Chapter 8

Time Dependent Two State Problem

Coupled Pendulums

Two normal modes.

No friction. No air resistance. Perfect Spring

Start A Swinging

Some time later -
B swings with full amplitude.
A stationary

Electron Transfer Electron moves between metal centers.

Vibrational Transfer Vibration moves between two modes of a molecule.

Electronic Excitation Transfer Electronic excited state moves between two molecules.

Consider two molecules and their lowest two energy levels

Take molecules to be identical, so later will set

$$
E_{A}=E_{B}=E_{0}
$$

States of System

$$
\begin{aligned}
|\boldsymbol{A}\rangle \equiv & \text { Molecule A excited } \\
& \text { B unexcited } \\
|\boldsymbol{B}\rangle \equiv & \text { Molecule B excited } \\
& \text { A unexcited }
\end{aligned}
$$

$|A\rangle$ and $|B\rangle$ Normalized \& Orthogonal

Initially, take there to be NO interaction between them

No "spring"

$$
\begin{aligned}
& \underline{\boldsymbol{H}}|\boldsymbol{A}\rangle=\boldsymbol{E}_{\boldsymbol{A}}|\boldsymbol{A}\rangle \\
& \underline{\boldsymbol{H}}|\boldsymbol{B}\rangle=\boldsymbol{E}_{\boldsymbol{B}}|\boldsymbol{B}\rangle
\end{aligned}
$$

\underline{H} is time independent. Therefore
$|\boldsymbol{A}\rangle=\boldsymbol{e}^{-i E_{A^{\prime}} / \hbar}|\boldsymbol{\alpha}\rangle$
$|B\rangle=e^{-i E_{B^{t} / \hbar}}|\beta\rangle \quad$ Time independent kets \rightarrow Spatial wavefunction
Time dependent
Part of wavefunction

If molecules reasonably close together

Intermolecular Interactions

Couples states $|\boldsymbol{A}\rangle \boldsymbol{\&}|\boldsymbol{B}\rangle$

(Like spring in pendulum problem)

Then energy of molecule A is influenced by B.
Energy of $|A\rangle$ determined by both $|A\rangle \&|B\rangle$
$|A\rangle$ Will no longer be eigenket of $\underline{\boldsymbol{H}}$

Then:

$$
\underline{\boldsymbol{H}}|A\rangle=\underline{\boldsymbol{H}} e^{-i E_{A} t / \hbar}|\alpha\rangle=e^{-i E_{A} t / \hbar} \underline{H}|\alpha\rangle
$$

But $|\alpha\rangle \&|\beta\rangle$ are coupled

$$
\underline{\boldsymbol{H}}|\alpha\rangle=\boldsymbol{E}_{A}|\alpha\rangle+\gamma|\beta\rangle \quad \underset{\substack{\text { Coupling strength } \\ \text { Energy of interaction }}}{ }
$$

Thus:

$$
\begin{aligned}
& \underline{\boldsymbol{H}}|\boldsymbol{A}\rangle=\left(E_{A}|\alpha\rangle+\gamma|\beta\rangle\right) e^{-i E_{A} / \hbar} \\
& \underline{\boldsymbol{H}}|\boldsymbol{B}\rangle=\left(E_{B}|\beta\rangle+\gamma|\alpha\rangle\right) e^{-i E_{E_{B}} / \hbar} \\
& \underbrace{\text { Very Important }}_{\text {Time dependent phase factors }}
\end{aligned}
$$

For molecules that are identical

$$
E_{A}=E_{B}=E_{0}
$$

Pick energy scale so:

$$
E_{0}=0
$$

Therefore

$$
\begin{aligned}
& \underline{\boldsymbol{H}}|\alpha\rangle=\gamma|\boldsymbol{\beta}\rangle \\
& \underline{\boldsymbol{H}}|\boldsymbol{\beta}\rangle=\gamma|\alpha\rangle
\end{aligned}
$$

Have two kets $|\boldsymbol{A}\rangle \&|B\rangle$ describing states of the system.

