Chapter 3

Hermitian linear operator Real dynamical variable represents observable quantity

Eigenvector
A state associated with an observable

Eigenvalue
Value of observable associated with a particular linear operator and eigenvector

Free particle - particle with no forces acting on it. The simplest particle in classical and quantum mechanics.
classical
rock in interstellar space

Know momentum, p, and position, x, can predict exact location at any subsequent time.

Solve Newton's equations of motion.
$p=m V$

What is the quantum mechanical description?
Should be able to describe photons, electrons, and rocks.

Momentum eigenvalue problem for Free Particle

Know operator \qquad want: eigenvectors eigenvalues

Schrödinger Representation - momentum operator

$$
\underline{P}=-i \hbar \frac{\partial}{\partial x}
$$

Later - Dirac's Quantum Condition shows how to select operators Different sets of operators form different representations of Q . M.

Have

$$
\underline{\boldsymbol{P}}|\boldsymbol{P}\rangle=-i \hbar \frac{\partial}{\partial \boldsymbol{x}}|\boldsymbol{P}\rangle=\lambda|\boldsymbol{P}\rangle
$$

Try solution

$$
|\boldsymbol{P}\rangle \equiv \boldsymbol{c} \boldsymbol{e}_{\text {eigenvalue }}^{i \lambda x / \hbar}
$$

Eigenvalue - observable. Proved that must be real number.

Function representing state of system in a particular representation and coordinate system called wave function.

$$
\underline{P}=-i \hbar \frac{\partial}{\partial x}
$$

$$
|\boldsymbol{P}\rangle \equiv c \boldsymbol{e}^{i \lambda \chi / \hbar}
$$

Check

$$
\begin{aligned}
-i \hbar \frac{\partial}{\partial x}\left[c e^{i \lambda x / \hbar}\right] & =-i \hbar i \lambda / \hbar\left[c e^{i \lambda x / \hbar}\right] \\
& =\lambda\left[c e^{i \lambda x / \hbar}\right] \begin{array}{l}
\text { Operating on function gives } \\
\text { identical function back } \\
\text { times a constant. }
\end{array}
\end{aligned}
$$

$$
\underline{\boldsymbol{P}}|\boldsymbol{P}\rangle=\lambda_{\mathrm{c}}
$$

Continuous range of eigenvalues. Momentum of a free particle can take on any value (non-relativistic).

Have called eigenvalues $\quad \lambda=p$
$p=\hbar k \quad k$ is the "wave vector."
c is the normalization constant.
c doesn't influence eigenvalues
\longrightarrow direction not length of vector matters.
Show later that normalization constant $\quad c=\frac{1}{\sqrt{2 \pi}}$
The momentum eigenfunction are

$$
\Psi_{p}(x)=\frac{1}{\sqrt{2 \pi}} e^{i k x} \quad \hbar k=p \underbrace{}_{\text {momentum eigenvalue }}
$$

Momentum eigenstates are delocalized.

Free particle wavefunction in the Schrödinger Representation
$|P\rangle=\Psi_{p}(x)=\frac{1}{\sqrt{2 \pi}} e^{i k x}=\frac{1}{\sqrt{2 \pi}}(\cos k x+i \sin k x) \quad \hbar k=p \quad k=\frac{2 \pi}{\lambda}$
State of definite momentum

Born Interpretation of Wavefunction
Schrödinger Concept of Wavefunction Solution to Schrödinger Eq. Eigenvalue problem (see later).
Thought represented "Matter Waves" - real entities.
Born put forward
Like E field of light - amplitude of classical $E \& M$ wavefunction proportional to E field, $\psi \propto E$.
Absolute value square of \boldsymbol{E} field \longrightarrow Intensity.

$$
|E|^{2}=E^{*} E \propto I
$$

Born Interpretation - absolute value square of \mathbf{Q}. M. wavefunction proportional to probability.
Probability of finding particle in the region $x+\Delta x$ given by
$\operatorname{Prob}(x, x+\Delta x)=\int_{x}^{x+\Delta x} \Psi^{*}(x) \Psi(x) d x$
Q. M. Wavefunction \longrightarrow Probability Amplitude.

