
Chapter 13



Matrix Representation

Matrix Rep. Same basics as introduced already.
Convenient method of working with vectors.

Superposition Complete set of vectors can be used to 
express any other vector.

Complete set of  N orthonormal vectors can form other complete sets of 
N orthonormal vectors.

Can find set of vectors for Hermitian operator satisfying

Eigenvectors and eigenvalues

Matrix method Find superposition of basis states that are
eigenstates of particular operator. Get eigenvalues.

.A u uα=
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Orthonormal basis set in N dimensional vector space

{ }je basis vectors

1

N
j

j
j

x x e
=

= ∑ j
jx e x=

Any N dimensional vector can be written as

with

To get this, project out

  from  

  piece of  that is ,

then sum over all  .

j j

j j j j
j

j

e e x

x e e e x x e

e

=
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Operator equation

y A x=

1 1

N N
j j

j j
j j

y e A x e
= =

=∑ ∑

1

N
j

j
j

x A e
=

= ∑

Substituting the series in terms of bases vectors.

ie

1

N
i j

i j
j

y e A e x
=

= ∑

Left mult. by 

i je A e

{ }  and the basis set .jA e

The N2 scalar products

are completely determined by

N values of j for each yi; and N different yi
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{ }je
Writing

i j
ija e A e=

1

N

i ij j
j

y a x
=

= ∑ 1 2, ,j N= 

Matrix elements of A in the basis 

gives for the linear transformation

Know the aij because we know A and { }je

y A x=

The set of N linear algebraic equations can be written as

double underline means matrix

In terms of the vector representatives

1

2



N

x
x

x

x

 
 
 =
 
 
 

(Set of numbers, gives you vector
when basis is known.)

1

2



N

y
y

y

y

 
 
 =
 
 
 

ˆ ˆ ˆ7 5 4
7
5
4

Q x y z= + +

 
 
 
  



vector

vector representative,
must know basis
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A

( )
11 12 1

21 22 2

1 2

N

N
ij

N N NN

a a a
a a a

A a

a a a

 
 
 = =
 
 
 









array of coefficients - matrix

The aij are the elements of the matrix       . A

AThe product of matrix     and vector representative x
is a new vector representative y with components

1

N

i ij j
j

y a x
=

= ∑

y A x=

1 11 12 1 1

2 21 22 2

1 2



   



N

N N N NN N

y a a a x
y a a x

y a a a x

     
     
     =
     
     
     

vector representatives in particular basis
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Matrix Properties, Definitions, and Rules

A B

A B=

Two matrices,       and      are equal

if    aij =  bij.

1 0 0
0 1 0

1

0 0 1

ij
δ

 
 
 = =
 
 
 





  



The unit matrix

ones down 
principal diagonal

1

N

i ij j i
j

y x xδ
=

= =∑

1y x x= =

Gives identity transformation

Corresponds to

0 0 0
0 0 0

0

0 0 0

 
 
 =
 
 
 





 



0 0x =

The zero matrix
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y A x= z B y=

z B A x=

Matrix multiplication

Consider

1

N

k ki i
i

z b y
=

= ∑ z B y=

z By B A x Cx= = =

Using the same basis for both transformations

 matrix ( )kiB b= =

C B A=

1

N

kj ki ij
i

c b a
=

= ∑

has elements

Law of matrix multiplication

operator equations

Example

2 3 7 5 29 28
3 4 5 6 41 39
    

=    
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Multiplication Associative

( ) ( )BA C A BC=

BA B A≠

Multiplication NOT Commutative except in special cases.

A B Cα β+ =

ij ij ijc a bα β= +

Matrix addition and multiplication by complex number
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Reciprocal of Product

( ) 1 1 1A B B A
− − −=

( )ijA a=

( )jiA a=

For matrix defined as 

interchange rows and columns

Transpose

( )* *
ijA a=

Complex Conjugate

complex conjugate of each element

( )*
jiA a+ =

Hermitian Conjugate

complex conjugate transpose

Copyright – Michael D. Fayer, 2018

A
1A− 1 1 1A A A A− −= =A

Inverse of a matrix 
inverse of       identity matrix

CT
1

0 If 0   is singular

A
A

A

A A A

− =

≠ =

transpose of cofactor matrix (matrix of signed minors)
determinant



Rules

( )A B B A=  transpose of product is product of transposes in reverse order

| | | |A A= determinant of transpose is determinant

* **( )A B A B= complex conjugate of product is product of complex conjugates

* *| | | |A A= determinant of complex conjugate is 
complex conjugate of determinant

( )A B B A+ ++ = Hermitian conjugate of product is product of 
Hermitian conjugates in reverse order

*| | | |A A+ = determinant of Hermitian conjugate is complex conjugate
of determinant
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Definitions

A A= 

A A+=

*A A=

*A A= −

1A A− +=

ij ij ija a δ=

Symmetric

Hermitian

Real

Imaginary

Unitary

Diagonal

0 1 21A A A A A A= = = ⋅ ⋅ ⋅
2

1
2!

