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Lateral patterning of nonlinear frequency conversion with
transversely varying quasi-phase-matching gratings
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We demonstrate control of the nonlinear conversion across a beam profile by using periodically poled
lithium niobate with a laterally nonuniform quasi-phase-matching grating. As a representative experiment,
generation of a f lat-top second-harmonic beam is demonstrated.  1998 Optical Society of America
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The conversion in a nonlinear optical mixing process
depends on the product of the pump field’s amplitude
and the interaction length, leading to inherently
nonuniform conversion across the transverse profile
of a Gaussian pump beam. This nonuniformity
leads to several well-known problems such as back-
conversion limitations on the dynamic range in
second-harmonic generation1 (SHG) and gain-induced
diffraction in optical parametric amplification.2,3

These effects limit conversion eff iciency and can spoil
the beam quality. To overcome the nonuniformity
of nonlinear conversion in bulk devices one can use
quadrature mixing,4 but this method is complex to im-
plement and leads to transversely varying polarization
in the generated beam. In this Letter we describe
an alternative method, based on the use of a laterally
nonuniform quasi-phase-matching (QPM) grating to
control the profile of the conversion transverse to the
beam axis.

QPM is widely employed in frequency-conversion
devices because it permits the use of noncritical phase
matching and large nonlinear coefficients as well as
provides wide spectral coverage.5 In addition, QPM
provides extra degrees of freedom in engineering the
nonlinear properties of the medium, which are not
available with conventional birefringent phase match-
ing. For example, longitudinally aperiodic QPM
gratings have been used to engineer the spectral
dependence of the conversion,6– 9 and transverse varia-
tions of the period of a QPM grating have been used
to provide a broad tuning range for SHG devices10

and QPM optical parametric oscillators.11,12 Here we
discuss devices based on transverse variations in the
length of the QPM grating.

Because the amplitude of a wave generated in a
quasi-phase-matched mixing process depends on the
length of the QPM grating, QPM with a transversely
varying grating length can be used to engineer a desir-
able (such as uniform) conversion profile. In a region
where there is no QPM grating, the mixing efficiency
is negligible. Thus a QPM grating containing a region
of unmodulated material whose length decreases with
distance from the beam axis results in the effective in-
teraction length’s being shorter in the center and longer
in the wings of the beam, resulting in a more uniform
conversion across the beam (Fig. 1).
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To discuss this process in more detail, we consider cw
SHG as a prototypical example. If the SHG process is
phase matched, the conversion efficiency h is1,13

h ; I2vyIv  tanh2s
p

h0 d , (1)

where Iv and I2v are the pump and the second-
harmonic (SH) intensities, respectively. The non-
linear drive, h0, is defined as

h0  C2L2Iv , (2)

where L is the interaction length and C is the material
constant, defined by

C2  8p2deff
2yn1

2n2ce0l2, (3)

where deff is the effective nonlinear coefficient, n1 and
n2 are the refractive indices at the fundamental and
the SH wavelengths, respectively, c is the speed of
light, and l is the fundamental wavelength. In the low
conversion efficiency limit sh0 ,, 1d, Eq. (1) reduces to

h  h0 , (4)

so the drive can be recognized as the eff iciency in
the low conversion limit. Note, however, that at high
drives the efficiency is a nonlinear function of h0.

Fig. 1. Schematic comparison of uniform and nonuniform
conversion for the SHG process.
 1998 Optical Society of America
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An important quantity for bulk cw SHG is the power
conversion efficiency hP , defined as the ratio of the
output power in the SH beam to the power input in
the fundamental beam. Because the intensity of the
pump beam is radially varying, the eff iciency h is
not uniform across the beam, so one can calculate
hP by averaging the conversion h over the radial
distribution of the beams. This nonuniformity does
not have serious implications in the low conversion
limit, but as the conversion increases, the center of
the beam is driven deeply into the saturated regime
before the wings reach significant conversion. For
example, for a Gaussian pump beam, obtaining a
relatively modest hP  75% requires a conversion
efficiency of h  96% at the center of the beam, and
the drive at the center of the beam must be h0 
5.1. At such high values of the nonlinear drive the
acceptance bandwidth dramatically narrows,1 leading
to tight tolerances on phase-matching wavelength,
temperature, and angular divergence. This effect is
even more pronounced for pulsed SHG. The relevant
efficiency is then the energy conversion efficiency hE ,
defined as the ratio of the energy in the SH output
pulse to the energy input in the pump pulse. If the
intensity profile is Gaussian in both time and space
and assuming that the pulses are long enough that
the dispersion can be neglected, we find by integrating
the conversion over space and time that to achieve
hE  75% the necessary peak conversion is 99% and
the drive needed is 9.0.14

