

Time Dependent Two State Problem

Coupled Pendulums

No friction. No air resistance. Perfect Spring

Some time later -

B swings with full amplitude. A stationary

Electron Transfer Electron moves between metal centers.

Vibrational Transfer Vibration moves between two modes of a molecule.

Electronic Excitation Transfer Electronic excited state moves between two molecules. **Consider two molecules and their lowest two energy levels**

Take molecules to be identical, so later will set

$$\boldsymbol{E}_{A}=\boldsymbol{E}_{B}=\boldsymbol{E}_{0}$$

States of System

 $|A\rangle \equiv$ Molecule A excited B unexcited $|B\rangle \equiv$ Molecule B excited A unexcited $|A\rangle$ and $|B\rangle$ Normalized & Orthogonal

Initially, take there to be NO interaction between them

No "spring"

$$\underline{H}|A\rangle = E_A|A\rangle$$
$$\underline{H}|B\rangle = E_B|B\rangle$$

<u>*H*</u> is time independent. Therefore

$$|A\rangle = e^{-iE_A t/\hbar} |\alpha\rangle$$
$$|B\rangle = e^{-iE_B t/\hbar} |\beta\rangle$$

Time dependent Part of wavefunction

➤ Time independent kets → Spatial wavefunction

Couples states $|A\rangle$ & $|B\rangle$ (Like spring in pendulum problem)

Then energy of molecule A is influenced by B. Energy of $|A\rangle$ determined by both $|A\rangle$ & $|B\rangle$ $|A\rangle$ Will no longer be eigenket of <u>H</u>

Then:

$$\underline{H}|A\rangle = \underline{H}e^{-iE_At/\hbar}|\alpha\rangle = e^{-iE_At/\hbar}\underline{H}|\alpha\rangle$$

But $| \pmb{\alpha}
angle$ & $| \pmb{\beta}
angle$ are coupled

$$\underline{H}|\alpha\rangle = E_A|\alpha\rangle + \gamma|\beta\rangle$$

Coupling strength
 Energy of interaction

Thus:

Coupling strength

$$\underline{H}|A\rangle = \left(E_{A}|\alpha\rangle + \gamma|\beta\rangle\right) e^{-iE_{A}t/\hbar}$$
$$\underline{H}|B\rangle = \left(E_{B}|\beta\rangle + \gamma|\alpha\rangle\right) e^{-iE_{B}t/\hbar}$$

Time dependent phase factors Very Important

For molecules that are identical

$$E_A = E_B = E_0$$

Pick energy scale so:

Therefore

$$\frac{\underline{H}|\alpha\rangle = \gamma|\beta\rangle}{\underline{H}|\beta\rangle = \gamma|\alpha\rangle}$$

 $E_{0} = 0$

Have two kets $|A\rangle \& |B\rangle$ describing states of the system.

Most general state is a superposition

$$|t\rangle = C_1 |A\rangle + C_2 |B\rangle$$

Normalized

May be time dependent

Kets $|A\rangle \& |B\rangle$ have time dependent parts $e^{-iEt/\hbar}$

For case of identical molecules being considered:

$$E_A = E_B = E_0 = 0$$

Then:
$$|A\rangle = |\alpha\rangle$$
 & $|B\rangle = |\beta\rangle$

Any time dependence must be in $C_1 \& C_2$.

Substitute $|t\rangle = C_1 |\alpha\rangle + C_2 |\beta\rangle$ into time dependent Schrödinger Equation: $i\hbar\frac{\partial}{\partial t}|t\rangle = \underline{H}|t\rangle = \underline{H}[C_1|\alpha\rangle + C_2|\beta\rangle]$ Take derivative. $i\hbar\left(\dot{C}_{1}|\alpha\rangle+\dot{C}_{2}|\beta\rangle\right)=C_{1}\gamma|\beta\rangle+C_{2}\gamma|\alpha\rangle \qquad |\alpha\rangle \& |\beta\rangle t \text{ independent}$ $\dot{C}_1 = \frac{\partial C_1}{\partial t} \qquad \dot{C}_2 = \frac{\partial C_2}{\partial t}$ Left multiply by $\langle \alpha |$ normalized $| \alpha \rangle \& | \beta \rangle$ orthogonal $i\hbar\dot{C}_1 = \gamma C$, Left multiply by $\langle \beta |$ $i\hbar\dot{C}_2 = \gamma C_1$ $i\hbar\dot{C}_1 = \gamma C_2$ $i\hbar\dot{C}_2 = \gamma C_1$ Eq. of motion of coefficients Then: $|\alpha\rangle \& |\beta\rangle$ time independent. All time dependence in $C_1 \& C_2$

