Chapter 5

Schrödinger Representation - Schrödinger Equation

Time dependent Schrödinger Equation

$$
i \hbar \frac{\partial \Phi(x, y, z, t)}{\partial t}=\underline{H}(x, y, z, t) \Phi(x, y, z, t)
$$

Developed through analogy to Maxwell's equations and knowledge of the Bohr model of the \mathbf{H} atom.

Q.M.

$$
\begin{array}{lll}
\underline{H}=\frac{-\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+V(x) & \text { one dimension } & \text { recall } \quad \underline{p}=-i \hbar \frac{\partial}{\partial x} \\
\underline{\boldsymbol{H}}=\frac{-\hbar^{2}}{2 m} \nabla^{2}+V(x, y, z) & \text { three dimensions } & \nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}
\end{array}
$$

The potential, V, makes one problem different form another H atom, harmonic oscillator.

Getting the Time Independent Schrödinger Equation $\Phi(x, y, z, t) \quad$ wavefunction
$i \hbar \frac{\partial}{\partial t} \Phi(x, y, z, t)=\underline{H}(x, y, z, t) \Phi(x, y, z, t)$
If the energy is independent of time $\longrightarrow \underline{H}(x, y, z)$
Try solution
$\Phi(x, y, z, t)=\phi(x, y, z) F(t) \quad$ product of spatial function and time function
Then

$$
i \hbar \frac{\partial}{\partial t} \phi(x, y, z) F(t)=\underline{H}(x, y, z) \phi(x, y, z) F(t)
$$

$i \hbar \phi(x, y, z) \frac{\partial}{\partial t} F(t)=F(t) \underline{H}(x, y, z) \phi(x, y, z)$
divide through by $\Phi=\phi F$

Can only be true for any x, y, z, t if both sides equal a constant.
Changing t on the left doesn't change the value on the right. Changing x, y, z on right doesn't change value on left.

Equal constant

$$
\frac{i \hbar \frac{d F}{d t}}{F}=E=\frac{H}{\phi}
$$

$\underline{H}(x, y, z) \phi(x, y, z)=E \phi(x, y, z)$

Energy eigenvalue problem - time independent Schrödinger Equation
\underline{H} is energy operator.
Operate on ϕ get ϕ back times a number.
ϕ 's are energy eigenkets; eigenfunctions; wavefunctions.
$E \longrightarrow$ Energy Eigenvalues Observable values of energy

Time Dependent Equation ($\underline{\boldsymbol{H}}$ time independent)

$$
\begin{aligned}
& \frac{i \hbar \frac{d F(t)}{d t}}{F(t)}=E \\
& i \hbar \frac{d F(t)}{d t}=E F(t) \\
& \frac{d F(t)}{F(t)}=-\frac{i}{\hbar} E d t . \quad \text { Integrate both sides }
\end{aligned}
$$

$\ln F=-\frac{i E t}{\hbar}+C \quad$ Take initial condition at $t=0, F=1$, then $C=0$.
$F(t)=e^{-i E t / \hbar}=e^{-i \omega t}$
Time dependent part of wavefunction for time independent Hamiltonian.
Time dependent phase factor used in wave packet problem.

Total wavefunction for time independent Hamiltonian.

$$
\Phi_{E}(x, y, z, t)=\phi_{E}(x, y, z) e^{-i E t / \hbar} \quad \begin{aligned}
& E-\text { energy (observable) that } \\
& \text { labels state. }
\end{aligned}
$$

Normalization
$\left\langle\Phi_{E} \mid \Phi_{E}\right\rangle=\int \Phi_{E}^{*} \Phi_{E} d \tau=\int \phi_{E}^{*} e^{+i E t / \hbar} \phi_{E} e^{-i E t / \hbar} d \tau=\int \phi_{E}^{*} \phi_{E} d \tau$
Total wavefunction is normalized if time independent part is normalized.
Expectation value of time independent operator \underline{S}.
$\langle\underline{S}\rangle=\langle\Phi| \underline{S}|\Phi\rangle=\int \Phi_{E}^{*} \underline{S} \Phi_{E} d \tau=\int \phi_{E}^{*} e^{i E t / \hbar} \underline{S} \phi_{E} e^{-i E t / \hbar} d \tau$
\underline{S} does not depend on $t, e^{-i E t / \hbar}$ can be brought to other side of \underline{S}.
$\langle\Phi| \underline{S}|\Phi\rangle=\int \phi_{E}^{*} \underline{S} \phi_{E} d \tau$
Expectation value is time independent and depends only on the time independent part of the wavefunction.

