Chapter 16

Electron Spin

Electron spin hypothesis
Solution to \mathbf{H} atom problem gave three quantum numbers, n, l, m. These apply to all atoms.
Experiments show not complete description. Something missing.

Alkali metals show splitting of spectral lines in absence of magnetic field. s lines not split p, d lines split

Na D-line (orange light emitted by excited Na) split by $17 \mathrm{~cm}^{-1}$
Many experiments not explained without electron "spin."

Stern-Gerlach experiment early, dramatic example.

Stern-Gerlach experiment - 1922

Beam of silver atoms deflected by magnetic field gradient. Single unpaired electron - should not give two lines on glass plate. s-orbital. No orbital angular momentum. No magnetic moment. Observed deflection corresponds to one Bohr magneton.

Assume: Electron has intrinsic angular momentum called "spin."

$$
s=\frac{1}{2} \hbar
$$

square of $\rightarrow \underline{S}^{2}\left|s m_{s}\right\rangle=\frac{1}{2}\left(\frac{1}{2}+1\right) \hbar^{2}\left|s m_{s}\right\rangle$
angular
momentum operator

$$
\underline{S}_{z}\left|\boldsymbol{s} \boldsymbol{m}_{s}\right\rangle= \pm \frac{\mathbf{1}}{\mathbf{2}} \hbar\left|\boldsymbol{s} \boldsymbol{m}_{s}\right\rangle
$$

projection of angular momentum on z-axis

$$
\begin{array}{ll}
& \text { Electron has magnetic moment. } \\
\mu_{s}=e \hbar / 2 m c \leftarrow & \text { One Bohr magneton. } \\
\text { Charged particle with angular mom. }
\end{array}
$$

$$
\begin{aligned}
\frac{\mu_{s}}{s} & =\frac{e}{m c} \\
\frac{\mu_{\ell}}{\ell} & =\frac{e}{2 m c}
\end{aligned}
$$

Ratio twice the ratio for orbital angular momentum.

Electronic wavefunction with spin

$$
\begin{aligned}
& \psi=\psi(x, y, z) \\
& \psi=\psi\left(x, y, z, m_{s}\right) \longleftarrow \text { with spin } \\
& m_{s}= \pm \frac{1}{2}
\end{aligned}
$$

$\left|\boldsymbol{s} \boldsymbol{m}_{s}\right\rangle \quad$ spin angular momentum kets

$$
\begin{aligned}
& \left|\chi\left(m_{s}\right)\right\rangle=\left|\frac{1}{2} \frac{1}{2}\right\rangle,\left|\frac{1}{2}-\frac{1}{2}\right\rangle \\
& \alpha=\left|\frac{1}{2} \frac{1}{2}\right\rangle \\
& \beta=\left|\frac{1}{2}-\frac{1}{2}\right\rangle
\end{aligned}
$$

Electronic States in a Central Field

Electron in state of orbital angular momentum ℓ
$\Longrightarrow \boldsymbol{Y}_{\ell}^{m_{\ell}}(\theta, \varphi)$
$m_{\ell} \quad \begin{aligned} & \text { label as orbital angular momentum } \\ & \text { quantum number }\end{aligned}$
$\boldsymbol{m}_{s} \longleftarrow$ spin angular momentum quantum number

$$
\chi(1 / 2), \chi(-1 / 2)
$$

$\left|\psi\left(\ell \boldsymbol{m}_{\ell} \boldsymbol{m}_{s}\right)\right\rangle=\left|\boldsymbol{Y}_{\ell}^{\boldsymbol{m}_{\ell}}\right\rangle\left|\chi\left(\boldsymbol{m}_{s}\right)\right\rangle$
product space of angular momentum (orbital and spin) eigenvectors

$$
\left|\psi\left(\ell \boldsymbol{m}_{\ell} \boldsymbol{m}_{s}\right)\right\rangle \quad \text { Simultaneous eigenvectors of }
$$

$$
\underline{\boldsymbol{L}}^{2} \quad \underline{\boldsymbol{L}}_{z} \quad \underline{\boldsymbol{S}}^{2} \quad \underline{\boldsymbol{S}}_{z}
$$

$\underline{L}^{2}|\psi\rangle=\ell(\ell+1)|\psi\rangle$
$\underline{\boldsymbol{L}}_{z}|\boldsymbol{\psi}\rangle=\boldsymbol{m}_{\ell}|\boldsymbol{\psi}\rangle$
constant - eigenvalues of \underline{S}^{2} are $s(s+1), s=1 / 2$
$\underline{S}^{2}|\psi\rangle=\frac{3}{4}|\psi\rangle$
$\underline{\boldsymbol{S}}_{z}|\boldsymbol{\psi}\rangle=\boldsymbol{m}_{s}|\boldsymbol{\psi}\rangle$
$2(2 \ell+1) \quad$ linearly independent functions of form $\left|\psi\left(\ell m_{\ell} m_{s}\right)\right\rangle$.

Example - p states of an electron
Orbital functions $\quad \ell=1$

$$
\psi(r, \theta, \varphi)=R(r) Y_{\ell}^{m}(\theta, \varphi)
$$

orbital angular momentum part

$$
\begin{array}{rrr}
Y_{1}^{1}=|11\rangle & Y_{1}^{0}=|10\rangle & Y_{1}^{-1}=|1-1\rangle \\
j_{1} m_{1} & j_{1} m_{1} & j_{1} m_{1}
\end{array}
$$

spin functions

$$
\alpha=\left|\frac{1}{2} \frac{1}{2}\right\rangle \quad \beta=\left|\frac{1}{2}-\frac{1}{2}\right\rangle
$$

$\boldsymbol{j}_{1} \boldsymbol{m}_{1}=\ell \boldsymbol{m}_{\ell}$
$j_{2} m_{2}=s m_{s}$

