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A general formula and a computational scheme for estimating the power spectrum of the
displacement correlation function of suspended test masses such as those used in interferometric
gravitational wave detectors are presented. Unlike previous mode-summation approaches, the
fluctuation-dissipation theorem has been applied directly to the displacement correlation. The
resulting formula expresses the correlation in terms of material damping parameters and mechanical
Green’s functions, and provides an efficient and flexible method to compute thermally induced
surface displacements of arbitrarily shaped anisotropic elastic bodies. The formula can be used for
optimizing the shape and size of test masses in gravitational wave receivers. A simple
one-dimensional example is included to clarify the relationship with the modal expansion approach
and to illustrate the advantage of the Green’s function method. This paper presents the theoretical
formulation; numerical evaluations of the formula will be presented elsewhere. ©1997 American
Institute of Physics.@S0034-6748~97!01309-9#
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I. INTRODUCTION

There are several programs around the world aiming
detect astrophysical gravitational waves by la
interferometry.1 The basic idea is to measure the relati
displacements of suspended mirrors induced by the pas
of gravitational waves using a highly sensitive laser interf
ometer. Thermally induced surface vibration is a major no
source in such a detector.2,3 It is crucial, therefore, to under
stand this important noise source thoroughly and to be a
to calculate the noise for different test mass shapes and s
The work presented here is motivated by the need for ac
rate modeling of thermal noise in practical gravitation
wave detectors. Specifically, our objective is to establis
general formula and a computational scheme, by which th
mally induced elastic vibrations of arbitrarily shaped anis
tropic bodies can be computed accurately and efficiently

Previous authors2,3 have used an approach based on
modal expansion in terms of the vibrational modes, and
plied the fluctuation-dissipation theorem4–6 to each mode. To
recapitulate Saulson’s result,2 let us consider a simple ex
ample of a thin elastic rod of lengthl and linear densityr̄ .
Let the symmetry axis of the thin rod be thex axis, and the
x coordinates of the two ends be 0 andl . For an infinite thin
strip or an infinite thin cylinder, the lowest symmetric prop
gating mode is accurately approximated by a longitudi
displacement parallel to the bounding surfaces and unif
over the cross-section, when the thickness or diameter
small fraction of the longitudinal wavelength.7 Under this
condition, the problem becomes essentially one-dimensio
and Saulson’s result for the power spectrum^u( l )u( l )&v of
the longitudinal displacement thermal fluctuationu( l ) at the
rod endl holds, namely

^u~ l !u~ l !&v5
2kBT

v
• (

n.0

gn

~vn
22v2!21gn

2
•

@cn~ l !#2

r̄
, ~1!
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wherekB andT are the Boltzmann constant and the tempe
ture. In ~1!, vn , gn , and cn(x) denote, respectively, the
frequency, the damping parameter, and the modal func
A2/l cosknx of the nth mode, wherekn5np/ l , n51,2,•••.
Our gn is related to Saulson’sfn via gn5fnvn

2 . We ob-
serve that Eq.~1! can be written as

^u~ l !u~ l !&v5
2kBT

v
•Im Gv~ l ,l !, ~2!

in terms of an elastic Green’s functionGv where8

Gv~x1 ,x2![(
n

1

r̄
cn~x1!Gn

v~gn!cn~x2!,

Gn
v~gn![~vn

22v22 ign!21.
~3!

From the definition~3!, it follows directly that

Im Gn
v5Gn

v
•gn•Gn

v* . ~4!

In this paper, we will derive the generalization of Eq.~2! for
three-dimensional elastic bodies by following the derivati
of Ref. 4. In particular, our derivation does not use a
modal expansion. In addition, using an analog of the opt
theorem, we derive a mode-independent generalization
Eq. ~4! which allows computations of Eq.~2! in terms of
physical~nonmodal! Green’s functions and damping param
eters.

