
Chapter 14



Density Matrix
State of a system at time t: ( )n

n
t C t n    orthonormal basis setn

2( ) 1n
n

C t     normalizedt

Density Operator

( )t t t 

We’ve seen this before, as a “projection operator”

        

) (

 

( )ij t i t

t t

j

i j

 



Can find density matrix in terms of the basis set  n
Matrix elements of density matrix:

Contains time dependent
phase factors.
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Two state system:

1 2( ) 1 ( ) 2t C t C t 

12 1 2t t 
*

12 1 2C C 

21 2 1t t 
*

21 2 1C C 

22 2 2t t 
*

22 2 2C C 

Calculate matrix elements of 2×2 density matrix:

11 1 1t t 

* *
1 2 1 21 1 2 1 2 1C C C C       

*
11 1 1C C 

Time dependent phase
factors cancel.  Always
have ket with its complex
conjugate bra.

* *
1 2( ) 1 ( ) 2t C t C t 
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In general:

*( )ij i jt C C 

*

( )

( ) ( )

i
i

i j
i j

t C t i

t t C t i j C t









*

( )

         ( ) ( )k l
k l

ij t

i C

i t t j

t k l C t j



 
  








ij density matrix element
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2×2 Density Matrix:

* *
1 1 1 2

* *
2 1 2 2

( )
C C C C

t
C C C C


 

  
 

*
2 2

*
1 1 Probability of finding system in state

Probability of finding system in state 2

 1

C

C

C

C





Diagonal density matrix elements  probs. of finding system in various states
Off Diagonal Elements  “coherences”

2Since ( ) 1n
n

C t 
( ) 1Tr t  trace = 1 for any

dimension
(trace – sum of diagonal matrix elements)

*
ij ji 

And
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( )d t
dt


 

Time dependence of ( )t

( )d t d dt t t t
dt d t d t
    

    
   

product rule

Using Schrödinger Eq. for time derivatives of  & t t

  
d t

i H t

d
dt

t
i t H

dt



 





1

1

d t
H t

dt i
d t

t H
dt i
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( ) 1 1( ) ( )
d t

H t t t t t H t
dt i i


 
 

( ) 1 ( ) ( )
d t

H t t t t t H t
dt i


   

1 ( ), ( )H t t
i

   

Substituting:

density operator

Therefore:

( ) ( ), ( )i t H t t     

The fundamental equation of the density matrix representation.
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( ) ( ), ( )it H t t      

Density Matrix Equations of Motion

*since ij i jC C 
*

*j i
i jij

dC dCC C
dt dt


    

        

* *
j ii jC C C C

 
  by product rule

For 2×2 case, the equation of motion is:

11 12 11 12 11 12 11 1211 12

21 22 21 22 21 22 21 22
21 22

H H H Hi
H H H H

     
    

 

 

                                 


time derivative of 
density matrix elements

12 21 21 1211 ( )i H H  
  



11 11 12 21 11 11 12 2111 [( ) ( )]i H H H H    
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11 12 11 12 11 12 11 1211 12

21 22 21 22 21 22 21 22
21 22

H H H Hi
H H H H

     
    

 

 

                                 


 11 22 12 22 11 1212 ( ) ( )i H H H   
    



 11 12 12 22 11 12 12 2212 ( ) ( )i H H H H    
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12 21 21 1211 22 ( )i H H    
    



 *
11 22 12 22 11 1212 21 ( ) ( )i H H H     

     


Equations of Motion – from multiplying of matrices for 22:

11 22 1 (trace of  = 1)   

12 21
* 

for 2x2 because

for any dimension



In many problems:

0 ( )IH H H t 

time
independent

time
dependent

e.g., Molecule in a radiation field:

0 molecular HamiltonianH 
( ) radiation field  interaction (I) with moleculeIH t 

0Natural to use basis set of H

0 nH n E n (orthonormal)
(time dependent phase factors)

( )n
n

t C t n 
0Eigenkets of H

Write  as:t

Copyright – Michael D. Fayer, 2018



For this situation:

( ) ( ), ( )I
it H t t 

     

time evolution of density matrix elements, Cij(t), depends only on ( )IH t

 time dependent interaction term

See derivation in book – and lecture slides.
Like first steps in time dependent perturbation theory 

before any approximations.