Wavefunctions complex.
Probabilities always real.

Free Particle

$|P\rangle=\Psi_{p}(x)=\frac{1}{\sqrt{2 \pi}} e^{i k x}=\frac{1}{\sqrt{2 \pi}}(\cos k x+i \sin k x) \quad \hbar k=p$
What is the particle's location in space?

Not localized \longrightarrow Spread out over all space.
Equal probability of finding particle from $-\infty$ to $+\infty$.
Know momentum exactly \longrightarrow No knowledge of position.

Not Like Classical Particle!

Plane wave \longrightarrow spread out over all space.
Perfectly defined momentum - no knowledge of position.

Wave Packets

What does a superposition of states of definite momentum look like?

$$
\begin{aligned}
& \Psi_{\Delta p}(x)=\int_{p} c(p) \Psi_{p}(x) d p \longleftarrow \underbrace{\text { coefficient }- \text { how much of each }}_{\text {must integrate because continuous }} \begin{array}{c}
\text { eigenket is in the superposition }
\end{array} \\
& \text { indicates that wavefunction is composed } \\
& \text { of a superposition of momentum eigenkets }
\end{aligned}
$$

First Example
Work with wave vectors -

$$
k=p / \hbar
$$

$\Delta k \ll k_{0}$

Then

$$
\Psi_{\Delta k}=\int_{k_{0}-\Delta k}^{k_{0}+\Delta k} e^{i k x} d k
$$

Wave vectors in the range $k_{0}-\Delta k$ to $k_{0}+\Delta k$. In this range, equal amplitude of each state. Out side this range, amplitude $=0$.

Integrate over \boldsymbol{k} about \boldsymbol{k}_{0}.
$\Psi_{\Delta k}(x)=\frac{2 \sin \Delta k x}{x} e^{i k_{0} x}$
Rapid oscillations in envelope of slow, decaying oscillations.

At $x=0$ have $\lim x \rightarrow 0 \frac{2 \sin (\Delta k x)}{x}=2 \Delta k$

Writing out the $\boldsymbol{e}^{i k_{0} x}$

$$
\Psi_{\Delta k}=\frac{2 \sin (\Delta k x)}{x}\left[\cos k_{0} x+i \sin k_{0} x\right] \quad \Delta k \ll k_{0}
$$

Wave Packet

> This is the "envelope." It is "filled in" by the rapid real and imaginary spatial oscillations at frequency k_{0}.

The wave packet is now "localized" in space. As $|x| \rightarrow$ large, $\Psi_{\Delta k} \rightarrow$ small.

Greater $\Delta \boldsymbol{k} \longrightarrow$ more localized.
Large uncertainty in $p \longrightarrow$ small uncertainty in x.

Localization caused by regions of constructive and destructive interference.
5 waves $\longrightarrow \operatorname{Cos}(a x) \quad a=1.2,1.1,1.0,0.9,0.8$

Wave Packet - region of constructive interference
Combining different $|\boldsymbol{P}\rangle$,
free particle momentum eigenstates
\longrightarrow wave packet.
Concentrate probability of finding particle in some region of space.
Get wave packet from
$\Psi_{\Delta k}(x)=\int_{-\infty}^{\infty} f\left(k-k_{0}\right) e^{i k\left(x-x_{0}\right)} d k$
Wave packet centered around
$x=x_{0}$,
made up of \boldsymbol{k}-states centered around $k=k_{0}$.
$f\left(k-k_{0}\right) \Rightarrow$ weighting function
Tells how much of each k-state is in superposition. Nicely behaved \longrightarrow dies out rapidly away from k_{0}.