In the $m_{1} m_{2}$ representation

$$
\begin{aligned}
& \ell \boldsymbol{s} \boldsymbol{m}_{\ell} \boldsymbol{m}_{s} \quad \boldsymbol{m}_{\ell} \boldsymbol{m}_{s} \\
& Y_{1}^{1} \alpha=\left|1 \frac{1}{2} \quad 1 \frac{1}{2}\right\rangle=\left|1 \frac{1}{2}\right\rangle \\
& Y_{1}^{1} \beta=\left|1 \frac{1}{2} \quad 1-\frac{1}{2}\right\rangle=\left|1-\frac{1}{2}\right\rangle \\
& Y_{1}^{0} \alpha=\left|1 \frac{1}{2} \quad 0 \frac{1}{2}\right\rangle=\left|0 \frac{1}{2}\right\rangle \\
& Y_{1}^{0} \beta=\left|1 \frac{1}{2} \quad 0-\frac{1}{2}\right\rangle=\left|0-\frac{1}{2}\right\rangle \\
& Y_{1}^{-1} \alpha=\left|1 \frac{1}{2}-1 \frac{1}{2}\right\rangle=\left|-1 \frac{1}{2}\right\rangle \\
& Y_{1}^{-1} \beta=\left|1 \frac{1}{2}-1-\frac{1}{2}\right\rangle=\left|-1-\frac{1}{2}\right\rangle
\end{aligned}
$$

Each of these is multiplied by $R(r) . \quad j_{1} \boldsymbol{j}_{2}=\ell s$

Total angular momentum - jm representation
Two states of total angular momentum
$j=j_{1}+j_{2}=\ell+s=\frac{\mathbf{3}}{2}$
$j=j_{1}+j_{2}-1=\left|j_{1}-j_{2}\right|=\ell-s=\frac{1}{2}$

The jm kets are

$$
\left|\frac{3}{2} \frac{3}{2}\right\rangle\left|\frac{3}{2} \frac{1}{2}\right\rangle\left|\frac{3}{2}-\frac{1}{2}\right\rangle \quad\left|\frac{3}{2}-\frac{3}{2}\right\rangle\left|\frac{1}{2} \frac{1}{2}\right\rangle\left|\frac{1}{2}-\frac{1}{2}\right\rangle
$$

The $\boldsymbol{j} m$ kets can be obtained from the $m_{1} m_{2}$ kets using the
For example $\left.\xrightarrow[\text { table of Clebsch-Gordon coefficients. }]{\longrightarrow\left|\frac{1}{2} \frac{1}{2}\right\rangle}\right\rangle=\sqrt{\frac{2}{3}}\left|1-\frac{1}{2}\right\rangle-\sqrt{\frac{1}{3}}\left|0 \frac{1}{2}\right\rangle$
$m_{1} m_{2}$
Table of Clebsch-Gordon
Coefficients

$$
\begin{aligned}
& j_{1}=1 \\
& j_{2}=1 / 2
\end{aligned}
$$

$$
\frac{3}{2} \quad \frac{3}{2} \quad \frac{1}{2} \quad \frac{3}{2} \quad \frac{1}{2} \quad \frac{3}{2} \quad j
$$

$$
\begin{array}{lllllll}
\frac{3}{2} & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{3}{2} & m \\
\hline
\end{array}
$$

Spin-orbit Coupling

An electron, with magnetic moment moves in the electric field of rest of atom (or molecule).

$$
\vec{\mu}=-\frac{|e| \underline{\vec{S}}}{2 m c} \quad \text { spin magnetic moment of electron }
$$

Then

$$
W=\frac{|e|}{2 m c}(\vec{E} \times \vec{V}) \cdot \underline{\vec{S}}
$$

Using

$$
|e| \vec{E}=\operatorname{grad} \phi \quad \text { Coulomb potential (usually called } V \text {, but } V \text { is velocity) }
$$

and

$$
\vec{p}=m \vec{V}
$$

$$
\underline{W}=\frac{1}{2 m^{2} c}(\operatorname{grad} \phi \times \underline{\vec{p}}) \cdot \underline{\vec{S}}
$$

Hydrogen like atoms
$\phi=-\frac{z e^{2}}{4 \pi \varepsilon_{0} r}$
Coulomb potential unit vector
$\operatorname{grad} \phi=\frac{z e^{2}}{4 \pi \varepsilon_{0} r^{2}}\left(\frac{\vec{r}}{r}\right)^{2}=\frac{z e^{2}}{4 \pi \varepsilon_{0} r^{3}} \vec{r} \quad$ vector derivative of potential
Substituting
$\underline{H}_{s o}=\frac{z e^{2}}{8 \pi \varepsilon_{0} m^{2} c} \frac{1}{\underline{\underline{r}}^{3}}(\underline{\vec{r}} \times \underline{\vec{p}}) \cdot \underline{\vec{S}}$
$(\underline{\vec{r}} \times \underline{\vec{p}}) \longleftrightarrow \underline{\vec{L}} \quad$ orbital angular momentum

$$
\underline{H}_{s o}=\frac{z e^{2}}{8 \pi \varepsilon_{0} m^{2} c} \frac{1}{r^{3}} \overrightarrow{\underline{L}} \cdot \overrightarrow{\underline{S}} \longleftarrow \quad \begin{aligned}
& \text { operates on } \\
& \text { spin ang. mom. }
\end{aligned}
$$

operates on
radial part of
wavefunction
operates on orbital ang. mom. part of wavefunction

One unpaired electron - central field (Sodium outer electron)

$$
\phi=V(r)
$$

$$
\begin{aligned}
& \operatorname{gradV}(r)=\frac{\partial V(r)}{\partial r} \frac{1}{r} \vec{r} \\
& \underline{H}_{s o}=\frac{1}{2 m^{2} c} \frac{1}{r} \frac{\partial V(r)}{\partial r} \underline{\vec{L}} \cdot \underline{\vec{S}}=a(r) \underline{\vec{L}} \cdot \underline{\vec{S}}
\end{aligned}
$$

Many electron system

$$
\underline{H}_{s o}=\frac{1}{2 m^{2} c} \sum_{i}\left[\frac{1}{r_{i}} \frac{\partial V\left(r_{i}\right)}{\partial r_{i}}\right] \underline{\underline{L}}_{i} \cdot \underline{\vec{S}}_{i}=\sum_{i} a_{i}(r) \underline{\vec{L}}_{i} \cdot \underline{\vec{S}}_{i}
$$

Ignore terms involving, $\underline{\vec{L}}_{i} \cdot \underline{\vec{S}}_{j}$, the orbital angular momentum of one electron with the spin of another electron. Extremely small.