Most general state is a superposition

$$
|t\rangle=C_{1}|A\rangle+C_{2}|B\rangle
$$

Normalized
May be time dependent

Kets $|A\rangle \&|B\rangle$ have time dependent parts $e^{-i E t / \hbar}$

For case of identical molecules being considered:

$$
E_{A}=E_{B}=E_{0}=0
$$

Then: $\quad|\boldsymbol{A}\rangle=|\boldsymbol{\alpha}\rangle \&|\boldsymbol{B}\rangle=|\boldsymbol{\beta}\rangle$
Any time dependence must be in $C_{1} \& C_{2}$.

Substitute $|\boldsymbol{t}\rangle=C_{1}|\alpha\rangle+C_{2}|\beta\rangle$ into time dependent Schrödinger Equation:
$i \hbar \frac{\partial}{\partial t}|t\rangle=\underline{H}|t\rangle=\underline{H}\left[C_{1}|\alpha\rangle+C_{2}|\beta\rangle\right] \quad$ Take derivative.
$i \hbar\left(\dot{C}_{1}|\alpha\rangle+\dot{C}_{2}|\beta\rangle\right)=C_{1} \gamma|\beta\rangle+C_{2} \gamma|\alpha\rangle \quad|\alpha\rangle \&|\beta\rangle t$ independent
$\dot{C}_{1}=\frac{\partial C_{1}}{\partial t} \quad \dot{C}_{2}=\frac{\partial C_{2}}{\partial t}$
Left multiply by $\langle\alpha$
$i \hbar \dot{C}_{1}=\gamma C_{2}$
normalized
$|\alpha\rangle \&|\beta\rangle$ orthogonal
Left multiply by $\langle\beta|$
$i \hbar \dot{C}_{2}=\gamma C_{1}$
Then:

$$
\begin{aligned}
& i \hbar \dot{C}_{1}=\gamma C_{2} \quad \text { Eq. of motion of coefficients } \\
& i \hbar \dot{C}_{2}=\gamma C \quad \text {. }
\end{aligned}
$$

$|\alpha\rangle \&|\beta\rangle$ time independent. All time dependence in $C_{1} \& C_{2}$

Solving Equations of Motion:
have:

$$
i \hbar \dot{C}_{1}=\gamma C_{2}
$$

Take $\frac{d}{d t}$

$$
\begin{aligned}
& i \hbar \ddot{C}_{1}=\gamma \dot{C}_{2} \\
& \ddot{C}_{1}=-\frac{i \gamma}{\hbar} \dot{C}_{2}
\end{aligned}
$$

but:

$$
\dot{C}_{2}=-\frac{i \gamma}{\hbar} C_{1}
$$

then:

$$
\ddot{C}_{1}=-\frac{\gamma^{2}}{\hbar^{2}} C_{1}
$$

Second derivative of function equals negative constant times function solutions, sin and cos.
$C_{1}=Q \sin (\gamma t / \hbar)+R \cos (\gamma t / \hbar)$

$$
C_{1}=Q \sin (\gamma t / \hbar)+R \cos (\gamma t / \hbar)
$$

And:

$$
C_{2}=\frac{i \hbar}{\gamma} \dot{C}_{1}
$$

$C_{2}=i[Q \cos \gamma t / \hbar-R \sin \gamma t / \hbar]$
$|t\rangle$ normalized

$$
\left.\begin{array}{rl}
\langle t \mid t\rangle=1 & =\left(C_{1}^{*}\langle\alpha|+C_{2}^{*}\langle\beta|\right)\left(C_{1}|\alpha\rangle+C_{2}|\beta\rangle\right) \\
& =C_{1}^{*} C_{1}+C_{2}^{*} C_{2}
\end{array}\right\} \quad C_{1}^{*} C_{1}+C_{2}^{*} C_{2}=1 \quad \text { Sum of probabilities equals } 1 .
$$