$f\left(k-k_{0}\right) \Rightarrow$ weighting function Only have k-states near $k=k_{0}$.
At $x=x_{0} \quad e^{i k\left(x-x_{0}\right)}=e^{0}=1$
All \boldsymbol{k}-states in superposition in phase. Interfere constructively \longrightarrow add up.
All contributions to integral add.
For large $\left(x-x_{0}\right) \quad e^{i k\left(x-x_{0}\right)}=\cos k\left(x-x_{0}\right)+i \sin k\left(x-x_{0}\right)$
Oscillates wildly with changing k.
Contributions from different k-states \longrightarrow destructive interference.
$|x| \gg x_{0} \quad \Psi_{\Delta k} \rightarrow 0 \quad$ Probability of finding particle $\longrightarrow 0$

$$
k=\frac{2 \pi}{\lambda} \longleftarrow \text { wavelength }
$$

Gaussian Wave Packet
$G(y)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left[-\left(y-y_{0}\right)^{2} / 2 \sigma^{2}\right] \quad$ Gaussian Function
$\sigma \equiv$ standard deviation

Gaussian distribution of \boldsymbol{k}-states

$$
f(k)=\frac{1}{\sqrt{2 \pi \Delta k^{2}}} \exp \left[-\frac{\left(k-k_{0}\right)^{2}}{2(\Delta k)^{2}}\right] \quad \begin{aligned}
& \text { Gaussian in } k, \text { with } \\
& \Delta k=\sigma \quad \text { normalized }
\end{aligned}
$$

Gaussian Wave Packet

$$
\begin{array}{r}
\Psi_{\Delta k}(x)=\frac{1}{\sqrt{2 \pi \Delta k^{2}}} \int_{-\infty}^{\infty} e^{-\frac{\left(k-k_{0}\right)^{2}}{2(\Delta k)^{2}}} e^{i k\left(x-x_{0}\right)} d k \\
f\left(k-k_{0}\right) e^{i k\left(x-x_{0}\right)}
\end{array}
$$

Written in terms of $x-x_{0} \longrightarrow$ Packet centered around x_{0}.

Gaussian Wave Packet

$$
\Psi_{\Delta k}(x)=\mathrm{e}^{-\frac{1}{2}\left(x-x_{0}\right)^{2}(\Delta k)^{2}} \mathrm{e}^{i k_{0}\left(x-x_{0}\right)} \quad \text { (Have left out normalization) } \begin{aligned}
& \text { Looks like momentum eigenket at } \\
& k=k_{0} \\
& \text { times Gaussian in real space. }
\end{aligned}
$$

Width of Gaussian (standard deviation)

$$
\frac{1}{\Delta k}=\sigma
$$

The bigger Δk, the narrower the wave packet.
When $x=x_{0}, \exp =1$.
For large $\left|x-x_{0}\right|$, real \exp term $\ll 1$.

Gaussian Wave Packets

To get narrow packet (more well defined position) must superimpose broad distribution of \boldsymbol{k} states.

Brief Introduction to Uncertainty Relation

Probability of finding particle
between $x \& x+\Delta x$
$\operatorname{Prob}(x)=\int_{x}^{x+\Delta x} \psi^{*}(x) \psi(x) d x$
Written approximately as
$\psi^{*}(x) \psi(x)$
For Gaussian Wave Packet $\quad \Psi_{\Delta k}(x)=e^{-\frac{1}{2}\left(x-x_{0}\right)^{2}(\Delta k)^{2}} \mathbf{e}^{i k_{0}\left(x-x_{0}\right)}$
$\Psi_{\Delta k}^{*} \Psi_{\Delta k} \propto \exp \left[-\left(x-x_{0}\right)^{2}(\Delta k)^{2}\right]$
(note - Probabilities are real.)
This becomes small when
$\left(x-x_{0}\right)^{2}(\Delta k)^{2} \geq 1$
Call $x-x_{0} \equiv \Delta x$, then
$\Delta x \Delta k \cong 1$
$\Delta x \Delta k \cong 1$

$$
\begin{array}{ll}
\hbar k=p & \text { momentum } \\
\hbar \Delta k=\Delta p & \text { spread or "uncertainty" in momentum }
\end{array}
$$

