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Time Dependent Perturbation Theory
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Time dependent Schrödinger Equation

Take

time independent time dependent
will treat as time dependent perturbation
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n qψ
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H0 time independent  - solutions are

complete set of time independent orthonormal eigenfunctions of H0.

time dependent phase factors
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To solve
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These terms equal.  Unperturbed problem.
They cancel.
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used derivative product rule
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Canceling gives

0H H H ′= +
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Have Ψ Ψ0 0
nn n n

n n
c H i c′ =∑ ∑ 



Left multiply by

Ψ0
m

Ψ Ψ0 0
mn m n

n
c H i c′ =∑ 



Ψ Ψ0 0
m n m n

n

ic c H ′= − ∑



Therefore,

Eigenkets of time independent Hamiltonian
are orthonormal.

Exact to this point.
Set of coupled differential equations.
In Time Dependent Two State Problem (Chapter 8)

Ψ Ψ0 0
m nH γ′ =

two coupled equations
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Approximations
Ψ0


* 1c c ≅
 

Ψ0


Usually start in a particular state

Dealing with weak perturbation.
System is not greatly changed by perturbation.

Assume:

Time independent.

The probability of being in the initial state 
never changes significantly.

The probability of being in any other state never gets much bigger than zero.
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With these assumptions:

Ψ Ψ0 0( , ) ( , )m m
ic q t H q t′= −





No longer coupled equations
Excellent approximation in many common experiments.
UV/Vis spectrometer, FT-IR spectrometer, Fluorometer 



Grazing Collision of an Ion and a Dipolar Molecule - Vibrational Excitation

M  - molecule with
dipole moment

1.  Molecule, M, weakly phys. absorbed on surface.
Not translating or rotating.   (Example, CO on Cu surface.)

2.  Dipole moment points out of wall.
Interaction with wall very weak; can be ignored.

3.  When not interacting with ion – vibrations harmonic.

4.  M has δ– side to right.
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Positively charged ion, I+, flies by M.
I+ starts infinitely far away at 
Passes by M at t = 0.
I+ infinitely far away at

t = −∞

t = +∞

At any time, t,
I+ to M distance = a.

2 2( )a b Vt= +

b = distance of closest approach (called impact parameter).
V = Ion velocity.
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Ion flies by molecule
Coulomb interaction perturbs vibrational states of M.

Model for Interaction

δ– end of M always closer to I+ than positive end of M.

Bond stretch energy lowered
δ– closer to I+.
δ+ further from I+.

Bond contracted opposite
Energy raised.
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Qualitatively Correct Model

Ion causes cubic perturbation of molecule.
Correct symmetry, odd.

Strength of Interaction
Inversely proportional to square of separation.
Coulomb Interaction of charged particle and dipole.

Neglects orientational factor -
but most effect when ion close - angle small.

Strength of interaction time dependent
because distance is time dependent.
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Time Dependent Perturbation
3( ) ( )H t A t x′ =

3
2 2( )

q x
b Vt

=
 + 

q =  a constant (size of dipole, etc.)
x =  position operator for H.O.

M starts in H.O. state       .       

Want probabilities of finding it in states        after I+ flies by.

Time Dependent Perturbation Theory

0

m

M - I+ separation
squared.  Ion - dipole
interaction.
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Take perturbation to be small.
Probability of system being in             . 0 1≅

Probability of system being in             .0m 

Ψ Ψ0 0
m m

ic H ′= −





Therefore,

Zeroth order time
dependent kets.

0 /0 0 iE te−Ψ = 



/0 miE t
m m eΨ = 

For this problem

ket

bra
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Substituting

( )0

2
3 /

2( ( ) )
0 mE Ei t

m
ic m xq

V
e

b t
−−

=
+

 



0 /3
2 2 0

( )( )
mi E t

m
i qc m x e

b Vt
∆−

=
+






Doesn't depend on H.O. coordinate, 
take out of bracket.

0mE∆

( )
0 /

3
22

0
mi E t

m
i ec q m x d t

b Vt

∞ ∆

−∞

−
=

 + 
∫





Multiply through by dt and integrate.

Need to evaluate time independent and time dependent parts.
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Time independent part

( )
1
2

2
x a a

k
ω + = + 

 



3/ 2
3 3( )

2
x a a

k
ω + = + 

 



3 2 2 23 2 3( )a a a a a a a a a a aa a a aa aa++ + + + ++ + ++ = + + + + + + +

3 0m x

Because x3 operates on 

must have more raising operators than lowering. 

Can't lower past 

Can't have lowering operator on right.