Equation of motion of the Expectation Value in the Schrödinger Representation Expectation value of operator representing observable for state $|\boldsymbol{S}\rangle$
$\langle\underline{\boldsymbol{A}}\rangle=\langle\boldsymbol{S}| \underline{\boldsymbol{A}}|\boldsymbol{S}\rangle \quad$ example - momentum $\langle\underline{\boldsymbol{P}}\rangle=\langle\boldsymbol{S}| \underline{\boldsymbol{P}}|\boldsymbol{S}\rangle$
In Schrödinger representation, operators don't change in time.
Time dependence contained in wavefunction.
Want Q.M. equivalent of
time derivative of a classical dynamical variable.
$\boldsymbol{P} \longrightarrow \underline{\boldsymbol{P}} \quad$ classical momentum goes over to momentum operator
$\dot{P}=\frac{\partial P}{\partial t} \Rightarrow$?
want Q.M. operator equivalent of time derivative
Definition: \quad The time derivative of the operator \underline{A}, i. e., $\underline{\dot{A}}$ is defined to mean an operator whose expectation in any state $|S\rangle$ is the time derivative of the expectation of the operator $\underline{\boldsymbol{A}}$.

Want to find

$$
\frac{d\langle\underline{A}\rangle}{d t}=\frac{\partial}{\partial t}\langle S| \underline{A}|S\rangle
$$

Use $\quad \underline{H}|S\rangle=i \hbar \frac{\partial}{\partial t}|S\rangle \quad$ time dependent Schrödinger equation.
$\frac{\partial}{\partial t}\langle\boldsymbol{S}| \underline{A}|S\rangle=\left(\frac{\partial}{\partial t}\langle\boldsymbol{S}|\right) \underline{A}|S\rangle+\langle\boldsymbol{S}| \underline{\mathcal{A}} \frac{\partial}{\partial t}|S\rangle \quad$ product rule

Use the complex \&onjugqte of the Schrödinger equation $\langle\boldsymbol{S}| \underline{H}=-i \hbar \frac{\partial}{\partial t}\langle\boldsymbol{S}|$.
Then $\left(\frac{\partial}{\partial t}\langle s|\right)=\frac{\boldsymbol{i}}{\hbar}\langle\boldsymbol{s}| \underline{H}$, and from the Schrödinger equation (operate to left)

$$
\frac{\partial}{\partial t}|S\rangle=\frac{-i}{\hbar} \underline{H}|S\rangle \quad \frac{\partial}{\partial t}\langle S| \underline{A}|S\rangle=\frac{i}{\hbar}\langle S| \underline{H} \underline{A}|S\rangle-\frac{i}{\hbar}\langle S| \underline{A} \underline{H}|S\rangle
$$

$$
\frac{\partial}{\partial t}\langle S| \underline{A}|S\rangle=\frac{i}{\hbar}[\langle S| \underline{H} \underline{A}|S\rangle-\langle S| \underline{A H}|S\rangle]
$$

Therefore

$$
\begin{aligned}
\frac{d\langle\underline{A}\rangle}{d t} & \left.=\frac{i}{\hbar}\langle S| \underline{H} \underline{A}-\underline{A H} \right\rvert\, \widetilde{S\rangle=\frac{i}{\hbar}}[\underline{H}, \underline{A}] \\
\dot{A} & =\frac{i}{\hbar}[\underline{H}, \underline{A}]
\end{aligned}
$$

The operator representing the time derivative of an observable is i / \hbar times the commutator of \underline{H} with the observable.

