## Chapter 15

## Angular Momentum

## Classical


radius vector linear from origin momentum


$$
\begin{aligned}
& \vec{J}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{\boldsymbol{k}} \\
\boldsymbol{x} & y & z \\
\boldsymbol{p}_{x} & \boldsymbol{p}_{y} & \boldsymbol{p}_{z}
\end{array}\right| \text { determinant form of cross product } \begin{array}{l}
\hat{\boldsymbol{i}} \rightarrow \hat{\boldsymbol{x}} \\
\hat{j} \rightarrow \hat{y} \\
\hat{\boldsymbol{k}} \rightarrow \hat{z}
\end{array} \\
& \boldsymbol{J}_{x}=y \boldsymbol{p}_{z}-z \boldsymbol{p}_{y} \\
& \boldsymbol{J}_{y}=z \boldsymbol{p}_{x}-x \boldsymbol{p}_{z} \\
& \boldsymbol{J}_{z}=\boldsymbol{x} \boldsymbol{p}_{y}-y \boldsymbol{p}_{x} \\
& \vec{J} \cdot \vec{J}=J^{2}=J_{x}^{2}+J_{y}^{2}+J_{z}^{2}
\end{aligned}
$$

## Q.M. Angular Momentum

In the Schrödinger Representation, use Q.M. operators for $x$ and $p$, etc.

$$
\underline{\boldsymbol{P}}_{x}=-i \hbar \frac{\partial}{\partial x} \quad \underline{x}=x
$$

Substituting

$$
\underline{\vec{J}}=-i \hbar\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
\underline{x} & \underline{y} & \underline{z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}
\end{array}\right| \begin{aligned}
& \underline{J}_{x}=-i \hbar\left(\underline{y} \frac{\partial}{\partial z}-\underline{z} \frac{\partial}{\partial y}\right) \\
& \underline{J}_{z}=-i \hbar\left(\underline{x} \frac{\partial}{\partial y}-\underline{y} \frac{\partial}{\partial x}\right) \\
& \underline{J}_{y}=-i \hbar\left(\underline{z} \frac{\partial}{\partial x}-\underline{x} \frac{\partial}{\partial z}\right) \\
& \\
& \underline{\vec{J}} \cdot \underline{\vec{J}}=\underline{J}_{x}^{2}+\underline{J}_{y}^{2}+\underline{J}_{z}^{2}
\end{aligned}
$$

## Commutators

## Consider

$\left[\underline{\boldsymbol{J}}_{x}, \underline{\boldsymbol{J}}_{y}\right]=\underline{\boldsymbol{J}}_{x} \underline{\boldsymbol{J}}_{y}-\underline{\boldsymbol{J}}_{y} \underline{\boldsymbol{J}}_{x} \quad$ substituting operators in units of $\hbar$

$$
\begin{array}{rlr}
\underline{J}_{x} \underline{J}_{y} & =-\left(\underline{y} \frac{\partial}{\partial z}-\underline{z} \frac{\partial}{\partial y}\right)\left(\underline{z} \frac{\partial}{\partial x}-\underline{x} \frac{\partial}{\partial z}\right) & \begin{array}{l}
\text { Keep tra } \\
\text { commute }
\end{array} \\
& =-\left(\underline{y} \frac{\partial}{\partial z} \underline{z} \frac{\partial}{\partial x}-\underline{y} \frac{\partial}{\partial z} \underline{x} \frac{\partial}{\partial z}-\underline{z} \frac{\partial}{\partial y} \underline{z} \frac{\partial}{\partial x}+\underline{z} \frac{\partial}{\partial y} \underline{x} \frac{\partial}{\partial z}\right)
\end{array}
$$

Similarly

$$
\underline{J}_{y} \underline{J}_{x}=-\left(\underline{z} \frac{\partial}{\partial x} \underline{y} \frac{\partial}{\partial z}-\underline{z} \frac{\partial}{\partial x} \underline{z} \frac{\partial}{\partial y}-\underline{x} \frac{\partial}{\partial z} \underline{y} \frac{\partial}{\partial z}+\underline{x} \frac{\partial}{\partial z} \underline{z} \frac{\partial}{\partial y}\right)
$$

Subtracting

$$
\left[\underline{J}_{x}, \underline{J}_{y}\right]=-\left[\underline{y} \frac{\partial}{\partial x}\left(\frac{\partial}{\partial z} \underline{z}-\underline{z} \frac{\partial}{\partial z}\right)+\underline{x} \frac{\partial}{\partial y}\left(\underline{z} \frac{\partial}{\partial z}-\frac{\partial}{\partial z} \underline{z}\right)\right]
$$

$$
\begin{aligned}
& {\left[\underline{J}_{x}, \underline{J}_{y}\right] }=-\left[\underline{y} \frac{\partial}{\partial x}\left(\frac{\partial}{\partial z} \underline{z}-\underline{z} \frac{\partial}{\partial z}\right)+\underline{x} \frac{\partial}{\partial y}\left(\underline{z} \frac{\partial}{\partial z}-\frac{\partial}{\partial z} \underline{z}\right)\right] \\
&=-\left(\underline{y} \frac{\partial}{\partial x}-\underline{x} \frac{\partial}{\partial y}\right)\left[\frac{\partial}{\partial z}, \underline{z}\right] \\
&=\left(\underline{x} \frac{\partial}{\partial y}-\underline{y} \frac{\partial}{\partial x}\right)\left[\frac{\partial}{\partial z}, \underline{z}\right] \\
&=i \underline{J}_{z}\left[\frac{\partial}{\partial z}, \underline{z}\right] \quad \text { But } \quad\left[\frac{\partial}{\partial z}, \underline{z}\right]=1 \quad \text { because } \frac{\partial}{\partial \underline{z}}=\frac{\underline{P}_{z}}{-i \hbar} \\
& \text { Therefore, } \\
& {\left[\underline{J}_{x}, \underline{J}_{y}\right]=i \underline{J}_{z} }
\end{aligned}
$$

$\left[\underline{J}_{x}, \underline{J}_{y}\right]=i \hbar \underline{J}_{z} \quad$ in conventional units