Spin-orbit coupling piece of Hamiltonian
$\underline{\boldsymbol{H}}_{s o}=\boldsymbol{a}(\boldsymbol{r}) \underline{\overrightarrow{\boldsymbol{L}}} \cdot \underline{\overrightarrow{\boldsymbol{S}}}$

H-like atom - spatial part of operator

$$
\begin{aligned}
& \underline{H}_{s o}(r)=\frac{z e^{2}}{8 \pi \varepsilon_{0} m^{2} c} \frac{1}{\underline{r}^{3}} \\
& E=\int_{-\infty}^{\infty} \psi^{*}(r) \underline{H}_{s o} \psi(r) d \tau
\end{aligned}
$$

Normalization constant (eq.7.63) contains

H - little S.O. coupling
Br - sizable S.O. coupling

Heavy atom effect and external heavy atom effect important in many processes.

$$
\underline{H}_{s o}=a(r) \underline{\vec{L}} \cdot \underline{\vec{S}}
$$

The $a(r)$ part is independent of the angular momentum states.
Consider $\underline{\vec{L}} \cdot \underline{\vec{S}}$

$$
\underline{\overrightarrow{\boldsymbol{L}}} \cdot \underline{\overrightarrow{\boldsymbol{S}}}=\underline{\boldsymbol{L}}_{x} \underline{\boldsymbol{S}}_{x}+\underline{\boldsymbol{L}}_{y} \underline{\boldsymbol{S}}_{y}+\underline{\boldsymbol{L}}_{z} \underline{\boldsymbol{S}}_{z}
$$

Rearranging the expressions for the angular momentum raising and lowering operators

$$
\underline{S}_{x}=\frac{1}{2}\left(\underline{S}_{+}+\underline{S}_{-}\right)
$$

$$
\underline{S}_{y}=\frac{1}{2 i}\left(\underline{S}_{+}-\underline{S}_{-}\right)
$$

$$
\underline{L}_{x}=\frac{1}{2}\left(\underline{L}_{+}+\underline{L}_{-}\right)
$$

$$
\underline{L}_{y}=\frac{1}{2 i}\left(\underline{L}_{+}-\underline{L}_{-}\right)
$$

Substituting $\quad \underline{\vec{L}} \cdot \underline{\vec{S}}=\underline{L}_{z} \underline{S}_{z}+\frac{1}{2}\left(\underline{L}_{+} \underline{S}_{-}+\underline{L}_{-} \underline{S}_{+}\right)$
diagonal

Spin-Orbit Coupling in the $m_{1} m_{2}$ representation

$$
\underline{\vec{L}} \cdot \underline{\vec{S}}=\underline{L}_{z} \underline{S}_{z}+\frac{1}{2}\left(\underline{L}_{+} \underline{S}_{-}+\underline{L}_{-} \underline{S}_{+}\right) \quad \text { not diagonal in the } m_{1} m_{2} \text { representation }
$$

States in the $\boldsymbol{m}_{\mathbf{1}} \boldsymbol{m}_{\mathbf{2}}$ representation
$\left|1 \frac{1}{2}\right\rangle\left|1-\frac{1}{2}\right\rangle\left|0 \frac{1}{2}\right\rangle\left|0-\frac{1}{2}\right\rangle\left|-1 \frac{1}{2}\right\rangle\left|-1-\frac{1}{2}\right\rangle$

The spin-orbit coupling Hamiltonian matrix in the $\boldsymbol{m}_{1} \boldsymbol{m}_{2}$ representation is a 6×6.

Calculating the matrix elements
Kets are diagonal for the $\underline{L}_{z} \underline{S}_{z}$ piece of the Hamiltonian. For example
$\underline{L}_{z} \underline{S}_{z}\left|1 \frac{1}{2}\right\rangle=\frac{1}{2}\left|1 \frac{1}{2}\right\rangle \quad \underline{L}_{z}$ brings out m_{ℓ} and \underline{S}_{z} brings out m_{s}.

$$
\boldsymbol{m}_{\ell} \boldsymbol{m}_{s} \quad \boldsymbol{m}_{\ell} \boldsymbol{m}_{s}
$$

$\frac{1}{2}\left(\underline{L}_{+} \underline{S}_{-}+\underline{L}_{-} \underline{S}_{+}\right) \quad$ not diagonal
Apply $\frac{1}{2}\left(\underline{L}_{+} \underline{S}_{-}+\underline{L}_{-} \underline{S}_{+}\right)$to the six kets.
Examples
$\frac{1}{2}\left(\underline{L}_{+} \underline{S}_{-}+\underline{L}_{-} \underline{S}_{+}\right)\left|\frac{1}{1}\right\rangle=0 \quad$ can't raise above largest values
$\frac{1}{2}\left(\underline{L}_{+} \underline{S}_{-}+\underline{L}_{-} \underline{S}_{+}\right)\left|1-\frac{1}{2}\right\rangle=\frac{\sqrt{2}}{2}\left|0 \frac{1}{2}\right\rangle$
Left multiply by $\left\langle 0 \frac{1}{2}\right|$
$\left\langle 0 \frac{1}{2}\right| \frac{1}{2}\left(\underline{L}_{+} \underline{S}_{-}+\underline{L}_{-} \underline{S}_{+}\right)\left|1-\frac{1}{2}\right\rangle=\frac{\sqrt{2}}{2} \quad$ matrix element

$$
\underline{\boldsymbol{H}}_{S o}=a(r)\left[\underline{\boldsymbol{L}}_{z} \underline{S}_{z}+\frac{1}{2}\left(\underline{L}_{+} \underline{S}_{-}+\underline{\boldsymbol{L}}_{-} \underline{S}_{+}\right)\right]
$$

$$
\left|1 \frac{1}{2}\right\rangle\left|1-\frac{1}{2}\right\rangle\left|0 \frac{1}{2}\right\rangle\left|0-\frac{1}{2}\right\rangle\left|-1 \frac{1}{2}\right\rangle\left|-1-\frac{1}{2}\right\rangle
$$

put bras down left side

$$
\text { example }\left\langle 0 \frac{1}{2}\right| \frac{1}{2}\left(\underline{L}_{+} \underline{S}_{-}+\underline{L}_{-} \underline{S}_{+}\right)\left|1-\frac{1}{2}\right\rangle=\frac{\sqrt{2}}{2}
$$

Matrix is block diagonal.

Matrix - Block Diagonal

Each block is independent. Diagonalize separately.
Form determinant from block with λ (eigenvalue) subtracted from diagonal elements.

$$
\left|\begin{array}{cc}
-\frac{1}{2}-\lambda & \sqrt{2} / 2 \\
\sqrt{2} / 2 & -\lambda
\end{array}\right|=0
$$

The two blocks are the same. Only need to solve one of them.
The two 1×1 blocks
are diagonal - eigenvalues.
Expand the determinant. Solve for λ. Each block multiplied by $a(r)$.

$$
\begin{aligned}
& 1 / 2 \lambda+\lambda^{2}-1 / 2=0 \\
& \lambda=-1 / 4 \pm 3 / 4 \\
& \lambda=[1 / 2 \text { or }-1]
\end{aligned}
$$

$$
\begin{aligned}
\lambda & =\frac{1}{2} a(r) \\
\lambda & =-1 a(r)
\end{aligned}
$$

The two 2×2 blocks each give these results. The two 1×1 blocks each give $1 / 2 a(r)$.
Therefore,
4 eigenvalues of $1 / 2 a(r)$.
2 eigenvalues of $-1 a(r)$.