This yields

$$
R^{2}+Q^{2}=1
$$

To go further, need initial condition
Take for $\boldsymbol{t}=0$

$$
\left.\begin{array}{l}
C_{1}=1 \\
C_{2}=0
\end{array}\right\} \quad \begin{aligned}
& \text { Means: Molecule A excited at } t=0, \\
& \text { B not excited. }
\end{aligned}
$$

$$
C_{1}=Q \sin (\gamma t / \hbar)+R \cos (\gamma t / \hbar)
$$

$$
C_{2}=i[Q \cos \gamma t / \hbar-R \sin \gamma t / \hbar]
$$

For $t=0$

$$
\left.\begin{array}{l}
C_{1}=1 \\
C_{2}=0
\end{array}\right\} \quad \begin{aligned}
& \text { Means: Molecule A excited at } t=0, \\
& \text { B not excited. }
\end{aligned}
$$

$$
\rightarrow \quad R=1 \quad \& \quad Q=0
$$

For these initial conditions:

$$
\begin{aligned}
& C_{1}=\cos (\gamma t / \hbar) \\
& C_{2}=-i \sin (\gamma t / \hbar)
\end{aligned}
$$

Projection Operator:

$$
|t\rangle=C_{1}|A\rangle+C_{2}|B\rangle=\cos (\gamma t / \hbar)|A\rangle-i \sin (\gamma t / \hbar)|B\rangle
$$

Consider $|\boldsymbol{A}\rangle\langle\boldsymbol{A}|$
Projection Operator
$|A\rangle\langle\boldsymbol{A} \mid \boldsymbol{t}\rangle=C_{1}|\boldsymbol{A}\rangle \quad$ Gives piece of $|\boldsymbol{t}\rangle$ that is $|\boldsymbol{A}\rangle$

In general:

$$
\begin{aligned}
& |\boldsymbol{S}\rangle=\sum_{i} C_{i}|i\rangle \\
& |\boldsymbol{k}\rangle\langle\boldsymbol{k} \mid \boldsymbol{S}\rangle=C_{k}|\boldsymbol{k}\rangle
\end{aligned}
$$

Coefficient - Amplitude (for normalized kets)

Consider:

Absolute value squared of amplitude of particular ket $|\boldsymbol{k}\rangle$ in superposition $|\boldsymbol{S}\rangle$.
$\left|C_{k}\right|^{2} \quad \rightarrow$ Probability of finding system in state $|k\rangle$ given that it is in superposition of states $|S\rangle$

Projection Ops. \rightarrow Probability of finding system in $|A\rangle$ or $|B\rangle$ given it is in $|t\rangle$
$|t\rangle=C_{1}|A\rangle+C_{2}|B\rangle=\cos (\gamma t / \hbar)|A\rangle-i \sin (\gamma t / \hbar)|B\rangle$
$P_{A}=\langle t \mid A\rangle\langle A \mid t\rangle=C_{1}^{*} C_{1}=\cos ^{2} \gamma t / \hbar$
$P_{B}=\langle t \mid B\rangle\langle B \mid t\rangle=C_{2}^{*} C_{2}=\sin ^{2} \gamma t / \hbar$
Total probability is always 1 since $\cos ^{2}+\sin ^{2}=1$
$\gamma \Rightarrow$ energy
$\hbar \Rightarrow$ energy-sec
$\frac{\gamma}{\hbar}=\omega \Rightarrow \mathrm{rad} / \mathrm{sec}$

$$
\begin{aligned}
& P_{A}=\langle t \mid A\rangle\langle A \mid t\rangle=C_{1}^{*} C_{1}=\cos ^{2} \gamma t / \hbar \\
& P_{B}=\langle\boldsymbol{t} \mid \boldsymbol{B}\rangle\langle B \mid t\rangle=C_{2}^{*} C_{2}=\sin ^{2} \gamma t / \hbar
\end{aligned}
$$