The commutators in units of $\hbar$ are

$$
\begin{aligned}
& {\left[\underline{\boldsymbol{J}}_{x}, \underline{\boldsymbol{J}}_{y}\right]=\boldsymbol{i} \underline{\boldsymbol{J}}_{z}} \\
& {\left[\underline{\boldsymbol{J}}_{y}, \underline{\boldsymbol{J}}_{z}\right]=\boldsymbol{i} \underline{\boldsymbol{J}}_{x}}
\end{aligned}
$$

$$
\left[\underline{J}_{x}, \underline{J}_{x}\right]=\boldsymbol{i} \underline{\boldsymbol{J}}_{y} .
$$

Using these it is found that

$$
\left[\underline{\boldsymbol{J}}^{2}, \underline{\boldsymbol{J}}_{z}\right]=\left[\underline{\mathbf{J}}^{2}, \underline{\boldsymbol{J}}_{x}\right]=\left[\underline{\boldsymbol{J}}^{2}, \underline{\boldsymbol{J}}_{y}\right]=\mathbf{0}
$$

Components of angular momentum do not commute.
$\underline{J}^{\mathbf{1}}$ commutes with all components.

Therefore,
$\underline{J}^{2}$ and one component of angular momentum can be measured simultaneously.

Call this component $\underline{J}_{\boldsymbol{x}}$.
Therefore,
$\underline{J}^{2}$ and $\underline{J}_{z}$ matrices can be simultaneously diagonalized by the same unitary transformation.

Furthermore,

$$
[\underline{H}, \underline{J}]=0 \quad(\underline{J} \text { looks like rotation })
$$

Therefore,

$$
\left[\underline{H}, \underline{J}^{2}\right]=0
$$

$\underline{H}, \underline{J}^{2}, \underline{J}_{z}$ are all simultaneous observables.

Diagonalization of $\underline{J}^{\mathbf{2}}$ and $\underline{J}_{z}$
$\underline{J}^{2}$ and $\underline{J}_{z}$ commute.
Therefore, set of vectors
$|\lambda m\rangle \quad$ Labeling kets with eigenvalues.
are eigenvectors of both operators.
$\underline{\underline{J}}^{\mathbf{2}} \quad$ and $\underline{\underline{J}}_{z} \quad$ are simultaneously diagonal in the basis $|\boldsymbol{\lambda m}\rangle$

$$
\underline{J}^{2}|\lambda m\rangle=\lambda|\lambda m\rangle
$$

(in units of $\hbar$ )
$\underline{\boldsymbol{J}}_{\mathbf{z}}|\boldsymbol{\lambda} \boldsymbol{m}\rangle=\boldsymbol{m}|\boldsymbol{\lambda} \boldsymbol{m}\rangle$

## Form operators

$$
\underline{\boldsymbol{J}}_{+}=\underline{\boldsymbol{J}}_{x}+\mathbf{i} \underline{\boldsymbol{J}}_{y} \quad \underline{\boldsymbol{J}}_{-}=\underline{\boldsymbol{J}}_{x}-\mathbf{i} \underline{\boldsymbol{J}}_{y}
$$

From the definitions of $\underline{\boldsymbol{J}}_{+}$and $\underline{\boldsymbol{J}}_{-}$and the angular momentum commutators, the following commutators and identities can be derived.

Commutators

$$
\begin{aligned}
& {\left[\underline{\boldsymbol{J}}_{+}, \underline{\boldsymbol{J}}_{z}\right]=-\underline{\boldsymbol{J}}_{+}} \\
& {\left[\underline{\boldsymbol{J}}_{-}, \underline{\boldsymbol{J}}_{z}\right]=\underline{\boldsymbol{J}}_{-}} \\
& {\left[\underline{\boldsymbol{J}}_{+}, \underline{\boldsymbol{J}}_{-}\right]=\mathbf{2} \underline{\boldsymbol{J}}_{z}}
\end{aligned}
$$

Identities

$$
\begin{aligned}
& \underline{J}_{+} \underline{J}_{-}=\underline{J}^{2}-\underline{J}_{z}^{2}+\underline{J}_{z} \\
& \underline{\boldsymbol{J}}_{-} \underline{J}_{+}=\underline{J}^{2}-\underline{J}_{z}^{2}-\underline{J}_{z}
\end{aligned}
$$

Expectation value
$\langle\lambda m| \underline{J}^{2}|\lambda m\rangle \geq\langle\lambda m| \underline{J}_{z}^{2}|\lambda m\rangle$

## Because

$$
\langle\lambda m| \underline{J}^{2}|\lambda m\rangle=\langle\lambda m| \underline{J}_{z}^{2}|\lambda m\rangle+\langle\lambda m| \underline{J}_{x}^{2}|\lambda m\rangle+\langle\lambda m| \underline{J}_{y}^{2}|\lambda m\rangle
$$



Positive numbers because $J$ 's are Hermitian give real numbers. Square of real numbers - positive.
Therefore, the sum of three positive numbers is greater than or equal to one of them.

Now
$\langle\lambda m| \underline{J}^{2}|\lambda m\rangle=\lambda$
$\langle\lambda m| \underline{J}_{z}^{2}|\lambda m\rangle=m^{2}$
Therefore,

$$
\lambda \geq \boldsymbol{m}^{2}
$$

Eigenvalues of $\underline{J}^{\mathbf{2}}$ are greater than or equal to square of eigenvalues of $\underline{J}_{\boldsymbol{z}}$.

