## Chapter 9

## Non-degenerate Perturbation Theory

Problem :

$$
\underline{H}\left|\varphi_{n}\right\rangle=E_{n}\left|\varphi_{n}\right\rangle
$$

can't solve exactly.
But

$$
\underline{\boldsymbol{H}}=\underline{\boldsymbol{H}}^{0}+\lambda \underline{\boldsymbol{H}}^{\prime}+\lambda^{2} \underline{\boldsymbol{H}} \underline{ }^{\prime \prime}+\cdots
$$

with

$$
\operatorname{Lim} \lambda \rightarrow 0 \quad \underline{H}^{0}\left|\varphi_{n}^{0}\right\rangle=E_{n}^{0}\left|\varphi_{n}^{0}\right\rangle
$$

Unperturbed eigenvalue problem.
Can solve exactly.
Therefore, know $E_{n}^{0}$ and $\left|\varphi_{n}^{0}\right\rangle$.
$\lambda \underline{\boldsymbol{H}}{ }^{\prime}+\lambda^{2} \underline{\boldsymbol{H}^{\prime}}{ }^{\prime \prime}+\cdots$
called perturbations

## Solutions of

$$
\underline{H}^{0}\left|\varphi_{n}^{0}\right\rangle=E_{n}^{0}\left|\varphi_{n}^{0}\right\rangle
$$

complete, orthonormal set of ket vectors
$\left\{\left|\varphi_{n}^{0}\right\rangle\right\} \Rightarrow\left|\varphi_{0}^{0}\right\rangle,\left|\varphi_{1}^{0}\right\rangle,\left|\varphi_{2}^{0}\right\rangle \ldots$
with eigenvalues $E_{0}^{0}, E_{1}^{0}, E_{2}^{0}, \cdots$ and

$$
\begin{aligned}
&\left\langle\varphi_{n}^{0} \mid \varphi_{m}^{0}\right\rangle= \delta_{m n} \\
& \text { Kronecker delta } \\
& \delta_{n m}= \begin{cases}1 & n=m \\
0 & n \neq m\end{cases}
\end{aligned}
$$

## Expand wavefunction

$\left|\varphi_{n}\right\rangle=\left|\varphi_{n}^{0}\right\rangle+\lambda\left|\varphi_{n}^{\prime}\right\rangle+\lambda^{2}\left|\varphi_{n}^{\prime \prime}\right\rangle+\cdots$
and
$E_{n}=E_{n}^{0}+\lambda E_{n}^{\prime}+\lambda^{2} E_{n}^{\prime \prime}+\cdots$
also have
$\underline{\boldsymbol{H}}=\underline{\boldsymbol{H}}^{0}+\lambda \underline{\boldsymbol{H}}^{\prime}+\lambda^{2} \underline{\boldsymbol{H}}^{\prime \prime}+\cdots$
Have series for

$$
\underline{\boldsymbol{H}} \quad\left|\varphi_{n}\right\rangle \quad \boldsymbol{E}_{n}
$$

Substitute these series into the original eigenvalue equation

$$
\underline{\boldsymbol{H}}\left|\varphi_{n}\right\rangle=\boldsymbol{E}_{n}\left|\varphi_{n}\right\rangle
$$

Sum of infinite number of terms for all powers of $\lambda$ equals $\mathbf{0}$.

$$
\begin{aligned}
& \left(\underline{\boldsymbol{H}}^{0}\left|\varphi_{n}^{0}\right\rangle-E_{n}^{0}\left|\varphi_{n}^{0}\right\rangle\right) \lambda^{0}+\left(\underline{\boldsymbol{H}}^{0}\left|\varphi_{n}^{\prime}\right\rangle+\underline{\boldsymbol{H}}^{\prime}\left|\varphi_{n}^{0}\right\rangle-E_{n}^{0}\left|\varphi_{n}^{\prime}\right\rangle-E_{n}^{\prime}\left|\varphi_{n}^{0}\right\rangle\right) \lambda \\
& \quad+\left(\underline{\boldsymbol{H}}^{0}\left|\varphi_{n}^{\prime \prime}\right\rangle+\underline{\boldsymbol{H}}^{\prime}\left|\varphi_{n}^{\prime}\right\rangle+\underline{\boldsymbol{H}}^{\prime}\left|\varphi_{n}^{0}\right\rangle-E_{n}^{0}\left|\varphi_{n}^{\prime \prime}\right\rangle-E_{n}^{\prime}\left|\varphi_{n}^{\prime}\right\rangle-E_{n}^{\prime \prime}\left|\varphi_{n}^{0}\right\rangle\right) \lambda^{2} \\
& +\cdots=0
\end{aligned}
$$

Coefficients of the individual powers of $\lambda$ must equal 0 .
zeroth order - $\lambda^{0} \quad \underline{\boldsymbol{H}}^{0}\left|\varphi_{n}^{0}\right\rangle-E_{n}^{0}\left|\varphi_{n}^{0}\right\rangle=\mathbf{0}$
first

