Chapter 4

Q. M. \longrightarrow Particle Superposition of Momentum Eigenstates

Partially localized \longrightarrow Wave Packet $\longrightarrow \Delta x \Delta p \geq \hbar / 2$

Photon - Electron

Photon wave packet description of light same as wave packet description of electron.

Electron and Photon can act like waves - diffract or act like particles - hit target.

Wave - Particle duality of both light and matter.

Commutators and the Correspondence Principle

Formal Connection
Q.M. \longleftrightarrow Classical Mechanics

Correspondence between
Classical Poisson bracket of functions $f(x, p)$ and $g(x, p)$

And
Q.M. Commutator of operators \underline{f} and \underline{g}.

Commutator of Linear Operators

$[\underline{A}, \underline{B}]=\underline{A} \underline{B}-\underline{B} \underline{A} \quad$ (This implies operating on an arbitrary ket.)
If \boldsymbol{A} and \boldsymbol{B} numbers $=\mathbf{0}$
Operators don't necessarily commute.

$$
\begin{aligned}
\underline{A} \underline{B}|C\rangle & =\underline{A}[\underline{B}|C\rangle] \\
& =\underline{A}|\boldsymbol{Q}\rangle \\
& =|\boldsymbol{Z}\rangle \\
\underline{B} \left\lvert\, \begin{array}{l}
C \\
\hline
\end{array}\right. & =\underline{B}[\underline{A}|C\rangle] \\
& =\underline{B}|S\rangle \\
& =|T\rangle
\end{aligned}
$$

In General

$$
|Z\rangle \neq|T\rangle \quad \underline{A} \text { and } \underline{B} \text { do not commute. }
$$

Classical Poisson Bracket

$$
\begin{array}{ll}
\{f, g\}=\frac{\partial f}{\partial x} \frac{\partial g}{\partial p}-\frac{\partial g}{\partial x} \frac{\partial f}{\partial p} \\
f=f(x, p) & \text { These are functions representing classical } \\
g=g(x, p) \quad & \text { dynamical variables } \longrightarrow \text { not operators. }
\end{array}
$$

Consider position and momentum, classical.

$$
x \text { and } p
$$

Poisson Bracket
$\{x, p\}=\frac{\partial x}{\partial x} \frac{\partial p}{\partial p}-\frac{\partial x}{\partial p} \frac{\partial p}{\partial x}$
$\{x, p\}=1$

Dirac's Quantum Condition

"The quantum-mechanical operators \underline{f} and \underline{g}, which in quantum theory replace the classically defined functions f and g, must always be such that the commutator
of \underline{f} and \underline{g} corresponds to the Poisson
bracket of f and g according to

$$
i \hbar\{f, g\} \rightarrow[\underline{f}, \underline{g}] .
$$

Dirac

Q.M. commutator of \underline{x} and \underline{p}.

$$
\begin{aligned}
& \qquad \underline{x}, \underline{p}]=i \hbar\{x, p\} \\
& \text { commutator } \quad \text { Poisson bracket }
\end{aligned}
$$

Therefore,

$$
[\underline{x}, \underline{p}]=i \hbar \quad\{x, p\}=1
$$

Remember, the relation implies operating on an arbitrary ket.

This means that if you select operators for x and p such that they obey this relation, they are acceptable operators.

The particular choice \longrightarrow a representation of Q.M.

Schrödinger Representation

$$
\begin{array}{ll}
p \rightarrow \underline{P}=-i \hbar \frac{\partial}{\partial x} & \begin{array}{l}
\text { momentum operator, }-i \hbar \text { times derivative with } \\
\text { respect to } x
\end{array} \\
X \rightarrow \underline{X}=X & \text { position operator, simply } x
\end{array}
$$

Operate commutator on arbitrary ket $|s\rangle$.

$$
[\underline{x}, \underline{P}]|S\rangle=
$$

$$
(\underline{x} \underline{P}-\underline{P} \underline{x})|S\rangle=
$$

$$
x\left(-i \hbar \frac{\partial}{\partial x}\right)|S\rangle+i \hbar \frac{\partial}{\partial x} x|S\rangle
$$

Using the product rule
$=i \hbar\left(-x \frac{\partial}{\partial x}|S\rangle+|S\rangle+x \frac{\partial}{\partial x}|S\rangle\right)$
$=i \hbar|S\rangle$

Therefore,

$$
[\underline{x}, \underline{P}]|S\rangle=i \hbar|S\rangle
$$

and

$$
[\underline{x}, \underline{P}]=i \hbar
$$

because the two sides have the same result when operating on an arbitrary ket.