Using

$$
\begin{aligned}
{\left[\underline{\boldsymbol{J}}_{+}, \underline{\boldsymbol{J}}_{z}\right] } & =-\underline{\boldsymbol{J}}_{+} \\
& \longrightarrow \underline{\boldsymbol{J}}_{z} \underline{\boldsymbol{J}}_{+}=\underline{\boldsymbol{J}}_{+} \underline{\boldsymbol{J}}_{z}+\underline{\boldsymbol{J}}_{+}
\end{aligned}
$$

Consider

$$
\underline{\boldsymbol{J}}_{z}\left[\underline{\boldsymbol{J}}_{+}|\lambda \boldsymbol{m}\rangle\right]=\underline{\boldsymbol{J}}_{+} \underline{\boldsymbol{J}}_{z}|\lambda \boldsymbol{m}\rangle+\underline{\boldsymbol{J}}_{+}|\lambda \boldsymbol{m}\rangle
$$

$$
=\underline{J}_{+} \boldsymbol{m}|\lambda \boldsymbol{m}\rangle+{\underline{J_{+}}}_{+}|\lambda \boldsymbol{m}\rangle
$$

$$
=(m+1)\left[\underline{J}_{+}|\lambda m\rangle\right]
$$

eigenvalue
eigenvector
Furthermore,
$\left[\underline{J}^{2}, \underline{J}_{+}\right]=0 \quad \underline{J}^{2}$ commutes with $\underline{J}_{+}$because it commutes with $\underline{J}_{x}$ and $\underline{J}_{y}$.
Then

$$
\begin{aligned}
\underline{J}^{2}\left[\underline{J}_{+}|\lambda m\rangle\right] & =\underline{J}_{+} \underline{J}^{2}|\lambda m\rangle \\
& =\lambda\left[\underline{J}_{+}|\lambda \boldsymbol{m}\rangle\right] \\
\text { eigenvalue } & \text { eigenvector }
\end{aligned}
$$

$$
\begin{aligned}
& \underline{J}_{x}\left[\underline{J}_{+}|\lambda m\rangle\right]=(m+1)\left[\underline{J}_{+}|\lambda m\rangle\right] \\
& \text { eigenvalue } \\
& \underline{J}^{2}\left[\underline{J}_{+}|\lambda m\rangle\right]=\lambda\left[\underline{J}_{+}|\lambda m\rangle\right]_{\text {eigenvector }}^{\text {eigenvalue }}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \underline{J}_{+}|\lambda m\rangle \text { is eigenvector of } \underline{J}_{z} \text { with eigenvalue } m+1 \\
& \quad \text { and of } \underline{J}^{2} \text { with eigenvalue } \lambda .
\end{aligned}
$$

$\underline{J}_{+}$is a raising operator.
It increases $\boldsymbol{m}$ by 1
and leaves $\lambda$ unchanged.

Repeated applications of

$$
\underline{J}_{+} \text {to }|\lambda m\rangle
$$

gives new eigenvectors of $\underline{J}_{z}$ (and $\underline{J}^{2}$ ) with larger and larger values of $m$.

But, this must stop at a largest value of $m, m_{\text {max }}$ because

$$
\lambda \geq m^{2} . \quad(m \text { increases, } \lambda \text { doesn't change })
$$

Call largest value of $\boldsymbol{m}\left(m_{\max }\right) \boldsymbol{j}$.

$$
\boldsymbol{m}_{\max }=\boldsymbol{j}
$$

For this value of $\boldsymbol{m}$, that is, $\boldsymbol{m}=\boldsymbol{j}$

$$
\underline{J}_{+}|\lambda \boldsymbol{j}\rangle=0 \quad \text { with } \quad|\lambda \boldsymbol{j}\rangle \neq 0
$$

Can't raise past max value.

In similar manner can prove

$$
\underline{\boldsymbol{J}}_{-}|\lambda \boldsymbol{m}\rangle
$$

is an eigenvector of $\underline{J}_{z}$ with eigenvalues $m-1$ and of $\underline{J}^{2}$ with eigenvalues $\lambda$.

Therefore,

$$
\underline{J}_{-} \text {is a lowering operator. }
$$

It reduces the value of $\boldsymbol{m}$ by 1 and leaves $\lambda$ unchanged.
Operating $\underline{\boldsymbol{J}}_{-}$repeatedly on $|\boldsymbol{\lambda} \boldsymbol{j}\rangle$

$$
\underline{\boldsymbol{J}}_{-}|\lambda \boldsymbol{j}\rangle{ }_{\text {largest value of } m}
$$

gives eigenvectors with sequence of $\boldsymbol{m}$ eigenvalues

$$
m=j, j-1, j-2, \cdots
$$

But,

$$
\lambda \geq \boldsymbol{m}^{2}
$$

Therefore, can't lower indefinitely.

Must be some

$$
\left|\lambda j^{\prime}\right\rangle
$$

such that

$$
\begin{gathered}
\underline{J}_{-}\left|\lambda j^{\prime}\right\rangle=0 \quad \text { with } \quad\left|\lambda j^{\prime}\right\rangle \neq 0 \\
\text { Smallest value of } m .
\end{gathered}
$$

Can't lower below smallest value.

Thus,


Went from largest value to smallest value in unit steps.

We have

$$
\begin{aligned}
& \quad \begin{array}{l}
\text { largest value of } m \\
\underline{J}_{+}|\lambda \neq \boldsymbol{j}\rangle=0 \\
\underline{J}_{-}\left|\lambda \dot{\boldsymbol{j}}^{\prime}\right\rangle=\mathbf{0} \\
\text { smallest value of } m
\end{array}
\end{aligned}
$$

Left multiplying top equation by $\underline{J}_{-}$and bottom equation by $\underline{J}_{+}$

$$
\begin{array}{lll}
\underline{J}_{-} \underline{\boldsymbol{J}}_{+}|\lambda \boldsymbol{j}\rangle=\mathbf{0} & \text { identities } & \underline{\boldsymbol{J}}_{-} \underline{\boldsymbol{J}}_{+}=\underline{\boldsymbol{J}}^{2}-\underline{\boldsymbol{J}}_{z}^{2}-\underline{\boldsymbol{J}}_{z} \\
\underline{\boldsymbol{J}}_{+} \underline{\boldsymbol{J}}_{-}\left|\lambda \boldsymbol{j}^{\prime}\right\rangle=\mathbf{0} & \underline{\boldsymbol{J}}_{+} \underline{\boldsymbol{J}}_{-}=\underline{\boldsymbol{J}}^{2}-\underline{J}_{z}^{2}+\underline{\boldsymbol{J}}_{z}
\end{array}
$$