The mode-independent expression~2! has advantages
over Eq. ~1! from both the formulational and calculationa
point of view. Besides the difficulty in calculating modes f
complex mirror and suspension shapes, the modal appro
is inconvenient to our problem where typical operating f
quencies of gravitational wave receivers are much lower t
the modal frequencies. This frequency mismatch forces
to sum over many terms in Eq.~1!, each detuned by man
linewidths. Another problem is that, since the above dam
35533/4/$10.00 © 1997 American Institute of Physics
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ing parametersgn are mode-dependent quantities, expe
mentally determinedgn’s for one specimen geometry are n
directly transferable to another. In contrast, the method
present in this paper avoids these problems.

II. FORMULATION

This paper involves linear elasticity of anisotrop
materials,7,9 for which we will generally follow the notation
of Ref. 7 and refer to the displacementui , the linearized
strainSi j , the stressTi j , and the material parameters such
stiffnessci jkl , compliancesi jkl , and viscosityh i jkl . There
are however two exceptions. One is that we formulate
lossless anisotropic linear elasticity by starting with t
Lagrangian8

L5E
V
dVS r

2
u̇i

22
1

2
~] iuj !ci jkl ~]kul ! D , ~5!

wherer is the mass density. The existence of the Lagrang
~5! is important because the resulting canonical formali
ensures the validity of the standard results, particularly
fluctuation-dissipation theorem.4–6 The second exception
concerns the stress-strain relationship, and here we b
with the generalized linear compliance relation

Si j ~ t !5E
2`

`

dt8 si jkl ~ t2t8!Tkl~ t8!. ~6!

The time-dependence of the compliancesi jkl accounts for
possible time delays of a stress-induced strain by way of
generalized susceptibility.4,6 Similarly, the stiffnessci jkl is
regarded as time-dependent, unless stated otherwise.
usual relationship betweensi jkl andci jkl can be recovered in
the frequency domain. Namely, the Fourier transform of E
~6! is the algebraic relationSi j

v5si jkl (v)Tkl
v , and its inverse

is the generalized Hooke’s lawTi j
v5ci jkl (v)Skl

v . The gener-
alized stiffnessci jkl (v) is complex in general, and we us
the standard notation for its real and imaginary par6

namely

ci jkl ~v![ci jkl8 ~v!2 ic i jkl9 ~v!. ~7!

Equations~6! and ~7! include, as a special case, the simp
lossless stress-strain relationship whereci jkl8 are
v-independent constants andci jkl9 50.7,9 In dispersive media,
ci jkl9 (v) no longer vanish, and bothci jkl8 (v) and ci jkl9 (v)
become v-dependent in general. For instance, viscos
inducedc9 can be parametrized asci jkl9 (v)5vh i jkl , where
the power ofv corresponds to a time-derivative ofS in the
time domain.7,9 It is important to note, however, that thec9
of many materials does not vanish at low frequenciesv
;0.2,10,11Loss of this type is called structural~or hysteretic!,
and, when present, becomes dominant atv;0. With these
generalizations, most results in Ref. 7 regarding losses
main valid after the formal substitutionh→c9/v. Our goal
is to relate the loss parameters to the power spectrum o
displacement correlation function

^ui~ x̃1!uj~ x̃2!&v[E
2`

`

dt eivt^ui~ x̃1 ,t !uj~ x̃2,0!& ~8!
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between vibrations at different mirror points. Because
laser interferometer is sensitive to surface vibrations, we
mainly concerned with the correlation between two surfa
points, x̃1 and x̃2 in Eq. ~8!.

We will derive the mode-independent generalization
Eq. ~4! first. Basically, we evaluate mechanical surface
brations of a damped elastic body driven by an external tr
tion. Let us consider the monochromatic driving tracti
Re(Tin

v e2 ivt), whereTin
v 5Ti j

vnj is assumed real, which act
on the body through its bounding surfaceS. The dynamics in
question are governed by the field equation

2rv2ui
v2] j ci jkl ~v!]kul

v50, ~9!

which can be derived from Eq.~5!, except that the constant
ci jkl are replaced by the complexci jkl (v) of Eq. ~7!. Equa-
tion ~9! contains neither body forces nor the traction. T
traction, instead, should be introduced through the bound
conditions. Since the system is linear, there must exis
response functionx i j so that

ui
v~x!5E

S
dS1x i j

v~x, x̃1 ;c!Tjn
v ~ x̃1!, ~10!

wherex may be either a point in the object volumeV, or a
surface pointx̃ . In the lossless case, the retardation con
tion on x i j should be enforced by the correct choice ofv
poles as usual. We now state the generalization of Eq.~4!,
namely

Imx i j
v~ x̃1 , x̃2 ;c!5E

V
dV@]kx l i

v~x, x̃1 ;c!#cklmn9 ~v!