$\Delta k=\frac{\Delta p}{\hbar}$
$\Delta x \frac{\Delta p}{\hbar} \cong 1$
$\therefore \quad \Delta x \Delta p \cong \hbar$

Superposition of states leads to uncertainty relationship.
Large uncertainty in x, small uncertainty in p, and vis versa.
(See later that $\Delta x \Delta p \geq \hbar / 2$
differences from choice of $1 / \mathbf{e}$ point instead of σ)

Observing Photon Wave Packets Ultrashort mid-infrared optical pulses

$$
\begin{aligned}
& \Delta t=40 \mathrm{fs}=40 \times 10^{-15} \mathrm{~s} \\
& \Delta x=c \Delta t
\end{aligned}
$$

$$
p=h / \lambda \quad \lambda^{-1}=p / h
$$

$$
\Delta p=2.4 \times 10^{-29} \mathrm{~kg}-\mathrm{m} / \mathrm{s}
$$

(FWHM, 14\%)

$$
\Delta x=1.2 \times 10^{-5} \mathrm{~m}=12 \mu \mathrm{~m} \text { (FWHM) } \quad p_{0}=1.7 \times 10^{-28} \mathrm{~kg}-\mathrm{m} / \mathrm{s}
$$

Electrons can act as "particle" or "waves" - wave packets.
CRT - cathode ray tube Old style TV or computer monitor

Electron beam in CRT.
Electron wave packets like bullets.
Hit specific points on screen to give colors.
Measurement localizes wave packet.

Electron diffraction

in coming

electron "wave"

Electron beam impinges on surface of a crystal low energy electron diffraction diffracts from surface. Acts as wave. Measurement determines momentum eigenstates.

Peaks line up.
Constructive interference.

Low Energy Electron Diffraction (LEED) from crystal surface

Group Velocities

Time independent momentum eigenket
$|P\rangle=\Psi_{p}(x)=\frac{1}{\sqrt{2 \pi}} e^{i k x} \quad p=\hbar k$

Direction and normalization \longrightarrow ket still not completely defined.
Can multiply by phase factor $\boldsymbol{e}^{i \varphi} \quad \varphi$ real

Ket still normalized. Direction unchanged.

For time independent Energy
In the Schrödinger Representation (will prove later)
Time dependence of the wavefunction is given by

$$
e^{-i E t / \hbar}=e^{-i \omega t} \quad \hbar \omega=E
$$

Time dependent phase factor.

$$
e^{-i \omega t} e^{i \omega t}=1, \quad \text { Still normalized }
$$

The time dependent eigenfunctions of the momentum operator are

$$
\Psi_{k}(x, t)=e^{i\left[k\left(x-x_{0}\right)-\omega(k) t\right]}
$$

Time dependent Wave Packet

$$
\Psi_{\Delta k}(x, t)=\int_{-\infty}^{\infty} f(k) \exp \left[i\left(k\left(x-x_{0}\right)-\omega(k) t\right)\right] d k
$$

Photon Wave Packet in a vacuum
Superposition of photon plane waves.
Need ω

$$
\omega=\mathrm{ck}=\mathrm{c} \frac{2 \pi}{\lambda} \quad \begin{aligned}
& \mathrm{c}=\lambda \nu \\
& 2 \pi \nu=\omega
\end{aligned}
$$

Using $\omega=c k$

$$
\begin{aligned}
& \Psi_{\Delta k}(x, t)=\int_{-\infty}^{\infty} f(k) \exp \left[i k\left(x-x_{0}-c t\right)\right] d k \\
& \text { At } t=0, \quad \text { Have factored out } k .
\end{aligned}
$$

Packet centered at $x=x_{0}$.
Argument of exp. = 0.
Max constructive interference. At later times,

$$
\text { Pealk at } x=x_{0}+c t
$$

Point where argument of $\exp =0 \longrightarrow$ Max constructive interference.
Packet moves with speed of light.
Each plane wave (k-state) moves at same rate, c.
Packet maintains shape.
Motion due to changing regions of constructive and destructive interference of delocalized planes waves

Localization and motion due to superposition of momentum eigenstates.