Then

$$
\begin{aligned}
& \underline{\boldsymbol{J}}_{-} \underline{\boldsymbol{J}}_{+}|\lambda \boldsymbol{j}\rangle=\mathbf{0}=\left(\underline{\boldsymbol{J}}^{2}-\underline{\boldsymbol{J}}_{z}^{2}-\underline{\boldsymbol{J}}_{z}\right)|\lambda \boldsymbol{j}\rangle \\
& \underline{\boldsymbol{J}}_{+} \underline{\boldsymbol{J}}_{-}\left|\lambda \boldsymbol{j}^{\prime}\right\rangle=\mathbf{0}=\left(\underline{\boldsymbol{J}}^{2}-\underline{\boldsymbol{J}}_{z}^{2}+\underline{\boldsymbol{J}}_{z}\right)\left|\lambda \boldsymbol{j}^{\prime}\right\rangle
\end{aligned}
$$

and operating

$$
\begin{aligned}
& \underline{J}_{-} \underline{J}_{+}|\lambda \boldsymbol{j}\rangle=\mathbf{0}=\left(\lambda-\boldsymbol{j}^{2}-\boldsymbol{j}\right)|\lambda \boldsymbol{j}\rangle \\
& \underline{\boldsymbol{J}}_{+} \underline{\boldsymbol{J}}_{-}\left|\lambda \boldsymbol{j}^{\prime}\right\rangle=\mathbf{0}=\left(\boldsymbol{\lambda}-\boldsymbol{j}^{\prime 2}+\boldsymbol{j}^{\prime}\right)\left|\lambda \boldsymbol{j}^{\prime}\right\rangle
\end{aligned}
$$

$\underline{\boldsymbol{J}}_{-} \underline{\boldsymbol{J}}_{+}|\lambda \boldsymbol{j}\rangle=\mathbf{0}=\left(\boldsymbol{\lambda}-\boldsymbol{j}^{2}-\boldsymbol{j}\right)|\lambda \boldsymbol{j}\rangle \quad \underline{\boldsymbol{J}}_{+} \underline{\boldsymbol{J}}_{-}\left|\lambda \boldsymbol{j}^{\prime}\right\rangle=\mathbf{0}=\left(\lambda-\boldsymbol{j}^{\prime 2}+\boldsymbol{j}^{\prime}\right)\left|\lambda \boldsymbol{j}^{\prime}\right\rangle$
Because $|\lambda \boldsymbol{j}\rangle \neq 0$ and $\left|\lambda \boldsymbol{j}^{\prime}\right\rangle \neq 0$
the coefficients of the kets must equal 0 .
Therefore,

$$
\lambda=j(j+1) \quad \text { and } \quad \lambda=\left(-j^{\prime}\right)\left(-j^{\prime}+1\right)
$$

Because $\boldsymbol{j}>\boldsymbol{j}^{\prime}$

$$
\boldsymbol{j}^{\prime}=-\boldsymbol{j}
$$

and

$$
2 j=\text { an integer } \quad j=\text { integer } / 2 ; \quad \begin{aligned}
& j \text { can have integer } \\
& \text { or half integer values. }
\end{aligned}
$$

because we go from $\boldsymbol{j}$ to $\boldsymbol{j}^{\prime}=-\boldsymbol{j}$ in unit steps with lowering operator $\underline{J}_{-}$.
Thus, the eigenvalues of $\underline{J}^{2}$ are

$$
\left.\lambda=j(j+1) \quad \text { and } \quad j=0, \frac{1}{2}, 1, \frac{3}{2}, \cdots \quad \text { (largest } m \text { for a } \lambda\right)
$$

The eigenvalues of $\underline{J}_{z}$ are $\quad m=j, j-1, \cdots,-j+1,-j$

## Final results

$$
\begin{aligned}
& \underline{\boldsymbol{J}}^{2}|\boldsymbol{j} \boldsymbol{m}\rangle=\boldsymbol{j}(\mathbf{j}+\mathbf{1})|\boldsymbol{j} \boldsymbol{m}\rangle \\
& \underline{\boldsymbol{J}}_{z}|\boldsymbol{j} m\rangle=\boldsymbol{m}|\boldsymbol{j} m\rangle
\end{aligned}
$$

There are $(2 \boldsymbol{j}+1) \boldsymbol{m}$-states for a given $\boldsymbol{j}$, going from $\boldsymbol{j}$ to $\boldsymbol{-} \boldsymbol{j}$ in integer steps.

Can derive

$$
\begin{aligned}
& \underline{J}_{+}|j m\rangle=\sqrt{(j-m)(j+m+1)}|j m+1\rangle \\
& \underline{J}_{-}|j m\rangle=\sqrt{(j+m)(j-m+1)}|j m-1\rangle
\end{aligned}
$$

Angular momentum states can be grouped by the value of $\boldsymbol{j}$. Eigenvalues of $\underline{J}^{2}, \lambda=\boldsymbol{j}(\boldsymbol{j}+1)$.

$$
\begin{array}{lll}
j=0,1 / 2,1,3 / 2,2, \cdots & \\
j=0 & m=0 & |00\rangle \\
j=1 / 2 & m=1 / 2,-1 / 2 & \left|\frac{1}{2} \frac{1}{2}\right\rangle\left|\frac{1}{2}-\frac{1}{2}\right\rangle \\
j=1 \quad m=1,0,-1 & |11\rangle|10\rangle|1-1\rangle \\
j=3 / 2 & m=3 / 2,1 / 2,-1 / 2,-3 / 2 & \left|\frac{3}{2} \frac{3}{2}\right\rangle\left|\frac{3}{2} \frac{1}{2}\right\rangle\left|\frac{3}{2}-\frac{1}{2}\right\rangle\left|\frac{3}{2}-\frac{3}{2}\right\rangle \\
j=2 & m=2,1,0,-1,-2 & |22\rangle|21\rangle|20\rangle|2-1\rangle \mid 2-2
\end{array}
$$

etc.

Eigenvalues of $\underline{J}^{\mathbf{2}}$ are the square of the total angular momentum.
The length of the angular momentum vector is

$$
\sqrt{j(j+1)} \quad \text { or in conventional units } \quad \hbar \sqrt{j(j+1)}
$$



Eigenvalues of $\underline{J}_{z}$ are the projections of the angular momentum on the $z$ axis.