At $\boldsymbol{t}=\mathbf{0}$

$$
\begin{aligned}
& \boldsymbol{P}_{A}=\mathbf{1} \\
& \boldsymbol{P}_{\boldsymbol{B}}=\mathbf{0}
\end{aligned}
$$

(A excited)
(B not excited)
When

$$
\begin{gathered}
\gamma t / \hbar=\pi / 2 \\
t=h / 4 \gamma \\
\boldsymbol{P}_{A}=\mathbf{0} \\
\boldsymbol{P}_{\boldsymbol{B}}=\mathbf{1}
\end{gathered}
$$

(A not excited) (B excited)

Excitation has transferred from A to B in time $t=h / 4 \gamma$

$$
\begin{array}{ll}
\text { At } t=2 h / 4 \gamma \quad \begin{array}{l}
\text { (A excited again) } \\
\text { (B not excited) }
\end{array}
\end{array}
$$

In between times \rightarrow Probability intermediate

Stationary States

Consider two superpositions of $|\boldsymbol{A}\rangle \&|B\rangle$

$$
\begin{array}{ll}
\underline{H}|+\rangle=\frac{1}{\sqrt{2}}(\underline{H}|A\rangle+\underline{H}|B\rangle) & \underline{H}|\alpha\rangle=\gamma|\beta\rangle \\
1 & \underline{H}|\beta\rangle=\gamma|\alpha\rangle
\end{array}
$$

$$
=\frac{1}{\sqrt{2}}(\gamma|B\rangle+\gamma|A\rangle)
$$

$\underline{H}|+\rangle=\gamma|+\rangle \quad$ Eigenstate, γ Eigenvalue
Similarly
$\underline{\boldsymbol{H}}|-\rangle=-\gamma|-\rangle \quad$ Eigenstate, $-\gamma$ Eigenvalue
Observables of Energy Operator

Dimer splitting $\rightarrow 2 \gamma$

Delocalized States

Recall $E_{0}=0$
If $\boldsymbol{E}_{\mathbf{0}}$ not $\mathbf{0}$, splitting still symmetric about E_{0} with splitting 2γ.

Probability of finding either molecule excited is equal

$$
\langle+\mid A\rangle\langle A \mid+\rangle=\frac{1}{2}
$$

Use projection operators to find probability of being in eigenstate, given that the system is in $|t\rangle$

$$
\begin{aligned}
& \begin{aligned}
\langle t \mid+\rangle\langle+\mid t\rangle & =\left[\left(C_{1}^{*}\langle A|+C_{2}^{*}\langle B|\right) \frac{1}{\sqrt{2}}(|A\rangle+|B\rangle)\right] \cdot[C . C .]
\end{aligned} \\
& =\frac{1}{\sqrt{2}}\left(C_{1}^{*}+C_{2}^{*}\right) \frac{1}{\sqrt{2}}\left(C_{1}+C_{2}\right) \quad \begin{array}{l}
\text { complex conjugate } \\
\text { of previous expression }
\end{array} \\
& =\frac{1}{2}\left[C_{1}^{*} C_{1}+C_{2}^{*} C_{2}+C_{1}^{*} C_{2}+C_{2}^{*} C_{1}\right] \\
& =\frac{1}{2}\left[\cos ^{2}(\gamma t / \hbar)+\sin ^{2}(\gamma t / \hbar)-i \cos (\gamma t / \hbar) \sin (\gamma t / \hbar)+i \sin (\gamma t / \hbar) \cos (\gamma t / \hbar)\right] \\
& \begin{aligned}
\langle t \mid+\rangle\langle+\mid t\rangle & =\frac{1}{2} \quad \text { Make energy measurement } \rightarrow \\
\text { Also } & \text { equal probability of finding } \gamma \text { or }-\gamma
\end{aligned} \\
& \langle t \mid-\rangle\langle-\mid t\rangle=\frac{1}{2} \quad|t\rangle \text { is not an eigenstate }
\end{aligned}
$$