However, for cw SHG with a f lat-top pump beam for
which the intensity (and hence the drive) is radially
constant across the beam, one can use a lower drive
to obtain the same hP than is required for cw SHG
with a Gaussian beam. For such a f lattened drive,
hP  h  75% is obtained at h0  1.7. Although
it is generally impractical to obtain f lat-top pump
beams, the drive can be made uniform across the
central portion of a Gaussian pump beam by use of a
radially varying QPM grating. According to Eq. (4),
the drive is the small-signal conversion efficiency. To
demonstrate engineering of the drive we designed a
QPM grating such that the SH beam generated by a
Gaussian pump beam would be truncated Gaussian
(in one dimension), with a f lat intensity profile over
some range x [ f2a, ag (Fig. 1). Note that in this
representative experiment we do not f latten the drive
but rather generate a f lat-top SH beam, a more
extreme radial modification of the drive. We obtain
the necessary condition on the drive by combining
Eqs. (1) and (2):

Ivsx, ydh0sx, yd  f s yd, x [ f2a, ag , (5)

where f s yd is a function that is independent of x. For a
given pump beam profile the drive is controlled by the
interaction length, L  Lsxd [Eq. (2)], so for a Gaussian
pump beam the functional form of the interaction
length must be chosen as

Lsxd  L0

8>><>>:
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∑
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2
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, (6)
where L0 is the physical length of the crystal and w0
is the 1ye electric-f ield radius of the Gaussian pump
beam. It should be noted here that the appropriate
form of Lsxd depends on the radius of the pump beam
and the fraction of the beam over which the SH beam
is to be f lattened, so a particular grating design is
appropriate only for a given pump beam. However,
the absolute pump power affects the overall conversion
but not the transverse dependence of the drive, so
a particular design can be used over an arbitrary
range of input powers. Because of the lithographically
defined nature of the QPM structure, a grating with
almost any desired shape of the unmodulated region
can be fabricated, such as the one that satisfies Eq. (6).
Clearly, this approach is valid for non-Gaussian pump
beams as well, as long as their spatial profiles are
sufficiently smooth and the focusing is loose enough
that diffraction is not signif icant over the length of the
interaction region.

Following the above design algorithm [Eq. (6)], we
fabricated two patterned QPM gratings to generate
f lat-top SH beams truncated at a  60.50 w0 and
a  60.75 w0, with w0  100 mm. The devices had
length L0  1 cm, with unpatterned sections located
symmetrically at both ends of the chips. We chose
the QPM period of 19 mm to achieve phase matching
at 20 ±C for pumping at a fundamental wavelength
of 1.54 mm. The patterned periodically poled lithium
niobate (PPLN) devices (Fig. 2) were fabricated from a
0.5-mm-thick LiNbO3 wafer according to the procedure
described in Ref. 15.

The pump source was an Er:fiber laser that pro-
duced 5-mW cw output power at 1.54 mm. The output
Gaussian beam was focused to a spot size w0  100 mm
at the sample. The near f ield of the output SH beam
was imaged onto a CCD camera. Figure 3 shows the
intensity slices through the SH beams: (a) uniform
grating SHG; (b) and (c) beams truncated at 60.50w0
and at 60.75w0, respectively. These intensities were
obtained from a single line of pixels along the x axis (as

Fig. 2. Photograph of a portion of a 19-mm-period PPLN
chip, showing the pattern for generating the f lat-top SH
beam from a 100-mm-radius Gaussian pump beam.
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Fig. 3. Intensity slices through the generated SH
beams: (a) uniform grating SHG; (b), (c) beams truncated
at 60.50w0 and at 60.75w0, respectively. Dashed lines
indicate theoretical predictions for the f lat portions of the
truncated beams.

in Fig. 1) at the CCD camera, with no averaging over
the y direction. The dashed lines indicate theoretical
predictions for the f lat portions of the truncated beams.
The SH intensities along the y axis retain their Gauss-
ian shape (not shown). It can be seen that the SH
beam is f lattened in one dimension, with the expected
conversion efficiency.

In conclusion, we have described control of the non-
linear conversion across a beam profile by use of a
QPM grating with transversely varying nonlinear in-
teraction length. PPLN crystals with lithographically
defined patterned QPM gratings were successfully fab-
ricated and used to generate f lat-topped SH beams
from a Gaussian pump beam. An alternative ap-
proach to controlling the conversion across the pump
beam is to use a QPM grating with transversely vary-
ing duty cycle. The duty cycle determines the ef-
fective nonlinear coefficient,5 so patterning the duty
cycle patterns the drive [Eqs. (2) and (3)]. The advan-
tage of this method is that it alters only the amplitude
but not the frequency dependence of the Fourier trans-
form of the grating function. Hence, in contrast to
a device with varying interaction length, this method
preserves the tuning behavior of the device. Radial
engineering of nonlinear conversion in two transverse
dimensions can be accomplished in two steps by use
of two crossed chips with the necessary rotation of
polarization of both beams between the chips. An-
other method is to utilize a diffusion bonded stack of
PPLN chips16 with different unpoled patterns or duty
cycle variation patterns, as would be suitable for high
power pulsed optical parametric oscillators with large
apertures. Further directions of this research include
applying transversely varying gratings to overcome
nonuniform pump depletion and gain-induced diffrac-
tion in optical parametric generation and difference-
frequency generation experiments. Also, the phase,
rather than the amplitude, of the generated SH or para-
metric gain across a pump beam can be controlled by
use of curved QPM gratings for control of transverse
modes in resonator devices such as pulsed optical para-
metric oscillators.
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