
Chapter 16



Electron Spin
Electron spin hypothesis

Solution to H atom problem gave three quantum numbers, n, , m.
These apply to all atoms.
Experiments show not complete description.    Something missing.

Alkali metals show splitting of spectral lines in absence of magnetic field.
s lines not split
p, d lines split

Na D-line (orange light emitted by excited Na)  split by 17 cm-1

Many experiments not explained without electron "spin."

Stern-Gerlach experiment early, dramatic example.
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Stern-Gerlach experiment - 1922

Beam of silver atoms deflected by magnetic field gradient.
Single unpaired electron - should not give two lines on glass plate.

s-orbital.  No orbital angular momentum.  No magnetic moment.
Observed deflection corresponds to one Bohr magneton.

Copyright – Michael D. Fayer, 2018



Assume:  Electron has intrinsic angular momentum called "spin."
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Electron has magnetic moment.
One Bohr magneton.
Charged particle with angular mom.

Ratio twice the ratio for 
orbital angular momentum.
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Electronic wavefunction with spin
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spin angular momentum kets
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Electronic States in a Central Field

Electron in state of orbital angular momentum 

( , )mY  


m label as orbital angular momentum
quantum number

ms spin angular momentum quantum number

(1/2), ( 1/2)  

   m
s sm m Y m  

 

product space of angular momentum (orbital and spin) eigenvectors
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 sm m  Simultaneous eigenvectors of

2 2
z zL L S S

 2 1L    

zL m  

2 3
4

S  

z sS m 

constant - eigenvalues of S2 are s(s + 1), s = 1/2

 2 2 1  sm m linearly independent functions of form                      .
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Example - p states of an electron

Orbital functions  = 1

( , , ) ( ) ( , )mr R r Y     

radial               spherical harmonics

1
1 11Y  0

1 10Y  1
1 1 1Y   

orbital angular momentum part

j1m1 j1m1 j1m1

spin functions
1 1
2 2

  1 1
2 2

  

1 1j m m 

2 2 sj m s m

j2m2j2m2
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In the m1m2 representation
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Each of these is multiplied by R(r). 1 2j j s 
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Total angular momentum - jm representation

1 2
3
2

j j j s    

1 2 1 2
11
2

j j j j j s      

Two states of total angular momentum

3 3 3 1 3 1 3 3 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2

  

The jm kets are
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Table of Clebsch-Gordon 
Coefficients

The jm kets can be obtained from the m1m2 kets using the 
table of Clebsch-Gordon coefficients.
For example 

1 1 2 1 1 11 0
2 2 3 2 3 2

 

jm m1m2 m1m2
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Spin-orbit Coupling

 W E V    
  

An electron, with magnetic moment moves in the electric field 
of rest of atom (or molecule).

energy

classical energy of magnetic dipole    
moving in electric field      with velocityE



2
e S
mc

  




 2
e

W E V S
mc

  
 

spin magnetic moment of electron

Then



V


e E grad





p mV


Coulomb potential (usually called V, but V is velocity)
Using

and
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Substituting

orbital angular momentum

Hydrogen like atoms
2

04
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Coulomb potential

vector derivative of potential

unit vector

2

2
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3

1
8so

zeH
m

S
c

L
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operates on
radial part of 
wavefunction

operates on
orbital ang. mom.
part of wavefunction

operates on
spin ang. mom.
part of wavefunction
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One unpaired electron – central field
(Sodium outer electron)

( )V r 

( ) 1( ) V rgradV r r
r r









2

1 1 ( ) ( )
2so

V rH L S a r L S
m c r r




   
  

result of operating on
radial part of wavefunction

2

( )1 1 ( )
2

i
so i ii ii

i ii i

V rH L S a r L S
m c r r




 
    

 
 

  
Many electron system

Ignore terms involving,             , the orbital angular momentum of one electron
with the spin of another electron.  Extremely small. 

i jL S
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Spin-orbit coupling piece of Hamiltonian

( )soH a r L S 


H-like atom – spatial part of operator

2

32
0

( )
8

1
so

zeH r
m rc



( ) ( )soE r H r d  






 

4( )a r z

Normalization constant (eq.7.63) contains
3/2z

3/2 3/2E z z z   
heavy atom effect
similar for all atoms
and molecules

H – little S.O. coupling
Br – sizable S.O. coupling

Heavy atom effect and external heavy
atom effect important in many processes.
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( )soH a r L S 


The a(r) part is independent of the angular momentum states.