Another set of operators - Momentum Representation

$$
\begin{array}{ll}
x \rightarrow \underline{x}=i \hbar \frac{\partial}{\partial p} & \begin{array}{l}
\text { position operator, } i \hbar \text { times derivative with } \\
\text { respect to } p
\end{array} \\
p \rightarrow \underline{p} & \text { momentum operator, simply } p
\end{array}
$$

A different set of operators, a different representation.
In Momentum Representation, solve position eigenvalue problem for the free particle.

Get $|x\rangle$, states of definite position.
They are waves in p space. All values of momentum.

Commutators and Simultaneous Eigenvectors

$$
\underline{A}|S\rangle=\alpha|S\rangle \quad \underline{B}|S\rangle=\beta|S\rangle
$$

$|S\rangle$ are simultaneous Eigenvectors of operators \underline{A} and \underline{B} with egenvalues α and β.

Eigenvalues of linear operators \longrightarrow observables.
\underline{A} and \underline{B} are different operators that represent different observables, e. g., energy and angular momentum.

If $|\boldsymbol{S}\rangle$ are simultaneous eigenvectors of two or more linear operators representing observables, then these observables can be simultaneously measured.

$$
\begin{aligned}
\underline{A}|S\rangle & =\alpha|S\rangle & \underline{B}|S\rangle & =\beta|S\rangle \\
\underline{B} \underline{A}|S\rangle & =\underline{B} \alpha|S\rangle & \underline{A} \underline{B}|S\rangle & =\underline{A} \beta|S\rangle \\
& =\alpha \underline{B}|S\rangle & & =\beta \underline{A}|S\rangle \\
& =\alpha \beta|S\rangle & & =\beta \alpha|S\rangle
\end{aligned}
$$

Therefore,

$$
\underline{A} \underline{B}|S\rangle=\underline{B} \underline{A}|S\rangle
$$

Rearranging $\quad(\underline{A} \underline{B}-\underline{B} \underline{A})|S\rangle=0$
$(\underline{A} \underline{B}-\underline{B} \underline{A})$ is the commutator of \underline{A} and \underline{B}, and since in general $|\mathbf{S}\rangle \neq 0$,

$$
[\underline{A}, \underline{B}]=0
$$

The operators \underline{A} and \underline{B} commute.
Operators having simultaneous eigenvectors commute.
The eigenvectors of commuting operators can always be constructed in such a way that they are simultaneous eigenvectors.

There are always enough Commuting Operators (observables) to completely define a system.

Example: \longrightarrow Energy operator, $\underline{\boldsymbol{H}}$, may give degenerate states.

H atom 2s and 2p states have same energy.
$\underline{J}^{\mathbf{2}} \Rightarrow$ square of angular momentum operator
$j \Rightarrow 1$ for p orbital
$\mathbf{j} \Rightarrow \mathbf{0}$ for s orbital
But $\mathbf{p}_{x}, \mathbf{p}_{y}, \mathbf{p}_{z}$
$\underline{J}_{z} \Rightarrow$ angular momentum projection operator

$$
\underline{H}, \underline{J}^{2}, \underline{J}_{z} \text { all commute. }
$$

Commutator Rules

$$
\begin{aligned}
& {[\underline{A}, \underline{B}]=-[\underline{B}, \underline{\underline{A}}]} \\
& {[\underline{A}, \underline{B}]=[\underline{A}, \underline{B}] \underline{C}+\underline{B}[\underline{A}, \underline{C}]} \\
& {[\underline{A} \underline{B}, \underline{C}]=[\underline{[}, \underline{C}] \underline{B}+\underline{A}[\underline{B}, \underline{C}]} \\
& {[\underline{A},[\underline{B}, \underline{C}]+[\underline{B},[\underline{C}, \underline{\underline{Q}}]]+[\underline{C},[\underline{[}, \underline{B}]]=0} \\
& {[\underline{A}, \underline{B}+\underline{C}]=[\underline{A}, \underline{B}]+[\underline{A}, \underline{C}]}
\end{aligned}
$$

Expectation Value and Averages

If make measurement of observable A on state $|a\rangle$ will observe α.
What if measure observable A on state not an eigenvector of operator \underline{A}.

Expand $|\boldsymbol{b}\rangle$ in complete set of eigenkets $|\boldsymbol{a}\rangle \Rightarrow$ Superposition principle.
Eigenkets - complete set. One for each state. Spans state space.

$$
|b\rangle=c_{1}\left|a_{1}\right\rangle+c_{2}\left|a_{2}\right\rangle+c_{3}\left|a_{3}\right\rangle+\cdots
$$