In absence of       , only time dependence from time dependent phase factors
from       .   No changes in magnitudes of coefficients Cij .

IH
0H
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Time Dependent Two State Problem Revisited:

Previously treated in Chapter 8 with Schrödinger Equation.

  0Basis set 1 , 2 degenerate eigenkets of H

No IH
0 01 1 1H E   

0 02 2 2H E   

Interaction IH
1 2IH  

2 1IH   of Ch. 8 

0
0IH



 

  
 


The matrix IH

Because degenerate states, time dependent phase factors cancel 
in off-diagonal matrix elements – special case.
In general, the off-diagonal elements have time dependent phase factors.
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( ) ( ), ( )
I

it H t t 
     Use

11 12 11 12

2 1 22 21 22

0 0
0 0

i     


    
        
         

       



12 21 11 22

11 22 12 21

( ) ( )
( ) ( )

i
   

 
   

   
      

Multiplying matrices and subtracting gives

Equations of motion of density matrix elements:

12 2111 ( )i   
 

12 2122 ( )i   
  

Probabilities

11 2212 ( )i   
 

11 2221 ( )i   
  

Coherences

0
0IH



 

  
 


11 21 11 1211

21 12 12 21

[(0 ) ( 0 )]
( ) ( )

i
i i
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Using

11 12 21( )i   
    

11 12 21( )i     

Take time derivative

2
11 2211 2 ( )       

Using Tr  = 1, i.e., 11 22 1  

22 11Then 1  

2 2
1111 2 4      and

2
22 sin ( )t 

/
From Ch. 8
  

Same result as Chapter 8 except obtained probabilities directly.  
No probability amplitudes.

12 21Substitute   &  
 

11 2212 ( )i   
  11 2221 ( )i   

  

For initial condition               at t = 0. 11 1 

2
11 cos ( )t 

2

2 2 2 2 2 2

2 2

2 2 2 2 2

2 2 2

cos ( )/ 2 cos( )sin( )
cos ( )/ 2 (sin ( ) cos ( ))

but sin ( ) 1 cos ( )
then cos ( )/ 2 (1 2cos ( ))

2 4 cos ( )

d t dt t t
d t dt t t

t t
d t dt t

t
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Can get off-diagonal elements

*Since ij ji 

21 sin(2 )
2
i t  

11 2212 ( )i   
 

Substituting:
2 2

12 (cos sin )i t t   


 

 2 2
12 cos sini t t dt    

12 sin(2 )
2
i t 

2

2

cos (1/2) (1/ 4)sin 2

sin (1/2) (1/ 4)sin 2

xdx x x

xdx x x
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*( ) ( ) ( )ij i jt C t C t 

*

( )

( ) ( )

i
i

i j
i j

t C t i

t t C t i j C t









*

*

*

( )

        

( )

( )

( ) ( )

)

( )

(

 k l
k

ij

i j

i j

l

C t

i C t k l C

C t i i C

t i t t j

C t

t j

t j j



 
  

 









ij density matrix element

Density matrix elements have no time dependent phase factors.

time dependent phase factor in ket, but
its complex conjugate is in bra.  Product
is 1.  Kets and bras normalized, closed
bracket gives 1.

Time dependent coefficient, but no phase factors.
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Can be time dependent phase factors in density matrix equation of motion.

( ) ( ), ( )it H t t      











2221

1211

HH
HH

H
1

2

/

/

1 1

2 2

iE t
s

iE t
s

e

e












s – spatial

1 1/ /
11 1 1 1 1 1 1iE t iE t

s ss sH H H e e H    no time dependent phase
factor

1 2 1 2/ / ( ) /
12 1 2 1 2 1 2iE t iE t i E E t

s ss sH H H e e H e     

time dependent phase factor
if E1 ≠ E2.

Therefore, in general, the commutator matrix,

( ), ( )H t t 
 

will have time dependent phase factors if E1 ≠ E2.