The matrix elements of $\underline{J}^{2} \underline{\boldsymbol{J}}_{\imath} \underline{\boldsymbol{J}}_{+} \underline{\boldsymbol{J}}_{-}$are

$$
\begin{aligned}
& \left\langle\boldsymbol{j}^{\prime} \boldsymbol{m}^{\prime}\right| \underline{J}^{2}|\boldsymbol{j} \boldsymbol{m}\rangle=\boldsymbol{j}(\boldsymbol{j}+\mathbf{1}) \quad \delta_{i j} \delta_{\boldsymbol{m}^{\prime}, \boldsymbol{m}} \\
& \left\langle\boldsymbol{j}^{\prime} \boldsymbol{m}^{\prime}\right| \underline{\boldsymbol{J}}_{z}|\boldsymbol{j m}\rangle=\boldsymbol{m} \quad \boldsymbol{\delta}_{i j} \boldsymbol{\delta}_{\boldsymbol{m}^{\prime}, m} \\
& \left\langle\boldsymbol{j}^{\prime} \boldsymbol{m}^{\prime}\right| \underline{\boldsymbol{J}}_{+}|\boldsymbol{j} \boldsymbol{m}\rangle=\sqrt{(\boldsymbol{j}-\boldsymbol{m})(\boldsymbol{j}+\boldsymbol{m}+\boldsymbol{1})} \quad \delta_{j j} \delta_{m^{\prime}, m+1} \\
& \left\langle\boldsymbol{j}^{\prime} \boldsymbol{m}^{\prime}\right| \underline{\boldsymbol{J}_{-}}|\boldsymbol{j} \boldsymbol{m}\rangle=\sqrt{(\boldsymbol{j}+\boldsymbol{m})(\boldsymbol{j}-\boldsymbol{m}+\mathbf{1})} \quad \delta_{j j} \delta_{m^{\prime}, m-1}
\end{aligned}
$$

The matrices for the first few values of $\boldsymbol{j}$ are (in units of $\hbar$ )

$$
\begin{array}{lll}
j=\mathbf{0} & j=\mathbf{1} / 2 \\
\underline{\underline{J}}_{+}=(\mathbf{0}) & \underline{\underline{J}}_{-}=(\mathbf{0}) & \underline{\underline{J}}_{+}=\left(\begin{array}{cc}
\mathbf{0} & \mathbf{1} \\
\mathbf{0} & \mathbf{0}
\end{array}\right) \\
\underline{\underline{J}}_{z}=(\mathbf{0}) & \underline{\underline{J}}_{-}=\left(\begin{array}{ll}
\mathbf{0} & \mathbf{0} \\
\mathbf{1} & \mathbf{0}
\end{array}\right) \\
& \underline{\underline{J}}_{z}=\left(\begin{array}{cc}
\mathbf{1} / 2 & \mathbf{0} \\
\mathbf{0} & -\mathbf{1} / 2
\end{array}\right) & \underline{\underline{J}}^{2}=\left(\begin{array}{cc}
\mathbf{3} / 4 & \mathbf{0} \\
\mathbf{0} & 3 / 4
\end{array}\right)
\end{array}
$$

$$
\begin{array}{ll}
j=1 \\
\underline{\underline{J}}_{+}=\left(\begin{array}{ccc}
0 & \sqrt{2} & 0 \\
0 & 0 & \sqrt{2} \\
0 & 0 & 0
\end{array}\right) \underline{\underline{J}}_{-}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
\sqrt{2} & 0 & 0 \\
0 & \sqrt{2} & 0
\end{array}\right) \\
\underline{\underline{J}}_{z}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right) \quad \underline{\underline{J}}=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right)
\end{array}
$$

The $|\boldsymbol{j} \boldsymbol{m}\rangle$ are eigenkets of the $\underline{J}^{\mathbf{2}}$ and $\underline{J}_{z}$ operators - diagonal matrices.

The raising and lowering operators $\underline{J}_{+}$and $\underline{J}_{-}$have matrix elements one step above and one step below the principal diagonal, respectively.

Particles such as atoms

$$
|\psi\rangle=R(r) Y_{\ell}^{m}(\theta, \varphi)
$$

The $Y_{\ell}^{m}(\theta, \varphi)$ are the eigenvectors of the operators

$$
\underline{L}^{2} \text { and } \underline{L}_{z}
$$

The

$$
\begin{aligned}
\boldsymbol{Y}_{\ell}^{m}(\theta, \varphi) & =|\boldsymbol{j} \boldsymbol{m}\rangle=|\ell \boldsymbol{m}\rangle \\
\underline{\underline{L}}^{2} \boldsymbol{Y}_{\ell}^{m}(\boldsymbol{\theta}, \varphi) & =\ell(\ell+\mathbf{1}) \boldsymbol{Y}_{\ell}^{m}(\boldsymbol{\theta}, \varphi) \\
\underline{\boldsymbol{L}}_{z} \boldsymbol{Y}_{\ell}^{m}(\theta, \varphi) & =\boldsymbol{m} \boldsymbol{Y}_{\ell}^{m}(\boldsymbol{\theta}, \varphi)
\end{aligned}
$$

## Addition of Angular Momentum

## Examples

Orbital and spin angular momentum - $\ell$ and s . These are really coupled - spin-orbit coupling.

ESR - electron spins coupled to nuclear spins
Inorganic spectroscopy - unpaired d electrons
Molecular excited triplet states - two unpaired electrons

Could consider separate angular momentum vectors

$$
\boldsymbol{j}_{1} \text { and } \boldsymbol{j}_{2}
$$

These are distinct.
But will see, that when they are coupled, want to combine the angular momentum vectors into one resultant vector.