30 0 .x⇒

0 .
2 0 0a a+ =

Only terms in red survive.
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3/ 2
3 0

2
m x

k
ω =  

 

 0 0 0m a a a m a a a m a a a+ + + + + + + + + 

3/ 2

1 1 2 1 6 3
2

m m m
k
ω   = + +    



Then

Therefore,
m must be 1 or 3.

Perturbation will only cause scattering to m = 1 and m = 3 states.
Only c3 and c1 are non-zero. (Higher odd powers of x

included in interaction –
population in higher odd
energy levels.)1m = ⇒

3/ 2
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3
2

6
2k
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3m = ⇒
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Time dependent part

( )
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∫
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∫ ∫

 

Integral of odd function.

2 2
0

2 cos( )ay d y
V b y

∞

=
 + 
∫

0mE b
Ve

Vb
π −∆
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Substituting

0 0m m
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E t E Vt ay

V

= =
∆ ∆

= =
 
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Putting the pieces together

10

3
2 /

1 3
2

E b Vqc i e
k Vb
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3
2 /
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2
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
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*
m mc c

3 2
2 2 /*

1 1 1 3 2 29
8

b VP c c q e
k V b

ωω π −= =


3 2
2 6 /*

3 3 3 3 2 26
8

b VP c c q e
k V b

ωω π −= =


10E ω∆ = 

30 3E ω∆ = 

Probabilities

using

using

Probabilities are function of velocity.

Lim 0 andV V→ →∞

P1 and  P3 go to 0.

Must be maximum in between.
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Maximum value of                        as function of V.1 1 1P c c∗=

3 2
21

3 29
8

dP q
dV k b

ω π
=

 ( ) ( )2 / 2 2 / 3
2

1 2 / 2 / 0b V b Ve b V e V
V

ω ωω− − + − =  

1 0b
V
ω

− =

4 3
2 2 0b
V V
ω

− =

max
3 3V bω=

2 2
max 2

3 3 4
2
3 8

qP e
k b

π ω −=


Similarly frequency of transition times
distance of closest approach

max
1P max

3
27
2

P= max max
3 13V V=
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max
1V bω=

2 2
max 2

1 3 4
9

8
qP e

k b
π ω −=



frequency of transition times
distance of closest approach (impact parameter)

Note dependence on impact parameter.



Understanding maximum probabilities as function of V.

Calculate angular frequency when ion near molecule.

M θ
b

a d = Vt

I+

2 2( )a b Vt= + 2 2
sin

( )
Vt

b Vt
θ =

+

When ion very close to point of closest approach

sin
Vt

Vt
b

b
θ θ

θ∴ =

≅

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Vt
b

θ =

For 0 → 1 transition, velocity for max. prob. is

V =  ωb.

Then

bt t
b

ωθ ω= =

Angular velocity – change in angle per unit time.

d
dt
θ ω=
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Angular velocity

d
dt
θ ω=

Looks like charged particle moving by M with angular velocity ω.

Produces E-field changing at
frequency ω.

On resonance efficiently induces transition.

For 0 → 3 transition, velocity for max. prob. is

V =  3ωb

3d
dt
θ ω= Again on resonance.
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0 0( , )  and ( , )I q t F q t
0Hare eigenstates of the time independent Hamiltonian,       .

These are eigenstates in the absence of coupling.

Fermi’s Golden Rule
an important result from time dependent perturbation theory

s0

s1

hν

Dense manifold of vibrational states of ground state – S0.
1012 to 1018 states/cm-1

Radiationless relaxation competes with fluorescence.
Many problems in which an initially prepared state is

coupled to a dense manifold of states.

First consider a pair of coupled state.

, where f = final and i = initial.f iE E E∆ = −
i f

From time dependent perturbation theory

'0 0( , ) ( , )F
iC F q t H I q t= −



H′ is the time dependent piece of the Hamiltonian that couples the eigenstates.
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The time dependence of H′ is given by
'0 0

/' ' /0 0 0 0

( ) / ( ) /'

( , ) ( , ) 0 0

( , ) ( , ) ( ) ( )

0.

f i

f i f i

iE t iE t

i E E t i E E t
fi

F q t H I q t t

F q t H I q t e f q H i q e

e H e z t

−

− −

= <

=

= = ≥





 

The time dependent perturbation is 0 for t < 0, and a constant for t ≥ 0.