(If continuous range \longrightarrow integral)

$$
|b\rangle=\sum_{i} c_{i}\left|a_{i}\right\rangle
$$

Consider only two states (normalized and orthogonal).
$|b\rangle=c_{1}\left|a_{1}\right\rangle+c_{2}\left|a_{2}\right\rangle$
$\underline{A}|\boldsymbol{b}\rangle=\underline{A}\left(c_{1}\left|a_{1}\right\rangle+c_{2}\left|a_{2}\right\rangle\right)$

$$
\begin{aligned}
& =c_{1} \underline{A}\left|a_{1}\right\rangle+c_{2} \underline{A}\left|a_{2}\right\rangle \\
& =\alpha_{1} c_{1}\left|a_{1}\right\rangle+\alpha_{2} c_{2}\left|a_{2}\right\rangle
\end{aligned}
$$

Left multiply by $\langle\boldsymbol{b}|$.

$$
\begin{aligned}
\langle b| \underline{A}|\boldsymbol{b}\rangle & =\left(c_{1}^{*}\left\langle a_{1}\right|+c_{2}^{*}\left\langle a_{2}\right|\right)\left(\alpha_{1} c_{1}\left|a_{1}\right\rangle+\alpha_{2} c_{2}\left|a_{2}\right\rangle\right) \\
& =\alpha_{1} c_{1}^{*} c_{1}+\alpha_{2} c_{2}^{*} c_{2} \\
& =\alpha_{1}\left|c_{1}\right|^{2}+\alpha_{2}\left|c_{2}\right|^{2}
\end{aligned}
$$

The absolute square of the coefficient $c_{i},\left|c_{i}\right|^{2}$, in the expansion of $|\boldsymbol{b}\rangle$ in terms of the eigenvectors $\left|a_{i}\right\rangle$ of the operator (observable) \underline{A} is the probability that a measurement of \underline{A} on the state $|\boldsymbol{b}\rangle$ will yield the eigenvalue α_{i}.

If there are more than two states in the expansion
$|b\rangle=\sum_{i} c_{i}\left|\boldsymbol{a}_{i}\right\rangle$
$\langle\boldsymbol{b}| \underline{A}|\boldsymbol{b}\rangle=\sum_{i} \alpha_{i}\left|c_{i}\right|^{2}$
eigenvalue probability of eigenvalue

Definition: The average is the value of a particular outcome times its probability, summed over all possible outcomes.

Then

$$
\langle b| \underline{A}|b\rangle=\sum_{i}\left|c_{i}\right|^{2} \alpha_{i}
$$

is the average value of the observable when many measurements are made.

Assume: One measurement on a large number
of identically prepared non- interacting systems
is the same as the average of many repeated
measurements on one such system prepared
each time in an identical manner.
$\langle\boldsymbol{b}| \underline{\boldsymbol{A}}|\boldsymbol{b}\rangle \Rightarrow \quad$ Expectation value of the operator $\underline{\boldsymbol{A}}$.

In terms of particular wavefunctions
$\langle b| \underline{A}|\boldsymbol{b}\rangle=\int_{-\infty}^{\infty} \psi_{b}^{*} \underline{A} \psi_{b} d \tau$

The Uncertainty Principle - derivation
Have shown $-[\underline{x}, \underline{P}] \neq 0$
and that $\quad \Delta x \Delta p \approx \hbar$
Want to prove:
Given \underline{A} and \underline{B}, Hermitian with

$$
[\underline{A}, \underline{B}]=i \underline{C} \quad \underline{C} \quad \begin{aligned}
& \text { another Hermitian operator (could be number - } \\
& \text { special case of operator, identity operator). }
\end{aligned}
$$

Then

$$
\Delta A \Delta B \geq \frac{1}{2}|\langle\underline{C}\rangle| \quad \text { with } \quad\langle\underline{C}\rangle=\langle\boldsymbol{S}| \underline{C}|\boldsymbol{S}\rangle
$$

$\langle S|$ and $|S\rangle$ arbitrary but normalized.

Consider operator

$$
\begin{aligned}
& \underline{D}=\underline{A}+\alpha \underline{B}+i \underline{\beta} \\
& \underline{D}|S\rangle=|Q\rangle \\
& \langle Q \mid Q\rangle=\langle S| \underline{D} \underline{D}|S\rangle \geq 0 \quad \begin{array}{l}
\text { arbitrary real numbers } \\
\langle Q| Q|Q\rangle \text { is the scalar product of vector } \\
\text { with itself. }
\end{array}
\end{aligned}
$$

$$
\langle\boldsymbol{Q} \mid \boldsymbol{Q}\rangle=\langle\boldsymbol{S}| \underline{\bar{D}} \underline{D}|\boldsymbol{S}\rangle=\left\langle\underline{A}^{2}\right\rangle+\left(\alpha^{2}+\beta^{2}\right)\left\langle\underline{B}^{2}\right\rangle+\alpha\left\langle\underline{C}^{\prime}\right\rangle-\beta\langle\underline{C}\rangle \geq \mathbf{0}
$$

(derive this in home work) $\quad \underline{C}^{\prime}=\underline{A} \underline{B}+\underline{B} \underline{A} \quad$ is the anticommutator of \underline{A} and \underline{B}.

