Chapter 7

The Hydrogen Atom

The only atom that can be solved exactly.
The results become the basis for understanding all other atoms and molecules. Orbital Angular Momentum - Spherical Harmonics

Nucleus	charge $+\mathrm{Ze} \quad$ mass m_{1} coordinates x_{1}, y_{1}, z_{1}

Electron
charge -e
coordinates x_{2}, y_{2}, z_{2}

The potential arises from the Coulomb interaction between the charged particles.

$$
V=-\frac{Z e^{2}}{4 \pi \varepsilon_{0} r}=-\frac{Z e^{2}}{4 \pi \varepsilon_{0}\left[\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}\right]^{\frac{1}{2}}}
$$

The Schrödinger equation for the hydrogen atom is

$$
\begin{array}{r}
\frac{1}{m_{1}}\left(\frac{\partial^{2} \Psi_{T}}{\partial x_{1}{ }^{2}}+\frac{\partial^{2} \Psi_{T}}{\partial y_{1}{ }^{2}}+\frac{\partial^{2} \Psi_{T}}{\partial \mathrm{z}_{1}{ }^{2}}\right)+\frac{1}{m_{e}}\left(\frac{\partial^{2} \Psi_{T}}{\partial{x_{2}}^{2}}+\frac{\partial^{2} \Psi_{T}}{\partial y_{2}{ }^{2}}+\frac{\partial^{2} \Psi_{T}}{\partial z_{2}{ }^{2}}\right)+\frac{2}{\hbar^{2}}\left(\underset{T}{E_{T}}-\underset{T}{V}\right) \Psi_{T}=0 \\
\text { kinetic energy of nucleus } \quad \text { kinetic energy of electron }
\end{array}
$$

Can separate translational motion of the entire atom from relative motion of nucleus and electron.

Introduce new coordinates
$x, y, z-c e n t e r$ of mass coordinates
$r, \theta, \varphi-p o l a r$ coordinates of second particle relative to the first

$$
\begin{aligned}
& x=\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}} \\
& y=\frac{m_{1} y_{1}+m_{2} y_{2}}{m_{1}+m_{2}} \\
& Z=\frac{m_{1} z_{1}+m_{2} z_{2}}{m_{1}+m_{2}}
\end{aligned}
$$

$$
r \sin \theta \cos \varphi=x_{2}-x_{1}
$$

$$
r \sin \theta \sin \varphi=y_{2}-y_{1}
$$

relative position - polar coordinates

$$
r \cos \theta=z_{2}-z_{1}
$$

Substituting these into the Schrödinger equation. Change differential operators.

$$
\frac{1}{m_{1}+m_{2}}\left(\frac{\partial^{2} \Psi_{T}}{\partial x^{2}}+\frac{\partial^{2} \Psi_{T}}{\partial y^{2}}+\frac{\partial^{2} \Psi_{T}}{\partial z^{2}}\right)+
$$

This term only depends on center of mass coordinates. Other terms only on relative coordinates.

$$
\begin{aligned}
& \frac{1}{\mu}\left\{\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \Psi_{T}}{\partial r}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} \Psi_{T}}{\partial \varphi^{2}}+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \Psi_{T}}{\partial \theta}\right)\right\}+ \\
& \mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}} \quad \text { reduced mass }
\end{aligned}
$$

Try solution

$$
\Psi_{T}(x, y, z, r, \theta, \varphi)=F(x, y, z) \Psi(r, \theta, \varphi)
$$

Substitute and divide by Ψ_{T}

Gives two independent equations

$$
\begin{aligned}
& \frac{\partial^{2} F}{\partial x^{2}}+\frac{\partial^{2} F}{\partial y^{2}}+\frac{\partial^{2} F}{\partial z^{2}}+\frac{2\left(m_{1}+m_{2}\right)}{\hbar^{2}} E_{T r} F=0 \begin{array}{l}
\text { Depends only on center of mass } \\
\text { coordinates. Translation of entire } \\
\text { atom as free particle. Will not } \\
\text { treat further. }
\end{array} \\
& \frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \Psi}{\partial r}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} \Psi}{\partial \varphi^{2}}+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \Psi}{\partial \theta}\right) \\
& \text { With } \quad E_{T}=E_{T r}+E \quad+\frac{2 \mu}{\hbar^{2}}[E-V(r, \theta, \varphi)] \Psi=0 \\
& \begin{array}{l}
\text { Relative positions of particles. Internal } \\
\text { "structure" of } H \text { atom. }
\end{array}
\end{aligned}
$$