Consider L S


x y zx y zL S L S L S L S   


 1
2xS S S  

 1
2yS S S

i   

 1
2xL L L  

 1
2yL L L

i   

Rearranging the expressions for the angular momentum 
raising and lowering operators

 1
2z zL S L S L S L S     


Substituting

diagonal off-diagonal
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 1
2z zL S L S L S L S     



Spin-Orbit Coupling in the m1m2 representation

not diagonal in the m1m2 representation

States in the m1m2 representation

111 1 11 011 1 10
222 2 22

  

The spin-orbit coupling Hamiltonian matrix in the m1m2 representation
is a 6  6.

1 1 11 1
2 2 2z zL S 

Calculating the matrix elements

Kets are diagonal for the          piece of the Hamiltonian.  For examplez zL S

mms mms

Lz brings out m and Sz brings out ms .

Copyright – Michael D. Fayer, 2018



 1
2

L S L S   not diagonal

 1
2

L S L S  Apply                                 to the six kets.

 1 11 0
2 2

L S L S   

Examples

can’t raise above largest values

 1 1 2 11 0
2 2 2 2

L S L S    

 1 1 1 20 1
2 2 2 2

L S L S    

10
2

Left multiply by 

matrix element

Copyright – Michael D. Fayer, 2018



1 1
2

1
2

2
1
2 2 2

0 1
2 2 2 0

0 2 2

2 2
1
2

1
2

1 1
2 1 1

2
0 1

2 0 1
2 1 1

2
   1 1

2 

1 1 

0
1
2

11
2

1 1
2

 

Hso= a(r)

put kets along top

put bras down left side  1 1 1 20 1
2 2 2 2

L S L S    example

Matrix is block diagonal.

 1( )
2   

     
SO z zH a r L S L S L S
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Matrix – Block Diagonal
Each block is independent.  Diagonalize separately.

1 2 2
2 0
2 2

 








Form determinant from block with  (eigenvalue) subtracted from
diagonal elements.

The two blocks are the same.  Only need
to solve one of them.
The two 11 blocks
are diagonal – eigenvalues.

Expand the determinant.  Solve for . Each block multiplied by a(r). 
21/2 1/2 0

1/4 3 / 4
[1/ 2  or  1]

  
  
 

 



1 ( )
2

 a r

1 ( )  a r

The two 22 blocks each give these results.
The two 11 blocks each give 1/2a(r).
Therefore,

4 eigenvalues of 1/2a(r).
2 eigenvalues of -1a(r).
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Energy level diagram

no spin-orbit coupling
E = 16,980 cm-1

4( ) 7 10 
a r

E
Ratio Ratio small, but need spin-orbit coupling

to explain line splitting.

Na D-line (3p to 3s transition) split by 17 cm-1.
17 cm-1 = 3/2 a(r).
a(r) = 11.3 cm-1. 3s

3p

fluorescence
0.5a(r)  four-fold degenerate

0   

 two-fold degenerate-1a(r)

E
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Spin-orbit Coupling in the jm representation

3 3 3 1 3 1 3 3 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2

  

The jm kets are

However
( ) 


a r L S

is in the m1m2 representation.  
Can’t operate HSO directly on the jm kets.  
Use table of Clebsch-Gordan coefficient to take jm kets into m1m2 rep.,
operate, then convert back to jm rep. (Done in this manner in  book.)

Alternatively, rewrite operator so it can operate on the jm kets.
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We need the operator,                   , which is an m1m2, in the jm( ) 


a r L S

 lsJm

2 2 2 2

2 2 2

( ) 2
So

1/2( )

J L S
J L S L S L S

L S J L S

 
     

   

Recall that a jm ket,          , is an abbreviation for                    . Jm 1 2
 j j Jm

So for the spin-orbit coupling problem, the jm ket is 

l is an eigenket of the L2 operator.
s is an eigenket of the S2 operator.
and
J is an eigenket of the J2 operator.

