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Phase correction in double-pass quasi-phase-matched
second-harmonic generation with a wedged crystal
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Compensation for dispersive elements is necessary for efficient multiple-pass and intracavity nonlinear
frequency-conversion devices. We describe the use of a wedged quasi-phase-matched crystal to compensate
for the phase shifts introduced by mirrors in such devices, taking advantage of the periodic variation in the
relative phases of the interacting waves in a quasi-phase-matching grating. A representative double-pass
second-harmonic generation experiment with a 5-cm-long periodically poled lithium niobate crystal showed the
expected conversion efficiency enhancement.  1998 Optical Society of America
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To increase the eff iciency of nonlinear optical
frequency-conversion devices it is common to use
multiple-pass or intracavity configurations. One can
obtain the greatest enhancements by resonating all
the waves involved in the interaction, but such designs
require precise control over the relative phase of the
waves.1 Several approaches to adjusting this phase
shift, such as fine tilting of the birefringent crystal,2

fine adjustment of the phase-matching temperature,1

and relying on the dispersion of air over an appropriate
path length,2,3 have been proposed. Although these
schemes solve the phase problem, the compromises in
compactness, robustness, or eff iciency that they entail
prevented their widespread application.

Quasi-phase matching is widely used today in op-
tical frequency-conversion devices.4 Here we describe
the use of a quasi-phase-matched (QPM) grating tilted
with respect to the crystal boundary as a simple alter-
native solution to the problem of phase correction in
multiple-pass and intracavity nonlinear devices. In a
QPM device the nonlinear susceptibility changes sign
every coherence length lc, effectively compensating for
the dispersion.4 The relative phase of the interact-
ing waves changes by p every lc, so the appropriate
choice of the length of the f inal domain permits con-
trol over the relative phase. In this Letter we analyze
such a device and report the results of a representative
double-pass second-harmonic-generation (SHG) exper-
iment with a periodically poled lithium niobate (PPLN)
crystal. We show that it is possible to compensate in
a simple manner for the phase shift introduced by the
folding mirror.

Let us consider the cw SHG process in the case of
quasi-phase matching. The envelope of the second-
harmonic (SH) f ield, E2, evolves according to4

dE2szd
dz

 igE1
2dszdexps2iDkzd , (1)

where E1 is the envelope of the fundamental field,
g  vyn2c, v is the fundamental frequency, c is the
speed of light, n2 is the refractive index at the SH
frequency, and dszd is the spatially varying nonlinear
coeff icient. The wave-vector mismatch is Dk  k2 2

2k1  pylc, where k1 and k2 are the wave vectors
at the fundamental and the SH, respectively, and
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the coherence length lc is defined implicitly by this
relation.

For the first-order QPM the nonlinear coeff icient
changes sign in adjacent domains, each of length lc,
leading to the nonlinear coefficient’s being a square
wave of period 2lc and amplitude deff . We assume that
the crystal boundaries do not necessarily coincide with
any of the positions where dszd changes sign. Let N
be the number of full-length domains in the grating
and l0 and lN11 be the lengths of the zeroth and the
sN 1 1dth domains, respectively; we do not limit their
lengths, allowing them to be longer than lc.

We start analyzing the double-pass SHG process
by calculating the SH field after a single (forward)
pass through the crystal of length L. The frame-
work for this calculation is depicted in Fig. 1. In the
undepleted-pump approximation the total f ields propa-
gating in the crystal are

§1
f szd  E1

f expsik1zd , (2)

§2
f szd  E2

f szdexpsik2zd , (3)

where E1
f and E2

f are the fundamental and the
SH envelope fields, respectively, and E1

f is a real-
valued constant such that §1

f szd is defined to have a
zero phase at z  0. The envelope of the SH field
after a single pass, E2

f sNlc 1 lN11d, is obtained by
integration of Eq. (1) between 0 and Nlc under the
realistic assumption that N .. 1, so the SH fields
generated in the zeroth and the sN 1 1dth domains are
neglected:

E2
f sNlc 1 lN11d ø 2gg0dQLsE1

f d2, (4)

where dQ  2deffyp is the effective QPM nonlinear

Fig. 1. Layout for analyzing the double-pass SHG process.
 1998 Optical Society of America
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coeff icient and g0 is its sign in the zeroth domain.
The corresponding total SH field for the single pass,
e2

f sNlc 1 lN11d, is obtained by combination of Eq. (3)
and relation (4):

e2
f sNlc 1 lN11d  2 gg0dQLsE1

f d2

3 expfik2sNlc 1 lN11dg , (5)

which is the usual expression for ideal QPM SHG.4

All the phase information is lost in the correspond-
ing expression for the SH intensity, so the single-pass
SH eff iciency does not depend critically on lN11. How-
ever, this phase enters crucially in the double-pass
efficiency.