The probability of being in the final state is:

f iE E E∆ = −
0

0

0

/

cos sin

sin cos

sin cos

t
i Et

F

t

t

i zC e dt

i z E Et i t dt

i z E Et i t
E E

i z E Et i t i
E

∆= −

∆ ∆ = − +  

∆ ∆ = − − ∆ ∆ 

∆ ∆ = − − + ∆  

∫

∫





  

 

  

 

'0 0( , ) ( , )F
iC F q t H I q t= −


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The probability of finding the system in the final state

2
* 2 2

2 sin cos 1 sin cos

sin cos cos cos

sin sin

F F

z E E E EC C t t i t t
E

E E E Ei t t t t

E Ei t i t

 ∆ ∆ ∆ ∆       = + + +       ∆        
∆ ∆ ∆ ∆       − − −       

       
∆ ∆   + −      

   

   

 

2
*

2

2
1 cosF F

z EC C t
E

∆ = − ∆  

21 cos 2sin ( /2)x x− =
Using

2
* 2

2

4
sin

2F F

z EC C t
E

∆ =  ∆  

Probability of being in the final state 
as a function of t and ∆E.
Only good when             small.*

F FC C
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2
* 2

2

4
sin

2F F

z EC C t
E

∆ =  ∆  
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Probability of being in the final state F.
Must be small – time dependent perturbation theory

Probability must be small to use time dependent perturbation theory.
Take very short time limit.

2 2
*

2F F

z t
C C =



2 2 2

*

2 2

2 41 cos
4F F

z E zC C t
E z

 ∆ +
= − 
∆ +  

Exact solution from time
dependent two state problem,
Chapter 8

Expand exact  solution for short time.  
2

cos 1
2!
xx = − +

2 2 2 2 2

* 2

2 2 2 2

2 41 1
4 2F F

z E z z tC C t
E z

∆ + = − + = ∆ +   

Same at short time.
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z = 20 cm-1

t =  50 fs

2
* 2

2

4
sin

2F F

z EC C t
E

∆ =  ∆  

Square of zeroth order spherical Bessel function.

∆E (cm-1)

2 2

2

z t


This is a plot of the final probability at a single time
with z and t picked to keep final max probability low
as required to use time dependent perturbation theory.
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To this point, initial state coupled to a single final state.

To obtain result for initial state coupled to dense manifold of final states,
make following assumptions – very good for many physical situations.

'0 0 '( ) ( ) fif q H i q H z= =

2.  The coupling bracket 

can vary with f through the manifold of final states.
Take them all to be equal to z, which is now some average value
for the final states couplings to the initial state.

2

2
2

sin
2( ) 4fman

E t

P t z d E
E

ρ
∞

−∞

∆ 
 
 = ∆
∆∫



Probability of being in the manifold
of final states.  Area under Bessel function.
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1.  Most of the transition probability is close to ∆E = 0;  ∆E2 in denominator.
Therefore, take the density of states, ρ, which is a function of energy, 
to be constant with the value at ∆E = 0. 2

* 2
2

4
sin

2F F

z EC C t
E

∆ =  ∆  



2

2
2

sin
2( ) 4fman

E t

P t z d E
E

ρ
∞

−∞

∆ 
 
 = ∆
∆∫



Let

 and 
2 2
E t tx dx d E∆

= = ∆
 

Then
2 2

2

2 sin( )fman

z t xP t dx
x

ρ ∞

−∞

= ∫


2

2
sin xdx

x
π

∞

−∞

=∫

Using

22
( )fman

z
P t t

π ρ
=


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∆E

0

2 2

24
z t
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∆E∆E

0

2 2

24
z t


2 2

2

z t




22
( )fman

z
P t t

π ρ
=



2'0 02( ) ( ) ( )fmanP t f q H i q tπρ
=


The transition probability per unit time is

2'0 02 ( ) ( )k f q H i qπ ρ=


Fermi’s Golden Rule

Rate constant for gain in probability in manifold of final states
equals rate constant for loss of probability from initial state.

Initial state can decay to zero without violating time dependent perturbation
theory approximation because so many states in final manifold that none
gain much probability.  Need not consider coupling among states in manifold.
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Loss of probability from initial state per unit time a constant, k,
then

and
.

i
i

kt
i

d P kP
dt

P e−

= −

= Probability of being in the initial state (population)
decays exponentially.

Radiative contribution, fluorescence, spontaneous emission,
kr (Chapter 12, Einstein A coefficient).

Fluorescence decay ( ) /
0 0( ) r nrk k t tI t I e I e τ− + −= =

1/ r nrk kτ = + τ = fluorescence lifetime

Nonradiative relaxation contribution to decay of 
excited state population, knr, from Fermi’s Golden Rule.

s0

s1

hν
heat
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