Solving the time independent Schrödinger equation

The free particle

momentum problem

$$
\begin{aligned}
& \underline{P}|P\rangle=p|P\rangle \\
& \psi_{p}(x)=\frac{1}{\sqrt{2 \pi}} e^{i k x} \quad p=\hbar k \quad k=p / \hbar
\end{aligned}
$$

Free particle Hamiltonian - no potential $-\boldsymbol{V}=\mathbf{0}$.
$\underline{H}=\frac{\underline{P}^{2}}{2 m}$
Commutator of \underline{H} with \underline{P}
$[\underline{P}, \underline{H}]=\frac{\underline{P}^{3}}{2 m}-\frac{\underline{P}^{3}}{2 m}=0 \quad \underline{P}^{3}|S\rangle=\underline{P} \underline{P} \underline{P}|S\rangle$
$\underline{\boldsymbol{P}}$ and $\underline{\boldsymbol{H}}$ commute \longrightarrow Simultaneous Eigenfunctions.

Free particle energy eigenvalue problem

$$
\begin{aligned}
& \underline{\boldsymbol{H}}|\boldsymbol{P}\rangle=\boldsymbol{E}|\boldsymbol{P}\rangle \\
& \underline{\boldsymbol{H}}=-\frac{\hbar^{2}}{2 \boldsymbol{m}} \frac{\partial^{2}}{\partial x^{2}}
\end{aligned}
$$

Use momentum eigenkets.

$$
\begin{aligned}
\underline{H}|P\rangle & =-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}\left(\frac{1}{\sqrt{2 \pi}} e^{i k x}\right) \\
& =-\frac{\hbar^{2}}{\sqrt{2 \pi} 2 m}(i k)^{2} e^{i k x} \\
& =\frac{\hbar^{2} k^{2}}{2 m}\left(\frac{1}{\sqrt{2 \pi}} e^{i k x}\right) \\
& =\frac{p^{2}}{2 m} \frac{P\rangle}{n^{2}} \text { energy eigenvalues }
\end{aligned}
$$

Therefore, $E=\frac{\boldsymbol{p}^{2}}{2 \boldsymbol{m}} \quad$ Energy same as classical result.

Particle in a One Dimensional Box

Particle inside box. Can't get out because of impenetrable walls.
Classically $\longrightarrow E$ is continuous. E can be zero. One D racquet ball court.
Q.M. $\longrightarrow \Delta x \Delta p \geq \hbar / 2 \quad E$ can't be zero.
$\underline{H}|\varphi\rangle=E|\varphi\rangle \quad$ Energy eigenvalue problem
Schrödinger Equation
$-\frac{\hbar^{2}}{2 m} \frac{d^{2} \varphi(x)}{d x^{2}}+V(x) \varphi(x)=E \varphi(x) \quad l l l y=0 \quad|x|<b$

For $|x|<b$
$-\frac{\hbar^{2}}{2 m} \frac{d^{2} \varphi(x)}{d x^{2}}=E \varphi(x)$
Want to solve differential Equation, but solution must by physically acceptable.

Born Condition on Wavefunction to make physically meaningful.

1. The wave function must be finite everywhere.
2. The wave function must be single valued.
3. The wave function must be continuous.
4. First derivative of wave function must be continuous.
$\frac{d^{2} \varphi(x)}{d x^{2}}=-\frac{2 m E}{\hbar^{2}} \varphi(x)$
Second derivative of a function equals a negative constant times the same function.

Functions with this property \longrightarrow sin and cos.
$\frac{d^{2} \sin (a x)}{d x^{2}}=-a^{2} \sin (a x)$
$\frac{d^{2} \cos (a x)}{d x}=-a^{2} \cos (a x)$
These are solutions provided
$a^{2}=\frac{2 m E}{\hbar^{2}}$

Solutions with any value of a don't obey Born conditions.

Function as drawn discontinuous at $\boldsymbol{x}= \pm \boldsymbol{b}$
To be an acceptable wavefunction
$\varphi \Rightarrow \sin$ and $\cos \Rightarrow 0$ at $|x|=b$
φ will vanish at $|x|=b$ if

$$
a=\frac{n \pi}{2 b} \equiv a_{n} \quad n \text { is an integer }
$$

$\cos a_{n} x$

$$
n=1,3,5 \ldots
$$

$n=2,4,6 \ldots$

Integral number of half wavelengths in box. Zero at walls.

Have two conditions for $\boldsymbol{a}^{\mathbf{2}}$.
$a_{n}^{2}=\frac{n^{2} \pi^{2}}{4 b^{2}}=\frac{2 m E}{\hbar^{2}}$
Solve for E.
$E_{n}=\frac{n^{2} \pi^{2} \hbar^{2}}{8 m b^{2}}=\frac{n^{2} h^{2}}{8 m L^{2}}$ Energy eigenvalues - energy levels, not continuous.