In absence of external field $V=V(r)$
Try

$$
\Psi(r, \theta, \varphi)=R(r) \Theta(\theta) \Phi(\varphi)
$$

Substitute this into the Ψ equation and dividing by $R \Theta \Phi$ yields
$\frac{1}{R r^{2}} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)+\frac{1}{\Phi r^{2} \sin ^{2} \theta} \frac{d^{2} \Phi}{d \varphi^{2}}+\frac{1}{\Theta r^{2} \sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d \Theta}{d \theta}\right)+\frac{8 \pi^{2} \mu}{\hbar^{2}}[E-V(r)]=0$
Multiply by $r^{2} \sin ^{2} \theta$. Then second term only depends φ.
$\frac{\sin ^{2} \theta}{R} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)+\frac{1}{\Phi} \frac{d^{2} \Phi}{d \varphi^{2}}+\frac{\sin \theta}{\Theta} \frac{d}{d \theta}\left(\sin \theta \frac{d \Theta}{d \theta}\right)+\frac{8 \pi^{2} \mu r^{2} \sin ^{2} \theta}{\hbar^{2}}[E-V(r)]=0$
Therefore, it must be equal to a constant - call constant $-\boldsymbol{m}^{2}$.

$$
\begin{aligned}
& \frac{1}{\Phi} \frac{d^{2} \Phi}{d \varphi^{2}}=-m^{2} \\
& \text { and } \\
& \frac{d^{2} \Phi}{d \varphi^{2}}=-m^{2} \Phi
\end{aligned}
$$

Dividing the remaining equation by $\sin ^{2} \theta$ leaves
$\frac{1}{R} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)-\frac{m^{2}}{\sin ^{2} \theta}+\frac{1}{\Theta \sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d \Theta}{d \theta}\right)+\frac{2 \mu r^{2}}{\hbar^{2}}(E-V(r))=0$
The second and third terms dependent only on θ.
The other terms depend only on r.
The θ terms are equal to a constant. Call it $-\beta$.
Multiplying by Θ and transposing $-\beta \Theta$, yields
$\frac{1}{\sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d \Theta}{d \theta}\right)-\frac{m^{2} \Theta}{\sin ^{2} \theta}+\beta \Theta=0$
Replacing the second and third terms in the top equation by $-\beta$ and multiplying by R / r^{2} gives

$$
\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)-\frac{\beta}{r^{2}} R+\frac{2 \mu}{\hbar^{2}}\{E-V(r)\} R=0
$$

The initial equation in 3 polar coordinates has been separated into three one dimensional equations.

$$
\begin{aligned}
& \frac{d^{2} \Phi}{d \varphi^{2}}=-m^{2} \Phi \\
& \frac{1}{\sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d \Theta}{d \theta}\right)-\frac{m^{2} \Theta}{\sin ^{2} \theta}+\beta \Theta=0 \\
& \frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)-\frac{\beta}{r^{2}} R+\frac{2 \mu}{\hbar^{2}}\{E-V(r)\} R=0
\end{aligned}
$$

Solve Φ equation. Find it is good for only certain values of \boldsymbol{m}.
Solve Θ equation. Find it is good for only certain values of β.
Solve R equation. Find it is good for only certain values of E.

Solutions of the Φ equation
$\frac{d^{2} \Phi}{d \varphi^{2}}=-m^{2} \Phi \quad \begin{aligned} & \text { Second derivative equals function times negative constant. } \\ & \text { Solutions }-\sin \text { and cos. But can also use }\end{aligned}$
$\Phi_{m}(\varphi)=\frac{1}{\sqrt{2 \pi}} e^{i m \varphi}$
Must be single valued (Born conditions).
$\varphi=0$ and $\varphi=2 \pi$ are same point.
For arbitrary value of $m, e^{i m \varphi} \neq 1$ for $\varphi=2 \pi \quad$ but $=1$ for $\varphi=0$.
$e^{i 2 \pi}=\cos 2 \pi+i \sin 2 \pi=1$
$e^{i n 2 \pi}=1 \quad$ if n is a positive or negative integer or 0 .
Therefore, $e^{\text {im } \varphi}=\mathbf{1}$ if $\varphi=0$

$$
e^{i m \varphi}=1 \text { if } \varphi=2 \pi
$$

and wavefunction is single valued only if m is a positive or negative integer or 0 .
$\Phi_{m}(\varphi)=\frac{1}{\sqrt{2 \pi}} e^{i m \varphi}$
$m=0, \pm 1, \pm 2, \pm 3 \cdots$
m is called the magnetic quantum number.
The functions having the same $|\boldsymbol{m}|$ can be added and subtracted to obtain real functions.
$\Phi_{0}(\varphi)=\frac{1}{\sqrt{2 \pi}} \quad m=0$
$\Phi_{|m|}(\varphi)=\frac{1}{\sqrt{\pi}} \cos |m| \varphi$

$$
|m|=1,2,3 \ldots
$$

$\Phi_{|m|}(\varphi)=\frac{1}{\sqrt{\pi}} \sin |m| \varphi$
The cos function is used for positive m 's and the sin function is used for negative m 's.