Expectation Value

Half of measurements yield $+\gamma$, half $-\gamma$
Average of one measurement on many systems \rightarrow
Expectation Value - should be 0.
$\langle\boldsymbol{t}| \underline{\boldsymbol{H}}|\boldsymbol{t}\rangle=\left(C_{1}^{*}\langle A|+C_{2}^{*}\langle B|\right) \underline{H}\left(C_{1}|A\rangle+C_{2}|B\rangle\right)$

$$
=C_{1}^{*} C_{1}\langle\alpha| \underline{H}|\alpha\rangle+C_{2}^{*} C_{1}\langle\beta| \underline{H}|\alpha\rangle+C_{1}^{*} C_{2}\langle\alpha| \underline{H}|\beta\rangle+C_{2}^{*} C_{2}\langle\beta| \underline{H}|\beta\rangle
$$

Using $\quad \underline{H}|\alpha\rangle=\gamma|\beta\rangle$

$$
\underline{\boldsymbol{H}}|\beta\rangle=\gamma|\alpha\rangle
$$

$$
=\gamma C_{2}^{*} C_{1}+\gamma C_{1}^{*} C_{2}
$$

$$
=\gamma(i \sin (\gamma t / \hbar) \cos (\gamma t / \hbar)-i \sin (\gamma t / \hbar) \cos (\gamma t / \hbar))
$$

$\langle\boldsymbol{t}| \underline{\boldsymbol{H}}|\boldsymbol{t}\rangle=\mathbf{0}$
Expectation Value - Time independent

If $E_{0} \neq 0$, get E_{0}

Non-Degenerate Case

$$
P_{A}=C_{1}^{*} C_{1}=\frac{\Delta E^{2}+2 \gamma^{2}}{\Delta E^{2}+4 \gamma^{2}}+\frac{2 \gamma^{2}}{\Delta E^{2}+4 \gamma^{2}} \cos \frac{\sqrt{\Delta E^{2}+4 \gamma^{2}}}{\hbar} t
$$

$$
\frac{1}{2}+\frac{1}{2} \cos 2 x=\cos ^{2} x
$$

$$
P_{B}=C_{2}^{*} C_{2}=\frac{2 \gamma^{2}}{\Delta E^{2}+4 \gamma^{2}}\left(1-\cos \frac{\sqrt{\Delta E^{2}+4 \gamma^{2}}}{\hbar} t\right)
$$

As ΔE increases \rightarrow Oscillations Faster Less Probability Transferred

Thermal Fluctuations change $\Delta E \& \gamma$

Excitation of a One Dimensional Lattice

$\left|\varphi_{j}\right\rangle$ ground state of the $j^{\text {th }}$ molecule in lattice (normalized, orthogonal)
$\left|\varphi_{j}^{e}\right\rangle$ excited state of $\boldsymbol{j}^{\text {th }}$ molecule
Ground state of crystal with \mathbf{n} molecules

$$
\left|\Phi^{g}\right\rangle=\left|\varphi_{0}\right\rangle\left|\varphi_{1}\right\rangle\left|\varphi_{2}\right\rangle \cdots\left|\varphi_{n-1}\right\rangle \quad \text { Take ground state to be zero of energy. }
$$

Excited state of lattice, $j^{\text {th }}$ molecule excited, all other molecules in ground states

$$
\left|\Phi_{j}^{e}\right\rangle=\left|\varphi_{0}\right\rangle\left|\varphi_{1}\right\rangle\left|\varphi_{2}\right\rangle \cdots\left|\varphi_{j}^{e}\right\rangle \cdots\left|\varphi_{n-1}\right\rangle \quad \begin{aligned}
& \text { energy of single molecule } \\
& \text { in excited state, } E^{e}
\end{aligned}
$$

$\left|\Phi_{j}^{e}\right\rangle \quad$ set of \mathbf{n}-fold degenerate eigenstates in the absence of intermolecular interactions because any of the \boldsymbol{n} molecules can be excited.

Bloch Theorem of Solid State Physics - Periodic Lattice Eigenstates
Lattice spacing - α
Translating a lattice by any number of lattice spacings, α, lattice looks identical.