Specific Case

$$
\begin{array}{ll}
j_{1}=\frac{1}{2} & j_{2}=\frac{1}{2} \\
m_{1}= \pm \frac{1}{2} & m_{2}= \pm \frac{1}{2}
\end{array}
$$

Four product states

$$
\begin{aligned}
& j_{1} m_{1} j_{2} m_{2} \\
& \left|\frac{1}{2} \frac{1}{2}\right\rangle\left|\frac{1}{2} \frac{1}{2}\right\rangle=\left|\frac{m_{1} m_{2}}{2} \frac{1}{2}\right\rangle
\end{aligned} \begin{aligned}
& \begin{array}{l}
j_{1} \text { and } j_{2} \text { omitted because } \\
\text { they are always the same. }
\end{array} \\
& \left|\frac{1}{2} \frac{1}{2}\right\rangle\left|\frac{1}{2}-\frac{1}{2}\right\rangle=\left|\frac{1}{2}-\frac{1}{2}\right\rangle \\
& \left\lvert\, \begin{array}{l}
\text { Called the } m_{1} m_{2} \text { representation } \\
\left|\frac{1}{2}-\frac{1}{2}\right\rangle\left|\frac{1}{2} \frac{1}{2}\right\rangle=\left|-\frac{1}{2} \frac{1}{2}\right\rangle \\
\begin{array}{l}
\text { The two angular momenta are } \\
\text { considered separately. }
\end{array} \\
\left|\frac{1}{2}-\frac{1}{2}\right\rangle\left|\frac{1}{2}-\frac{1}{2}\right\rangle=\left|-\frac{1}{2}-\frac{1}{2}\right\rangle
\end{array}\right.
\end{aligned}
$$

$\left|m_{1} m_{2}\right\rangle \longrightarrow\left|j_{1} j_{2} m_{1} m_{2}\right\rangle \quad m_{1} m_{2}$ representation

Want different representation
Unitary Transformation to coupled rep.
Angular momentum vectors added.

New States labeled $|\boldsymbol{j m}\rangle$
$\left|\boldsymbol{j}_{\mathbf{1}} \boldsymbol{j}_{\mathbf{2}} \boldsymbol{j} \boldsymbol{m}\right\rangle=|\boldsymbol{j} \boldsymbol{m}\rangle$
jm representation
$|\boldsymbol{j} m\rangle \longrightarrow$ Eigenkets of operators in $\boldsymbol{j} m$ representation.

$$
\underline{J}^{2} \quad \text { and } \quad \underline{J}_{z}
$$

where

$$
\begin{gathered}
\underline{J}=\underline{J}_{1}+\underline{J}_{2} \\
\underline{J}_{z}=\underline{J}_{1 z}+\underline{J}_{2 z} \\
\underline{J}^{2}|\mathbf{j m}\rangle=\boldsymbol{j}\left(\underset{\mathbf{j}+\mathbf{1})|\boldsymbol{j m}\rangle}{\text { vector sum of } j_{1} \text { and } \mathrm{j}_{2}}\right. \\
\underline{\boldsymbol{J}}_{z}|\mathbf{j m}\rangle=\boldsymbol{m}|\boldsymbol{j m}\rangle
\end{gathered}
$$

Want unitary transformation from the $m_{1} m_{2}$ representation to the $\boldsymbol{j} m$ representation.

Want

$$
\begin{aligned}
& |j m\rangle=\sum_{m_{1} m_{2}} C_{m_{1} m_{2}}\left|m_{1} m_{2}\right\rangle \\
& C_{m_{1} m_{2}}=\left\langle m_{1} m_{2} \mid j m\right\rangle
\end{aligned}
$$

$C_{m_{1} m_{2}}$ are the Clebsch-Gordan coefficients; Wigner coefficients; vector coupling coefficients
$\left|\boldsymbol{m}_{1} \boldsymbol{m}_{2}\right\rangle$ are the basis vectors
$N$ states in the $m_{1} m_{2}$ representation $N$ states in the $j m$ representation.

$$
N=\left(2 j_{1}+1\right)\left(2 j_{2}+1\right)
$$

$\underline{J}^{2}$ and $\underline{J}_{z}$ obey the normal commutator relations.
Prove by using $\underline{\boldsymbol{J}}=\underline{J}_{1}+\underline{J}_{2}$ and cranking through commutator relations using the fact that $\underline{J}_{1}$ and $\underline{J}_{2}$ and their components commute. Operators operating on different state spaces commute.

Finding the transformation

$$
\underline{J}_{z}=\underline{J}_{1 z}+\underline{J}_{2 z} \quad \Longrightarrow \quad m=m_{1}+m_{2} \quad \text { or coupling coefficient vanishes. }
$$

To see this consider

$$
|j m\rangle=\sum_{m_{1} m_{2}} C_{m_{1} m_{2}}\left|m_{1} m_{2}\right\rangle
$$

Operate with $\underline{J}_{z}$

These must be equal.
equal

$$
\begin{aligned}
\underline{J}_{z}|j m\rangle=\boldsymbol{m}|j m\rangle & =\left(\underline{J}_{1 z}+\underline{J}_{2 z}\right) \sum_{m_{1} m_{2}} C_{m_{1} m_{2}}\left|m_{1} m_{2}\right\rangle \\
& =\sum_{m_{1} m_{2}}\left(m_{1}+m_{2}\right) C_{m_{1} m_{2}}\left|m_{1} m_{2}\right\rangle
\end{aligned}
$$

Other terms
$C_{m_{1} m_{2}}=0$
if
$m_{1}+m_{2} \neq m$

## Largest value of $m$

$$
m=j_{1}+j_{2}=m_{1}^{\max }+m_{2}^{\max }
$$

since largest

$$
m_{1}=j_{1} \quad \text { and } \quad m_{2}=j_{2}
$$

Then the largest value of $\boldsymbol{j}$ is

$$
\boldsymbol{j}=\boldsymbol{j}_{1}+\boldsymbol{j}_{2}
$$

because the largest value of $\boldsymbol{j}$ equals the largest value of $m$.

There is only one state with the largest
$j$ and $m$.

There are a total of $(\mathbf{2} \boldsymbol{j}+\mathbf{1}) \mathrm{m}$ states associated with the largest $\boldsymbol{j}=\boldsymbol{j}_{\mathbf{1}}+\boldsymbol{j}_{\mathbf{2}}$.