For two levels, but the same in any dimension.

when you multiply it out,
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Expectation Value of an Operator

A t A t

 Complete orthonormal basis set j

( )j
j

t C t j 

ijA i A j

Matrix elements of A

Derivation in book and see lecture slides

 ( )A Tr t A

Expectation value of A is trace of the product of density matrix with 
the operator matrix       .A

Important:            carries time dependence of coefficients.( )t

Time dependent phase factors may occur in off-diagonal matrix elements of A.
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Example: Average E for two state problem

E H Tr H 

0 I

E
H H H

E



 

    
 




2 2(cos sin ) (sin 2 sin 2 )
2

iH E t t t t      


E

11 12

21 22

E
Tr H Tr

E
  


  
   

    
  




11 12 21 22

11 22 12 21( ) ( )
E E

E
     

    
   

   

 


Only need to calculate the
diagonal matrix elements.

Time dependent phase factors cancel 
because degenerate. Special case. 
In general have time dependent phase factors.

21 sin(2 )
2
i t  12 sin(2 )

2
i t 2

11 cos ( )t  2
22 sin ( )t 

E
E

E  

E = 0
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Working with basis set of eigenkets of time independent piece of Hamiltonian,
H0, the time dependence of the density matrix depends only on the time
dependent piece of the Hamiltonian, HI.

Total Hamiltonian

0 ( )IH H H t 

0H

0 nH n E n

time independent

 nUse as basis set.

( )n
n

t C t n

Proof that only need consider

( ) ( ), ( )I
it H t t 

     
when working in basis set of eigenvectors of H0.
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Time derivative of density operator (using chain rule)

d dt t t t
d t d t

   
   

   
(A)

1 1( ) ( )H t t t t t H t
i i

 
 

0 0
1 1 1 1

I IH t t H t t t t H t t H
i i i i

   
    

Use Schrödinger Equation and its complex conjugate

(B)

Substitute expansion                              into derivative terms in eq. (A).( )n
n

t C t n
*

n n
n n

d dC n t t C n
d t d t

   
   

   
 

* * 

n n n n
n n n n

d dC n t C n t t C n t C n
d t d t

     
        
      
    (C)

(B) = (C)
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Using Schrödinger Equation

0
1

n
n

dC n H t
d t i

 
 

 
 

*
0

1
n

n

dC n t H
d t i

 
   

 
t

tRight multiply top eq. by      .

Left multiply bottom equation by       .

Gives

0
1

n
n

dC n t H t t
d t i

 
 

 
 

*
0

1
n

n

dt C n t t H
d t i

 
   

 

Using these see that the 1st and 3rd terms
in (B) cancel the 2nd and 4th terms in (C).

0 0
1 11 1

I IH t t t t H
i i

H t t t t H
i i

  
   

**
n nn n

n nn n

C n t td dC n t t C n
d t t

C n
d

   
   

   
   
  

 
    

   

(B)

(C)
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* 1 ,n n I
n n

C n t t C n H
i


             

  

After canceling terms, (B) = (C) becomes

Consider the ij matrix element of this expression.

*
n n

n n
C i n t j i t C n j
 

 
**

i jj iC C C C
 

 

ij

The matrix elements of the left hand side are

( ) ( ), ( )
I

it H t t      

In the basis set of the eigenvectors of H0,
H0 cancels out of equation of motion of density matrix.

Copyright – Michael D. Fayer, 2018



Expectation value

A t A t

 j

( )j
j

t C t j

complete orthonormal basis set.

ijA i A j

*
i j

i j
t A t C i A C j

  
   
   
 

Matrix elements of A

*

,

( ) ( )i j
i j

C t C t i A j

t A t  ( )A Tr t AProof that =
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( )ji j t i 

j t t i

*( ) ( )i jC t C t

,

( )
i j

t A t j t i i A j

note order

Then

Matrix multiplication, Chapter 13  (13.18)

1

N

kj ki ij
i

c b a


 

t A t like matrix multiplication but only diagonal elements –
j on both sides.
Also, double sum.  Sum over j – sum diagonal elements.

Therefore,  ( )A Tr t A
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radiation
field

Coherent Coupling by of Energy Levels by Radiation Field

Two state problem

0 1

0 1

2 electronic states 
2 vibrational states 

S S
V V




In general, if radiation field frequency        is near E, and other transitions
are far off resonance,  can treat as a 2 state system.