Ratio $\frac{a(r)}{E}=\mathbf{7} \times 10^{-4} \quad$ Ratio small, but need spin-orbit coupling

Spin-orbit Coupling in the $\boldsymbol{j} m$ representation
The $\boldsymbol{j} m$ kets are
$\left|\frac{3}{2} \frac{3}{2}\right\rangle\left|\frac{3}{2} \frac{1}{2}\right\rangle \quad\left|\frac{3}{2}-\frac{1}{2}\right\rangle\left|\frac{3}{2}-\frac{3}{2}\right\rangle\left|\frac{1}{2} \frac{1}{2}\right\rangle\left|\frac{1}{2}-\frac{1}{2}\right\rangle$

However

$$
a(r) \underline{\vec{L}} \cdot \underline{\stackrel{\rightharpoonup}{\boldsymbol{S}}}
$$

is in the $\boldsymbol{m}_{1} \boldsymbol{m}_{2}$ representation.
Can't operate $\underline{H}_{S O}$ directly on the jm kets.
Use table of Clebsch-Gordan coefficient to take $\boldsymbol{j} m$ kets into $m_{1} m_{2}$ rep., operate, then convert back to $\mathbf{j m}$ rep. (Done in this manner in book.)

Alternatively, rewrite operator so it can operate on the $\boldsymbol{j} \boldsymbol{m}$ kets.

We need the operator, $a(r) \underline{\vec{L}} \cdot \underline{\vec{S}}$, which is an $m_{1} m_{2}$, in the $j m$
$\underline{J}=\underline{L}+\underline{S}$
$\underline{J}^{2}=(\underline{L}+\underline{S})^{2}=\underline{L}^{2}+\underline{S}^{2}+2 \underline{L} \cdot \underline{S}$
So
$\underline{L} \cdot \underline{S}=\mathbf{1} / \mathbf{2}\left(\underline{J}^{2}-\underline{L}^{2}-\underline{S}^{2}\right)$

Recall that a $\boldsymbol{j} \boldsymbol{m}$ ket, $|\boldsymbol{J m}\rangle$, is an abbreviation for $\left|\boldsymbol{j}_{1} \boldsymbol{j} \boldsymbol{J} \boldsymbol{J m}\right\rangle$.
So for the spin-orbit coupling problem, the $\boldsymbol{j} \boldsymbol{m}$ ket is
$|\boldsymbol{l s} \boldsymbol{J m}\rangle$
l is an eigenket of the \underline{L}^{2} operator.
s is an eigenket of the \underline{S}^{2} operator.
and
J is an eigenket of the \underline{J}^{2} operator.
Therefore, the $\boldsymbol{j} \boldsymbol{m}$ kets are eigenkets of the $\underline{\boldsymbol{L}} \cdot \underline{S}$ operator.

Operate $a(r) \underline{\vec{L}} \cdot \underline{\vec{S}}$ on $\left|\frac{\mathbf{3}}{\mathbf{2}} \frac{3}{2}\right\rangle \quad \underline{L} \cdot \underline{S}=\mathbf{1} / \mathbf{2}\left(\underline{J}^{2}-\underline{L}^{2}-\underline{S}^{2}\right)$

$$
\begin{aligned}
a(r) \underline{\vec{L}} \cdot \underline{\vec{S}}\left|\frac{3}{2} \frac{3}{2}\right\rangle & =a(r) 1 / 2\left(\underline{J}^{2}-\underline{L}^{2}-\underline{S}^{2}\right)\left|\frac{3}{2} \frac{3}{2}\right\rangle \\
& =a(r) 1 / 2\left(\underline{J}^{2}-\underline{L}^{2}-\underline{S}^{2}\right)\left|1 \frac{1}{2} \frac{3}{2} \frac{3}{2}\right\rangle \\
& =a(r) 1 / 2\left(\frac{15}{4}-2-\frac{3}{4}\right)\left|1 \frac{1}{2} \frac{3}{2} \frac{3}{2}\right\rangle \\
& =1 / 2 a(r)\left|1 \frac{1}{2} \frac{3}{2} \frac{3}{2}\right\rangle
\end{aligned}
$$

Therefore,
$a(r) \underline{L} \cdot \underline{\vec{S}}\left|\frac{3}{2} \frac{3}{2}\right\rangle=\frac{1}{2} a(r)\left|\frac{3}{2} \frac{3}{2}\right\rangle$
$\left|\frac{3}{2} \frac{3}{2}\right\rangle$ is an eigenket of $a(r) \underline{\vec{L}} \cdot \underline{\vec{S}}$ with eigenvalue $1 / 2 a(r)$

The $\boldsymbol{j} m$ kets are

$$
\left|\frac{3}{2} \frac{3}{2}\right\rangle\left|\frac{3}{2} \frac{1}{2}\right\rangle\left|\frac{3}{2}-\frac{1}{2}\right\rangle \quad\left|\frac{3}{2}-\frac{3}{2}\right\rangle\left|\frac{1}{2} \frac{1}{2}\right\rangle\left|\frac{1}{2}-\frac{1}{2}\right\rangle
$$

Since $\quad \mathbf{1} / \mathbf{2}\left(\underline{J}^{2}-\underline{L}^{2}-\underline{S}^{2}\right)$
does not operate on the m of the $j m$ kets, $|l s J m\rangle$, all of the kets with $J=3 / 2$ give the same eigenvalue, $1 / 2 \mathrm{a}(\mathrm{r})$.