Next largest $m(m-1)$

$$
m=j_{1}+j_{2}-1
$$

But

$$
m=m_{1}+m_{2}
$$

Two ways to get $\boldsymbol{m}$ - 1

$$
\begin{aligned}
& \boldsymbol{m}_{1}=\boldsymbol{j}_{1} \text { and } \boldsymbol{m}_{2}=\boldsymbol{j}_{2}-\mathbf{1} \\
& \boldsymbol{m}_{1}=\boldsymbol{j}_{1}-\mathbf{1} \text { and } \boldsymbol{m}_{2}=\boldsymbol{j}_{2}
\end{aligned}
$$

Can form two orthogonal and normalized combinations.
One of the combinations belongs to

$$
j=j_{1}+j_{2}
$$

Because this value of $\boldsymbol{j}$ has $\boldsymbol{m}$ values

$$
m=\left(j_{1}+j_{2}\right),\left(j_{1}+j_{2}-1\right), \cdots,\left(-j_{1}-j_{2}\right)
$$

Other combination with $m=j_{1}+j_{2}-1$
$\longmapsto j^{\prime}=j_{1}+j_{2}-1$
with

$$
m=\left(j_{1}+j_{2}-1\right),\left(j_{1}+j_{2}-2\right), \cdots,\left(-j_{1}-j_{2}+1\right)
$$

Doing this repeatedly


Each $\boldsymbol{j}$ has associated with it, its $2 j+1 \mathrm{~m}$ values.

Example

$$
j_{1}=\frac{1}{2}, \quad j_{2}=\frac{1}{2}
$$

$\boldsymbol{j}$ values $\longrightarrow \boldsymbol{j}=\boldsymbol{j}_{1}+\boldsymbol{j}_{2}$ to $\left|\boldsymbol{j}_{1}-\boldsymbol{j}_{2}\right| \quad$ in unit steps.

$$
\begin{aligned}
& j=\frac{1}{2}+\frac{1}{2}=1 \\
& j=\frac{1}{2}-\frac{1}{2}=0
\end{aligned}
$$

$$
\begin{array}{ll}
j=1 & m=1,0,-1 \\
j=0 & m=0
\end{array}
$$

jm rep. kets

$$
|11\rangle,|10\rangle,|1-1\rangle,|\mathbf{0} 0\rangle
$$

$m_{1} m_{2}$ rep. kets $\left|\frac{1}{2} \frac{1}{2}\right\rangle,\left|\frac{1}{2}-\frac{1}{2}\right\rangle,\left|-\frac{1}{2} \frac{1}{2}\right\rangle,\left|-\frac{1}{2}-\frac{1}{2}\right\rangle$
Know jm kets still need correct combo's of $m_{1} m_{2}$ rep. kets

Generating procedure
Start with the $\boldsymbol{j} m$ ket with the largest value of $\boldsymbol{j}$ and the largest value of $\boldsymbol{m}$. $|11\rangle$

$$
\underline{J}_{z}|11\rangle=1|11\rangle \quad \longrightarrow m=1
$$

But

$$
m=m_{1}+m_{2}
$$

Therefore,

$$
m_{1}=\frac{1}{2} \quad m_{2}=\frac{1}{2}
$$

because this is the only way to get

$$
m_{1}+m_{2}=1
$$

Then $\quad|11\rangle=\left\lvert\, \begin{aligned} & \left.\frac{1}{2} \frac{1}{2}\right\rangle \\ & \\ & j m\end{aligned}\right.$
Clebsch-Gordan coefficient $=\mathbf{1}$

Use lowering operators


$$
\underline{J}_{-}|11\rangle=\sqrt{2}|10\rangle
$$

from
lowering

$$
=\left(\underline{J}_{1-}+\underline{J}_{2-}\right)\left|\frac{1}{2} \frac{1}{2}\right\rangle=\underline{J}_{1-}\left|\frac{1}{2} \frac{1}{2}\right\rangle+\underline{J}_{2-}\left|\frac{1}{2} \frac{1}{2}\right\rangle
$$

op. expression

Then

$$
\begin{aligned}
& |10\rangle=\frac{1}{\sqrt{2}}\left|\frac{1}{2}-\frac{1}{2}\right\rangle+\frac{1}{\sqrt{2}}\left|-\frac{1}{2} \frac{1}{2}\right\rangle \\
& \text { Clebsch-Gordan Coefficients }
\end{aligned}
$$

$$
\begin{aligned}
& =1\left|-\frac{1}{2} \frac{1}{2}\right\rangle+1\left|\frac{1}{2}-\frac{1}{2}\right\rangle \\
& \text { from } \\
& \text { lowering } \\
& \text { op. expression }
\end{aligned}
$$

(Use correct $\boldsymbol{j}_{i}$ and $\boldsymbol{m}_{i}$ values.)

Plug into raising and lowering op. formulas correctly.

$$
\begin{aligned}
& \underline{J}_{+}|\boldsymbol{j} m\rangle=\sqrt{(\boldsymbol{j}-\boldsymbol{m})(\boldsymbol{j}+\boldsymbol{m}+\mathbf{1})}|\boldsymbol{j} m+\mathbf{1}\rangle \\
& \underline{J}_{-}|\boldsymbol{j} m\rangle=\sqrt{(\boldsymbol{j}+\boldsymbol{m})(\boldsymbol{j}-\boldsymbol{m}+\mathbf{1})}|\boldsymbol{j} m-\mathbf{1}\rangle
\end{aligned}
$$

For $\boldsymbol{j m}$ rep. $\longrightarrow|\boldsymbol{j m}\rangle$
plug in $\boldsymbol{j}$ and $m$.

For $m_{1} m_{2}$ rep. $\longrightarrow\left|m_{1} m_{2}\right\rangle$

$$
\left|m_{1} m_{2}\right\rangle \text { means }\left|j_{1} j_{2} m_{1} m_{2}\right\rangle
$$

For $\underline{J}_{1-}$ and $\underline{J}_{2-}$ must put in
$j_{1}$ and $m_{1}$ when operating with $\underline{J}_{1-}$
and
$\boldsymbol{j}_{2}$ and $\boldsymbol{m}_{2}$ when operating with $\underline{\boldsymbol{J}}_{2-}$

Lowering again

$$
\underline{J}_{-}|10\rangle=\sqrt{2}|1-1\rangle
$$

$$
\begin{aligned}
& m_{1} m_{2} \quad m_{1} m_{2} \\
& =\left(\underline{J}_{1-}+\underline{J}_{2-}\right) \frac{1}{\sqrt{2}}\left(\left|\frac{1}{2}-\frac{1}{2}\right\rangle+\left|-\frac{1}{2} \frac{1}{2}\right\rangle\right) \\
& =\left[\frac{1}{\sqrt{2}}\left|-\frac{1}{2}-\frac{1}{2}\right\rangle+0+0+\frac{1}{\sqrt{2}}\left|-\frac{1}{2}-\frac{1}{2}\right\rangle\right]
\end{aligned}
$$