$\begin{aligned} & \text { second } \\ & \text { order }-\lambda^{2}\end{aligned} \underline{H}^{0}\left|\varphi_{n}^{\prime \prime}\right\rangle+\underline{H}^{\prime}\left|\varphi_{n}^{\prime}\right\rangle+\underline{H}^{\prime \prime}\left|\varphi_{n}^{0}\right\rangle-E_{n}^{0}\left|\varphi_{n}^{\prime \prime}\right\rangle-E_{n}^{\prime}\left|\varphi_{n}^{\prime}\right\rangle-E_{n}^{\prime \prime}\left|\varphi_{n}^{0}\right\rangle=0$

## First order correction

$$
\begin{aligned}
& \underline{\boldsymbol{H}}^{0}\left|\varphi_{n}^{\prime}\right\rangle-E_{n}^{0}\left|\varphi_{n}^{\prime}\right\rangle=\left(E_{n}^{\prime}-\underline{\boldsymbol{H}^{\prime}}\right)\left|\varphi_{n}^{0}\right\rangle \\
& \text { Want to find } E_{n}^{\prime} \text { and }\left|\varphi_{n}^{\prime}\right\rangle \text {. }
\end{aligned}
$$

$$
\text { Expand }\left|\varphi_{n}^{\prime}\right\rangle
$$

$$
\left|\varphi_{n}^{\prime}\right\rangle=\sum_{i} c_{i}\left|\varphi_{i}^{0}\right\rangle \longleftarrow \text { also substituting }
$$

Then
$\underline{\boldsymbol{H}}^{0}\left|\varphi_{n}^{\prime}\right\rangle=\sum_{i} c_{i} \underline{\boldsymbol{H}}^{0}\left|\varphi_{i}^{0}\right\rangle=\sum_{i} c_{i} E_{i}^{0}\left|\varphi_{i}^{0}\right\rangle \quad$ Substituting this result.

After substitution

$$
\sum_{i} c_{i}\left(E_{i}^{0}-E_{n}^{0}\right)\left|\varphi_{i}^{0}\right\rangle=\left(E_{n}^{\prime}-\underline{H}^{\prime}\right)\left|\varphi_{n}^{0}\right\rangle
$$

## After substitution

$$
\sum_{i} c_{i}\left(E_{i}^{0}-E_{n}^{0}\right)\left|\varphi_{i}^{0}\right\rangle=\left(E_{n}^{\prime}-\underline{H}^{\prime}\right)\left|\varphi_{n}^{0}\right\rangle
$$

## Left multiply by

$$
\begin{aligned}
& \left\langle\varphi_{n}^{0}\right| \\
& \left\langle\varphi_{n}^{0}\right| \sum_{i} c_{i}\left(E_{i}^{0}-E_{n}^{0}\right)\left|\varphi_{i}^{0}\right\rangle=\left\langle\varphi_{n}^{0}\right|\left(E_{n}^{\prime}-\underline{H}^{\prime}\right)\left|\varphi_{n}^{0}\right\rangle \\
& \sum_{i} c_{i}\left(E_{i}^{0}-E_{n}^{0}\right)\left\langle\varphi_{n}^{0} \mid \varphi_{i}^{0}\right\rangle=\left\langle\varphi_{n}^{0}\right|\left(E_{n}^{\prime}-\underline{H}^{\prime}\right)\left|\varphi_{n}^{0}\right\rangle \\
& \left\langle\varphi_{n}^{0} \mid \varphi_{i}^{0}\right\rangle=0 \quad \begin{array}{l}
\text { unless } n=i, \\
\text { but then }
\end{array} \\
& E_{n}^{0}-E_{n}^{0}=\mathbf{0}
\end{aligned}
$$

Therefore, the left side is 0 .

We have

$$
\begin{aligned}
& \left\langle\varphi_{n}^{0}\right|\left(E_{n}^{\prime}-\underline{H}^{\prime}\right)\left|\varphi_{n}^{0}\right\rangle=0 \\
& \longrightarrow\left\langle\varphi_{n}^{0}\right| E_{n}^{\prime}\left|\varphi_{n}^{0}\right\rangle-\left\langle\varphi_{n}^{0}\right| \underline{H}^{\prime}\left|\varphi_{n}^{0}\right\rangle=0
\end{aligned}
$$



Then

$$
E_{n}=E_{n}^{0}+\lambda E_{n}^{\prime}
$$

Absorbing $\lambda$ into $H_{n n}^{\prime}$ and $E_{n}^{\prime}$

$$
\begin{aligned}
& \boldsymbol{E}_{n}=\boldsymbol{E}_{n}^{0}+\boldsymbol{E}_{n}^{\prime} \\
& \boldsymbol{E}_{n}^{\prime}=\left\langle\boldsymbol{\varphi}_{n}^{0}\right| \underline{\boldsymbol{H}}^{\prime}\left|\varphi_{n}^{0}\right\rangle=\boldsymbol{H}_{n n}^{\prime}
\end{aligned}
$$

The first order correction to the energy is the expectation value of $\underline{H}^{\prime}$.