Energy levels are quantized. Lowest energy not zero.

$$
E_{n}=\frac{n^{2} \pi^{2} \hbar^{2}}{8 m b^{2}}=\frac{n^{2} h^{2}}{8 m L^{2}}
$$

$$
\varphi_{n}(x)=\left(\frac{1}{b}\right)^{\frac{1}{2}} \cos \frac{n \pi x}{2 b} \quad|x| \leq b \quad n=1,3,5 \cdots
$$

$$
\varphi_{n}(x)=\left(\frac{1}{b}\right)^{\frac{1}{2}} \sin \frac{n \pi x}{2 b} \quad|x| \leq b \quad n=2,4,6 \cdots
$$

wavefunctions including normalization constants

First few wavefunctions.
Quantization forced by Born conditions (boundary conditions)

Fourth Born condition not met first derivative not continuous. Physically unrealistic problem because the potential is discontinuous.

Particle in a Box \longrightarrow Simple model of molecular energy levels.

Anthracene $\quad \pi$ electrons - consider "free"
in box of length L.
Ignore all coulomb interactions.

$$
|L \longrightarrow| L \approx 6 \AA
$$

$m=m_{e}=9 \times 10^{-31} \mathrm{~kg}$
$L=6 \AA=6 \times 10^{-10} \mathrm{~m}$
$h=6.6 \times 10^{-34} \mathrm{Js}$
$\Delta \mathrm{E}=5.04 \times 10^{-19} \mathrm{~J}$

Calculate wavelength of absorption of light. Form particle in box energy level formula

$$
\Delta E=E_{2}-E_{1}=\frac{3 h^{2}}{8 m L^{2}}
$$

$\Delta \mathrm{E}=\mathrm{h} v$
$v=\Delta \mathrm{E} / \mathrm{h}=7.64 \times 10^{14} \mathrm{~Hz}$
$\lambda=c / v=393 \mathrm{~nm} \quad$ blue-violet
Experiment $\Rightarrow 400 \mathrm{~nm}$

Anthracene particularly good agreement.
Other molecules, naphthalene, benzene, agreement much worse.

Important point
Confine a particle with "size" of electron to box size of a molecule
Get energy level separation, light absorption, in visible and UV.

Molecular structure, realistic potential give accurate calculation, but
it is the mass and size alone that set scale.

Big molecules \longrightarrow absorb in red.
Small molecules \longrightarrow absorb in UV.

Particle in a Finite Box - Tunneling and Ionization

Box with finite walls.

Time independent Schrödinger Eq.

$$
\begin{array}{cl}
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \varphi(x)}{d x^{2}}+V(x) \varphi(x)=E \varphi(x) \\
V(x)=0 & |x|<b \\
V(x)=V & |x| \geq b
\end{array}
$$

Inside Box $\quad V=0$
$-\frac{\hbar^{2}}{2 m} \frac{d^{2} \varphi(x)}{d x^{2}}=E \varphi(x)$
$\frac{d^{2} \varphi(x)}{d x^{2}}=-\frac{2 m E}{\hbar^{2}} \varphi(x)$
Second derivative of function equals negative constant times same function.
\longrightarrow Solutions - sin and cos.

Solutions inside box

$$
\varphi(x)=q_{1} \sin \sqrt{\frac{2 m E}{\hbar^{2}} x}
$$

or

$$
\varphi(x)=q_{2} \cos \sqrt{\frac{2 m E}{\hbar^{2}}} x
$$

Outside Box
$\frac{d^{2} \varphi(x)}{d x^{2}}=-\frac{2 m(E-V)}{\hbar^{2}} \varphi(x)$

Bound States

$$
\frac{d^{2} \varphi(x)}{d x^{2}}=\frac{2 m(V-E)}{\hbar^{2}} \varphi(x)
$$

Two cases: Bound states, $E<V$ Unbound states, $E>V$

Second derivative of function equals positive constant times same function. \longrightarrow Not oscillatory.