NMR – 2 spin states, magnetic transition dipole
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0E   

1

2

1 0E 

2 0E  



0 11 1H E

0 22 2H E

Molecular Eigenstates as Basis

Interaction due to application of optical field (light) on or near resonance.

12 0( ) cos( )IH t e x E t 

2

0

1 transition dipole operator
             
        

 pola
   

rized li
  amplit

g
de
ht

 u

e x

E
x
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Take  real (doesn’t change results)

Define Rabi Frequency, 1
1 0E 

Then 0
11 ( ) 2 cos( ) i t

IH t t e    

0
12 ( ) 1 cos( ) i t

IH t t e   

( ) matrix:
I

H t
0

0

1

1

0 cos( )
( )

cos( ) 0

i t

i tI

t e
H t

t e





 
 

 
  

 


1201 ( ) 2 cos( ) 1 2IH t E t e x 

 couples statesIH

0*
0 cos2 ( ) 1 ( )I

i tH E et t   

1 2/ /
0 1 2 012cos( ) 1 2 0iE t iE tE t e e x e E E      

0
0 cos( ) i tE t e      is value of 

transition dipole bracket,
Note – time independent 

kets.  No phase 
factors.  Have taken
phase factors out.

take out time dependent phase factors

Copyright – Michael D. Fayer, 2018



Use ( ) ( ), ( )
I

it H t t      

11 12

21 22

 

 

 

 

 
  
 
 

 
 

0 0

0

0

0 0

1 12 1 11 221

1 12 2

2

1 11 22 1

cos( ) ( )

co

cos( )

s( ) ( os) c ( )

i t i t

i t

i t

i t i t

i t e e

i t e

t e

t e

i

i e

 

 





    

   

 

   









 
 




  





Blue diagonal
Red off-diagonal

1 2( ) 1 ( ) 2t C t C t General state of system

0

0

0

0

11 121

2 1 221

11 12 1

21 22 1

0 cos( )
cos( ) 0

0 cos( )
cos( ) 0

i t

i t

i t

i t

t ei
t e

t e
t e
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Equations of Motion of Density Matrix Elements

 0 0
1 12 2111 cos( ) i t i ti t e e     

  

 0 0
1 12 2122 cos( ) i t i ti t e e     

   

0
1 11 2212 cos( ) ( )i ti t e     

  

0
1 11 2221 cos( ) ( )i ti t e     


  

*
12 21  

 
*

12 21 

11 22  
  11 22 1  

Treatment exact to this point (expect for dipole approx. in ).
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Rotating Wave Approximation

 1cos( )
2

i t i tt e e   

Put this into equations of motion
Will have terms like

0 0( ) ( )     and        i t i te e      

0But  

Terms with                           off resonance  Don’t cause transitions0 0( ) 2   

Looks like high frequency Stark Effect
 Bloch – Siegert Shift

Small but sometimes measurable shift in energy.

Drop these terms!
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With Rotating Wave Approximation

Equations of motion of density matrix

 0 0( ) ( )1
12 2111 2

i t i ti e e     
    

 0 0( ) ( )1
12 2122 2

i t i ti e e     
     

0( )1
11 2212 ( )

2
i ti e    

   

0( )1
11 2221 ( )

2
i ti e    

   

These are the
Optical Bloch Equations for optical transitions
or just the Bloch Equations for NMR.

1 1NMR - m H 
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H1 – oscillating magnetic field of applied RF.
m – magnetic transition dipole.



Consider on resonance case  = 0

Equations reduce to

 1
12 2111 2

i  
 

 1
12 2122 2

i  
  

1
11 2212 ( )

2
i  

 

1
11 2221 ( )

2
i  

  

These are IDENTICAL to the degenerate time dependent 2 state problem
with  = 1/2.

 0 0( ) ( )1
12 2111 2

i t i ti e e     
    

 0 0( ) ( )1
12 2122 2

i t i ti e e     
     

0( )1
11 2212 ( )

2
i ti e    

   

0( )1
11 2221 ( )

2
i ti e    

   

All of the phase factors = 1.
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On resonance coupling to time dependent radiation field induces transitions.

Looks identical to time independent
coupling of two degenerate states.