First order correction to the wavefunction
Again using the equation obtained after substituting series expansions

$$
\sum_{i} c_{i}\left(E_{i}^{0}-E_{n}^{0}\right)\left|\varphi_{i}^{0}\right\rangle=\left(E_{n}^{\prime}-\underline{H}^{\prime}\right)\left|\varphi_{n}^{0}\right\rangle
$$

Left multiply by $\left\langle\varphi_{j}^{0}\right|$

$$
\begin{array}{r}
\left\langle\varphi_{j}^{0}\right| \sum_{i} c_{i}\left(E_{i}^{0}-E_{n}^{0}\right)\left|\varphi_{i}^{0}\right\rangle=\left\langle\varphi_{j}^{0}\right|\left(E_{n}^{\prime}-\underline{H}^{\prime}\right)\left|\varphi_{n}^{0}\right\rangle \\
\text { Equals zero unless } i=j .
\end{array}
$$

$$
c_{j}\left(E_{j}^{0}-E_{n}^{0}\right)=\left\langle\varphi_{j}^{0}\right|\left(E_{n}^{\prime}-\underline{H}^{\prime}\right)\left|\varphi_{n}^{0}\right\rangle
$$

$$
c_{j}\left(E_{j}^{0}-E_{n}^{0}\right)=-\left\langle\left\langle\varphi_{j}^{0}\right| \underline{H}^{\prime} \mid \varphi_{n}^{0}\right\rangle
$$

$$
c_{j}=\frac{\left\langle\varphi_{j}^{0}\right| \underline{H}^{\prime}\left|\varphi_{n}^{0}\right\rangle}{\left(E_{n}^{0}-E_{j}^{0}\right)} \quad j \neq \boldsymbol{n}
$$

Coefficients in expansion of ket in terms of the zeroth order kets.

$$
\begin{array}{ll}
c_{j}=\frac{\left\langle\varphi_{j}^{0}\right| \underline{H}^{\prime}\left|\varphi_{n}^{0}\right\rangle}{\left(E_{n}^{0}-E_{j}^{0}\right)} & j \neq n \\
c_{j}=\frac{H^{\prime}{ }_{j n}}{\left(E_{n}^{0}-E_{j}^{0}\right)} & H^{\prime}{ }_{j n} \text { is the bracket of } \underline{H}^{\prime} \text { with }\left\langle\varphi_{j}^{0}\right| \text { and }\left|\varphi_{n}^{0}\right\rangle .
\end{array}
$$

Therefore

$$
\left|\varphi_{n}\right\rangle=\left|\varphi_{n}^{0}\right\rangle+\sum_{j}^{\prime} \frac{H_{j n}^{\prime}}{\left(E_{n}^{0}-E_{j}^{0}\right)}\left|\varphi_{j}^{0}\right\rangle \quad \begin{array}{ll}
\text { zeroth order ket } & \\
j \neq n .
\end{array}
$$

The prime on the sum mean

## First order corrections

$$
\begin{array}{ll}
E_{n}=E_{n}^{0}+H_{n n}^{\prime}+\cdots & H_{n n}^{\prime}=\left\langle\varphi_{n}^{0}\right| H^{\prime}\left|\varphi_{n}^{0}\right\rangle \\
\left|\varphi_{n}\right\rangle=\left|\varphi_{n}^{0}\right\rangle+\sum_{j}^{\prime} \frac{H_{j n}^{\prime}}{\left(E_{n}^{0}-E_{j}^{0}\right)}\left|\varphi_{j}^{0}\right\rangle+\cdots & \boldsymbol{H}_{j n}^{\prime}=\left\langle\varphi_{j}^{0}\right| \boldsymbol{H}^{\prime}\left|\varphi_{n}^{0}\right\rangle
\end{array}
$$

## Second Order Corrections

Using $\lambda^{2}$ coefficient

$$
\text { Expanding }\left|\varphi_{n}^{\prime}\right\rangle \quad\left|\varphi_{n}^{\prime \prime}\right\rangle
$$

Substituting and following same type of procedures yields

$$
E_{n}^{\prime \prime}=\sum_{i}^{\prime} \frac{H_{n i}^{\prime} H_{i n}^{\prime}}{\left(E_{n}^{0}-E_{i}^{0}\right)}+H_{n n}^{\prime \prime} \quad \begin{gathered}
\lambda^{2} \text { coefficients have been absorbed. } \\
H_{n i}^{\prime} H_{i n}^{\prime}=\left\langle\varphi_{n}^{0}\right| \underline{H}^{\prime}\left|\varphi_{i}^{0}\right\rangle\left\langle\varphi_{i}^{0}\right| \underline{H}^{\prime}\left|\varphi_{n}^{0}\right\rangle
\end{gathered}
$$

Second order correction due to first order piece of $\underline{\boldsymbol{H}}$.