Because lattice is identical, following translation
Potential is unchanged by translation
Hamiltonian unchanged by translation
Eigenvectors unchanged by translation
Bloch Theorem - from group theory and symmetry properties of lattices

$$
\begin{aligned}
\left|\psi_{p}(x+\alpha)\right\rangle & =e^{2 \pi i p \alpha / L}\left|\psi_{p}(x)\right\rangle & & \begin{array}{l}
\text { The exponential is the translation } \\
\text { operator. It moves function }
\end{array} \\
& =e^{i k \alpha}\left|\psi_{p}(x)\right\rangle & & \text { one lattice spacing. }
\end{aligned}
$$

p is integer ranging from 0 to $\boldsymbol{n - 1}$.
$L=\alpha n$, size of lattice
$k=2 \pi p / L$

Any number of lattice translations produces an equivalent function, result is a superposition of the kets with each of the n possible translations.

$$
|\psi(k)\rangle=\frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} e^{i k \alpha j}\left|\Phi_{j}^{e}\right\rangle \quad \text { Bloch Theorem - eigenstates of lattice }
$$

Normalization so there is only a total of one excited state on entire lattice.
\boldsymbol{k} is a wave vector. Different values of \boldsymbol{k} give different wavelengths.

Different number of half wavelengths on lattice.

In two state problem, there were two molecules and two eigenstates.
For a lattice, there are \boldsymbol{n} molecules, and \boldsymbol{n} eigenstates.
There are \boldsymbol{n} different orthonormal

$$
|\psi(k)\rangle
$$

arising from the \boldsymbol{n} different values of the integer \boldsymbol{p},
which give n different values of $k . \quad k=2 \pi p / L$

One dimensional lattice problem with nearest neighbor interactions only
$\underline{H}=\underline{H}_{M}+\underline{H}_{j, j \pm 1} \longleftarrow$ Intermolecular coupling between adjacent molecules. Couples a molecule to molecules on either side. Like coupling in two state (two molecule) problem.
Molecular Hamiltonian in absence of intermolecular interactions.

$$
\underline{\boldsymbol{H}}_{M}=\underline{\boldsymbol{H}}_{M_{1}}+\underline{\boldsymbol{H}}_{M_{2}}+\cdots+\underline{\boldsymbol{H}}_{M_{j}}+\cdots+\underline{\boldsymbol{H}}_{M_{n-1}}
$$

$$
\underline{H}_{M}\left|\Phi_{j}^{e}\right\rangle=E^{e}\left|\Phi_{j}^{e}\right\rangle \quad \begin{aligned}
& \text { The } j^{\text {th }} \text { term gives } E^{e}, \\
& \text { the other terms give zero because } \\
& \text { the ground state energy is zero. }
\end{aligned}
$$

$$
\begin{aligned}
\underline{H}_{M}|\psi(k)\rangle & =\underline{H}_{M} \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} e^{i k \alpha j}\left|\Phi_{j}^{e}\right\rangle \\
& =\frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} e^{i k \alpha j} \underline{H}_{M}\left|\Phi_{j}^{e}\right\rangle \\
& =E^{e}|\psi(k)\rangle
\end{aligned}
$$

In the absence of intermolecular interactions, the energy of an excitation in the lattice is just the energy of the molecular excited state.

Inclusion of intermolecular interactions breaks the excited state degeneracy.

state with $j^{\text {jh }}$ molecule excited

Operate $\underline{H}_{j, j \pm 1}$ on Bloch states - eigenstates.

$$
\begin{aligned}
\underline{H}_{j, j \pm 1}|\psi(k)\rangle & =\underline{H}_{j, j \pm 1} \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} e^{i k \alpha j}\left|\Phi_{j}^{e}\right\rangle \\
& =\frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} e^{i k \alpha j} \underline{H}_{j, j \pm 1}\left|\Phi_{j}^{e}\right\rangle \\
& =\frac{1}{\sqrt{n}} \sum_{j=0}^{n-1}\left[e^{i k \alpha j} \gamma\left|\Phi_{j+1}^{e}\right\rangle+e^{i k \alpha j} \gamma\left|\Phi_{j-1}^{e}\right\rangle\right]
\end{aligned}
$$