Photons in a Dispersive Medium
Photon enters glass, liquid, crystal, etc.
Velocity of light depends on wavelength.
$\mathbf{n}(\lambda) \longrightarrow$ Index of refraction - wavelength dependent.

$$
\begin{aligned}
& \omega(k)=2 \pi c / \lambda n(\lambda)=k c / n(k) \\
& V=\frac{\mathrm{c}}{\mathrm{n}(\lambda)} \quad \frac{\omega}{2 \pi}=\nu \quad \nu \lambda=V \quad k=2 \pi / \lambda
\end{aligned}
$$

Dispersion, $\quad \omega(k) \quad$ no longer linear in k.

Wave Packet

$$
\Psi_{\Delta k}(x, t)=\int_{-\infty}^{\infty} f(k) \exp \left[i\left(k\left(x-x_{0}\right)-\omega(k) t\right)\right] d k
$$

Still looks like wave packet.
At $t=0$, the peak is at $x=x_{0}$
Moves, but not with velocity of light.

Different states move with different velocities; in glass blue waves move slower than red waves.

Velocity of a single state in superposition \longrightarrow Phase Velocity.

Velocity - velocity of center of packet. $\quad \phi=\boldsymbol{k}\left(x-x_{0}\right)-\omega(k) t$
$t=0, \quad x=x_{0} \quad$ max constructive interference
Argument of exp. zero for all k-states at $x=x_{0}, t=0$.

The argument of the exp. at later times

$$
\phi=k\left(x-x_{0}\right)-\omega(k) t
$$

$\omega(k)$ does not change linearly with k, can't factor out k.
Argument will never again be zero for all k in packet simultaneously.

Most constructive interference when argument changes with \boldsymbol{k} as slowly as possible.
\longrightarrow This produces slow oscillations as k changes.
k-states add constructively, but not perfectly.

No longer perfect constructive interference at peak.

In glass

Red waves get ahead. Blue waves fall behind.

The argument of the exp. is $\phi=\boldsymbol{k}\left(x-x_{0}\right)-\omega(k) t$
When ϕ changes slowly as a function of k within range of k determined by $f(k)$ \longrightarrow Constructive interference.
Find point of max constructive interference. ϕ changes as slowly as possible with k

$$
\frac{\partial \phi}{\partial k}=0=\left(x-x_{0}\right)-t\left(\frac{\partial \omega(k)}{\partial k}\right)_{k_{0}}
$$

$\underset{\substack{\max \text { of packet } \\ \text { at time, } t \text {. }}}{ } x=x_{0}+t\left(\frac{\partial \omega(k)}{\partial k}\right)_{k_{0}}$

Distance Packet has moved at time t

$$
d=\left(x-x_{0}\right)=\left(\frac{\partial \omega(k)}{\partial k}\right)_{k_{0}} t=V t
$$

Point of maximum constructive interference (packet peak) moves at
$V_{g}=\left(\frac{\partial \omega(k)}{\partial k}\right)_{k_{0}} \Rightarrow$ Group Velocity
$V_{g} \Longrightarrow$ speed of photon in dispersive medium.
$V_{p} \Longrightarrow$ phase velocity $=\lambda \nu=\omega / k$ only same when $\omega(k)=c k \longrightarrow$
vacuum (approx. true in low pressure gasses)

Electron Wave Packet

de Broglie wavelength

$$
\begin{equation*}
p=h / \lambda=\hbar k \tag{1922Ph.D.thesis}
\end{equation*}
$$

A wavelength associated with a particle \longrightarrow unifies theories of light and matter.

