
Chapter 4



Q. M. Particle Superposition of Momentum Eigenstates

Partially localized Wave Packet /2x p∆ ∆ ≥ 

Photon – Electron

Photon wave packet description of light same as
wave packet description of electron.

Electron and Photon can act like waves – diffract
or act like particles – hit target.

Wave – Particle duality of both light and matter.
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Commutators and the Correspondence Principle

Formal Connection
Q.M. Classical Mechanics

Correspondence between
Classical Poisson bracket of

functions   ( , )  and  ( , )f x p g x p
And

Q.M. Commutator of
operators       and  .f g
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Commutator of Linear Operators

[ ],A B A B B A= − (This implies operating on an arbitrary ket.)

If A and B numbers = 0

Operators don’t necessarily commute.

A B C A B C =  

A Q

Z

=

=

B A C B A C =  

B S

T

=

=

In General

Z T≠ A and B do not commute.
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Classical Poisson Bracket

{ }, f g g ff g
x p x p

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

= −

( , )
( , )

f f x p
g g x p
=
=

These are functions representing classical
dynamical variables not operators.

Consider position and momentum,  classical.

x and p

Poisson Bracket

{ }, x p x px p
x p p x

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

= −

{ }, 1x p = zero
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Dirac’s Quantum Condition

f

"The quantum-mechanical operators   

and   , which in quantum theory replace 

the classically defined functions f and g, 

must always be such that the commutator 

of   and   corresponds to the Poisson 

bracket of f and g according to 

g

g

f

{ } ", , .i f g f g →  

Dirac
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{ }( , ), ( , ) ,i f x p g x p f g ⇒  

Poisson bracket of
classical functions

Commutator of 
quantum operators

Q.M. commutator of x and p.

{ }, ,x p i x p  =  

commutator Poisson bracket

Therefore,
,x p i  =   { }, 1x p =

Remember, the relation implies operating on
an arbitrary ket.

This means that if you select operators for x and p such that they
obey this relation, they are acceptable operators.

The particular choice a representation of Q.M.

(commutator operates
on a ket)
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Schrödinger Representation

p P i
x
∂
∂

→ = − 

x x x→ =

momentum operator, –i times derivative with
respect to x

position operator, simply x

sOperate commutator on arbitrary ket       .       

[ ],x P S =

( )xP P x S− =

x i S i x S
x x
∂ ∂
∂ ∂

 
− + 
 

 

i S= 

[ ],x P S i S= 

[ ],x P i= 

Therefore,

and

because the two sides have the
same result when operating on
an arbitrary ket.i x S S x S

x x
∂ ∂
∂ ∂

 
= − + + 

 


Using the product rule

Copyright – Michael D. Fayer, 2018



Another set of operators – Momentum Representation

x x i
p

∂
∂

→ = 

p p→

position operator, i times derivative with
respect to p

momentum operator, simply p

A different set of operators, a different representation.

In Momentum Representation, solve position eigenvalue problem
for the free particle.

Get ,  states of definite position.

They are waves in p space.  All values of momentum.

x
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Commutators and Simultaneous Eigenvectors

A S Sα= B S Sβ=

 are simultaneous Eigenvectors of operators    and  
with egenvalues   and  .
S A B

α β

Eigenvalues of linear operators observables.

A and B are different operators that represent different observables, e. g.,
energy and angular momentum.

SIf       are simultaneous eigenvectors of two or more linear operators
representing observables, then these observables can be 
simultaneously measured.
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A S Sα= B S Sβ=

B A S B Sα= A B S A Sβ=

B S

S

α

α β

=

=

A S

S

β

β α

=

=

A B S B A S=Therefore,

( ) 0A B B A S− =Rearranging

The eigenvectors of commuting operators can always be constructed in such
a way that they are simultaneous eigenvectors.
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( )A B B A− and ,  and since in general S 0,A B ≠

[ ], 0A B =

is the commutator of 

andA BThe operators               commute.

Operators having simultaneous eigenvectors commute.



There are always enough Commuting Operators (observables) to 
completely define a system.

Example: Energy operator, H, may give degenerate states.