3@]mxn j
v ~x, x̃2 ;c!#* . ~11!

To prove Eq.~11!, we use the power balance between ext
nal excitation and internal loss. For a lossy elastic mediu
when the stationarity condition is met, the total tractio
injected power should be balanced in average by the t
internal power loss. To formulate the power balance exp
itly, we use the acoustic Poynting’s theorem@Eq. ~5.38! of
Ref. 7#, insert the monochromatic fields such
v(5Re$2 ivuve2 ivt%) etc. into it, and perform time aver
ages over the period 2p/v. The volume energy term
dU/dt drops out after averaging, while the body force te
is absent in our problem. After eliminatinguv via Eq. ~10!
and expressing the remaining terms inTin

v andx i j
v , we find

that the balance equation takes the form

E
S
dS1E

S
dS2Tin

v ~ x̃1!Ki j ~ x̃1 , x̃2!Tjn
v ~ x̃2!50, ~12!

where the kernelK is the difference between the left-han
side and the right-hand side of Eq.~11!. SinceTin

v is arbi-
trary, Eq.~12! implies thatKi j ( x̃1 , x̃2)50, thus proving Eq.
~11!.

The proof of the fluctuation-dissipation theorem b
Kubo6 relies on the canonical formalism, and is in fact a
plicable straightforwardly to our elasticity problem, as gua
anteed by the existence of the Lagrangian~5!. A choice spe-
cific to our problem is the interaction Hamiltonian
Thermal noise
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H852E
S
dS ui~ x̃ ,t !Tin~ x̃ ,t ! ~13!

as a perturbation, which is traction-driven in accordance w
Eq. ~10!. Starting with~13!, we then follow Kubo’s prescrip-
tion, and evaluate the resulting shift in thermal fluctuati
distribution, using statistical mechanics and time-reversal
variance. The result is the specific fluctuation-dissipation
lation

^ui~ x̃1!uj~ x̃2!&v'
2kBT

v
Im x i j

v~ x̃1 , x̃2 ;c!, ~14!

which is the promised generalization of Eq.~2!. It should be
remarked that the approximate equality of Eq.~14! is strict
only for infinitesimally smallc9, and Eq.~14! has an error of
O((c9/c8)2). Possible quantum corrections to Eq.~14!,
which can be accounted for by replacingkBT with
(\v/2)coth(\v/2kBT), are negligibly small for room tem
perature systems.

From Eqs.~11! and ~14!, it finally follows that

^ui~ x̃1!uj~ x̃2!&v'2kBT/vE
V
dV@]kxli

v~x, x̃1 ;c!#

3cklpq9 ~v!@]pxq j
v ~x, x̃2 ;c!#*

'2kBT/vE
V
dV@]kx l i

static~x, x̃1 ;c!#

3cklpq9 ~v!@]pxq j
static~x, x̃2 ;c!#, ~15!

wherex i j
static[x i j

v50 . The second line of Eq.~15! is valid
approximately under the quasi-static condition, namely wh
v is significantly smaller than any of the modal frequenc
vn . Equation~15! constitutes the main result of this pape
and expresses the spectral displacement correlation~repre-
senting the level of thermal fluctuations! in terms of the elas-
tic Green’s function and the dispersive parts of the ela
constants. From the earlier discussion of viscous and st
ture losses, it should be noted that~15! exhibits a constan
behavior of the thermal fluctuations at low frequenciesv for
the viscous case whereci jkl9 /v5h i jkl , while a 1/v increase
applies for the structural case. The 1/v behavior was ex-
pected in various contexts,2,10–12 and in fact observed
experimentally.13