Second order correction due to an additional second order piece of $\underline{\boldsymbol{H}}$.

$$
\left|\varphi_{n}^{\prime \prime}\right\rangle=\sum_{k}^{\prime}\left[\sum_{m}^{\prime} \frac{\boldsymbol{H}_{k m}^{\prime} \boldsymbol{H}_{m n}^{\prime}}{\left(E_{n}^{0}-E_{k}^{0}\right)\left(E_{n}^{0}-E_{m}^{0}\right)}-\frac{\left.\boldsymbol{H}_{n n}^{\prime} \boldsymbol{H}_{k n}^{\prime}\right]}{\left(E_{n}^{0}-E_{k}^{0}\right)^{2}}\right]\left|\varphi_{k}^{0}\right\rangle+\sum_{k}^{\prime} \frac{H_{k n}^{\prime \prime}}{\left(E_{n}^{0}-E_{k}^{0}\right)}\left|\varphi_{k}^{0}\right\rangle
$$

Second order correction due to first order piece of $\underline{\boldsymbol{H}}$.

Second order correction due to an additional second order piece of $\underline{\boldsymbol{H}}$.

## Energy and Ket Corrected to First and Second Order

$$
\begin{aligned}
E= & E^{0}+H_{n n}^{\prime}+\sum_{i}^{\prime} \frac{H_{n i}^{\prime} H_{i n}^{\prime}}{\left(E_{n}^{0}-E_{i}^{0}\right)}+H_{n n}^{\prime \prime}+\cdots \\
\left|\varphi_{n}\right\rangle= & \left|\varphi_{n}^{0}\right\rangle \\
& +\sum_{j}^{\prime} \frac{H_{j n}^{\prime}}{\left(E_{n}^{0}-E_{j}^{0}\right)}\left|\varphi_{j}^{0}\right\rangle+\sum_{k}^{\prime}\left[\sum_{m}^{\prime} \frac{H_{k m}^{\prime} H_{m n}^{\prime}}{\left(E_{n}^{0}-E_{k}^{0}\right)\left(E_{n}^{0}-E_{m}^{0}\right)}-\frac{H_{n n}^{\prime} H_{k n}^{\prime}}{\left(E_{n}^{0}-E_{k}^{0}\right)^{2}}\right]\left|\varphi_{k}^{0}\right\rangle \\
& \quad+\sum_{k}^{\prime} \frac{H_{k n}^{\prime \prime}}{\left(E_{n}^{0}-E_{k}^{0}\right)}\left|\varphi_{k}^{0}\right\rangle+\cdots
\end{aligned}
$$

Example: $x^{3}$ and $x^{4}$ perturbation of the Harmonic Oscillator


Vibrational potential of molecules not harmonic. Approximately harmonic near potential minimum. Expand potential in power series.

First additional terms in potential after $x^{2}$ term are $x^{3}$ and $x^{4}$.

$$
\begin{aligned}
& \underline{H}=\frac{\underline{p}^{2}}{2 m}+\frac{1}{2} k \underline{x}^{2}+c \underline{x}^{3}+q \underline{x}^{4} \\
& \underline{H}^{0}=\frac{\underline{p}^{2}}{2 m}+\frac{1}{2} k \underline{x}^{2} \quad \text { huartic "force constant" "force constant" } \\
& \underline{H}^{0}=\frac{1}{2} \hbar \omega\left(\underline{a G}^{+}+\underline{a}^{+} \underline{a}\right) \\
& E^{0}=\left(n+\frac{1}{2}\right) \hbar \omega_{0} \quad \text { zeroth order eigenvalues oscillator - know solutions } \\
& |n\rangle \quad \text { zeroth order eigenkets }
\end{aligned}
$$

$\underline{H}^{\prime}=\boldsymbol{c} \underline{\boldsymbol{x}}^{3}+\boldsymbol{q} \underline{\underline{x}}^{4}$
perturbation
$c$ and $q$ are expansion coefficients like $\lambda$.
When $c$ and $\boldsymbol{q} \rightarrow \mathbf{0}, \underline{H} \rightarrow \underline{H}_{0}$

$$
\begin{aligned}
H_{n n}^{\prime} & =\langle n| \underline{H}^{\prime}|n\rangle \\
& =\langle n| c \underline{x}^{3}+\boldsymbol{q} \underline{x}^{4}|n\rangle \\
& =c\langle n| \underline{x}^{3}|n\rangle+\boldsymbol{q}\langle n| \underline{x}^{4}|n\rangle
\end{aligned}
$$

In Dirac representation

$$
\underline{x}=\left(\frac{\hbar \omega_{0}}{2 k}\right)^{\frac{1}{2}}\left(\underline{a}+\underline{a}^{+}\right)
$$

First consider cubic term.