Then operating on $\left|\frac{1}{2} \frac{1}{2}\right\rangle$
$a(r) 1 / 2\left(\underline{J}^{2}-\underline{L}^{2}-\underline{S}^{2}\right)\left|\frac{1}{2} \frac{1}{2}\right\rangle$
$=a(r) 1 / 2\left(\underline{J}^{2}-\underline{L}^{2}-\underline{S}^{2}\right)\left|1 \frac{1}{2} \frac{1}{2} \frac{1}{2}\right\rangle$
$=a(r) 1 / 2\left(\frac{3}{4}-2-\frac{3}{4}\right)\left|1 \frac{1}{2} \frac{1}{2} \frac{1}{2}\right\rangle$
$=-1 a(r)\left|\frac{1}{2} \frac{1}{2}\right\rangle$

Applying $\underline{H}_{S O}$ to all $\boldsymbol{j m}$ kets
Eigenkets
The $\boldsymbol{j m}$ representation kets are the eigenkets because $\underline{H}_{S O}$ couples the orbital and spin angular momenta.
Coupled representation eigenkets.
The $\boldsymbol{j} \boldsymbol{m}$ kets

$$
\begin{aligned}
& \left|\frac{3}{2} \frac{3}{2}\right\rangle\left|\frac{3}{2} \frac{1}{2}\right\rangle\left|\frac{3}{2}-\frac{1}{2}\right\rangle\left|\frac{3}{2}-\frac{3}{2}\right\rangle \\
& \left|\frac{1}{2} \frac{1}{2}\right\rangle\left|\frac{1}{2}-\frac{1}{2}\right\rangle
\end{aligned}
$$

$$
+0.5 a(r) \xlongequal{\left.\overline{\underline{\underline{2}}}\left|\frac{3}{2} \frac{3}{2}\right\rangle\left|\frac{3}{2} \frac{1}{2}\right\rangle\left\langle\frac{3}{2}-\frac{1}{2}\right\rangle\left|\frac{3}{2}-\frac{3}{2}\right\rangle \right\rvert\,}
$$

Na-3p
unpaired
electron

$$
-1.0 a(r) \Longrightarrow\left|\frac{1}{2} \frac{1}{2}\right\rangle\left|\frac{1}{2}-\frac{1}{2}\right\rangle
$$

The jm representation kets will be the eigenkets whenever a term in Hamiltonian couples two types of angular momenta.

Examples:

Hyperfine Interaction $-\gamma \underline{\vec{I}} \cdot \underline{\vec{S}}$
Coupling of electron spin and nuclear spin.
Small splitting in Na optical spectrum.
Structure in ESR spectra.
Electronic triplet states - coupling of two unpaired electrons.

Have diagonalized $\underline{H}_{S O}$ in $m_{1} m_{2}$ representation. Have shown that $\boldsymbol{j m}$ kets are eigenkets.

A unitary transformation $\underline{\underline{\boldsymbol{U}}}$
will take the non-diagonal matrix $\underline{\underline{H}}_{s o}^{m_{1} m_{2}}$ in the $m_{1} m_{2}$ representation into the diagonal matrix $\underline{\underline{H}}_{s o}^{j m}$ in the $j m$ representation.
$\underline{\underline{\boldsymbol{H}}}_{s o}^{j \boldsymbol{m}}=\underline{\underline{\boldsymbol{U}}}{\underline{\underline{\boldsymbol{H}^{\prime}}}}_{s o}^{\boldsymbol{m}_{1} \boldsymbol{m}_{\mathbf{2}}}{\underline{\underline{\boldsymbol{U}^{-1}}}}^{-1}$
$\underline{\underline{U}}$ is the matrix of Clebsch-Gordan Coefficients.

$$
\begin{aligned}
& \left|1 \frac{1}{2}\right\rangle\left|1-\frac{1}{2}\right\rangle\left|0 \frac{1}{2}\right\rangle\left|0-\frac{1}{2}\right\rangle\left|-1 \frac{1}{2}\right\rangle\left|-1-\frac{1}{2}\right\rangle
\end{aligned}
$$

Both are block diagonal. Only need to work with corresponding blocks.

$$
\begin{array}{llllllll}
\begin{array}{lllllll}
j_{1}=1 & & \frac{3}{2} & \frac{3}{2} & \frac{1}{2} & \frac{3}{2} & \frac{1}{2} \\
i_{2} & \frac{3}{2} & j \\
i_{2}=1 / 2 & & \frac{3}{2} & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2}
\end{array} & -\frac{3}{2} & m
\end{array}
$$

Multiplying the 2×2 blocks

$$
\begin{aligned}
& \left.\stackrel{\underline{U}}{\sqrt{\sqrt{\frac{1}{3}}}} \begin{array}{c}
\sqrt{\frac{2}{3}} \\
\sqrt{\frac{2}{3}} \\
-\sqrt{\frac{1}{3}}
\end{array}\right)\left(\begin{array}{cc}
\underline{\underline{H}} & \underline{-\frac{1}{2}} \\
\frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2} & 0
\end{array}\right)\left(\begin{array}{cc}
\sqrt{\frac{1}{3}} & \sqrt{\frac{2}{3}} \\
-\sqrt{\frac{2}{3}} & -\sqrt{\frac{1}{3}}
\end{array}\right)= \\
& \left(\begin{array}{cc}
\sqrt{\frac{1}{3}} & \sqrt{\frac{2}{3}} \\
\sqrt{\frac{2}{3}} & -\sqrt{\frac{1}{3}}
\end{array}\right)\left(\begin{array}{ll}
\frac{1}{2} \sqrt{\frac{1}{3}} & -\sqrt{\frac{2}{3}} \\
\frac{1}{2} \sqrt{\frac{2}{3}} & \sqrt{\frac{1}{3}}
\end{array}\right)=
\end{aligned}
$$

$$
\left(\begin{array}{cc}
1 / 2 & 0 \\
0 & -1
\end{array}\right) \quad \begin{aligned}
& \text { diagonal matrix with } \\
& \text { eigenvalues on the diagonal }
\end{aligned}
$$

Electron Spin, Antisymmetrization of Wavefunctions, and the Pauli Principle

In treating the He atom, electron spin was not included.

