Chapter 5




Schrodinger Representation — Schrodinger Equation

Time dependent Schrodinger Equation

oD(Xx,Y,z,t)
ot

Developed through analogy to Maxwell’s equations and knowledge of

the Bohr model of the H atom.
2

H assical = 2p_m+v\ Sum of kinetic energy and potential energy.

/

Hamiltonian Kinetic potential
energy energy

1A =H(x,y,z,t)®(X,Yy,z1)

M. 32 A2
? H = h g +V (X) one dimension recall p=—ihi
—  2m @ x* — OX
32 2 2 2
H= n V?+V(X,y,2) threedimensions V2= o + o + o
2m 5X2 ﬁyZ aZZ

The potential, V, makes one problem different form another H atom, harmonic oscillator.
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Getting the Time Independent Schrodinger Equation

d(x,Yy,z,t) wavefunction
7
|hECI)(x, y,z,t)=H(X,y,z,t)®(x,Y,z,1)

If the energy is independent of time —— H (X, Y, 2)

Try solution

(I)(X, Y,Z, t) — ¢(x, Y, Z) F (t) product of spatial function and time function
Then

ih%ys(x, v, 2)F (t) = H(x, y, 2)$(x, y, 2)F (1)

g, y,2)-ZF (1) = F() H(X,y, 2)§(x, y,2)  divide through by

\ ot \ O = §F

independent of t independent of x, y, z
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dF(t)
Tdt_ H(Xy,2)g(x,y,2)

F(t) \ #(X,Y,2)
AN

depends only depends only
ont onx,y,z

|7

Can only be true for any x, y, z, t if both sides equal a constant.

Changing t on the left doesn’t change the value on the right.
Changing X, Y, z on right doesn’t change value on left.

el Equal constant
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Hg Both sides equal a constant, E.

H(x,y,2)g(x,y,2)=Eo(X,Y,2)

Energy eigenvalue problem — time independent Schrodinger Equation

H is energy operator.
Operate on ¢ get ¢ back times a number.
@’s are energy eigenkets; eigenfunctions; wavefunctions.

E —— Energy Eigenvalues
Observable values of energy
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Time Dependent Equation (H time independent)

2 dF (1)
dt
F(t)

dF(t)
[ T E F(t)

aF() -—'Edt. Integrate both sides

F () n

IEt . -
InF =—7+C Take initial conditionatt=0, F=1, then C =0.
F (t) — e—iEt/h — e—ia)t

Time dependent part of wavefunction for time independent Hamiltonian.
Time dependent phase factor used in wave packet problem.
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Total wavefunction for time independent Hamiltonian.

— —iEt/h E — energy (observable) that
D (X,y.2,) =g (X, y,2)e labels state.

Normalization
<(I)E |(I)E> = J.(DTE Q. dr = _.‘¢|; """ g e de =_|.¢|; ¢ dz

Total wavefunction is normalized if time independent part is normalized.

Expectation value of time independent operator S.

<§>=<(D|§|(I)>=J‘(D*E S, d7=j¢; eiEt/h§¢E e iEt/hq.

S does not depend on t, e'="'"

(@|S|®)=[4g: Sgedr

Expectation value is time independent and depends only on the
time independent part of the wavefunction.

can be brought to other side of S.
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Equation of motion of the Expectation Value in the Schrdodinger Representation
Expectation value of operator representing observable for state |S>
(A)=(S|A|S)  example - momentum (P)=(S|P|S)

In Schrodinger representation, operators don’t change in time.
Time dependence contained in wavefunction.

Want Q.M. equivalent of
time derivative of a classical dynamical variable.

P——P classical momentum goes over to momentum operator

. 0P

P= E = 7 want Q.M. operator equivalent of time derivative
Definition: The time derivative of the operator A , I.e., A

Is defined to mean an operator whose expectation in
any state |S)is the time derivative of
the expectation of the operator A .
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Want to find
dA)_2

Use H|S)= iha\ s)  time dependent Schrédinger equation.

% % g
E<S |AlS) =(E<S \)A\ S)+(S ‘AE‘ S)  product rule

tire independent — derivative is zero

Use the complex Yonjuggte of the Schrodinger equation (S \ﬂ=—ih%(8 .