0 
In effect, the on resonance radiation 
field “removes” energy differences and
time dependence of field.

2 1
11 cos ( )

2
t 

2 1
22 sin ( )

2
t 

12 1sin( )
2
i t 

21 1sin( )
2
i t  

Start in ground state, 1 11 22 12 211; 0, 0, 0      

0E   

2

1

22

11

Then

populations coherences

at t = 0.
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2 1
11 cos ( )

2
t  2 1

22 sin ( )
2

t 

1 0 Rabi FrequencyE  Recall

111 22 1,0t   

This is called a  pulse  inversion, all population in excited state.

populations

11 221 0 ,.5
2

0.5t     

This is called a /2 pulse Maximizes off diagonal elements 12, 21

As t is increased, population
oscillates between ground 
and excited state at Rabi frequency.

Transient Nutation
Coherent Coupling

2 4 6 8

0.2

0.4

0.6

0.8

1

t

 2
2

–
ex

ci
te

d 
st

at
e 

pr
ob

.  pulse

2 pulse Copyright – Michael D. Fayer, 2018



Off Resonance Coherent Coupling
0    

 1/ 22 2
1 Effective Fielde     Define

For same initial conditions:

Solutions of Optical Bloch Equations

2
21

11 21 sin ( /2)e
e

t 


 

2
21

22 2 sin ( /2)e
e

t 




21
12 2 sin( ) sin ( /2)

2
i te

e e
e

i t t e    


      

21
21 2 sin( ) sin ( /2)

2
i te

e e
e

i t t e    


      

Oscillations Faster  e
Max excited state probability:

2
max 1
22 2

e






(Like non-degenerate time dependent 2-state problem)

11 22 12 211; 0, 0, 0      

1 = E0 - Rabi frequency

Amount radiation field frequency is off resonance from transition frequency.
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Near Resonance Case - Important

1  

1e Then
 1/ 22 2

1e    

11,  22 reduce to on resonance case.

12 1sin( )
2

i ti t e    

21 1sin( )
2

i ti t e    

Same as resonance case 
except for phase factor

This is the basis of Fourier Transform NMR.  Although spins have
different chemical shifts, make ω1 big enough, all look like on resonance.

For /2 pulse, maximizes 12, 21

1t =  /2

 t << /2  0But

Then, 12, 21 virtually identical to on resonance case and 
11, 22 same as on resonance case.

because 1  
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Free Precession
After pulse of  = 1t        (flip angle)

On or near resonance immediately after the pulse (t = 0)

2
11 cos ( /2) 

2
22 sin ( /2) 

12 sin
2
i 

21 sin
2
i  

After pulse – no radiation field.
Hamiltonian is H0

0
,i H      

0
0

0 0
0

H
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11 0 

22 0 

0 1212 i  


0 2121 i  
 

0
,i H       0

0

0 0
0

H


 
  

 


Solutions
0

12 12(0) i te  

0
21 21(0) i te   

11 = a constant = 11(0) 

22 = a constant = 22(0) 

t = 0 is at end of pulse

Off-diagonal density matrix elements
 Only time dependent phase factor

Populations don’t change.

11 12

0 2 1 22

11 12

021 22

0 0
0

0 0
0

i  
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Off-diagonal density matrix elements after pulse ends (t = 0).

Tr 

Consider expectation value of transition dipole        . 12Recall e x 

1   2       

1

   

0
02




 

  
 

No time dependent phase factors.
Phase factors were taken out of  as part
of the derivation. Matrix elements
involve time independent kets. 

0

0

11 12

21 22

(0) (0) 0
0(0) (0)

i t

i t

e
Tr Tr

e





  


 

   
    

   
t = 0, end of pulse

0 0
12 21(0) (0)i t i te e        
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0 0
12 21(0) (0)i t i te e        

After pulse of  = 1t        (flip angle)

On or near resonance
12(0) sin

2
i  21(0) sin

2
i  

0 0sin sin
2 2

i t i te ei i      
  

0sin sin( )t    

0 0 0 0sin [cos( ) sin( )] sin [cos( ) sin( )]
2 2
i it i t t i t             
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0sin sin( )t    

Oscillating electric dipole (magnetic dipole - NMR)  
at frequency 0,  Oscillating E-field (magnet field) 

2  for ensemble, coherent emissionI E



Free precession.

Rot. wave approx.
Tip of vector goes in circle.
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Pure and Mixed Density Matrix
Up to this point - pure density matrix.  