Solution of the Θ equation.

$$
\frac{1}{\sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d \Theta}{d \theta}\right)-\frac{m^{2} \Theta}{\sin ^{2} \theta}+\beta \Theta=0
$$

Substitute $z=\cos \theta \quad z$ varies between +1 and -1 .
$P(z)=\Theta(\theta)$ and $\sin ^{2} \theta=1-z^{2}$
$\frac{d \Theta}{d \theta}=\frac{d P}{d z} \frac{d z}{d \theta}=-\frac{d P}{d z} \sin \theta$
$d \mathrm{z}=-\sin \theta d \theta$
$d \theta=-\frac{1}{\sin \theta} d z$.

Making these substitutions yields

The differential equation in terms of $P(z)$

$$
\frac{d}{d z}\left\{\left(1-z^{2}\right) \frac{d P(z)}{d z}\right\}+\left\{\beta-\frac{m^{2}}{1-z^{2}}\right\} P(z)=0 .
$$

This equation has a singularity. Blows up for $z= \pm 1$.
Singularity called Regular Point. Standard method for resolving singularity. The method shows how to find a substitution that eliminates the singularity without changing the final result.

Making the substitution

$$
P(z)=\left(1-z^{2}\right)^{\frac{|m|}{2}} G(z)
$$

removes the singularity and gives a new equation for $G(z)$.

$$
\left(1-z^{2}\right) G^{\prime \prime}-2(|m|+1) z G^{\prime}+\{\beta-|m|(|m|+1)\} G=0
$$

with
$G^{\prime}=\frac{d G}{d z} \quad$ and $\quad G^{\prime \prime}=\frac{\boldsymbol{d}^{2} G}{\boldsymbol{d z ^ { 2 }}}$

Use the polynomial method (like in solution to harmonic oscillator).
$G(z)=a_{0}+a_{1} z+a_{2} z^{2}+a_{3} z^{3}+\cdots$
G^{\prime} and $G^{\prime \prime}$ are found by term by term differentiation of $G(z)$.
Like in the H. O. problem, the sum of all the terms with different powers of z equals 0 .
Therefore, the coefficients of each power of z must each be equal to 0 .
Let $\quad D=\{\beta-|m|(|m|+1)\}$
Then

$$
\begin{array}{ll}
\left\{z^{0}\right\} & 2 a_{2}+D a_{0}=0 \\
\left\{z^{1}\right\} & 6 a_{3}+(D-2(|m|+1)) a_{1}=0 \\
\left\{z^{2}\right\} & 12 a_{4}+(D-4(|m|+1)-2) a_{2}=0 \\
\left\{z^{3}\right\} & 20 a_{5}+(D-6(|m|+1)-6) a_{3}=0
\end{array}
$$

odd and even series
Pick $a_{0}\left(a_{1}=0\right)-$ get even terms. Pick $a_{1}\left(a_{0}=0\right)$ - get odd terms. a_{0} and a_{1} determined by normalization.

The recursion formula is
$a_{v+2}=\frac{(v+|m|)(v+|m|+1)-\beta}{(v+1)(v+2)} a_{v}$

Solution to differential equation, but not good wavefunction if infinite number of terms in series (like H. O.).

To break series off after \boldsymbol{v} ' term
$\beta=\left(v^{\prime}+|m|\right)\left(v^{\prime}+|m|+1\right) \quad v^{\prime}=0,1,2, \cdots \quad$ This quantizes β. The series is even or odd as v^{\prime} is even or odd.