Solving Equations of Motion:

have:

$$i\hbar\dot{C}_{1} = \gamma C_{2}$$
Take $\frac{d}{dt}$

$$i\hbar\ddot{C}_{1} = \gamma\dot{C}_{2}$$

$$\ddot{C}_{1} = -\frac{i\gamma}{\hbar}\dot{C}_{2}$$

but:

$$\dot{C}_2 = -\frac{i\gamma}{\hbar}C_1$$

then:

$$\ddot{C}_1 = -\frac{\gamma^2}{\hbar^2}C_1$$

Second derivative of function equals negative constant times function – solutions, sin and cos.

 $C_1 = Q \sin(\gamma t/\hbar) + R \cos(\gamma t/\hbar)$

$$C_1 = Q \sin(\gamma t/\hbar) + R \cos(\gamma t/\hbar)$$

And:

$$C_2 = \frac{i\hbar}{\gamma} \dot{C}_1$$

$$C_2 = i \left[Q \cos \gamma t / \hbar - R \sin \gamma t / \hbar \right]$$

$|t\rangle$ normalized

$$\langle t | t \rangle = \mathbf{1} = \left(C_1^* \langle \alpha | + C_2^* \langle \beta | \right) \left(C_1 | \alpha \rangle + C_2 | \beta \rangle \right)$$
$$= C_1^* C_1 + C_2^* C_2$$

 $C_1^*C_1 + C_2^*C_2 = 1$ Sum of probabilities equals 1.

This yields

$$R^2 + Q^2 = 1$$

To go further, need initial condition

Take for t = 0

$$\left.\begin{array}{c}C_1 = 1\\C_2 = 0\end{array}\right\}$$

~

Means: Molecule A excited at t = 0, B not excited. $C_1 = Q\sin(\gamma t/\hbar) + R\cos(\gamma t/\hbar) \qquad C_2 = i \left[Q\cos\gamma t/\hbar - R\sin\gamma t/\hbar \right]$

For t = 0

 $\left.\begin{array}{c}
C_1 = 1 \\
C_2 = 0
\end{array}\right\}$

Means: Molecule A excited at t = 0, B not excited.

 $\Rightarrow R = 1 \& Q = 0$

For these initial conditions:

 $C_1 = \cos(\gamma t/\hbar)$ $C_2 = -i \sin(\gamma t/\hbar)$

probability amplitudes

Projection Operator:

$$|t\rangle = C_1 |A\rangle + C_2 |B\rangle = \cos(\gamma t/\hbar) |A\rangle - i \sin(\gamma t/\hbar) |B\rangle$$

Time dependent coefficients

Consider $|A\rangle\langle A|$

Projection Operator $|A\rangle\langle A|t\rangle = C_1|A\rangle$ Gives piece of $|t\rangle$ that is $|A\rangle$

In general:

$$|S\rangle = \sum_{i} C_{i} |i\rangle$$

$$|k\rangle \langle k | S \rangle = C_{k} |k\rangle$$
Coefficient – Amplitude (for normalized kets)

Consider:

Closed Brackets \rightarrow Number $\langle S | k \rangle \langle k | S \rangle = C_k^* C_k = |C_k|^2$

Absolute value squared of amplitude of particular ket $|\mathbf{k}\rangle$ in superposition $|\mathbf{S}\rangle$.

 $|C_k|^2 \rightarrow$ Probability of finding system in state $|k\rangle$ given that it is in superposition of states $|S\rangle$

Projection Ops. \rightarrow **Probability of finding system in** $|A\rangle$ or $|B\rangle$ given it is in $|t\rangle$

 $|t\rangle = C_1 |A\rangle + C_2 |B\rangle = \cos(\gamma t/\hbar) |A\rangle - i\sin(\gamma t/\hbar) |B\rangle$

 $P_{A} = \langle t | A \rangle \langle A | t \rangle = C_{1}^{*}C_{1} = \cos^{2} \gamma t/\hbar$

$$P_{B} = \langle t | B \rangle \langle B | t \rangle = C_{2}^{*}C_{2} = \sin^{2} \gamma t/\hbar$$