Therefore,

$$
\begin{array}{c|c}
|1-1\rangle= & \left|-\frac{1}{2}-\frac{1}{2}\right\rangle \\
j m & m_{1} m_{2}
\end{array}
$$

Have found the three $\boldsymbol{m}$ states for $\boldsymbol{j}=\mathbf{1}$ in terms of the $\boldsymbol{m}_{1} \boldsymbol{m}_{2}$ states. Still need $|00\rangle$

$$
m=0=m_{1}+m_{2}
$$

Need jm $|\mathbf{0 0}\rangle$

$$
\begin{aligned}
& m=\mathbf{0} \\
\therefore \quad & \boldsymbol{m}_{1}+\boldsymbol{m}_{2}=\mathbf{0}
\end{aligned}
$$

Two $m_{1} m_{2}$ kets with $m_{1}+m_{2}=0$

$$
\left|\frac{1}{2}-\frac{1}{2}\right\rangle,\left|-\frac{1}{2} \frac{1}{2}\right\rangle
$$

The $|00\rangle$ is a superposition of these.
Have already used one superposition of these to form $|\mathbf{1 0}\rangle$

$$
|10\rangle=\frac{1}{\sqrt{2}}\left|\frac{1}{2}-\frac{1}{2}\right\rangle+\frac{1}{\sqrt{2}}\left|-\frac{1}{2} \frac{1}{2}\right\rangle
$$

$\left.|00\rangle \begin{array}{l}\text { orthogonal to }|10\rangle \text { and normalized. Find combination of } \\ \text { normalized and orthogonal to }|\mathbf{1 0}\rangle \text {. }\end{array} \frac{1}{2}-\frac{1}{2}\right\rangle,\left|-\frac{1}{2} \frac{1}{2}\right\rangle$
$|00\rangle=\frac{1}{\sqrt{2}}\left|\frac{1}{2}-\frac{1}{2}\right\rangle-\frac{1}{\sqrt{2}}\left|-\frac{1}{2} \frac{1}{2}\right\rangle$
Clebsch-Gordan Coefficients

Table of Clebsch-Gordan Coefficients

$$
\begin{aligned}
& \begin{array}{lrrrrl}
j_{1}=1 / 2 & 1 & 1 & 0 & 1 & j \\
j_{2}=1 / 2 & 1 & 0 & 0 & -1 & m \\
\cline { 2 - 6 } & & & & &
\end{array} \\
& \begin{array}{rr|llll}
\frac{1}{2} & \frac{1}{2} & 1 & & & \\
\frac{1}{2} & -\frac{1}{2} & & & \\
-\frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}} & \\
-\frac{1}{2} & -\frac{1}{2} & & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} & \\
m_{1} & m_{2} & & & 1
\end{array}
\end{aligned}
$$

## Next largest system

$$
\begin{array}{ll}
j_{1}=1 & j_{2}=\frac{1}{2} \\
m_{1}=1,0,-1 & m_{2}=\frac{1}{2},-\frac{1}{2}
\end{array}
$$

$$
m_{1} m_{2} \text { kets } \quad\left|1 \frac{1}{2}\right\rangle\left|1-\frac{1}{2}\right\rangle\left|0 \frac{1}{2}\right\rangle\left|0-\frac{1}{2}\right\rangle\left|-1 \frac{1}{2}\right\rangle\left|-1-\frac{1}{2}\right\rangle
$$

jm states

$$
\begin{aligned}
& j=j_{1}+j_{2}=\frac{3}{2} \quad m=\frac{3}{2}, \frac{1}{2},-\frac{1}{2},-\frac{3}{2} \\
& j=j_{1}-j_{2}=\frac{1}{2} \quad m=\frac{1}{2},-\frac{1}{2} \\
& j m \text { kets } \quad\left|\frac{3}{2} \frac{3}{2}\right\rangle\left|\frac{3}{2} \frac{1}{2}\right\rangle\left|\frac{3}{2}-\frac{1}{2}\right\rangle\left|\frac{3}{2}-\frac{3}{2}\right\rangle\left|\frac{1}{2} \frac{1}{2}\right\rangle\left|\frac{1}{2}-\frac{1}{2}\right\rangle
\end{aligned}
$$

## Table of Clebsch-Gordan Coefficients

$$
\begin{aligned}
& j_{1}=1 \quad \frac{3}{2} \quad \frac{3}{2} \quad \frac{1}{2} \quad \frac{3}{2} \quad \frac{1}{2} \quad \frac{3}{2} \quad j \\
& j_{2}=1 / 2 \quad \frac{3}{2} \quad \frac{1}{2} \quad \frac{1}{2} \quad-\frac{1}{2} \quad-\frac{1}{2} \quad-\frac{3}{2} \quad m \\
& \begin{array}{ll|ll}
1 & \frac{1}{2} \\
1 & -\frac{1}{2} & & \\
& & \sqrt{\frac{1}{3}} & \sqrt{\frac{2}{3}}
\end{array} \\
& 0 \quad \frac{1}{2} \quad \sqrt{\frac{2}{3}}-\sqrt{\frac{1}{3}} \\
& 0-\frac{1}{2} \quad \sqrt{\frac{2}{3}} \quad \sqrt{\frac{1}{3}} \\
& -1 \quad \frac{1}{2} \left\lvert\, \sqrt{\frac{1}{3}}-\sqrt{\frac{2}{3}}\right. \\
& -1 \quad-\frac{1}{2} \\
& m_{1} \quad m_{2} \\
& j m \quad m_{1} m_{2} \quad m_{1} m_{2} \\
& \text { Example }\left|\frac{1}{2} \frac{1}{2}\right\rangle=\sqrt{\frac{2}{3}}\left|1-\frac{1}{2}\right\rangle-\sqrt{\frac{1}{3}}\left|0 \frac{1}{2}\right\rangle
\end{aligned}
$$