$$
\begin{array}{r}
\underline{A} \underline{B}+\underline{B} \underline{A}=[\underline{A}, \underline{B}]_{+} \\
\left\langle\underline{A}^{2}\right\rangle=\langle S| \underline{A}^{2}|S\rangle=\langle S| \underline{A} \underline{A}|S\rangle
\end{array}
$$

anticommutator
$\langle\boldsymbol{Q} \mid \boldsymbol{Q}\rangle=\langle\boldsymbol{S}| \underline{\bar{D}} \underline{D}|\boldsymbol{S}\rangle=\left\langle\underline{A}^{2}\right\rangle+\left(\alpha^{2}+\beta^{2}\right)\left\langle\underline{B}^{2}\right\rangle+\alpha\left\langle\underline{C}^{\prime}\right\rangle-\beta\langle\underline{C}\rangle \geq \mathbf{0}$
$\underline{B}|S\rangle \neq 0 \quad$ for arbitrary ket $|S\rangle$.
Can rearrange to give
$\left\langle\underline{A}^{2}\right\rangle+\left\langle\underline{B}^{2}\right\rangle\left(\alpha+\frac{1}{2} \frac{\left\langle\underline{C}^{\prime}\right\rangle}{\left\langle\underline{B}^{2}\right\rangle}\right)^{2}+\left\langle\underline{B}^{2}\right\rangle\left(\beta-\frac{1}{2} \frac{\langle\underline{C}\rangle}{\left\langle\underline{B}^{2}\right\rangle}\right)^{2}-\frac{1}{4} \frac{\left\langle\underline{C}^{\prime}\right\rangle^{2}}{\left\langle\underline{B}^{2}\right\rangle}-\frac{1}{4} \frac{\langle\underline{C}\rangle^{2}}{\left\langle\underline{B}^{2}\right\rangle} \geq \mathbf{0}$
Holds for any value of α and β.
Pick α and β so terms in parentheses are zero. Multiplied through by $\left\langle\underline{B}^{2}\right\rangle$ Then $\left\langle\underline{A}^{2}\right\rangle\left\langle\underline{B}^{2}\right\rangle \geq \frac{1}{4}\left(\langle\underline{C}\rangle^{2}+\left\langle\underline{C}^{\prime}\right\rangle^{2}\right) \geq \frac{1}{4}\left\langle\frac{C}{C}\right\rangle^{2}$

Thus,

$$
\left\langle\underline{A}^{2}\right\rangle\left\langle\underline{\underline{1}}^{2}\right\rangle \geq \frac{1}{4}\langle\underline{C}\rangle^{2}
$$

The sum of two positive numbers is \geq one of them.

$$
\left\langle\underline{A}^{2}\right\rangle\left\langle\underline{B}^{2}\right\rangle \geq \frac{1}{4}\langle\underline{C}\rangle^{2} \quad[\underline{A}, \underline{B}]=i \underline{C} \quad \Delta A \Delta B \geq \frac{1}{2}|\langle\underline{C}\rangle|
$$

Define

$$
\begin{aligned}
& (\Delta A)^{2}=\left\langle\underline{A}^{2}\right\rangle-\langle\underline{A}\rangle^{2} \\
& (\Delta B)^{2}=\left\langle\underline{B}^{2}\right\rangle-\langle\underline{B}\rangle^{2}
\end{aligned}
$$

Second moment of distribution

- for Gaussian \longrightarrow
standard deviation squared.

For special case

$$
\langle\underline{A}\rangle=\langle\underline{B}\rangle=0 \quad \text { Average value of the observables are zero. }
$$

$\Delta A \Delta B \geq \frac{1}{2}|\langle\underline{C}\rangle|$
$\left(\langle\underline{C}\rangle^{2}\right)^{\frac{1}{2}}=|\langle\underline{C}\rangle|$
square root of the square of a number

Have proven that for $[\underline{A}, \underline{B}]=i \underline{C}$

$$
\Delta \underline{A} \Delta \underline{B} \geq \frac{1}{2}|\langle\underline{C}\rangle| \quad\langle\underline{A}\rangle=\langle\underline{B}\rangle=0
$$

Average value of the observables are zero.

Example

$$
[\underline{x}, \underline{P}]=i \hbar \sim \begin{aligned}
& \text { Number, special case of an operator. } \\
& \\
& \begin{array}{l}
\text { Number is implicitly multiplied by the } \\
\text { identity operator. }
\end{array}
\end{aligned}
$$

$$
\langle\underline{\boldsymbol{x}}\rangle=\langle\underline{\boldsymbol{P}}\rangle=\mathbf{0}
$$

Therefore

$\Delta x \Delta p \geq \hbar / 2 . \quad$ Uncertainty comes from superposition principle.

The more general case is discussed in the book.