$$
\underline{x}^{3} \propto\left(\underline{a}+\underline{a}^{+}\right)^{3}
$$

Multiply out. Many terms.
$\underline{a}^{3}, \underline{a}^{2} \underline{a}^{+}, \underline{\boldsymbol{a}} \underline{a}^{+} \underline{\boldsymbol{a}}, \cdots \underline{\boldsymbol{a}}^{+3}$.
None of the terms have the same number of raising and lowering operators.
$\langle n| \underline{x}^{3}|n\rangle=0 \quad$ (At second order will not be zero.)
$\langle\boldsymbol{n}| \underline{\boldsymbol{x}}^{4}|\boldsymbol{n}\rangle=\frac{\hbar^{2} \omega_{0}^{2}}{4 \boldsymbol{k}^{2}}\langle\boldsymbol{n}|\left(\underline{\boldsymbol{a}}+\underline{\boldsymbol{a}}^{+}\right)^{4}|\boldsymbol{n}\rangle$
$\left(\underline{a}+\underline{a}^{+}\right)^{4}$ has terms with same number of raising and lowering operators.
Therefore, $\langle n| \underline{x}^{4}|n\rangle \neq 0$
Using $\quad a|n\rangle=n^{1 / 2}|n-1\rangle$ and $a^{+}|n\rangle=(n+1)^{1 / 2}|n+1\rangle$

$$
\langle n| \underline{a g a}^{+} \underline{a}^{+}|n\rangle=(n+1)(n+2)
$$

$$
\langle n| \underline{a}^{+} \underline{a}^{+} \underline{a} \underline{a}|n\rangle=n(n-1)
$$

Only terms with the same number of

$$
\langle n| \underline{a} \underline{a}^{+} \underline{a q}^{+}|n\rangle=(n+1)^{2}
$$ raising and lowering operators are non-zero.

$$
\langle n| \underline{a}^{+} \underline{a} \underline{a}^{+} \underline{a}|n\rangle=n^{2}
$$

There are six terms.
$\langle n| \underline{\boldsymbol{a}}^{+} \underline{a}^{+} \underline{a}|n\rangle=n(n+1)$
$\langle n| \underline{a}^{+} \underline{\boldsymbol{a} \underline{a} \underline{a}^{+}}|n\rangle=(n+1) n$

Sum of the six terms
$\langle n|\left(\underline{a}+\underline{a}^{+}\right)^{4}|n\rangle=6\left(n^{2}+n+1 / 2\right)$
Therefore
$H_{n n}^{\prime}=\frac{q \hbar^{2} \omega_{0}^{2}}{k^{2}} \frac{3}{2}\left(n^{2}+n+\frac{1}{2}\right)$
With $\quad \omega_{0}=\sqrt{k / m} \quad k^{2}=\omega_{0}^{4} m^{2}$
$E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega_{0}+q \frac{3}{2}\left(n^{2}+n+\frac{1}{2}\right) \frac{\hbar^{2}}{m^{2} \omega_{0}^{2}}$

Energy levels not equally spaced.
Real molecules, levels get closer together - $q$ is negative.
Correction grows with $\boldsymbol{n}$ faster than zeroth order term

## Perturbation Theory for Degenerate States

$$
\begin{array}{ll}
\underline{H}\left|\varphi_{1}\right\rangle=\boldsymbol{E}\left|\varphi_{1}\right\rangle & \left|\boldsymbol{\varphi}_{1}\right\rangle \text { and }\left|\varphi_{2}\right\rangle \\
\underline{\boldsymbol{H}}\left|\varphi_{2}\right\rangle=\boldsymbol{E}\left|\boldsymbol{\varphi}_{2}\right\rangle & \text { normalize and orthogonal }
\end{array}
$$

$\left|\varphi_{1}\right\rangle$ and $\left|\varphi_{2}\right\rangle$ Degenerate, same eigenvalue, $E$.
If $\quad|\boldsymbol{\psi}\rangle=\boldsymbol{c}_{1}\left|\boldsymbol{\varphi}_{1}\right\rangle+\boldsymbol{c}_{2}\left|\boldsymbol{\varphi}_{2}\right\rangle$
with $\quad \bar{c}_{1} \boldsymbol{c}_{1}+\overline{\boldsymbol{c}}_{2} \boldsymbol{c}_{2}=1$

$$
\underline{\boldsymbol{H}}|\boldsymbol{\psi}\rangle=\boldsymbol{E}|\boldsymbol{\psi}\rangle
$$

Any superposition of degenerate eigenstates is also an eigenstate with the same eigenvalue.
n linearly independent states with same eigenvalue $\longrightarrow$ system $n$-fold degenerate

## Can form $n$ orthonormal $\left|\psi_{i}\right\rangle$ from the $n$ degerate $\left|\varphi_{n}\right\rangle$.

Can form an infinite number of sets of $\left|\psi_{i}\right\rangle$.
Nothing unique about any one set of $\boldsymbol{n}$ degenerate eigenkets.