Electron - particle with intrinsic angular momentum, spin

$$
\begin{aligned}
& S=1 / 2 \quad m_{s}= \pm 1 / 2 \\
& |1 / 21 / 2\rangle=|\alpha\rangle \\
& |1 / 2-1 / 2\rangle=|\beta\rangle
\end{aligned}
$$

Excited States of He neglecting Spin

Ground State of He - perturbation theory
$\underline{H}^{\prime}=\frac{e^{2}}{4 \pi \varepsilon_{0} r_{12}} \quad$ perturbation

Zeroth order wavefunctions (any level)
Product of H atom orbitals
$\left|\psi_{n_{1} \ell_{1} m_{1}}(\mathbf{1})\right\rangle\left|\psi_{n_{2} \ell_{2} m_{2}}(\mathbf{2})\right\rangle=\left|\psi_{n_{1} \ell_{1} m_{1}}(\mathbf{1}) \psi_{n_{2} \ell_{2} m_{2}}(\mathbf{2})\right\rangle$
$(1) \longrightarrow$ electron $1 ;$ coordinates $\left(r_{1}, \theta_{1}, \varphi_{1}\right)$
$(2) \longrightarrow$ electron $2 ;$ coordinates $\left(r_{2}, \theta_{2}, \varphi_{2}\right)$

Zeroth order energy

$$
\begin{aligned}
& E_{n_{1} n_{2}}^{0}=-4 R h c\left(\frac{1}{n_{1}^{2}}+\frac{1}{n_{2}^{2}}\right) \\
& R=\frac{\mu e^{4}}{8 \varepsilon_{0}^{2} h^{3} c} \quad \mu \text {-reduced mass of H atom }
\end{aligned}
$$

First excited state energy
zeroth order
$E^{0}=-5 R h c$
since

$$
\begin{array}{lll}
n_{1}=1 & \text { and } & n_{2}=2 \\
n_{2}=1 & \text { and } & n_{1}=2
\end{array} \text { same energy }
$$

First Excited Configuration

States corresponding to zeroth order energy - 8 fold degenerate

$$
\begin{array}{ll}
|1 s(1)\rangle|2 s(2)\rangle & |1 s(1)\rangle\left|2 p_{y}(2)\right\rangle \\
|2 s(1)\rangle|1 s(2)\rangle & \left|2 p_{y}(1)\right\rangle|1 s(2)\rangle \\
|1 s(1)\rangle\left|2 p_{x}(2)\right\rangle & |1 s(1)\rangle\left|2 p_{z}(2)\right\rangle \\
\left|2 p_{x}(1)\right\rangle|1 s(2)\rangle & \left|2 p_{z}(1)\right\rangle|1 s(2)\rangle
\end{array}
$$

All have same zeroth order energy. All have

$$
\begin{array}{lll}
& n_{1}=1 & \text { and } \\
\text { or } & n_{2}=2 \\
n_{2}=1 & \text { and } & n_{1}=2
\end{array}
$$

Degenerate perturbation theory problem

System of equations (matrix)
Form determinant

\mathbf{E}^{\prime} - eigenvalues
J's - diagonal matrix elements
K's - off diagonal matrix elements

Block diagonal
Four 2x2 blocks

$$
\begin{aligned}
& J_{s}=\iint 1 s(1) 2 s(2) \frac{e^{2}}{4 \pi \varepsilon_{o} r_{12}} 1 s(1) 2 s(2) d \tau_{1} d \tau_{2} \\
& K_{s}=\iint 1 s(1) 2 s(2) \frac{e^{2}}{4 \pi \varepsilon_{o} r_{12}} 2 s(1) 1 s(2) d \tau_{1} d \tau_{2} \\
& J_{p_{x}}=\iint 1 s(1) 2 p_{x}(2) \frac{e^{2}}{4 \pi \varepsilon_{o} r_{12}} 1 s(1) 2 p_{x}(2) d \tau_{1} d \tau_{2} \\
& K_{p_{x}}=\iint 1 s(1) 2 p_{x}(2) \frac{e^{2}}{4 \pi \varepsilon_{o} r_{12}} 2 p_{x}(1) 1 s(2) d \tau_{1} d \tau_{2} \\
& \left(J_{p_{y}}, K_{p_{y}}, J_{p_{z}}, K_{p_{z}} \Rightarrow \text { replace } x \text { with } y \text { and } z\right)
\end{aligned}
$$

J 's - Coulomb Integrals
Classically represent average Coulomb interaction energy of two electrons with probability distribution functions

K's - Exchange Integrals
No classical counter part.
Product basis set not correct zeroth order set of functions.

Exchange - Integrals differ by an Exchange of electrons.

$$
K_{s}=\iint 1 s(1) 2 s(2) \frac{e^{2}}{4 \pi \varepsilon_{o} r_{12}} 2 s(1) 1 s(2) d \tau_{1} d \tau_{2}
$$

Other matrix elements are zero.

Example

$$
\iint 1 s(1) 2 s(2) \frac{e^{2}}{4 \pi \varepsilon_{o} r_{12}} 1 s(1) 2 p_{z}(2) d \tau_{1} d \tau_{2}=0
$$

Other functions are even.

Integral of even function times odd function over all space $=\mathbf{0}$.

Eigenvalues (E^{\prime})

1) Set determinant $=0$

$$
\begin{array}{r}
E^{\prime}=J_{s}+K_{s} \\
J_{s}-K_{s}
\end{array}
$$

Four 2×2 blocks
3 blocks for p orbitals identical
$J_{p_{i}}+K_{p_{i}} \longleftarrow$ triple root, p_{x}, p_{y}, p_{z}
$J_{p_{i}}-K_{p_{i}} \longleftarrow$ triple root, p_{x}, p_{y}, p_{z}
Energy level diagram

S configuration more stable. S orbital puts more electron density close to nucleus greater Coulombic attraction.

Eigenfunctions

$$
\begin{array}{ll}
E^{\prime}=J_{s}+K_{s} & \frac{1}{\sqrt{2}}\{1 s(1) 2 s(2)+2 s(1) 1 s(2)\} \\
E^{\prime}=J_{s}-K_{s} & \frac{1}{\sqrt{2}}\{1 s(1) 2 s(2)-2 s(1) 1 s(2)\} \\
E^{\prime}=J_{p_{i}}+K_{p_{i}} & \frac{1}{\sqrt{2}}\left\{1 s(1) 2 p_{i}(2)+2 p_{i}(1) 1 s(2)\right\} \\
E^{\prime}=J_{p_{i}}-K_{p_{i}} & \frac{1}{\sqrt{2}}\left\{1 s(1) 2 p_{i}(2)-2 p_{i}(1) 1 s(2)\right\}
\end{array}
$$

Symmetric and Antisymmetric Combinations

$+\longrightarrow$ combination symmetric. Symmetric with respect to the interchange of electron coordinates (labels).
$\underline{P}|\boldsymbol{\psi}\rangle=\mathbf{1}|\psi\rangle$
\underline{P} is the permutation operator.
\underline{P} interchanges the labels of two electrons (labels - coordinates)

Applying $\underline{\boldsymbol{P}}$ to the wavefunction gives back identical function times 1.
$-\longrightarrow$ combination antisymmetric. Antisymmetric with respect to the interchange of electron coordinates (labels). Switching coordinates of two electrons gives function back multiplied by $\mathbf{- 1}$.

$$
\begin{aligned}
\underline{P}|\psi\rangle & =\underline{P} \frac{1}{\sqrt{2}}\{1 s(1) 2 s(2)-2 s(1) 1 s(2)\} \\
& =\frac{1}{\sqrt{2}}\{1 s(2) 2 s(1)-2 s(2) 1 s(1)\} \\
& =-1 \frac{1}{\sqrt{2}}\{1 s(1) 2 s(2)-2 s(1) 1 s(2)\} \\
& =-1|\psi\rangle
\end{aligned}
$$

Both + and - functions are eigenfunctions of permutation operator.