$$
\begin{aligned}
& E=\hbar \omega \\
& \omega(k)=E / \hbar=\frac{p^{2}}{2 m \hbar}=\frac{\hbar k^{2}}{2 m} X_{U s e d} p=\hbar k
\end{aligned}
$$

Non-relativistic free particle energy divided by \hbar (will show later).
V_{g} - Free non-zero rest mass particle
$V_{g}=\frac{\partial \omega(k)}{\partial k}=\frac{\hbar}{2 m} \frac{\partial k^{2}}{\partial k}=\frac{\hbar k}{m}=p / m$
$p / m=m V / m=V$

Group velocity of electron wave packet \longrightarrow same as classical velocity.
However, description very different. Localization and motion due to changing regions of constructive and destructive interference. Can explain electron motion and electron diffraction.

Correspondence Principle - Q. M. gives same results as classical mechanics when in "classical regime."

Have called eigenvalues $\quad \lambda=p$
$p=\hbar \boldsymbol{k} \quad \boldsymbol{k}$ is the "wave vector."
c is the normalization constant. c doesn't influence eigenvalues
direction not length of vector matters.
Normalization
$\langle\boldsymbol{a} \mid \boldsymbol{b}\rangle \quad$ scalar product
$\langle a \mid a\rangle \quad$ scalar product of a vector with itself
$(\langle a \mid a\rangle)^{1 / 2}=1$
normalized

Normalization of the Momentum Eigenfunctions - the Dirac Delta Function
$\langle b \mid a\rangle=\int \psi_{b}^{*} \psi_{a} d \tau$ scalar product of vector functions (linear algebra)
$\langle a \mid a\rangle=\int \phi_{\mathrm{a}}^{*} \phi_{\mathrm{a}} \mathrm{d} \tau . \quad$ scalar product of vector function with itself
$\left\langle P^{\prime} \mid P\right\rangle=\int_{-\infty}^{\infty} \psi_{P^{\prime}}^{*} \psi_{P} d x= \begin{cases}1 \text { if } P^{\prime}=P & \text { normalization } P^{\prime}=P \\ 0 \text { if } P^{\prime} \neq P & \text { orthogonality } P^{\prime} \neq P\end{cases}$
Using $\quad \boldsymbol{p}=\boldsymbol{\hbar} \boldsymbol{k}$
$c^{2} \int_{-\infty}^{\infty} e^{-i k^{\prime} x} e^{i k x} d x=c^{2} \int_{-\infty}^{\infty} e^{i\left(k-k^{\prime}\right) x} d x$
Want to adjust \boldsymbol{c} so the integral times $c^{2}=1$.

Can't do this integral with normal methods - oscillates.

$$
\int_{-\infty}^{\infty} e^{i\left(k-k^{\prime}\right) x} d x=\int_{-\infty}^{\infty}\left[\cos \left(k-k^{\prime}\right) x+i \sin \left(k-k^{\prime}\right) x\right] d x .
$$

Dirac δ function

Definition

$$
\begin{aligned}
& \delta(x)=0 \quad \text { if } x \neq 0 \\
& \int_{-\infty}^{\infty} \delta(x) d x=1
\end{aligned}
$$

For function $f(x)$ continuous at $x=0$,

$$
\int_{-\infty}^{\infty} f(x) \delta(x) d x=f(0)
$$

or

$$
\delta(x-a)=0 \quad \text { if } \quad x \neq a
$$

$$
\int_{-\infty}^{\infty} f(x) \delta(x-a) d x=f(a)
$$

Physical illustration

Limit width $\rightarrow 0$, height $\longrightarrow \infty$ area remains 1

Mathematical representation of δ function
$\underline{\sin (\boldsymbol{g} x)} \quad g$ any real number $\boldsymbol{\pi} \boldsymbol{x}$

Has value g / π at $x=0$.
Decreasing oscillations for increasing $|x|$.
Has unit area independent of the choice of g.