Want approximate solution to
$\left.\underset{\text { zeroth order }}{\left(\underline{\boldsymbol{H}}^{0}\right.}+\lambda \underline{\boldsymbol{H}}^{\prime}\right)\left|\varphi_{j}\right\rangle=\boldsymbol{E}_{\boldsymbol{j}}\left|\varphi_{j}\right\rangle$
Hamiltonian


But $E_{i}^{0}$ is $\boldsymbol{m}$-fold degenerate.
Call these $\boldsymbol{m}$ eigenkets belonging to the $\boldsymbol{m}$-fold degenerate $\boldsymbol{E}_{1}{ }^{0}$
$\left|\varphi_{1}^{0}\right\rangle,\left|\varphi_{2}^{0}\right\rangle \cdots\left|\varphi_{m}^{0}\right\rangle \quad$ orthonormal

With $E_{1}^{0}=\boldsymbol{E}_{2}^{0}=\cdots=\boldsymbol{E}_{m}^{0} \equiv \boldsymbol{E}_{1}^{0}$

Here is the difficulty
$\lambda \rightarrow 0$

perturbed ket zeroth order ket having eigenvalue, $E_{1}^{0}$
But, $\left|\psi_{i}^{0}\right\rangle$ is a linear combination of the $\left|\varphi_{i}^{0}\right\rangle$.
$\left|\psi_{i}^{0}\right\rangle=c_{1}\left|\varphi_{1}^{0}\right\rangle+c_{2}\left|\varphi_{2}^{0}\right\rangle+\cdots+c_{m}\left|\varphi_{m}^{0}\right\rangle$
We don't know which particular linear combination it is.
$\left|\psi_{i}^{0}\right\rangle$ is the correct zeroth order ket, but we don't know the $c_{i}$.

The correct zero order ket depends on the nature of the perturbation.
$p$ states of the $\mathbf{H}$ atom in external
magnetic field - $\mathbf{p}_{1}, \mathbf{p}_{0}, \mathbf{p}_{-1}$
electric field - $\mathbf{p}_{x}, p_{z}, p_{y}$

To solve problem
Expand $E$ and $\left|\varphi_{i}\right\rangle$

$$
\begin{aligned}
\boldsymbol{E} & =\boldsymbol{E}_{1}^{0}+\lambda \boldsymbol{E}^{\prime}+\cdots \\
\left|\varphi_{i}\right\rangle & =\sum_{j=1}^{m} c_{j}\left|\varphi_{j}^{0}\right\rangle+\lambda\left|\varphi_{i}^{\prime}\right\rangle+\cdots
\end{aligned}
$$

Some superposition, but we don't know the $\boldsymbol{c}_{\boldsymbol{j}}$. $\longrightarrow$ Don't know correct zeroth order function.
Substituting the expansions for $E$ and $\left|\varphi_{i}\right\rangle$ into

$$
\left(\underline{\boldsymbol{H}}^{0}+\lambda \underline{H}^{\prime}\right)\left|\varphi_{i}\right\rangle=E_{i}\left|\varphi_{i}\right\rangle
$$

and obtaining the coefficients of powers of $\lambda$, gives
zeroth order

$$
\underline{\underline{H}}^{0} \sum_{j=1}^{m} c_{j}\left|\varphi_{j}^{0}\right\rangle=E_{1}^{0} \sum_{j=1}^{m} c_{j}\left|\varphi_{j}^{0}\right\rangle
$$

first

$$
\left(\underline{\boldsymbol{H}}^{0}-E_{1}^{0}\right)\left|\varphi_{i}^{\prime}\right\rangle=\sum_{j=1}^{m} c_{j}\left(\boldsymbol{E}^{\prime}-\underline{\boldsymbol{H}}^{\prime}\right)\left|\varphi_{j}^{0}\right\rangle
$$

$\left(\underline{H}^{0}-E_{1}^{0}\right)\left|\varphi_{i}^{\prime}\right\rangle=\sum_{j=1}^{m} c_{j}\left(E^{\prime}-\underline{H}^{\prime}\right)\left|\varphi_{j}^{0}\right\rangle \quad$ To solve
substitute $\left|\varphi_{i}^{\prime}\right\rangle=\sum_{k} A_{k}\left|\varphi_{k}^{0}\right\rangle$
Need $\underline{H}^{\prime}\left|\varphi_{j}^{0}\right\rangle$
Use projection operator $\left|\varphi_{k}^{0}\right\rangle\left\langle\varphi_{k}^{0}\right|$
$\underline{\boldsymbol{H}}^{\prime}\left|\varphi_{j}^{0}\right\rangle=\sum_{k}\left|\varphi_{k}^{0}\right\rangle\left\langle\varphi_{k}^{0}\right| \underline{\boldsymbol{H}}^{\prime}\left|\varphi_{j}^{0}\right\rangle$
The projection operator gives the piece of $\underline{H}^{\prime}\left|\varphi_{j}^{0}\right\rangle$ that is $\left|\varphi_{k}^{0}\right\rangle$ 。
Then the sum over all $\boldsymbol{k}$ gives the expansion of $\underline{H}^{\prime}\left|\varphi_{j}^{0}\right\rangle$ in terms of the $\left|\varphi_{i}^{0}\right\rangle$.
Defining $\underline{H}_{k j}^{\prime}=\left\langle\varphi_{k}^{0}\right| \underline{H}^{\prime}\left|\varphi_{j}^{0}\right\rangle \quad$ Known - know perturbation piece of the Hamiltonian and the zeroth order kets.
$\underline{\boldsymbol{H}}^{\prime}\left|\boldsymbol{\varphi}_{j}^{0}\right\rangle=\sum_{k} \boldsymbol{H}_{k j}^{\prime}\left|\boldsymbol{\varphi}_{k}^{0}\right\rangle$