Therefore, the jm kets are eigenkets of the         operator. L S
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2 2 2

2 2 2

3 3 3 3( ) ( )1/2( )
2 2 2 2

1 3 3( )1/2( ) 1
2 2 2

15 3 1 3 3( )1/2 2 1
4 4 2 2 2

1 3 31/2 ( ) 1
2 2 2

a r L S a r J L S

a r J L S

a r

a r

   

  

    
 





( ) 


a r L S 3 3
2 2

Operate                     on 2 2 21/2( )L S J L S   

3 3 1 3 3( ) ( )
2 2 2 2 2

 


a r L S a r

3 3
2 2

Therefore,

is an eigenket of                   with eigenvalue 1/2a(r)( ) 


a r L S
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3 3 3 1 3 1 3 3 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2

  

The jm kets are

2 2 21/2( )J L S Since
does not operate on the m of the jm kets,            , all of the kets with
J = 3/2 give the same eigenvalue, 1/2a(r).

 lsJm

2 2 2

2 2 2

1 1( )1/2( )
2 2

1 1 1( )1/2( ) 1
2 2 2

3 3 1 1 1( )1/2 2 1
4 4 2 2 2

1 11 ( )
2 2

a r J L S

a r J L S

a r

a r

 

  

    
 

 

1 1
2 2

Then operating on 
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Applying HSO to all  jm kets Eigenkets

The  jm representation kets are the eigenkets because HSO couples the 
orbital and spin angular momenta.
Coupled representation eigenkets.

The jm kets

3 3 3 1 3 1 3 3
2 2 2 2 2 2 2 2

 

1 1 1 1
2 2 2 2



eigenvalues - +0.5a(r)

eigenvalues - -1.0a(r)

0   

3 3 3 1 3 1 3 3
2 2 2 2 2 2 2 2

 

1 1 1 1
2 2 2 2



+0.5a(r)

-1.0a(r)

Na - 3p
unpaired
electron
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The jm representation kets will be the eigenkets 
whenever a term in Hamiltonian couples
two types of angular momenta.

Examples:

Hyperfine Interaction -

Coupling of electron spin and nuclear spin.

Small splitting in Na optical spectrum.

Structure in ESR spectra.

Electronic triplet states - coupling of two unpaired electrons.

I S 
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1 2 1jm m m
so so

H U H U 

Have diagonalized HSO in m1m2 representation.
Have shown that jm kets are eigenkets.

A unitary transformation 

will take the non-diagonal matrix              in the m1m2 representation

into the diagonal matrix           in the jm representation. 

1 2m m
so

H
jm
so

H

U

U is the matrix of Clebsch-Gordan Coefficients.

Copyright – Michael D. Fayer, 2018



Hso= a(r)
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j 1 = 1
j 2 = 1/2
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m1m2 matrix

Table of 
Clebsch-Gordan
coefficients

Both are  block diagonal.
Only need to work with 
corresponding blocks.

Copyright – Michael D. Fayer, 2018



Multiplying the 2×2 blocks

1

1 2 1 21 2
3 3 3 32 2
2 1 2 2 10
3 3 2 3 3

SO
U H U 

    
    

     
    

     
    

1 2 1 1 2
3 3 2 3 3
2 1 1 2 1
3 3 2 3 3

  
  

   
  

  
  

1/ 2 0
0 1

 
  

diagonal matrix with 
eigenvalues on the diagonal
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Electron Spin, Antisymmetrization of Wavefunctions, and the Pauli Principle

In treating the He atom, electron spin was not included.

Electron - particle with intrinsic angular momentum, spin

1/ 2 1/ 2
1/2 1/2

1/2 1/2

sS m
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Excited States of He neglecting Spin

Ground State of He  - perturbation theory

2

0 12

'
4

eH
r

 perturbation

Zeroth order wavefunctions (any level)
Product of H atom orbitals

1 1 1 2 2 2 1 1 1 2 2 2
(1) (2) (1) (2)n m n m n m n m      

1 1 1( , , )r  

2 2 2( , , )r  

(1) electron 1;  coordinates 

(2) electron 2;  coordinates 
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Zeroth order energy

1 2

0
2 2
1 2

1 14n nE Rhc
n n

 
   

 