III. COMPUTATIONAL PROCEDURE AND EXAMPLE

Given Eq.~15!, we present the following prescription fo
computing the power spectrum~8!: First, the response func
tion x i j should be computed, presumably by numerical me
ods because practical mirrors and suspensions may
complicated shapes. The best numerical algorithm, we
lieve, is the boundary element method~BEM!.14,15 This
method solves the boundary integral equations numerica
and is applicable to anisotropic, piece-wise uniform elas
ity. In fact, one of the earliest applications of the BEM w
linear elasticity. Second, the quasi-static condition is lik
to hold and thus should be exploited in practical cases,
quiring that onlyxstatic be computed numerically. This sim
plifies the computation, since the response function is t
Rev. Sci. Instrum., Vol. 68, No. 9, September 1997
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v-independent. Third, the experimental values ofci jkl

should be used for the actual mirror and suspension.
materials under consideration for interferometric gravi
tional wave detectors include fused silica~isotropic!, silicon
~cubic!, and sapphire~trigonal!, which require, respectively
two, three, and six components ofci jkl .7 Both structural and
viscous losses may need to be considered. Consequently
v dependence of Eq.~15! comes only through the combina
tion ci jkl9 (v)/v, where ci jkl9 (v) are the elastic loss
parameters.2,10,11 Fourth, if necessary, microscopic materi
noises such as those due to dislocations may be included
position-dependentci jkl . The resulting material inhomoge
neity can be treated by perturbation theory.

Before concluding this section, we will revisit the on
dimensional example described in Sec. I to illustrate the
of our result. Our formula~15! requires the traction-free
Green’s function in the interval 0<x< l ,8

xxx
v ~x1 ,x2!52~ r̄ v2!21$cos@k~ l 2ux12x2u!#

1cos@k~ l 2x12x2!#%/~2k sin kl !, ~16!

wherek5v/v while v is the sound velocity. Equation~16!
permits explicit evaluation of the integrals in~15!, yielding
the quasi-static result for comparison with Eq.~1!

^ux~ l !ux~ l !&v5
2kBT

v
•

u c̄ 11119 ~v!u

u c̄ 1111u2
•

l

3
, ~17!

where c̄ 1111 is the normalized elastic constantc1111, so that
c̄ 1111/ r̄ 5c1111/r. The closed-form result~17! is further
evidence in favor of our Green’s function approach over
modal result~1!. Notice in particular that Eq.~17! requires
only one complex elastic constantc1111 as input, while Eq.
~1! needs many modal constantsvn andgn . For more com-
plicated elastic body shape, several complex elastic const
will be required, but these are all directly determined by t
choice of material.

IV. DISCUSSIONS

The main contributions of this paper are Eq.~15! and the
accompanying computational strategy described in the s
sequent paragraph. More precisely, our basic results are
~11!, ~14!, and ~15! which generalize the previously know
Eqs.~4!, ~2!, and~1!, respectively. In essence, our genera
zation has shown that the previous one-dimensional res
are correct, and readily applicable to general thr
dimensional mirrors and suspensions, except that the ge
alized formulas should be written in terms of a Green’s fun
tion. Our Green’s function approach is advantageous e
for the simple one-dimensional model, since our appro
yields a closed-form result~17! instead of the mode-sum
result~1!. Our master formula~15! is in fact written in terms
of physical Green’s functions and damping parameters,
allows computation of thermal excitations for any mirr
shape and material. Technically, the predictive power of
approach is significant, when augmented by any of the s
dard numerical methods for computing Green’s functions
arbitrarily shaped bodies. Given a mirror material, one m
first determine the physical elastic and damping paramet
3555Thermal noise
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either by estimation or by experiment with any convenien
shaped specimen. Once the parameters are given, then
computational procedure can predict thermal noise levels
any mirror object design. It can therefore play a useful role
design optimization of test masses in laser-interferrome
gravitational wave receivers.
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