$$
\begin{aligned}
\left(\underline{H}^{0}-E_{1}^{0}\right)\left|\varphi_{i}^{\prime}\right\rangle & =\sum_{\text {this piece becomes }}^{m} c_{j}\left(E^{\prime}-\underline{H}^{\prime}\right)\left|\varphi_{j}^{0}\right\rangle \\
& \sum_{j=1}^{m} c_{j} \boldsymbol{H}^{\prime}\left|\varphi_{j}^{0}\right\rangle=\sum_{j=1}^{m} \sum_{k} c_{j} \boldsymbol{H}_{k j}^{\prime}\left|\varphi_{k}^{0}\right\rangle
\end{aligned}
$$

Substituting this and $\left|\varphi_{i}^{\prime}\right\rangle=\sum_{k} A_{k}\left|\varphi_{k}^{0}\right\rangle$ gives
$\sum_{k}\left(E_{k}^{0}-E_{1}^{0}\right) A_{k}\left|\varphi_{k}^{0}\right\rangle=\sum_{j=1}^{m} E^{\prime} c_{j}\left|\varphi_{j}^{0}\right\rangle-\sum_{k}\left(\sum_{j=1}^{m} c_{j} \boldsymbol{H}_{k j}^{\prime}\right)\left|\varphi_{k}^{0}\right\rangle$
Result of operating $\underline{H}^{0}$ on the zeroth order kets.

Left multiplying by $\left\langle\varphi_{i}^{0}\right|$
$\sum_{k}\left(E_{k}^{0}-E_{1}^{0}\right) A_{k}\left\langle\varphi_{i}^{0} \mid \varphi_{k}^{0}\right\rangle=\sum_{j=1}^{m} E^{\prime} c_{j}\left\langle\varphi_{i}^{0} \mid \varphi_{j}^{0}\right\rangle-\sum_{k}\left(\sum_{j=1}^{m} c_{j} H_{k j}^{\prime}\right)\left\langle\varphi_{i}^{0} \mid \varphi_{k}^{0}\right\rangle$
$\sum_{k}\left(E_{k}^{0}-E_{1}^{0}\right) A_{k}\left\langle\varphi_{i}^{0} \mid \varphi_{k}^{0}\right\rangle=\sum_{j=1}^{m} E^{\prime} c_{j}\left\langle\varphi_{i}^{0} \mid \varphi_{j}^{0}\right\rangle-\sum_{k}\left(\sum_{j=1}^{m} c_{j} H_{k j}^{\prime}\right)\left\langle\varphi_{i}^{0} \mid \varphi_{k}^{0}\right\rangle$
Correction to the Energies
Two cases: $i \leq m$ (the degenerate states) and $i>m$.
$i \leq m$
Left hand side - sum over $k$ equals zero unless $k=i$.
But with $\boldsymbol{i} \leq m$,
$\boldsymbol{E}_{i}^{0}=\boldsymbol{E}_{1}^{0} \quad$ Therefore, $\boldsymbol{E}_{i}^{0}-\boldsymbol{E}_{1}^{0}=0$
The left hand side of the equation $=0$.
Right hand side, first term non-zero when $j=i$. Bracket $=1$, normalization. Second term non-zero when $k=i$. Bracket $=1$, normalization.

The result is

$$
\sum_{j=1}^{m} \boldsymbol{H}_{i j}^{\prime} \boldsymbol{c}_{\boldsymbol{j}}-\boldsymbol{E}^{\prime} \boldsymbol{C}_{\boldsymbol{i}}=0
$$

We don't know the $c$ 's and the $E$ 's .
$\sum_{j=1}^{m} H_{i j}^{\prime} c_{j}-E^{\prime} c_{i}=0 \quad$ is a system of $\boldsymbol{m}$ of equations for the $c_{j}{ }^{\prime}$ s.

$$
\left(H_{11}^{\prime}-E^{\prime}\right) c_{1}+H_{12}^{\prime} c_{2}+\cdots+H_{1 m}^{\prime} c_{m}=0
$$

$$
H_{21}^{\prime} c_{1}+\left(H_{22}^{\prime}-E^{\prime}\right) c_{2}+\cdots+H_{2 m}^{\prime} c_{m}=0
$$