Total probability is always 1 since $\cos^2 + \sin^2 = 1$

$$\gamma \Rightarrow \text{ energy}$$

 $\hbar \Rightarrow \text{ energy-sec}$
 $\frac{\gamma}{\hbar} = \omega \Rightarrow \frac{\text{rad}}{\text{sec}}$

$\boldsymbol{P}_{A} = \langle t A \rangle \langle A t \rangle = 0$	$C_1^*C_1 = \cos^2 \gamma t/\hbar$	
$\boldsymbol{P}_{B} = \langle \boldsymbol{t} \boldsymbol{B} \rangle \langle \boldsymbol{B} \boldsymbol{t} \rangle = 0$	$C_2^*C_2 = \sin^2 \gamma t/\hbar$	
At $t = 0$	$P_{A} = 1$	(A excited)
	$P_B = 0$	(B not excited)
When	$\gamma t/\hbar = \pi/2$	
	$t = h / 4\gamma$	
	$P_A = 0$ $P_B = 1$	(A not excited) (B excited)
	- <i>B</i> - -	

Excitation has transferred from A to B in time $t = h/4\gamma$

At $t = 2h/4\gamma$ (A excited again) (B not excited)

In between times **>** Probability intermediate

Stationary States

Consider two superpositions of $|A\rangle \& |B\rangle$

 $|+\rangle = \frac{1}{\sqrt{2}} (|A\rangle + |B\rangle)$ $|-\rangle = \frac{1}{\sqrt{2}} (|A\rangle - |B\rangle)$

$$\underline{H} |+\rangle = \frac{1}{\sqrt{2}} \left(\underline{H} |A\rangle + \underline{H} |B\rangle \right) \qquad \underline{H} |\alpha\rangle = \gamma |\beta| \\
= \frac{1}{\sqrt{2}} \left(\gamma |B\rangle + \gamma |A\rangle \right) \qquad \underline{H} |\beta\rangle = \gamma |\alpha| \\
\underline{H} |+\rangle = \gamma |+\rangle \qquad \text{Eigenstate, } \gamma \text{ Eigenvalue}$$

Similarly

 $\underline{H}|-\rangle = -\gamma |-\rangle$ Eigenstate, $-\gamma$ Eigenvalue

Observables of Energy Operator

Probability of finding either molecule excited is equal

$$\langle + |A
angle \langle A | +
angle = rac{1}{2}$$

Use projection operators to find probability of being in eigenstate, given that the system is in $|t\rangle$

$$\langle t | + \rangle \langle + | t \rangle = \left[\left(C_1^* \langle A | + C_2^* \langle B | \right) \frac{1}{\sqrt{2}} \left(| A \rangle + | B \rangle \right) \right] \cdot \left[C.C. \right]$$

$$= \frac{1}{\sqrt{2}} \left(C_1^* + C_2^* \right) \frac{1}{\sqrt{2}} (C_1 + C_2)$$
$$= \frac{1}{2} \left[C_1^* C_1 + C_2^* C_2 + C_1^* C_2 + C_2^* C_1 \right]$$

complex conjugate of previous expression

$$=\frac{1}{2}\left[\cos^{2}(\gamma t/\hbar)+\sin^{2}(\gamma t/\hbar)-i\cos(\gamma t/\hbar)\sin(\gamma t/\hbar)+i\sin(\gamma t/\hbar)\cos(\gamma t/\hbar)\right]$$

 $\langle t | + \rangle \langle + | t \rangle = \frac{1}{2}$ Also $\langle t | - \rangle \langle - | t \rangle = \frac{1}{2}$

Make energy measurement \rightarrow equal probability of finding γ or $-\gamma$ $|t\rangle$ is not an eigenstate **Expectation Value**

Half of measurements yield $+\gamma$; half $-\gamma$

Average of one measurement on many systems Expectation

Expectation Value – should be 0.

$$\langle t | \underline{H} | t \rangle = \left(C_1^* \langle A | + C_2^* \langle B | \right) \underline{H} \left(C_1 | A \rangle + C_2 | B \rangle \right)$$

= $C_1^* C_1 \langle \alpha | \underline{H} | \alpha \rangle + C_2^* C_1 \langle \beta | \underline{H} | \alpha \rangle + C_1^* C_2 \langle \alpha | \underline{H} | \beta \rangle + C_2^* C_2 \langle \beta | \underline{H} | \beta \rangle$

Using $\underline{H} |\alpha\rangle = \gamma |\beta\rangle$ $\underline{H} |\beta\rangle = \gamma |\alpha\rangle$