4

2 3
08
eR
h c




  - reduced mass of H atom

0 5E Rhc 

First excited state energy

zeroth order

since
1 2

2 1

1 and   2
1 and   2

n n
n n

 
 

same energy
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First Excited Configuration

States corresponding to zeroth order energy  - 8 fold degenerate

       

       

       

       

1 1 2 2 1 1 2 2

2 1 1 2 2 1 1 2

1 1 2 2 1 1 2 2

2 1 1 2 2 1 1 2

y

y

x z

x z

s s s p

s s sp

p ps s

sp p s

All have same zeroth order energy.
All have

1 2

2 1

1 and   2
1 and   2

n n
n n

 
 or
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Degenerate perturbation theory problem

System of equations  (matrix)
Form determinant

E' - eigenvalues
J's - diagonal matrix elements
K's - off diagonal matrix elements

1 2 3 4 5 6 7 8

x

Js E Ks'

K Js Es '
Jp E

x
'

x
Kp Jp E'

Jp E Kpy y
'

Jp E
y

'

Jp E Kpz z
'

Kp Jpz

x

1 1 1 2 2s s( ) ( )
2 2 1 1 2s s( ) ( )
3 1 1 2 2s px( ) ( )
4 2 1 1 2p s( ) ( )
5 1 1 2 2s py( ) ( )

6 2 1 1 2p sy( ) ( )

7 1 1 2 2s pz( ) ( )

8 2 1 1 2p sz ( ) ( )
z

E '

x
Kp

y
Kp

= 0
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Block diagonal
Four 2x2 blocks



2

1 2
12

2

1 2
12

2

1 2
12

2

1 2
12

1 (1)2 (2) 1 (1)2 (2)
4

1 (1)2 (2) 2 (1)1 (2)
4

1 (1)2 (2) 1 (1)2 (2)
4

1 (1)2 (2) 2 (1)1 (2)
4

x

x

s
o

s
o

p x x
o

p x x
o

eJ s s s s d d
r

eK s s s s d d
r

eJ s p s p d d
r

eK s p p s d d
r

 


 


 


 










 

 

 

 

 , , ,  replace  with  and p p p py y z z
J K J K x y z
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J's  - Coulomb Integrals

Classically represent average Coulomb interaction energy of
two electrons with probability distribution functions

21 (1)s 22 (2)sand

for                     Js

K's  - Exchange Integrals

No classical counter part.
Product basis set not correct zeroth order set of functions.

Exchange  - Integrals differ by an Exchange of electrons.

2

1 2
12

1 1 2 2 2 1 1 2
4

( ) ( ) ( ) ( )s
o

eK s s s s d d
r
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2

1 2
12

1 (1)2 (2) 1 (1)2 (2) 0
4 z

o

es s s p d d
r

 


 

Other matrix elements are zero.

Example

odd function - changes sign on inversion
through origin

Other functions are even.

Integral of even function times odd function over all space = 0.
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Eigenvalues (E')

s sE J K  

s sJ K

p pi iJ K

p pi iJ K
triple root, px, py, pz

triple root, px, py, pz

1) Set determinant = 0
2) Expand
Four 2×2 blocks
3 blocks for p orbitals

identical

Energy level diagram

S configuration more stable.
S orbital puts more electron
density close to nucleus -
greater Coulombic attraction.

3S

1S

triply degenerate

triply degenerate

1S2

S1

3P

1P

1S2P

1S2S

ground state

first excited states

no off-diagonal
elements

n1,n2 = 1,2

n1,n2 = 1,1
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Eigenfunctions

s sE J K  

s sE J K  

 1 1 (1)2 (2) 2 (1)1 (2)
2

s s s s

 1 1 (1)2 (2) 2 (1)1 (2)
2

s s s s

pp iiE J K    1 1 (1)2 (2) 2 (1)1 (2)
2 i is p p s

p pi iE J K    1 1 (1)2 (2) 2 (1)1 (2)
2 i is p p s

, ,i x y z
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Symmetric and Antisymmetric Combinations

+ combination symmetric.
Symmetric with respect to the interchange of 
electron coordinates (labels).