After the forward pass through the crystal both
fundamental and SH waves are ref lected back by
the mirror, which introduces the phase shifts f1 and
f2, respectively. For an ideal mirror f1  f2  p;
for a nonideal mirror the phase shifts can have any
values between 0 and p. The backward-traveling
fundamental wave at the entrance of the grating sz 
Nlcd is phase shifted by f1 1 2k1lN11 compared with
the forward wave at the same position:

§1
bsNlcd  §1

f sNlcdexpsif1 1 2ik1lN11d

 E1
f expsik1Nlc 1 if1 1 2ik1lN11d , (6)

and then it propagates freely according to

§1
bszd  §1

bsNlcdexpf2ik1sz 2 Nlcdg . (7)

§1
bsNlcd can then be treated as the envelope of the

fundamental f ield for the backward pass.
The output double-pass SH field, §2

DP, has two
contributions,

§2
DP  §2

b0

1 §2
b00

, (8)

where §2
b0

is the SH wave that was generated in the
forward pass, ref lected back from the mirror, and then
propagated freely through the crystal in the backward
pass, and §2

b00

is the wave generated in the backward
pass. The free-traveling wave §2

b0

can be treated
similarly to the backward-propagating fundamental
wave, Eqs. (6) and (7), leading to the output SH field

§2
b0

s2l0d  §2
f sNlc 1 lN11dexpsif2 1 ik2lN11d

3 expf2ik2s2l0 2 Nlcdg . (9)

The §2
b00

wave is obtained analogously to the forward
SH wave, relation (4) and Eq. (5), with the substitution
of gN11 for g0 and the use of §1

bsNlcd from Eq. (6) as
the input fundamental envelope:

§2
b00

s2l0d  2 ggN11dQ Lf§1
bsNlcdg2

3 expf2ik2s2l0 2 Nlcdg . (10) ;

Substituting Eq. (5) into Eq. (9) and Eq. (6) into
Eq. (10) and summing the results as in Eq. (8), we ob-
tain, omitting a common phase factor,

§2
DP  2gg0dQ sE1

f d2f1 2 expsiDf 1 2iDklN11dg ,

(11)

where Df  f2 2 2f1 is the relative mirror phase
shift and we have used gN11  s21dN11 g0 and
expsiDkNlcd  expsipN d  s21dN . The two terms
in Eq. (11) are phase shifted by df  Df 1 2DklN11 
Df 1 2plN11ylc, which is simply the relative phase
shift between SH and fundamental waves accumu-
lating during double passing of the last domain and
ref lecting from the mirror. The corresponding SH
intensity, I2

DP , is

I2
DP 

4v2

n2n1
2c3e0

dQ
2I1

2L2f1 2 cossdfdg , (12)

which is a periodic function of lN11 with a period of lc.
A change of magnitude lc in lN11 changes df by 2p, so
tuning the output SH from a maximum at df  s2m 2

1dp to a zero (at df  2mp) is possible independently
of the magnitude of Df. These cases correspond
to perfect constructive and destructive interference,
respectively, of the forward- and backward-generated
SH waves. For df  s2m 2 1dp the efficiency is the
same as that of a crystal of length 2L operated at the
same fundamental intensity.

This analysis can easily be extended to an N -pass de-
vice, and if the mirror phase shifts are compensated for
we obtain an N2-fold efficiency enhancement over the
efficiency of a single-pass device. This scaling law, ob-
tained for plane waves, holds true for Gaussian beams
also, as long as the beam is reimaged to the same spot
size in each pass. The trade-off between efficiency
and bandwidth differs for single-pass and N -pass de-
vices. For a single-pass device with length NL the ef-
ficiency for confocal focusing scales linearly with length
and thus scales as NL. An N -pass device with crystal
length L has the same acceptance bandwidth as the
single-pass device with length NL, but the efficiency
for the N-pass device scales as N2L. This distinction
is particularly important for high average power ap-
plications for which thermally induced perturbations
can limit the maximum allowable harmonic power in a
crystal of given length.

We can obtain the necessary control over the length
of the final domain by polishing the end face of the
crystal at a small angle u to the domain boundaries
and translating the crystal across the pump beam
until the ideal value of lN11 is reached. One possible
difficulty with this method is that the wedge leads to
a continuous linear phase shift across the generated
SH beam, as follows from Eq. (11). If this phase shift
is too large, it can reduce the output power and spoil
the quality of the generated beam. To quantify these
effects we calculated the SH output power P2 and
the M2 value5 as functions of the phase change DF

between points 6w0, with w0 being the pump beam’s
1ye electric-f ield radius. By definition, DF is related
to the wedge angle by

DF  2p
lN11sw0d 2 lN11s2w0d

lc
 4psuw0ylcd . (13)

For DF # 1.5p, both dependencies P2  P2sDFd and
M2  M2sDFd can be approximated as parabolic func-
tions:

P2yP2sDF  0d  1 2 7.0 3 1023DF2, (14)

M2  1 1 7.2 3 1023DF2. (15)



February 1, 1998 / Vol. 23, No. 3 / OPTICS LETTERS 167
Fig. 2. Normalized output SH power as a function of the
transverse position of the wedged PPLN crystal: circles,
experimental data; solid curve, f it.