$\underline{H}_{j, j \pm 1}|\psi(k)\rangle=\frac{1}{\sqrt{n}} \sum_{j=0}^{n-1}\left[e^{i k \alpha j} \gamma\left|\Phi_{j+1}^{e}\right\rangle+e^{i k \alpha j} \gamma\left|\Phi_{j-1}^{e}\right\rangle\right]$
Each of the terms in the square brackets can be multiplied by

$$
\begin{aligned}
\underline{H}_{j, j \pm 1}|\psi(k)\rangle & =\frac{1}{\sqrt{n}} \sum_{j=0}^{n-1}[\underbrace{i k \alpha j}_{\text {combining }} e^{i k \alpha} e^{-i k \alpha} \gamma\left|\Phi_{j+1}^{e}\right\rangle+e^{i k \alpha j} \sum_{j}^{-i k \alpha} e^{i k \alpha} \gamma\left|\Phi_{j-1}^{e}\right\rangle] \\
& =\frac{1}{\sqrt{n}} \sum_{j=0}^{n-1}\left[e^{-i k \alpha} \gamma e^{i k \alpha(j+1)}\left|\Phi_{j+1}^{e}\right\rangle+e^{i k \alpha} \gamma e^{i k \alpha(j-1)}\left|\Phi_{j-1}^{e}\right\rangle\right]
\end{aligned}
$$

In spite of difference in indices, the sum over \boldsymbol{j} is sum over all lattice sites because of cyclic boundary condition.

Therefore, the exp. times ket, summed over all sites $(\boldsymbol{j}) \longrightarrow|\psi(\boldsymbol{k})\rangle$

Replacing exp. times ket, summed over all sites (j) with $|\psi(k)\rangle$

$$
\begin{aligned}
\underline{H}_{j, j \pm 1}|\psi(k)\rangle & =e^{-i k \alpha} \gamma|\psi(k)\rangle+e^{i k \alpha} \gamma|\psi(k)\rangle \\
& =\gamma\left(e^{i k \alpha}+e^{-i k \alpha}\right)|\psi(k)\rangle \quad \text { factor out } \gamma|\psi(k)\rangle \\
& =2 \gamma \cos (k \alpha)|\psi(k)\rangle
\end{aligned}
$$

Adding this result to

$$
\underline{H}_{M}|\psi(k)\rangle=E^{e}|\psi(k)\rangle
$$

Gives the energy for the full Hamiltonian.

$$
E(k)=E^{e}+2 \gamma \cos (k \alpha)
$$

The nearest neighbor interaction with strength γ breaks the degeneracy.

Result (one dimension, nearest neighbor interaction only, γ)

$$
E(k)=E^{e}+2 \gamma \cos (k \alpha)
$$

$k \rightarrow$ wave vector - labels levels
$\alpha \rightarrow$ lattice spacing

$$
\text { Exciton Band } \quad E(k)=E^{e}+2 \gamma \cos (k \alpha)
$$

Each state delocalized over entire crystal.

Brillouin zone

Quasi-continuous Range of energies from 2γ to -2γ

Exciton Transport

Exciton wave packet \rightarrow more or less localized like free particle wave packet
Dispersion Relation:

$$
\omega(k)=\frac{1}{\hbar} E(k)=\frac{1}{\hbar}\left[E^{e}+2 \gamma \cos (k \alpha)\right]
$$

Group Velocity:

$$
V_{g}=\frac{d \omega(k)}{d k}=-\frac{2 \gamma \alpha}{\hbar} \sin (k \alpha)
$$

Exciton packet moves with well defined velocity. Coherent Transport.
Thermal fluctuations (phonon scattering)
\Rightarrow localization, incoherent transport, hopping