1P  

P is the permutation operator.
P interchanges the labels of two electrons  (labels  - coordinates)

Applying P to the wavefunction gives back identical function times 1.
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– combination antisymmetric.
Antisymmetric with respect to the interchange of 
electron coordinates (labels).
Switching coordinates of two electrons gives function back
multiplied by –1.

 

 

 

1 1 (1)2 (2) 2 (1)1 (2)
2

1 1 (2)2 (1) 2 (2)1 (1)
2

11 1 (1)2 (2) 2 (1)1 (2)
2

1

P P s s s s

s s s s

s s s s
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Both + and – functions are 
eigenfunctions of permutation operator.

Symmetric function eigenvalue  +1
Antisymmetric function eigenvalue   –1

All wavefunctions for a system containing two or more identical particles
are either symmetric or antisymmetric with respect to exchange of a pair
of electron labels (positions).

Many electron wavefunctions must be eigenfunctions of the
permutation operator.
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Inclusion of electron spin in He atom problem

Two spin 1/2 particles 4 possible states.

In  m1m2 representation (1) (2)

(1) (2)

(1) (2)

(1) (2)

 

 

 

 

The two functions,
are neither symmetric nor antisymmetric.
m1m2 representation not proper representation
for two (or more) electron system.

1 2 2 1( ) ( ) and ( ) ( )   
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Transform into jm representation

In jm representation

 

 

1 2
1 1 2 1 2
2

1 2

1 1 2 1 2
2

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

 

   

 

   





symmetric
spin = 1

antisymmetric
spin = 0

This image cannot currently be displayed.

11

10

1 1 

00
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Eight spatial functions.
H independent of spin.
Each of 8 orbital functions can be multiplied by

the 4 spin functions.
32 total (spin×orbital) functions.

 

1 (1)2 (2) (1) (2)

2 (1)1 (2) (1) (2)

1 (1)2 (2) (1) (2)

11 (1)2 (2) (1) (2) (1) (2)
2

x

s s

s s

s p

s s
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8

8

= 0

Secular determinant looks like

Block diagonal same as before except the correct zeroth order functions
are obtained by multiplying each of the previous spatial functions by
the four spin functions.

Example 1s2s orbitals
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1 1 (1)2 (2) 2 (1)1 (2) 1 2
2

1 11 (1)2 (2) 2 (1)1 (2) 1 2 1 2
2 2

1 1 (1)2 (2) 2 (1)1 (2) 1 2
2

1 11 (1)2 (2) 2 (1)1 (2) 1 2 1 2
2 2

s s s s

s s s s

s s s s

s s s s

 

   

 

   

 

    

 

    

     

         

     

         

1 1 (1)2 (2) 2 (1)1 (2) 1 2
2

1 11 (1)2 (2) 2 (1)1 (2) 1 2 1 2
2 2

1 1 (1)2 (2) 2 (1)1 (2) 1 2
2

1 11 (1)2 (2) 2 (1)1 (2) 1 2 1 2
2 2

s s s s

s s s s

s s s s

s s s s

 

   

 

   

 

    

 

    

Totally Symmetric
(1-3 spat. & spin sym.
4 spat. & spin antisym.)

Totally Antisymmetric
(5-7 spat. antisym; spin sym.
8 spat. sym.; spin antisym.)
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Energy Level  Diagram
Divided according to totally symmetric or totally antisymmetric.

No perturbation can mix symmetric and antisymmetric states. (H does not
Change a symmetric function into an antisymmetric function and vise versa.)

1s2p

1s2p

1s2s
1s2s

1s2

1s2p

1s2p

1s2s
1s2s

1s2

1P

3P

1S

1S
3S

Totally Symmetric Totally Antisymmetric

symmetric
spin function

antisymmetric
spin function
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Which functions occur in nature?

Totally symmetric or totally antisymmetric
Answer with experiments.

All experiments States occuring in nature
are always

Totally Antisymmetric
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1s2p

1s2p

1s2s
1s2s

1s2

1s2p

1s2p

1s2s
1s2s

1s2

1P

3P

1S

1S
3S

Totally Symmetric Totally Antisymmetric

symmetric
spin function

antisymmetric
spin function

Example - ground state of He atoms not paramagnetic,
spins paired.