 $= \gamma C_2^* C_1 + \gamma C_1^* C_2$ = $\gamma (i \sin(\gamma t/\hbar) \cos(\gamma t/\hbar) - i \sin(\gamma t/\hbar) \cos(\gamma t/\hbar))$ $\langle t | \underline{H} | t \rangle = 0$ Expectation Value - Time independent

If $E_0 \neq 0$, get E_0

Non-Degenerate Case

$$P_{A} = C_{1}^{*}C_{1} = \frac{\Delta E^{2} + 2\gamma^{2}}{\Delta E^{2} + 4\gamma^{2}} + \frac{2\gamma^{2}}{\Delta E^{2} + 4\gamma^{2}} \cos \frac{\sqrt{\Delta E^{2} + 4\gamma^{2}}}{\hbar} t \qquad \frac{1}{2} + \frac{1}{2}\cos 2x = \cos^{2} x$$
$$P_{B} = C_{2}^{*}C_{2} = \frac{2\gamma^{2}}{\Delta E^{2} + 4\gamma^{2}} \left(1 - \cos \frac{\sqrt{\Delta E^{2} + 4\gamma^{2}}}{\hbar}t\right)$$

As ∆*E* increases → Oscillations Faster Less Probability Transferred

Thermal Fluctuations change $\Delta E \& \gamma$

Excitation of a One Dimensional Lattice

 $|\varphi_j\rangle$ ground state of the j^{th} molecule in lattice (normalized, orthogonal) $|\varphi_j^e\rangle$ excited state of j^{th} molecule

Ground state of crystal with n molecules

 $|\Phi^{g}\rangle = |\varphi_{0}\rangle|\varphi_{1}\rangle|\varphi_{2}\rangle\cdots|\varphi_{n-1}\rangle$ Take ground state to be zero of energy.

Excited state of lattice, j^{th} molecule excited, all other molecules in ground states

 $|\Phi_{j}^{e}\rangle = |\varphi_{0}\rangle|\varphi_{1}\rangle|\varphi_{2}\rangle\cdots|\varphi_{j}^{e}\rangle\cdots|\varphi_{n-1}\rangle$ energy of single molecule in excited state, E^{e}

 $|\Phi_{j}^{e}\rangle$ set of n-fold degenerate eigenstates in the absence of intermolecular interactions because any of the *n* molecules can be excited. **Bloch Theorem of Solid State Physics – Periodic Lattice Eigenstates**

Lattice spacing $-\alpha$

Translating a lattice by any number of lattice spacings, α, lattice looks identical.

Because lattice is identical, following translation Potential is unchanged by translation Hamiltonian unchanged by translation Eigenvectors unchanged by translation

Bloch Theorem – from group theory and symmetry properties of lattices

$$\left| \psi_{p}(x+\alpha) \right\rangle = e^{2\pi i p \alpha/L} \left| \psi_{p}(x) \right\rangle$$

= $e^{ik\alpha} \left| \psi_{p}(x) \right\rangle$

The exponential is the translation operator. It moves function one lattice spacing.

p is integer ranging from 0 to *n*-1. $L = \alpha n$, size of lattice $k = 2\pi p/L$ Any number of lattice translations produces an equivalent function, result is a superposition of the kets with each of the *n* possible translations.

Different number of half wavelengths on lattice.

In two state problem, there were two molecules and two eigenstates. For a lattice, there are *n* molecules, and *n* eigenstates.

There are *n* different orthonormal

$$|\psi(k)\rangle$$

arising from the *n* different values of the integer *p*, which give *n* different values of *k*. $k = 2\pi p/L$ **One dimensional lattice problem with nearest neighbor interactions only**

$$\underline{H} = \underline{H}_{M} + \underline{H}_{j,j\pm 1} \longleftarrow$$

Intermolecular coupling between adjacent molecules.
 Couples a molecule to molecules on either side.
 Like coupling in two state (two molecule) problem.

