do not follow the envelope outlined
by trace (d). Our calculations show that the pulse
trains with relative pulse phases as obtained from
the exact positions of the grating segments give spec-
tral amplitudes that are consistent with traces (b)
and (c). To generate SH pulses with specif ied rela-
tive phases, such as identical phases, one must use
an appropriate grating design with fine positioning
of the segments within L0. This is no more diff i-
cult to implement lithographically than the patterns
demonstrated here.

The eff iciency scaling for QPM shapers is a compli-
cated function of focusing, spectra, and the particular
shaping function. For the special case of confocal fo-
cusing, a transform-limited FH pulse, and a binary-
modulated (with duty cycle Q) uniform grating [e.g.,
devices (a) and (b)] the efficiency normalized to that of
a device one walk-off length long [95%ynJ for SHG
of 1.56-mm FH in LiNbO3 (Ref. 5)] equals Q. The ob-
served efficiency of ø5% for device (b), corrected for fo-
cusing that is looser than confocal, corresponds to this
scaling.
The shortest SH temporal feature that can be ob-
tained, dt, is inversely related to the total bandwidth
Df that is available from the FH pulse, dt ~ 1yDf ,
where the proportionality constant is of the order of
unity and its exact value depends on the shape of the
pulses. The maximum possible temporal window T
(or the best spectral resolution df ~ 1yT ) of the shaper
is determined by the length L of the device, T  dnL.

The intrapulse GVD effect was neglected in the
present analysis. Under the conditions of this experi-
ment this is a valid approximation, because the char-
acteristic lengths at which GVD becomes important,
Lsid

GVD  t0
2yjj

sid
2 j, where j

sid
2 is the GVD parameter for

the FH si  1d and the SH si  2d, are Ls1d
GVD  670 mm

and Ls2d
GVD  360 mm; these values are large compared

with the length of the devices (25 mm). Our prelimi-
nary studies indicate that GVD at the SH cannot be
neglected when j

s2d
2 V for frequencies within the band-

width of the SH pulse becomes comparable with the
GVM parameter dn. For pulses longer than ø50 fs no
compensation for the GVD would be necessary. For
pulses with dt $ 10 fs GVD at the SH could straight-
forwardly be accounted for in the design of the QPM
shaper by appropriate choice of the k vector and (or) the
duty cycle of the grating. Correct inclusion of GVD at
the FH is a subject of current research.

In conclusion, we have demonstrated a femtosec-
ond pulse-shaping technique that relies on the en-
gineerability of the phase and amplitude response
of QPM gratings. Fourier synthetic QPM gratings
combine pulse shaping and SHG in a single mono-
lithic and compact device that does not require criti-
cal alignment. This method could be applied to a
variety of more-complex pulse-shaping functions, such
as those that were demonstrated with conventional
shaping techniques.1 Extension of this technique to
a shorter wavelength range that is accessible with
Ti:Al2O3 lasers would require shorter QPM periods
sø2.5 mmd and raise concerns about two-photon absorp-
tion in LiNbO3, which suggests that LiTaO3 might be a
better candidate for a Ti:Al2O3-pumped pulse shaper.
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