H atom 2s and 2p  states have same energy.
2 square of angular momentum operatorJ ⇒

j ⇒ 1   for p orbital
j ⇒ 0  for s orbital

But   px,  py,  pz

 angular momentum projection operatorzJ ⇒

2, ,   all commute.zH J J
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Commutator Rules

[ ] [ ], ,A B B A= −

[ ] [ ] [ ], , ,A BC A B C B A C= +

[ ] [ ] [ ], , ,AB C A C B A B C= +

[ ] [ ] [ ], , , , , , 0A B C B C A C A B     + + =     

[ ] [ ] [ ], , ,A B C A B A C+ = +
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Expectation Value and Averages

A a aα=

eigenvector       eigenvalue

normalized

If make measurement of observable A on state      will observe α.a

What if measure observable A on state not an eigenvector of operator A.

?A b ⇒

normalized

Expand      in complete set of eigenkets            Superposition principle.

Eigenkets – complete set.  One for each state.  Spans state space.

b a ⇒
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1 1 2 2 3 3b c a c a c a= + + + ⋅⋅ ⋅ (If continuous range integral)

i i
i

b c a=∑
Consider only two states (normalized and orthogonal).

1 1 2 2b c a c a= +

( )1 1 2 2A b A c a c a= +

1 1 2 2c A a c A a= +

1 1 1 2 2 2c a c aα α= +

Left multiply by        . b
( )( )* *

1 1 2 2 1 1 1 2 2 2b A b c a c a c a c aα α= + +
* *

1 1 1 2 2 2c c c cα α= +
2 2

1 1 2 2c cα α= +
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The absolute square of the coefficient ci, | ci|2, in the expansion

of        in terms of the eigenvectors       of the operator (observable)

A is the probability that a measurement of A on the state      

will yield the eigenvalue αi.

b ia

b

If there are more than two states in the expansion

i i
i

b c a=∑
2

i i
i

b A b cα=∑

eigenvalue     probability of eigenvalue
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Definition: The average is the value of a 

particular outcome times its 

probability, summed over all 

possible outcomes.
Then

2
i i

i
b A b c α=∑

is the average value of the observable when many measurements are made.

Assume: One measurement on a large number 

of identically prepared non- interacting systems

is the same as the average of many repeated 

measurements on one such system prepared 

each time in an identical manner.
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b A b ⇒ Expectation value of the operator A.

In terms of particular wavefunctions

b bb A b A dψ ψ τ
∞

∗

−∞

= ∫
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The Uncertainty Principle - derivation

Have shown - [ ], 0x P ≠

x p∆ ∆ ≈ and that

Want to prove:

,A and B

[ ],A B i C= C

1
2

A B C∆ ∆ ≥

andS S

Hermitian with

another Hermitian operator (could be number –
special case of operator, identity operator).

Then

C S C S=with

short hand for expectation value

arbitrary but normalized.

Given
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Consider operator

D A B i Bα β= + +

arbitrary real numbers
D S Q=

0Q Q S DD S= ≥ Q QSince is the scalar product of vector
with itself.

( )2 22 2 ' 0A B C Cα β α β+ + + − ≥Q Q S DD S= =

'C AB B A= +

[ ],AB B A A B
+

+ =

andA B
is the anticommutator of

.

anticommutator

(derive this in home work)

2 2A S A S S AA S= =
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0B S ≠ for arbitrary ket       .S

Can rearrange to give
2 2

2 2
2 2 2

2 2 2 2

' '1 1 1 1 0
2 2 4 4

C C C C
A B B

B B B B
α β
   
   + + + − − − ≥
   
   

Holds for any value of α and β.

Multiplied through by
and transposed.

Pick α and β so terms in parentheses are zero.

( )2 2 22 2 1 1'
4 4

A B C C C≥ + ≥Then

2B

Positive numbers because square of real numbers.

The sum of two positive
numbers is ≥ one of them.22 2 1

4
A B C≥

Thus,

( )2 22 2 ' 0A B C Cα β α β+ + + − ≥Q Q S DD S= =

Copyright – Michael D. Fayer, 2018



22 2 1
4

A B C≥

Define ( )2 22A A A∆ = −

( )2 22B B B∆ = −

Second moment of distribution
- for Gaussian
standard deviation squared.

For special case
0A B= = Average value of the observables are zero.

( )
1

2 2C C=
1
2

A B C∆ ∆ ≥
square root of the 
square of a number
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[ ],A B i C=
1
2

A B C∆ ∆ ≥



Have proven that for [ ],A B i C=

1
2

A B C∆ ∆ ≥

The more general case is discussed in the book.

Example

[ ],x P i= 

0x P= =

Therefore

/ 2.x p∆ ∆ ≥ 

Number, special case of an operator.
Number is implicitly multiplied by the 
identity operator.

Uncertainty comes from superposition principle.
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0A B= = Average value of the 
observables are zero.
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