Molecular Hamiltonian in absence of intermolecular interactions.

$$\underline{H}_{M} = \underline{H}_{M_{1}} + \underline{H}_{M_{2}} + \dots + \underline{H}_{M_{j}} + \dots + \underline{H}_{M_{n-1}}$$

Sum of single molecule Hamiltonians

 $\underline{\boldsymbol{H}}_{M}\left|\boldsymbol{\Phi}_{j}^{e}\right\rangle = \boldsymbol{E}^{e}\left|\boldsymbol{\Phi}_{j}^{e}\right\rangle$

The j^{th} term gives E^e , the other terms give zero because the ground state energy is zero.

$$\underline{\underline{H}}_{M} \left| \psi(k) \right\rangle = \underline{\underline{H}}_{M} \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} e^{ik\alpha j} \left| \Phi_{j}^{e} \right\rangle$$
$$= \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} e^{ik\alpha j} \underline{\underline{H}}_{M} \left| \Phi_{j}^{e} \right\rangle$$
$$\underline{\underline{U}}^{e} \left| u_{j}(\underline{L}) \right\rangle$$

 $= E | \psi(\kappa) \rangle$

In the absence of intermolecular interactions, the energy of an excitation in the lattice is just the energy of the molecular excited state.

Inclusion of intermolecular interactions breaks the excited state degeneracy.

$$\underline{H}_{j,j\pm 1} \left| \Phi_{j}^{e} \right\rangle = \gamma \left| \Phi_{j+1}^{e} \right\rangle + \gamma \left| \Phi_{j-1}^{e} \right\rangle$$

Coupling strength

state with *j*th molecule excited

Operate $\underline{H}_{j,j\pm 1}$ on Bloch states – eigenstates.

$$\underline{H}_{j,j\pm 1}\left|\psi(k)\right\rangle = \underline{H}_{j,j\pm 1}\frac{1}{\sqrt{n}}\sum_{j=0}^{n-1}e^{ik\alpha j}\left|\Phi_{j}^{e}\right\rangle$$

$$=\frac{1}{\sqrt{n}}\sum_{j=0}^{n-1}e^{ik\alpha j}\underline{H}_{j,j\pm 1}\left|\Phi_{j}^{e}\right\rangle$$

$$=\frac{1}{\sqrt{n}}\sum_{j=0}^{n-1}\left[e^{ik\alpha j}\gamma\left|\Phi_{j+1}^{e}\right\rangle+e^{ik\alpha j}\gamma\left|\Phi_{j-1}^{e}\right\rangle\right]$$

$$\underline{H}_{j,j\pm 1} | \psi(k) \rangle = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} \left[e^{ik\alpha j} \gamma \left| \Phi_{j+1}^{e} \right\rangle + e^{ik\alpha j} \gamma \left| \Phi_{j-1}^{e} \right\rangle \right]$$

Each of the terms in the square brackets can be multiplied by

In spite of difference in indices, the sum over *j* is sum over all lattice sites because of cyclic boundary condition.

Therefore, the exp. times ket, summed over all sites $(j) \longrightarrow |\psi(k)\rangle$

Replacing exp. times ket, summed over all sites (j) with $|\psi(k)\rangle$

$$\underline{H}_{j,j\pm 1} |\psi(k)\rangle = e^{-ik\alpha} \gamma |\psi(k)\rangle + e^{ik\alpha} \gamma |\psi(k)\rangle$$
$$= \gamma \Big(e^{ik\alpha} + e^{-ik\alpha} \Big) |\psi(k)\rangle \qquad \text{factor out } \gamma |\psi(k)\rangle$$
$$= 2\gamma \cos(k\alpha) |\psi(k)\rangle$$

Adding this result to

 $\underline{H}_{M}\left|\psi(k)\right\rangle = E^{e}\left|\psi(k)\right\rangle$

Gives the energy for the full Hamiltonian.

 $E(k) = E^e + 2\gamma \cos(k\alpha)$

The nearest neighbor interaction with strength γ breaks the degeneracy.

Result (one dimension, nearest neighbor interaction only, γ)

 $E(k) = E^{e} + 2\gamma \cos(k\alpha)$

 $k \rightarrow$ wave vector – labels levels $\alpha \rightarrow$ lattice spacing

Exciton Band $E(k) = E^{e} + 2\gamma \cos(k\alpha)$

Quasi-continuous Range of energies from 2γ to -2γ

Exciton Transport

Exciton wave packet > more or less localized like free particle wave packet

Dispersion Relation:

$$\omega(k) = \frac{1}{\hbar} E(k) = \frac{1}{\hbar} \Big[E^e + 2\gamma \cos(k\alpha) \Big]$$

Group Velocity:

$$V_{g} = \frac{d\omega(k)}{dk} = -\frac{2\gamma\alpha}{\hbar}\sin(k\alpha)$$

Exciton packet moves with well defined velocity. Coherent Transport.

Thermal fluctuations (phonon scattering) → localization, incoherent transport, hopping