$$
\begin{array}{lll}
\text { As } g \longrightarrow \infty \longmapsto \delta & \begin{array}{l}
\text { 1. Has unit integral } \\
\text { 2. Only non-zero at point } x=0,
\end{array} \\
\delta(x)=\lim _{g \rightarrow \infty} \frac{\sin g x}{\pi x} & \begin{array}{l}
\text { because oscillations infinitely fast, over } \\
\text { finite interval yield zero area. }
\end{array}
\end{array}
$$

Use $\delta(x)$ in normalization and orthogonality of momentum eigenfunctions.
Want $\quad\langle\mathbf{p} \mid \mathbf{p}\rangle=1$

$$
\left\langle\mathbf{p} \mid \mathbf{p}^{\prime}\right\rangle=\mathbf{0}
$$

$c^{2} \int_{-\infty}^{\infty} e^{-i k^{\prime} x} e^{i k x} d x=\left\{\begin{array}{l}1 \text { if } k=k^{\prime} \\ 0 \\ \text { if } k \neq k^{\prime}\end{array} \quad\right.$ Adjust c to make equal to 1.

Evaluate

$\int_{-\infty}^{\infty} e^{i\left(k-k^{\prime}\right) x} d x=\int_{-\infty}^{\infty}\left[\cos \left(k-k^{\prime}\right) x+i \sin \left(k-k^{\prime}\right) x\right] d x$
Rewrite

$$
\begin{aligned}
& =\lim _{g \rightarrow \infty} \int_{-g}^{g}\left[\cos \left(k-k^{\prime}\right) x+i \sin \left(k-k^{\prime}\right) x\right] d x \\
& =\left.\lim _{g \rightarrow \infty}\left\{\frac{\left[\sin \left(k-k^{\prime}\right) x\right]}{\left(k-k^{\prime}\right)}-\frac{\left[i \cos \left(k-k^{\prime}\right) x\right]}{\left(k-k^{\prime}\right)}\right\}\right|_{-g} ^{g}
\end{aligned}
$$

$$
\left.\lim _{g \rightarrow \infty}\left\{\frac{\left[\sin \left(k-k^{\prime}\right) x\right]}{\left(k-k^{\prime}\right)}-\frac{\left[i \cos \left(k-k^{\prime}\right) x\right]}{\left(k-k^{\prime}\right)}\right\}\right|_{-g} ^{g}=\lim _{g \rightarrow \infty} \frac{2 \sin g\left(k-k^{\prime}\right)}{\left(k-k^{\prime}\right)}
$$

$$
=2 \pi \delta\left(k-k^{\prime}\right)
$$

The momentum eigenfunctions are orthogonal. We knew this already. Proved eigenkets belonging to different eigenvalues are orthogonal.

To find out what happens for $k=k^{\prime}$ must evaluate $2 \pi \delta(k-k ')$.
But, whenever you have a continuous range in the variable of a vector function (Hilbert Space), can't define function at a point. Must do integral about point.
$\int_{k^{\prime}=k-\varepsilon}^{k^{\prime}=k+\varepsilon} \delta\left(k-k^{\prime}\right) d k^{\prime}=1 \quad$ if $\quad k=k^{\prime}$

Therefore

$$
\frac{1}{c^{2}}\left\langle\boldsymbol{P}^{\prime} \mid \boldsymbol{P}\right\rangle=\left\{\begin{array}{c}
2 \pi \text { if } \boldsymbol{P}^{\prime}=\boldsymbol{P} \\
0 \text { if } \boldsymbol{P}^{\prime} \neq \boldsymbol{P}
\end{array}\right.
$$

$|\boldsymbol{P}\rangle$ are orthogonal and the normalization constant is
$c^{2}=\frac{1}{2 \pi}$
$c=\frac{1}{\sqrt{2 \pi}}$
The momentum eigenfunction are
$\Psi_{p}(x)=\frac{1}{\sqrt{2 \pi}} e^{i k x} \quad \hbar k=p \underbrace{}_{\text {momentum eigenvalue }}$