Let
$\ell=v^{\prime}+|m| \quad \ell=\mathbf{0}, 1,2,3, \cdots$
Then

$$
\beta=\ell(\ell+1)
$$

s, p, d, f orbitals
$\Theta(\theta)=\left(1-z^{2}\right)^{\frac{|m|}{2}} G(z)$
$\beta=\ell(\ell+1)$
$G(z)$ are defined by the recursion relation.
$z=\cos \theta$
$\Theta(\theta)$ are the associated
Legendre functions

Since $\beta=\ell(\ell+1)$, we have

$$
\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)+\left[-\frac{\ell(\ell+1)}{r^{2}}+\frac{2 \mu}{\hbar^{2}}(E-V(r))\right] R=0
$$

$V(r)=-\frac{Z e^{2}}{4 \pi \varepsilon_{0} r}$
The potential only enters into the $R(r)$ equation. Z is the charge on the nucleus. One for \mathbf{H} atom. Two for He^{+}, etc.

Make the substitutions

$$
\begin{aligned}
& \alpha^{2}=-\frac{2 \mu E}{\hbar^{2}} \\
& \lambda=\frac{\mu Z e^{2}}{4 \pi \varepsilon_{0} \hbar^{2} \alpha}
\end{aligned}
$$

Introduce the new independent variable
$\rho=2 \alpha r \quad \rho$ is the the distance variable in units of 2α.

Making the substitutions and with

$$
S(\rho)=R(r)
$$

yields

$$
\frac{1}{\rho^{2}} \frac{d}{d \rho}\left(\rho^{2} \frac{d S}{d \rho}\right)+\left(-\frac{1}{4}-\frac{\ell(\ell+1)}{\rho^{2}}+\frac{\lambda}{\rho}\right) S=0 \quad 0 \leq \rho \leq \infty
$$

To solve - look at solution for large $\rho, \quad r \rightarrow \infty$ (like H. O.).
Consider the first term in the equation above.

$$
\frac{1}{\rho^{2}}\left(\frac{d}{d \rho}\left(\rho^{2} \frac{d S}{d \rho}\right)\right)=\frac{1}{\rho^{2}}\left(\rho^{2} \frac{d^{2} S}{d \rho^{2}}+2 \rho \frac{d S}{d \rho}\right)
$$

$$
=\frac{d^{2} S}{d \rho^{2}}+\frac{2}{\rho} \frac{d S}{d \rho}
$$

This term goes to zero as

$$
r \rightarrow \infty
$$

The terms in the full equation divided by ρ and ρ^{2} also go to zero as $r \rightarrow \infty$.

Then, as $r \rightarrow \infty$

$$
\frac{d^{2} S}{d \rho^{2}}=\frac{1}{4} S .
$$

The solutions are

$$
S=e^{-\rho / 2} \quad S=e^{+\rho / 2}
$$

This blows up as $r \rightarrow \infty$ Not acceptable wavefunction.

The full solution is

$$
S(\rho)=e^{-\rho / 2} F(\rho)
$$

Substituting in the original equation, dividing by $e^{-\rho / 2}$ and rearranging gives

$$
F^{\prime \prime}+\left(\frac{2}{\rho}-1\right) F^{\prime}+\left(\frac{\lambda}{\rho}-\frac{\ell(\ell+1)}{\rho^{2}}-\frac{1}{\rho}\right) F=0 \quad 0 \leq \rho \leq \infty
$$

The underlined terms blow up at $\rho=0$. Regular point.

Singularity at $\rho=0$ - regular point, to remove, substitute
$F(\rho)=\rho^{\ell} L(\rho)$
Gives
$\rho L^{\prime \prime}+(2(\ell+1)-\rho) L^{\prime}+(\lambda-\ell-1) L=0$.
Equation for L. Find L, get F. Know F, have $S(\rho)=R(r)$.
Solve using polynomial method.

$$
\begin{array}{ll}
L(\rho)=\sum_{v} a_{v} \rho^{v}=a_{0}+a_{1} \rho+a_{2} \rho^{2}+\cdots \quad & \text { Polynomial expansion for } L . \\
& \text { Get } L^{\prime} \text { and } L^{\prime \prime} \text { by term by term } \\
& \text { differentiation. }
\end{array}
$$

Following substitution, the sum of all the terms in all powers of ρ equal 0 . The coefficient of each power must equal 0 .
$\left\{\rho^{0}\right\} \quad(\lambda-\ell-1) a_{0}+2(\ell+1) a_{1}=0$
$\left\{\rho^{1}\right\} \quad(\lambda-\ell-1-1) a_{1}+[4(\ell+1)+2] a_{2}=0$
Note not separate odd and even series.
$\left\{\rho^{2}\right\} \quad(\lambda-\ell-1-2) a_{2}+[6(\ell+1)+6] a_{3}=0$
Recursion formula
Given a_{0}, all other terms coefficients

$$
a_{v+1}=\frac{-(\lambda-\ell-1-v) a_{v}}{[2(v+1)(\ell+1)+v(v+1)]}
$$ determined. a_{0} determined by normalization condition.

$$
a_{v+1}=\frac{-(\lambda-\ell-1-v) a_{v}}{[2(v+1)(\ell+1)+v(v+1)]}
$$

Provides solution to differential equation, but not good wavefunction if infinite number of terms.