From Eqs. (14) and (15) we calculate that at DF  0.8p

the double-pass SH power is reduced by ø5% below the
ideal value and the M2 value is 1.05. If this phase
shift is accepted as a maximum tolerable phase shift
across the beam, DFmax, from Eq. (13) we obtain the
restriction on the allowable wedge angle:

u , umax 
DFmax

4p

lc

w0
ø

0.2lc

w0

. (16)

From relation (16) we than have an important design
condition on the minimum crystal aperture, Wmin,
which we need so we can compensate for an arbitrary
mirror phase shift and can compensate and not exceed
the maximum wedge angle:

Wmin 
lc

umax
ø 5w0 . (17)

A phase-corrected double-pass SHG experiment was
set up as follows: The pump source was an Er:fiber
laser that produced 3-mW cw output power at 1.54 mm.
The laser beam was focused to a spot size w0  100 mm
in a wedged PPLN crystal. The crystal was mounted
upon a translation stage so it could be moved across
the pump beam. A gold-coated mirror with a radius
of curvature of ø8 cm was used to reimage both the
fundamental and the SH waves back through the
crystal to the same spot size as in the forward pass.
After the second pass, the beam splitter ref lected the
SH onto a silicon detector.

The 0.5-mm-thick PPLN chip with a 18.75-mm QPM
period was fabricated according to the procedure de-
scribed in Ref. 6. The crystal was 50 mm long by
12 mm wide and was polished so the total wedge with
respect to the QPM grating lines was 42 mm over the
whole width of 12 mm. The resulting wedge angle,
u  3.5 mrad, was smaller than umax  19 mrad, as
calculated with relation (16).

We measured the output SH power after a double
pass through the chip as a function of the transverse
position of the PPLN crystal, shown in Fig. 2. The
experimental data were fitted to a functional form
of Eq. (12), with Df treated as a parameter. From
the fit we deduce the period of SH power variations
as 2.65 mm, in excellent agreement with the value of
2.7 mm expected for the given wedge angle.
When the device was pumped with 2.27 mW of power
we measured 89-nW single-pass SH power (external
conversion efficiency hSP  1.7%yW) and 232 nW for
the double-pass configuration, when the phase shift
that was due to the mirror was completely compensated
for shDP  4.5%yWd. With the Fresnel ref lections
(ø14% per surface) accounted for and with focusing
looser than confocal, these figures corresponded to 90%
and 89% of the theoretical values, respectively. For
better conversion efficiency in a practical device, the
crystal end faces must be antiref lection coated and
the pump beam must be confocally focused for both
passes.7 In this case for a 5-cm device we expect the
single-pass conversion eff iciency to be hSP  4.0%yW
and the double-pass conversion efficiency to be four
times greater, hDP  4hSP  16.0%yW.

We have demonstrated the use of a wedged QPM
crystal to compensate for the phase shifts introduced
by mirrors in multiple-pass or intracavity frequency-
conversion devices. A representative double-pass
SHG experiment with a 5-cm-long PPLN crystal was
in excellent agreement with theory. Clearly this
approach should also work for other nonlinear mixing
processes such as optical parametric amplif ication and
generation. In the case of intracavity SHG, pump-
resonant standing-wave optical parametric oscillation,
or multiple-pass devices one needs to compensate for
phase shifts that are due to two mirrors. One way to
accomplish this is to put a slow wedge (say, lc, over
the whole width of the crystal) on one face and a fast
wedge (several lc) on the other face of the crystal.
With an appropriate combination of wedge angles and
crystal width a transverse position where both phase
shifts are well compensated for can be found. Another
possibility is to make the two wedges orthogonal to
each other so the phase shifts can be adjusted indepen-
dently of each other by orthogonal translations of the
crystal.

This research was supported by the Defense Ad-
vanced Research Projects Agency under U.S. Off ice
of Naval Research grant N00014-92-J-1903. M. Proc-
tor was supported by the Swiss National Foundation
of Scientific Research under grant 8220-040131. We
thank Crystal Technology, Inc., for a generous dona-
tion of LiNbO3 wafers.

References

1. R. Paschotta, P. Kurz, R. Henking, S. Schiller, and J.
Mlynek, Opt. Lett. 19, 1325 (1994).

2. C. Zimmermann, R. Kallenbach, T. W. Hänsch, and J.
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