Symmetric function \longrightarrow eigenvalue +1
Antisymmetric function \longrightarrow eigenvalue -1

All wavefunctions for a system containing two or more identical particles are either symmetric or antisymmetric with respect to exchange of a pair of electron labels (positions).

Many electron wavefunctions must be eigenfunctions of the permutation operator.

Inclusion of electron spin in He atom problem

Two spin 1/2 particles $\longrightarrow 4$ possible states.

In $m_{1} m_{2}$ representation $\quad \alpha(1) \alpha(2)$
$\alpha(1) \beta(2)$
$\beta(1) \alpha(2)$
$\beta(1) \beta(2)$

The two functions, $\alpha(1) \beta(2)$ and $\alpha(2) \beta(1)$ are neither symmetric nor antisymmetric. $m_{1} m_{2}$ representation not proper representation for two (or more) electron system.

Transform into jm representation

In $\boldsymbol{j} \boldsymbol{m}$ representation

$$
\begin{array}{cll}
\alpha(1) \alpha(2) & =|11\rangle & \\
\frac{1}{\sqrt{2}}\{\alpha(1) \beta(2)+\beta(1) \alpha(2)\} & =|10\rangle & \begin{array}{l}
\text { symmetric } \\
\text { spin }=1
\end{array} \\
\beta(1) \beta(2) & =|1-1\rangle & \\
\frac{1}{\sqrt{2}}\{\alpha(1) \beta(2)-\beta(1) \alpha(2)\} & =|00\rangle & \begin{array}{l}
\text { antisymmetric } \\
\text { spin }=0
\end{array}
\end{array}
$$

Eight spatial functions.
\underline{H} independent of spin.
Each of 8 orbital functions can be multiplied by the 4 spin functions.
32 total (spin \times orbital) functions.

$$
\begin{aligned}
& 1 s(1) 2 s(2) \alpha(1) \alpha(2) \\
& 2 s(1) 1 s(2) \alpha(1) \alpha(2) \\
& 1 s(1) 2 p_{x}(2) \alpha(1) \alpha(2) \\
& \vdots \\
& 1 s(1) 2 s(2) \cdot \frac{1}{\sqrt{2}}(\alpha(1) \beta(2)+\beta(1) \alpha(2)) \\
& \quad \vdots
\end{aligned}
$$

Secular determinant looks like

Block diagonal same as before except the correct zeroth order functions are obtained by multiplying each of the previous spatial functions by the four spin functions.

Example 1s2s orbitals

$$
\begin{aligned}
& \frac{1}{\sqrt{2}}[1 s(1) 2 s(2)+2 s(1) 1 s(2)] \cdot \alpha(1) \alpha(2) \\
& \frac{1}{\sqrt{2}}[1 s(1) 2 s(2)+2 s(1) 1 s(2)] \cdot \frac{1}{\sqrt{2}}[\alpha(1) \beta(2)+\beta(1) \alpha(2)] \\
& \frac{1}{\sqrt{2}}[1 s(1) 2 s(2)+2 s(1) 1 s(2)] \cdot \beta(1) \beta(2) \\
& \frac{1}{\sqrt{2}}[1 s(1) 2 s(2)-2 s(1) 1 s(2)] \cdot \frac{1}{\sqrt{2}}[\alpha(1) \beta(2)-\beta(1) \alpha(2)]
\end{aligned}
$$

Totally Symmetric (1-3 spat. \& spin sym. 4 spat. \& spin antisym.)

$$
\frac{1}{\sqrt{2}}[1 s(1) 2 s(2)-2 s(1) 1 s(2)] \cdot \alpha(1) \alpha(2)
$$

Totally Antisymmetric (5-7 spat. antisym; spin sym. 8 spat. sym.; spin antisym.)
$\frac{1}{\sqrt{2}}[1 s(1) 2 s(2)-2 s(1) 1 s(2)] \cdot \frac{1}{\sqrt{2}}[\alpha(1) \beta(2)+\beta(1) \alpha(2)]$
$\frac{1}{\sqrt{2}}[1 s(1) 2 s(2)-2 s(1) 1 s(2)] \cdot \beta(1) \beta(2)$
$\frac{1}{\sqrt{2}}[1 s(1) 2 s(2)+2 s(1) 1 s(2)] \cdot \frac{1}{\sqrt{2}}[\alpha(1) \beta(2)-\beta(1) \alpha(2)]$

Energy Level Diagram

Divided according to totally symmetric or totally antisymmetric.

Totally Symmetric		Totally Antisymmetric		
1s2p	$\begin{aligned} & \bullet \bullet \\ & \bullet \bullet \\ & \bullet \bullet 0 \\ & \bullet \bullet \end{aligned}$	$\bigcirc \bigcirc 0$	1s2p	${ }^{1} \mathbf{P}$
1s2p	000		1s2p	${ }^{3} \mathbf{P}$
1s2s	- - -	0	1s2s	${ }^{1} \mathrm{~S}$
1s2s	0	- - -	1s2s	${ }^{3} \mathrm{~S}$
$1 \mathrm{~s}^{2}$		0	$1 \mathrm{~s}^{2}$	${ }^{1} \mathrm{~S}$

$$
\bullet \equiv \begin{aligned}
& \text { symmetric } \\
& \text { spin function }
\end{aligned} \quad 0 \equiv \begin{aligned}
& \text { spin function }
\end{aligned}
$$

No perturbation can mix symmetric and antisymmetric states. (\underline{H} does not Change a symmetric function into an antisymmetric function and vise versa.)

Which functions occur in nature?
Totally symmetric or totally antisymmetric \longrightarrow Answer with experiments.

All experiments States occuring in nature are always
 Totally Antisymmetric

Example - ground state of He atoms not paramagnetic, spins paired.