Need to break off after the $\boldsymbol{v}=\boldsymbol{n}$ ' term by taking
$\lambda-\ell-1-n^{\prime}=\mathbf{0}$
or
$\lambda=n \quad$ with $n=n^{\prime}+\ell+1 \quad n$ is an integer.
$n^{\prime} \Longrightarrow$ radial quantum number
$n \Longrightarrow$ total quantum number

$$
\begin{array}{lll}
n=1 & \text { s orbital } & n^{\prime}=0, l=0 \\
n=2 & \text { s, p orbitals } & n^{\prime}=1, l=0 \text { or } n^{\prime}=0, l=1 \\
n=3 & \text { s, p,d orbitals } & n^{\prime}=2, l=0 \text { or } n^{\prime}=1, l=1 \text { or } n^{\prime}=0, l=2
\end{array}
$$

Thus,

$$
R(r)=e^{-\rho / 2} \rho^{\ell} L(\rho)
$$

with

$$
L(\rho)
$$

defined by the recursion relation,
and
$\lambda=n$
$n=n '+\ell+1$
integers

$$
\begin{aligned}
& n=\lambda \quad n=1,2,3, \cdots \\
& \lambda=\frac{\mu Z e^{2}}{4 \pi \varepsilon_{0} \hbar^{2} \alpha} \\
& \alpha^{2}=-\frac{2 \mu E}{\hbar^{2}} \\
& n^{2}=\lambda^{2}=-\frac{\mu Z^{2} e^{4}}{32 \pi^{2} \varepsilon_{0}^{2} \hbar^{2} E} \\
& E_{n}=-\frac{\mu Z^{2} e^{4}}{8 \varepsilon_{0}^{2} h^{2} n^{2}}
\end{aligned}
$$

Energy levels of the hydrogen atom.
Z is the nuclear charge. 1 for \mathbf{H}; 2 for He^{+}, etc.
$a_{0}=\frac{\varepsilon_{0} h^{2}}{\pi \mu e^{2}} \quad a_{0}=5.29 \times 10^{-11} m$
Bohr radius - characteristic length in \mathbf{H} atom problem.
In terms of Bohr radius
$E_{n}=-\frac{Z^{2} \boldsymbol{e}^{2}}{8 \pi \varepsilon_{0} a_{0} \boldsymbol{n}^{2}}$
Lowest energy, 1s, ground state energy, $\mathbf{- 1 3 . 6} \mathbf{~ e V}$.
Rydberg constant
$R_{H}=109,677 \mathrm{~cm}^{-1}$
$E_{n}=-\frac{Z^{2}}{n^{2}} R_{H} h c$
$\boldsymbol{R}_{\infty}=\frac{\boldsymbol{m}_{\boldsymbol{e}} \boldsymbol{e}^{4}}{\mathbf{8} \varepsilon_{0}^{2} \boldsymbol{h}^{3} \boldsymbol{c}} \quad \begin{aligned} & \text { Rydberg constant if proton had infinite mass. } \\ & \text { Replace } \mu \text { with } \boldsymbol{m}_{\mathrm{e}} \cdot \boldsymbol{R}_{\infty}=109,737 \mathrm{~cm}^{-1} .\end{aligned}$

Have solved three one-dimensional equations to get

$$
\Phi_{m}(\varphi) \quad \Theta_{\ell m}(\theta) \quad R_{n \ell}(r)
$$

The total wavefunction is

$$
\begin{aligned}
& \Psi_{n \ell m}(\varphi, \theta, r)=\Phi_{m}(\varphi) \Theta_{\ell m}(\theta) R_{n \ell}(r) \\
& n=1,2,3 \cdots \\
& \ell=n-1, n-2, \cdots 0 \\
& m=\ell, \ell-1 \cdots-\ell
\end{aligned}
$$

$\Phi_{m}(\varphi)$ is given by the expressions in exponential form or in terms of \sin and cos.

$$
\Phi_{m}(\varphi)=\frac{1}{\sqrt{2 \pi}} e^{i m \varphi}
$$

$$
\Phi_{0}(\varphi)=\frac{1}{\sqrt{2 \pi}}
$$

$$
\Phi_{|m|}(\varphi)=\left\{\begin{array}{l}
\frac{1}{\sqrt{\pi}} \cos |m| \varphi \\
\frac{1}{\sqrt{\pi}} \sin |m| \varphi
\end{array} \quad|m|=1,2,3 \cdots\right.
$$

$\Theta_{\ell m}(\theta)$ and $R_{n \ell}(r)$
can be obtained from generating functions (like H. O.). See book.