Then (—jt<SIJ (s|H / and from the Schrodinger equation (operate to left)
: 7 i
1% — ——
2is)aTinfsy  ZSIAls)=4(SIHAlS)- f(s]an]s)

Z(s|A[S)=1{(S|HA|S)-(S|AH]S)]
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Therefore o
This is the commutator of H A.

d((th> —(S|HA-AH|S)= —[ﬂ,A]

e
A= ng , Al

The operator representing the time derivative of an observable is
I/ times the commutator of H with the observable.
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Solving the time independent Schrddinger equation

The free particle

momentum problem
P[P)=p[P)

1 ik X
‘//p(X)=Eek p=hk k=plh

Free particle Hamiltonian — no potential -V = 0.

2
o P
—2m

Commutator of H with P

A ;
[P.H]=>-->-=0 P°|S)=PPP|S)

Pand H commute——— Simultaneous Eigenfunctions.
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Free particle energy eigenvalue problem
H|P)=E|P)
e 0°
= T amax?
Use momentum eigenkets.

R A O R
H|P)= 2max2(ﬂe )

2

\/_Zm

_hzkz( 1 eikX)
2m \ <27z

F)
= 2 py
\ energy eigenvalues

p*
Therefore, E = om Energy same as classical result.

(Ik)z ik x
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Particle in a One Dimensional Box

| |

=0 V=0 =0
T Infinitely high, thick,

iImpenetrable walls

-b 0 b

Particle inside box. Can’t get out because of impenetrable walls.
Classically — E is continuous. E can be zero. One D racquet ball court.

Q.M. » AXAp = fi/2  E can’t be zero.

H|p)=E|p)  Energy eigenvalue problem

Schrddinger Equation

hZ d2¢(X) V(X)=O |X|<b

Tam g L IPI=Ee() V()=w  [x2b
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For |X|<b

n° d’e(x)
— = E p(X
2m dx? #(x)

Want to solve differential Equation, but
solution must by physically acceptable.

Born Condition on Wavefunction to make physically meaningful.

1. The wave function must be finite everywhere.
2. The wave function must be single valued.
3. The wave function must be continuous.

4. First derivative of wave function must be continuous.
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d’e(x) _ 2mE Second derivative of a function equals a
<z B o(X negative constant times the same function.

Functions with this property —— sin and cos.

, .

d smgax)=_a25in(ax)
dx

2

d”cos(ax) _ . cos(ax)
dx

These are solutions provided

, 2mE
—_ hz

a
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Solutions with any value of a don’t obey Born conditions.

Well is infinitely deep.
Particle has zero probability of being
found outside the box.

Q = 0 for |X|2b

Function as drawn discontinuous at X =+ D
To be an acceptable wavefunction

@=> sin and cos = 0 at |x|=b
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o will vanish at |x|=b if

¥4 _ _
a=——=a, nhisaninteger
2b
cosa,. X n=1,3,5...
n —b b
sin a, X n=2460.. Integral number of half wavelengths

In box. Zero at walls.

Have two conditions for a2.

, Nz’ 2mE

T 4b? h°

Solve for E.

2 232 2|h2
o= N‘z"h = n'h Energy eigenvalues — energy levels, not continuous.
8mb®  8mL%

L = 2b - length of box.
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Energy levels are quantized.

Lowest energy not zero.

0,0 =[ = | cos 22X
b) 2

1
() =[L] sin2ZX
Pn b) " 2b

~ nzn,zhz ~ nzhz
n 2 2

8mb smL.__ _ . _
n=123>5-.-.

length of box.
X|<h . . .
| | wavefunctions including
normalization constants

X|<b  n=24,6--

First few wavefunctions.

Quantization forced by Born conditions
(boundary conditions)

Fourth Born condition not met -

first derivative not continuous.

Physically unrealistic problem because
the potential is discontinuous.
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Particle in a Box »Simple model of molecular energy levels.

Anthracene nt electrons — consider “free”

In box of length L.
Ignore all coulomb interactions.
L

‘ | L~6 A

E, 5 S Calculate wavelength of absorption of light.

Form particle in box energy level formula
AE 3h’

AE=E,—E, =——

E, S, SmL:

m=m, =9x10™ kg AE=hv

L=6A =6x10"° m v=AE/h=7.64x10" Hz

h=6.6x10" Js A= c/v=393 nm Dblue-violet

AE=5.04x10"" J Experiment = 400 nm
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Anthracene particularly good agreement.
Other molecules, naphthalene, benzene, agreement much worse.

Important point
Confine a particle with “size” of electron to box
size of a molecule
Get energy level separation, light absorption, in visible and UV.

Molecular structure, realistic potential
give accurate calculation, but
It iIs the mass and size alone that set scale.