Try solutions
$\exp (\pm a x) \longrightarrow \frac{d^{2} e^{ \pm a x}}{d x^{2}}=a^{2} e^{ \pm a x}$

Second derivative of function equals positive constant times same function.

Then, solutions outside the box

$$
\varphi(x)=\boldsymbol{e}^{ \pm\left[\frac{2 m(V-E)}{\hbar^{2}}\right]^{1 / 2} x} \quad|\boldsymbol{x}| \geq \boldsymbol{b}
$$

Solutions must obey Born Conditions

$$
\varphi(x) \text { can't blow up as }|x| \rightarrow \infty \text { Therefore, }
$$

$$
\begin{array}{lll}
\varphi(x)=r_{1} e^{-\left[\frac{2 m(V-E)}{\hbar^{2}}\right]^{1 / 2} x} & x \geq b & \text { Outside box } \longrightarrow \text { exp. decays } \\
\varphi(x)=r_{2} e^{+\left[\frac{2 m(V-E)}{\hbar^{2}}\right]^{1 / 2}} & x \leq-b & \text { Inside box oscillatory }
\end{array}
$$

Outside box \longrightarrow exp. decays
Inside box \longrightarrow oscillatory
The wavefunction and its first derivative continuous at walls - Born Conditions.

Tunneling - Qualitative Discussion

A particle placed inside of box with not enough energy to go over the wall \longrightarrow can Tunnel Through the Wall.

Formula derived in book $\quad e^{-2 d\left[2 m(V-E) / \hbar^{2}\right]^{1 / 2}}$ Ratio probs - outside

$$
\begin{aligned}
& \text { mass }=m_{e} \\
& E=1000 \mathrm{~cm}^{-1} \\
& V=2000 \mathrm{~cm}^{-1}
\end{aligned}
$$

Wall thickness (d)	$1 \AA$	$10 \AA$	$100 \AA$
probability ratio	0.68	0.02	3×10^{-17}

Chemical Reaction

Temperature dependence of some chemical reactions shows to much product at low T. $V>\mathrm{k} T$.

Decay of probability in classically forbidden region for parabolic potential.

light particles tunnel

Methyl Rotation

Methyl groups rotate even at very low T.

Unbound States and Ionization

If $E>V$ - unbound states

$$
V(x)=V
$$

$$
\frac{d^{2} \varphi(x)}{d x^{2}}=-\frac{2 m(E-V)}{\hbar^{2}} \varphi(x)
$$

Inside the box (between -b and b)
$V=0$

$$
\varphi(x)=q_{1} \sin \sqrt{\frac{2 m E}{\hbar^{2}}} x
$$

$$
\varphi(x)=q_{2} \cos \sqrt{\frac{2 m E}{\hbar^{2}}} x
$$

Solutions oscillatory

Outside the box ($x>|\mathbf{b}|$) $E>V$

$$
\varphi(x)=s_{1} \sin \sqrt{\frac{2 m(E-V)}{\hbar^{2}}} x
$$

$$
\varphi(x)=s_{2} \cos \sqrt{\frac{2 m(E-V)}{\hbar^{2}}} x
$$

Solutions oscillatory

To solve (numerically) Wavefunction and first derivative equal at walls, for example at $\boldsymbol{x}=\boldsymbol{b}$
$q_{1} \sin \sqrt{\frac{2 m E}{\hbar^{2}}} \boldsymbol{b}=s_{1} \sin \sqrt{\frac{2 m(E-V)}{\hbar^{2}}} \boldsymbol{b}$

In limit
$E \gg V$
$(E-V) \approx E$
$\therefore q_{1}=s_{1}$
Wavefunction has equal amplitude everywhere.

For $E \gg V$
$\varphi(x)=\sin \sqrt{\frac{2 m E}{\hbar^{2}} x} \quad$ for all x
As if there is no wall.
Continuous range of energies - free particle
Particle has been ionized.
$\sqrt{\frac{2 m E}{\hbar^{2}}}=\sqrt{\frac{2 m p^{2}}{2 m \hbar^{2}}}=\sqrt{\frac{\hbar^{2} k^{2}}{\hbar^{2}}}=\boldsymbol{k}$
$\varphi(x)=\sin k x$
Free particle wavefunction

In real world potential barriers are finite.

Tunneling

Ionization