One system or many identical systems.

Mixed density matrix 
Describes nature of a collection of sub-ensembles each with different properties.
The subensembles are not interacting.

1 20 , , , 1kP P P      

1k
k

P and

( ) ( )k k
k

t P t  

Pk probability of having kth sub-ensemble with density matrix, k.

Density matrix for mixed systems

or integral if continuous distribution

Sum of probabilities (or integral) is unity.

Total density matrix is 
the sum of the individual density matrices times their probabilities.

Because density matrix is at probability level, can sum (see Errata and Addenda).
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Example: Light coupled to two different transitions – free precession

01 02

Difference of both 01 & 02 from  small compared to 1,
that is, both near resonance.

Equal probabilities  P1=0.5 and P2=0.5

( )Tr t  

k k
k

P Tr 

For a given pulse of radiation field, 
both sub-ensembles will have same flip angle .

Calculate

Light frequency  near 
01 & 02.
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0sin sin( )t    

Pure density matrix result for flip angle :

For 2 transitions - P1=0.5 and P2=0.5

 01 02
1 sin sin( ) sin( )
2

t t      

01 02 01 02
1 1sin sin ( ) cos ( )
2 2

t t                    

from trig.
identities

Call:   center frequency   0, shift from the center   
then,  01 = 0 +  and      02 = 0 -  ,
with   << 0

 0sin sin( )cos( )t t     Therefore,

Beat gives transition frequencies – FT-NMR

high freq. oscillation low freq. oscillation, beat
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5 10 15 20

-2

-1

1

2

Equal amplitudes – 100% modulation,  ω01 = 20.5; ω01 = 19.5
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5 10 15 20

-1

-0.5

0.5

1

Amplitudes 2:1 – not 100% modulation ,  ω01 = 20.5; ω01 = 19.5
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5 10 15 20

-1

-0.5

0.5

1

Amplitudes 9:1 – not 100% modulation ,  ω01 = 20.5; ω01 = 19.5
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5 10 15 20

-2

-1

1

2

Equal amplitudes – 100% modulation,  ω01 = 21; ω01 = 19
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Free Induction Decay center freq
0

h frequency
of particular molecule

 
Frequently, distribution is a Gaussian -

probability of finding a molecule at a particular frequency, Ph.

Identical molecules have
range of transition frequencies.
Different solvent environments.
Doppler shifts, etc.

Gaussian envelope

2 2
0( ) / 2

2

1( ) ( , )
2

h
h ht e t d     




 



 

2 2
0( ) /2

2

1

2
h

hP e   


  standard deviation

normalization
constant

Then

pure density matrixprobability, Ph
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Radiation field at  = 0  line center 
1 >>  – all transitions near resonance

Apply pulse with flip angle 

Calculate  , transition dipole expectation value.

2 2
0( ) / 2

2

sin sin( )
2

h
h he t d     




 



  

Using result for single frequency h and flip angle 

Following pulse, each sub-ensemble will undergo free precession at h

( )Tr t  

2 2
0( ) / 2

2

1 ( , )
2

h
h he Tr t d      
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Substituting  = (h – 0),   
frequency of a molecule as difference from center frequency (light frequency).
Then h = ( +0)    and     dωh = d.

2 2/ 2( /
0

1 )sin(in )es tt     

Oscillation at 0; decaying amplitude
Gaussian decay with standard deviation in time  1/ (Free Induction Decay)
Phase relationships lost  Coherent Emission Decays
Off-diagonal density matrix elements – coherence;      diagonal - magnitude

2 2 2 2/ 2 / 2
0 02

sin cos( ) sin( ) sin( ) cos( )
2

t e t d t e t d          


 
 

 

 
   

  
 

First integral zero; integral of an even function multiplying an odd function.

sin( ) sin( )cos( ) cos( )sin( )x y x y x y  With the trig identity:
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flip angle light frequency free induction decay

0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

 Decay of oscillating macroscopic dipole.
Free induction decay.

22

E

I E







  Coherent emission
of light.

 rotating frame at 
center freq., 0

higher frequencies

lower frequencies



t =  0 t =  t'

2 2/ 2( /
0

1 )sin(in )es tt     
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