Big molecules » absorb in red.
Small molecules——— absorb in UV.
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Particle in a Finite Box — Tunneling and lonization

Box with finite walls.

Time independent Schrodinger Eq.

V(X)=V V(X)=V g ()
_h @(X B
o d +V (x)o(x) = Ep(X)
V(x)=0 V(X) =0 |X| <b
V(x)=V x| >b
-b 0
X—

Inside Box V=0

_ B dPe(x) _
om dx® Eo(x)
d'e(x) __2mE (X)

dx? h°

Second derivative of function equals
negative constant times same function.
—— Solutions — sin and cos.
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Solutions inside box

. [2ZmE
@(x)=q,sin PER

or
2mE
@(X) =0, cos PERe
Outside Box

d’p(x) _ 2m(E-V)
dx?> h

@(X)

Bound States

d’p(x) _2m(V —E)
dx> A

@(X)

Two cases: Bound states, E <V
Unbound states, E >V

Second derivative of function equals
positive constant times same function.
— Not oscillatory.
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Try solutions

d Zeiax + Second derivative of function equals
> _ aZe_ax
d x2 - positive constant times same function.

exp (+ax)

Then, solutions outside the box

2m(V-E)

L2520 x2b

p(X)=e

Solutions must obey Born Conditions

@(X) can’t blow up as |x| >0 Therefore,

2m(V—E)T/X2

relE >
(D(X) e x2b Outside box —exp. decays

[Zm(V_E)T/Z Inside box — oscillatory
+ X
" X< —b

@(X)=r,¢e
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1 Outside box —exp. decays
o Inside box —— oscillatory
R N N SN NG
\cp =0 The wavefunction and its first derivative
continuous at walls — Born Conditions.
b ;)(_} b
N

Expanded view

For a finite distance into the material
finite probability of finding particle.

Classically forbidden region

\< V > E.

AN _ \probability—>0
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Tunneling - Qualitative Discussion

™ /Classically forbidden region.

Wavefunction not zero at far
‘ A A ﬁ side of wall.
(P \/ \/

X—>

Probability of finding particle
finite outside box.

A particle placed inside of box with not enough energy to go over the wall
= can Tunnel Through the Wall.

—2d[2m(V —E)/#*]Y2 Ratio probs - outside

Formula derived in book e vs. inside edges of wall

mass = M Wall thickness (d) 1A 10A 100 A

= 1
\E/ : ;888 gml probability ratio  0.68  0.02 3x10%7



Chemical Reaction

T not enough energy to go over barrier

\V Temperature dependence of some
chemical reactions shows to much
productatlow T. V >KT .

%

reactants

products

q——

Decay of probability in classically forbidden region for parabolic potential.

A A=d(2mV, /h2)1/2 light particles tunnel
tunneling distance mass barrier height

parameter
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Methyl Rotation
_H

—C—H

NN
PR — PR S—— Methyl groups rotate even
\/ at very low T.

Radioactive Decay

/some probability outside nucleus

.— repulsive Coulomb interaction

™~

nuclear attraction
St rong I nte raCtI 0 n Copyright — Michael D. Fayer, 2018



Unbound States and lonization o _
E large enough - ionization

V(X) =V

If E >V - unbound states

ﬁ\_/\
‘\

—— bound states d2¢(X) 2m(E -V) @(X)

+— T~ E<V dx? e

-b b
Inside the box (between -b and b) Outside the box (x > |b|)
V=0 E>V

. [2mE . [12m(E =V
¢(x)=qls|n,/ P X ¢(x)=sls|n\/ (h2 )x
/ 2m(E -V
@(X) =g, Cos Z;anx ¢(x)=szcos\/ (h2 )x

Solutions oscillatory Solutions oscillatory
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unbound state

-b b
To solve (numerically) In limit
Wavefunction and first derivative E>V
equal at walls, for exampleatx =Db (E-V)~E
/ . [2Zm(E -V S0, =S
qlsin 2m2Eb=Slsln\/ ( . )b 0, 1
h h Wavefunction has equal

amplitude everywhere.
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ForE>>V

¢(x)=sin,/2;2Ex for all x

As if there is no wall.

Continuous range of energies - free particle

Particle has been ionized.

[omE _ [2mp? _ [n?K? K
h’ 2m i’ A’

(D(X) =sink X Free particle wavefunction
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In real world potential barriers are finite.

mmmmlp Tunneling

lonization
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