One equation for each index $i$ of $c_{i}$.
$H_{m 1}^{\prime} \boldsymbol{c}_{1}+H_{m 2}^{\prime} \boldsymbol{c}_{2}+\cdots+\left(H_{m m}^{\prime}-E^{\prime}\right) \boldsymbol{c}_{m}=0$
Besides trivial solution of $c_{1}=c_{2}=\cdots=c_{m}=0$ only get solution if the determinant of the coefficients vanish.

$$
\left|\begin{array}{cccc}
\left(\boldsymbol{H}_{11}^{\prime}-\boldsymbol{E}^{\prime}\right) & \boldsymbol{H}_{12}^{\prime} & \cdots & \boldsymbol{H}_{1 m}^{\prime} \\
\vdots & \left(\boldsymbol{H}_{22}^{\prime}-\boldsymbol{E}^{\prime}\right) & \cdots & \boldsymbol{H}_{2 m}^{\prime} \\
& \vdots & & \vdots \\
\boldsymbol{H}_{m 1}^{\prime} & \boldsymbol{H}_{\boldsymbol{m} 2}^{\prime} & \cdots & \left(\boldsymbol{H}_{m m}^{\prime}-\boldsymbol{E}^{\prime}\right)
\end{array}\right|=0
$$

We know the

$$
\boldsymbol{H}_{j k}^{\prime}=\left\langle\varphi_{j}^{0}\right| \boldsymbol{H}^{\prime}\left|\varphi_{k}^{0}\right\rangle
$$

Have $m^{\text {th }}$ degree equation for the $E$ 's.

Solve $m^{\text {th }}$ degree equation - get the $E_{i}^{\prime} s$. Now have the corrections to energies.
To find the correct zeroth order eigenvectors, one for each $E_{i}^{\prime}$, substitute $E_{i}^{\prime}$ (one at a time) into system of equations.

Get system of equations for the coefficients, $c_{j}$ 's.

$$
\begin{aligned}
& \left(H_{11}^{\prime}-E_{i}^{\prime}\right) c_{1}+H_{12}^{\prime} c_{2}+\cdots+H_{1 m}^{\prime} c_{m}=0 \\
& H_{21}^{\prime} c_{1}+\left(H_{22}^{\prime}-E_{i}^{\prime}\right) c_{2}+\cdots+H_{2 m}^{\prime} c_{m}=0
\end{aligned}
$$

Know the $\boldsymbol{H}_{i j}^{\prime}$.
$H_{m 1}^{\prime} c_{1}+H_{m}^{\prime} c_{2}+\cdots+\left(H_{m m}^{\prime}-E_{i}^{\prime}\right) c_{m}=0$
There are only $\boldsymbol{m}$ - 1 conditions because can multiply everything by constant. Use normalization for $m^{\text {th }}$ condition.
$c_{1}^{*} c_{1},+c_{2}^{*} c_{2},+\cdots+c_{m}^{*} c_{m}=1$
Now we have the correct zeroth order functions.

The solutions to the $\boldsymbol{m}^{\text {th }}$ degree equation (expanding determinant) are
$E_{1,}^{\prime} E_{2,}^{\prime} \cdots E_{m}^{\prime}$
Therefore, to first order, the energies of the perturbed initially degenerate states are
$E_{i}=E_{1}^{0}+E_{i}^{\prime} \quad 1 \leq i \leq m$

Have $m$ different $E_{i}^{\prime} s$ (unless some still degenerate).
With $\quad E_{i} \rightarrow E_{1}^{0}$
as $\quad \lambda \rightarrow 0$

## Correction to wavefunctions

Again using equation found substituting the expansions into the first order equation
$\sum_{k}\left(E_{k}^{0}-E_{1}^{0}\right) A_{k}\left|\varphi_{k}^{0}\right\rangle=\sum_{j=1}^{m} E^{\prime} c_{j}\left|\varphi_{j}^{0}\right\rangle-\sum_{k}\left(\sum_{j=1}^{m} c_{j} H_{k j}^{\prime}\right)\left|\varphi_{k}^{0}\right\rangle$
Left multiply by
$\left\langle\varphi_{i}^{0}\right| \quad i=k>m$ gives 1 gives 0
Orthogonality makes other terms zero.
Normalization gives 1 for non-zero brackets.
$\left(E_{k}^{0}-E_{1}^{0}\right) A_{k}=-\sum_{j=1}^{m} c_{j} H_{k j}^{\prime}$

$$
\sum_{i=1}^{m} c_{j} \boldsymbol{H}_{k j}^{\prime}
$$

Therefore

$$
\overline{\left(E_{1}^{0}-E_{k}^{0}\right)} \quad \begin{aligned}
& \text { Normalization gives } A_{j}=0 \text { for } j \leq m .
\end{aligned}
$$

First order degenerate perturbation theory results

$$
E_{i}=E_{1}^{0}+\lambda E_{i}^{\prime}+\cdots
$$



Correct zeroth order function. Coefficients $c_{k}$ determined from system of equations.

Correction to zeroth order function.