Totally Symmetric		Totally Antisymmetric		
1s2p	$\begin{aligned} & \bullet \bullet \bullet \\ & \bullet \bullet \bullet \\ & \bullet \bullet \bullet \bullet: ~ \end{aligned}$	$\bigcirc \bigcirc \bigcirc$	1s2p	${ }^{1} \mathbf{P}$
1s2p	000	- $0 \cdot 0$	1s2p	${ }^{3} \mathrm{P}$
1s2s	- - -	0	1s2s	${ }^{1} \mathrm{~S}$
1s2s	\bigcirc	- - -	1s2s	${ }^{3} \mathrm{~S}$
$1 \mathrm{~s}^{2}$	$\bullet \bullet \bullet$	0	$1 \mathrm{~s}^{2}$	${ }^{1} \mathrm{~S}$
$\bullet \equiv \begin{aligned} & \text { symmetric } \\ & \text { spin function } \end{aligned}$		$\bigcirc \equiv \underset{\text { spin function }}{\text { antisymmetric }}$		

The wavefunction representing an actual state of a system containing two or more electrons must be totally antisymmetric in the coordinates of the electrons; i.e., on interchanging the coordinates of any two electrons the wavefunction must change sign.
Q.M. statement of the Pauli Exclusion Principle (Applies to any Fermions.)

To see equivalence of Antisymmetrization and Pauli Principle
Antisymmetric functions can be written as determinants.
$A(1)$ represents an orbital \times spin function for one electron, for example, $1 \mathrm{~s}(1) \alpha(1)$,
and $B, C, \ldots N$ are others, then

$$
\psi=\left|\begin{array}{cccc}
A(1) & B(1) & \cdots & N(1) \\
A(2) & B(2) & \cdots & N(2) \\
\vdots & \vdots & & \vdots \\
A(N) & B(N) & \cdots & N(N)
\end{array}\right|
$$

Expand the determinant gives the antisymmeterized wavefunction.
Totally antisymmetric because interchange of any two rows changes the sign of the determinant.

Example - He ground state

$$
\begin{aligned}
& 1 s(1) \alpha(1)=1 s(1) \quad \text { (no bar means } \alpha \text { spin) } \\
& 1 s(1) \beta(1)=\overline{1 s(1)} \quad \text { (bar means } \beta \text { spin) } \\
& \left|\begin{array}{l}
1 s(1) \overline{1 s(1)} \\
1 s(2) \overline{1 s(2)}
\end{array}\right|=1 s(1) \overline{1 s(2)}-1 s(2) \overline{1 s(1)} \\
& =1 s(1) \alpha(1) 1 s(2) \beta(2)-1 s(2) \alpha(2) 1 s(1) \beta(1) \\
& =1 s(1) 1 s(2)[\alpha(1) \beta(2)-\beta(1) \alpha(2)]
\end{aligned}
$$

(symmetric spatial, antisymmetric spin)

Correct antisymmetric ground state function.

Another important property of determinants

Two Columns of Determinant Equal \longrightarrow Determinant Vanishes

Pauli Principle
For a given orbital there are only two possible orbital \times spin functions,
i. e., those obtained by multiplying the orbital function by α or β spin functions.

Thus, no more than two electrons can occupy the same orbital in an atom, and the two must have their spins opposed,
that is,
no two electrons can have the same values of all four quantum numbers
$n, \ell, m_{\ell}, m_{\mathrm{s}}$
otherwise two columns will be equal and the determinant,
the wavefunction, vanishes.

Example - He ground state with both spins α

$$
\psi=\left|\begin{array}{l}
1 s(1) 1 s(1) \\
1 s(2) 1 s(2)
\end{array}\right|
$$

$$
\left|\begin{array}{l}
1 s(1) 1 s(1) \\
1 s(2) 1 s(2)
\end{array}\right|=1 s(1) \alpha(1) 1 s(2) \alpha(2)-1 s(2) \alpha(2) 1 s(1) \alpha(1)=0
$$

Requirement of antisymmetric wavefunctions is the equivalent of the Pauli Principle.

Singlet and Triplet States

$\bullet \equiv \underset{\text { spin function }}{\text { symmetric }} \quad O \equiv \begin{aligned} & \text { antisymmetric } \\ & \text { spin function }\end{aligned}$
$\bigcirc \longrightarrow$ singlet states, sym. orbital function \times (single) antisym. spin function.
$\bigcirc \longrightarrow$ triplet states, antisym. orbital function \times (three) sym. spin functions.

For same orbital configuration
Triplet States lower in energy than singlet states because of electron correlation.

Triplet \longrightarrow sym. spin. Therefore, antisym. orbital
For example:

$$
\psi_{T}=[1 s(1) 2 s(2)-2 s(1) 1 s(2)] \times \begin{cases}\alpha(1) \alpha(2) & \Rightarrow|11\rangle \\ \frac{1}{\sqrt{2}}(\alpha(1) \beta(2)+\alpha(2) \beta(1)) & \Rightarrow|10\rangle \\ \beta(1) \beta(2) & \Rightarrow|1-1\rangle\end{cases}
$$

Singlet \longrightarrow antisym. spin. Therefore, sym. orbital

$$
\psi_{S}=[1 s(1) 2 s(2)+2 s(1) 1 s(2)] \times \frac{1}{\sqrt{2}}(\alpha(1) \beta(2)-\alpha(2) \beta(1)) \quad \Rightarrow|00\rangle
$$

Singlet - 2 electrons can be at the same place.
Consider a point with coordinates, q.

$$
\begin{aligned}
& \psi_{S}=[1 s(1) 2 s(2)+2 s(1) 1 s(2)] \\
& \psi_{S}=[1 s(q) 2 s(q)+2 s(q) 1 s(q)] \\
& \psi_{S}=2[1 s(q) 2 s(q)]
\end{aligned}
$$

Triplet - 2 electrons cannot be at the same place. 2 electrons have node for being in same place.

Consider a point with coordinates, q (any q).

$$
\begin{aligned}
& \psi_{T}=[1 s(1) 2 s(2)-2 s(1) 1 s(2)] \\
& \psi_{T}=[1 s(q) 2 s(q)-2 s(q) 1 s(q)] \\
& \psi_{T}=0
\end{aligned}
$$

Correlation Diagram Fix electron 1.
Plot prob. of finding 2. Prob. of finding electron (2) at r given electron (1) is at q.

(schematic illustrations)

In triplet state
Electrons are anti-correlated.
Reduces electron-electron repulsion.
Lowers energy below singlet state of same orbital configuration.