Assume:

The wavefunction representing an actual state of a system

containing two or more electrons must be totally

antisymmetric in the coordinates of the electrons; i.e., 

on interchanging the coordinates of any two electrons

the wavefunction must change sign.

Q.M. statement of the Pauli Exclusion Principle

Copyright – Michael D. Fayer, 2018

(Applies to any Fermions.)



To see equivalence of Antisymmetrization and Pauli Principle

Antisymmetric functions can be written as determinants.

A(1) represents an orbital×spin function for one electron,
for example, 1s(1)(1),

and B, C, … N are others, then

Expand the determinant gives the antisymmeterized wavefunction.
Totally antisymmetric because interchange of any two rows

changes the sign of the determinant.

(1) (1) (1)
(2) (2) (2)

( ) ( ) ( )

A B N
A B N

A N B N N N
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Example  - He ground state

1 (1) (1) 1 (1)s s 

1 (1) (1) 1 (1)s s 

(no bar means α spin) 

(bar means  spin)
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1 (1)1 (1)
1 (1)1 (2)1 (1) 1 (2)

1 (2)1 (2)

1 (1) (1)1 (2) (2) 1 (2) (2)1 (1) (1)

1 (1)1 (2) 1 (2) (1) 2

s s
sss s

s s

s s s s

s s

   

   



 

   

Correct antisymmetric ground state function.

(symmetric spatial,
antisymmetric spin)



Another important property of determinants

Two Columns of Determinant Equal Determinant Vanishes

Pauli Principle

For a given orbital there are only two possible
orbital×spin functions,

i. e., those obtained by multiplying the orbital function by  or  spin functions.

Thus, no more than two electrons can occupy the same orbital in an atom,
and the two must have their spins opposed,

that is,
no two electrons can have the same values of all four quantum numbers
n, , m, ms
otherwise two columns will be equal and the determinant,
the wavefunction, vanishes.
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Example - He ground state with both spins 

1 (1) 1 (1)
1 (2) 1 (2)

s s
s s

 

1 (1) 1 (1)
1 (1) (1)1 (2) (2) 1 (2) (2)1 (1) (1) 0

1 (2) 1 (2)
s s

s s s s
s s

     

Requirement of antisymmetric wavefunctions is the equivalent of
the Pauli Principle.
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Singlet and Triplet States
term symbols

singlet states,  sym. orbital function × (single) antisym. spin function.

triplet states,    antisym. orbital function × (three) sym. spin functions.

1s2p

1s2p

1s2s
1s2s

1s2

1P

3P

1S

1S
3S

Totally Antisymmetric

symmetric
spin function

antisymmetric
spin function
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For same orbital configuration
Triplet States lower in energy than singlet states

because of electron correlation.

Triplet sym. spin. Therefore, antisym. orbital

For example: (1) (2)
1[1 (1)2 (2) 2 (1)1 (2)] ( (1) (2) (2) (1))
2
(1) (2)

T s s s s

 

    

 


   



Singlet antisym. spin. Therefore, sym. orbital

1[1 (1)2 (2) 2 (1)1 (2)] ( (1) (2) (2) (1))
2S s s s s       

11

10

1 1 

00
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Singlet  - 2 electrons can be at the same place.

Consider a point with coordinates, q.

[1 (1)2 (2) 2 (1)1 (2)]S s s s s  

[1 ( )2 ( ) 2 ( )1 ( )]S s q s q s q s q  

2[1 ( )2 ( )]S s q s q 

D

rq

(1)
Correlation Diagram
Fix electron 1.
Plot prob. of finding 2.

Prob. of finding electron (2) at
r given electron (1) is at q.

(schematic illustration)
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Triplet  - 2 electrons cannot be at the same place.
2 electrons have node for being in same place.

Consider a point with coordinates, q (any q).

[1 (1)2 (2) 2 (1)1 (2)]T s s s s  

[1 ( )2 ( ) 2 ( )1 ( )]T s q s q s q s q  

0T 

D

rq

(1)

Correlation Diagram
Fix electron 1.
Plot prob. of finding 2.

Prob. of finding electron (2) at
r given electron (1) is at q.

D

r q

(1)

(schematic illustrations)
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In triplet state

Electrons are anti-correlated.

Reduces electron-electron repulsion.

Lowers energy below singlet state of same orbital configuration.
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