With normalization constants
$\Theta(\theta)=\sqrt{\frac{(2 \ell+1)}{2} \frac{(\ell-|m|)!}{(\ell+|m|)!}} P_{\ell}^{|m|}(\cos \theta) . \quad$ Associate Legendre Polynomials
Associate Laguerre Polynomials
$R_{n \ell}(r)=-\sqrt{\left(\frac{2 Z}{n a_{0}}\right)^{3} \frac{(n-\ell-1)!}{2 n[(n+\ell)!]^{3}}} e^{-\rho / 2} \rho^{\ell} L_{n+\ell}^{2 \ell+1}(\rho)$
$\rho=2 \alpha r=\frac{2 Z}{a_{0} n} r$

Total Wavefunction

$$
\Psi_{n \ell m}(\varphi, \theta, r)=\Phi_{m}(\varphi) \Theta_{\ell m}(\theta) R_{n \ell}(r)
$$

1s function

$$
\begin{aligned}
& \Psi_{1 s}(\varphi, \theta, r)=\Psi_{100}=\Phi_{0} \Theta_{00} R_{10}=\left(\frac{1}{\sqrt{2 \pi}}\right)\left(\frac{\sqrt{2}}{2}\right)\left(2\left(\frac{Z}{a_{0}}\right)^{\frac{3}{2}} e^{-\rho / 2}\right) \\
& \Psi_{1 s}=\frac{1}{\sqrt{\pi a_{0}^{3}}} e^{-r / a_{0}} \quad \text { for } Z=1
\end{aligned}
$$

No nodes.
2s function

$$
\begin{gathered}
\Psi_{2 s}(\varphi, \theta, r)=\Psi_{200}=\Phi_{0} \Theta_{00} R_{20}=\frac{1}{4 \sqrt{2 \pi a_{0}^{3}}}\left(2-r / a_{0}\right) e^{-r / 2 a_{0}} \\
\text { Node at } r=2 a_{0} .
\end{gathered}
$$

H atom wavefunction - orbital
1s orbital $\quad \psi_{1 s}=A e^{-r / a_{0}} \quad A=\frac{1}{\sqrt{\pi a_{0}^{3}}}$

$$
a_{0}=0.529 \AA \quad \text { the Bohr radius }
$$

The wavefunction is the probability amplitude. The probability is the absolute valued squared of the wavefunction.
$\left|\psi_{1 s}\right|^{2}=A^{2} e^{-2 r / a_{0}} \quad$ This is the probability of finding the electron a distance r from the nucleus on a line where the nucleus is at $r=0$.

The 2s Hydrogen orbital

$$
\begin{aligned}
& \psi_{2 s}=B\left(2-r / a_{0}\right) e^{-r / 2 a_{0}} \quad B=\frac{1}{4 \sqrt{2 \pi a_{0}^{3}}} \quad \begin{array}{c}
\text { Probability } \\
\text { amplitude }
\end{array} \\
& \text { When } r=2 a_{0} \text {, this term goes to zero. } a_{0}=0.529 \text {, the Bohr radius } \\
& \text { There is a "node" in the wave function. }
\end{aligned}
$$

$$
\left|\psi_{2 s}\right|^{2}=\left[B\left(2-r / a_{0}\right) e^{-r / 2 a_{0}}\right]^{2} \quad \begin{aligned}
& \text { Absolute value of the wavefunction } \\
& \text { squared }- \text { probability distribution. }
\end{aligned}
$$

Radial distribution function
Probability of finding electron distance r from the nucleus in a thin spherical shell.

$$
D_{n l}(r)=4 \pi\left[R_{n \ell}(r)\right]^{2} r^{2} d r
$$

For s orbital there is no angular dependence. Still must integrate over angles with the differential operator $\sin \theta d \theta d \rho=4 \pi$

s orbitals $-\ell=0$

1s - no nodes
 2s - 1 node
 3s - 2 nodes

The nodes are radial nodes.

Oxtoby, Freeman, Block