A A
e A= + + + ⋅ ⋅ ⋅

Powers of a matrix
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1

2

N

x
x

x

x

 
 
 =
 
 
 



Column vector representative one column matrix

y A x=

1 11 12 1 1

2 21 22 2

1 2



   



N

N N N NN N

y a a a x
y a a x

y a a a x

     
     
     =
     
     
     

then

vector representatives in particular basis

becomes

( )1 2, Nx x x x= 

y A x= y x A= 

 

y A x= y x A++ +=

row vector transpose of column vector

transpose

Hermitian conjugate
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Change of Basis

{ }ie

( ), 1,2,i j
ije e i j Nδ= = 

orthonormal basis

then

{ }ie

{ }ie ′

1
1, 2,

N
i k

ik
k

e u e i N′

=

= =∑ 

Superposition of can form N new vectors
linearly independent

a new basis

complex numbers
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j i
ije e δ′ ′ =

New Basis is Orthonormal

if the matrix

( )ikU u=

1U U+ =
1U U− +=

coefficients in superposition

1
1, 2,

N
i k

ik
k

e u e i N′

=

= =∑ 

meets the condition

is unitary – Hermitian conjugate = inverseU

{ }ie ′

U

1U U U U+ += =

Important result.  The new basis             will be orthonormal

if      , the transformation matrix, is unitary (see book

and Errata and Addenda, linear algebra book ).
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{ }e′ { }e
Unitary transformation 
substitutes orthonormal basis           for orthonormal basis         .

x

i
i

i
x x e=∑

i
i

i
x x e ′′= ∑

x

Vector

Same vector – different basis.

vector – line in space (may be high dimensionality
abstract space)

written in terms of two basis sets

U
x

The unitary transformation     can be used to change a vector representative
of        in one orthonormal basis set to its vector representative in another 
orthonormal basis set.

x U x′ =

x U x+ ′=

x – vector rep. in unprimed basis
x' – vector rep. in primed basis

change from unprimed to primed basis

change from primed to unprimed basis
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{ }ˆ ˆ ˆ, ,x y z
y

x
z

|s

 

ˆ ˆ ˆ7 7 1s x y z= + +

s

{ }ˆ ˆ ˆ, ,x y z

7
7
1

s
 
 =  
  

Example

Consider basis

Vector      - line in real space.

In terms of basis

Vector representative in basis
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Change basis by rotating axis system 45° around     . ẑ

s

s U s′ =

cosθ sinθ 0
sinθ cosθ 0
0 0 1

x y z

U
 
 = − 
 
 

2 / 2 2 / 2 0

2 / 2 2 / 2 0
0 0 1

U

 
 

= − 
  
 

Can find the new representative of      , s'

U is rotation matrix

For 45° rotation around z
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2 / 2 2 / 2 0 7 7 2
2 / 2 2 / 2 0 7 0
0 0 1 1 1

s

        ′ = − =             

7 2
0
1

s

 
 

′ =  
 
 

Then

vector representative of      in basiss { }e′

Same vector but in new basis.
Properties unchanged.

( )1/ 2
s s

1/ 2 1/ 2 1/ 2 1/ 2*( ) (49 49 1) (99)s s s s  = ⋅ = + + = 

1/ 2 1/ 2 1/ 2 1/ 2*( ) (2 49 0 1) (99)s s s s′ ′  = ⋅ = × + + = 

Example – length of vector
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Can go back and forth between representatives of a vector      byx

x U x′ = x U x+ ′=

change from unprimed 
to primed basis

change from primed
to unprimed basis

xcomponents of       in different basis
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y A x=

Consider the linear transformation

operator equation

y A x=

i ij j
j

y a x=∑

{ }eIn the basis          can write

or

{ }e′ U

y U y U A x U AU x+′ ′= = =

y A x′′ ′=

A U AU +′ =

A′

U
1A U AU −′ =

Change to new orthonormal basis            using

or

with the matrix     given by

Because     is unitary
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1A U AU −′ =

Extremely Important

Can change the matrix representing an operator in one orthonormal basis
into the equivalent matrix in a different orthonormal basis.

Called

Similarity Transformation

Copyright – Michael D. Fayer, 2018



y A x A B C A B C= = + =

y A x A B C A B C′ ′ ′ ′ ′ ′′′ ′= = + =

In basis { }e

Go into basis { }e′

Relations unchanged by change of basis.

A B C=

U A BU U C U+ +=

U U+ A B

U AU U BU U C U+ + +=

A B C′ ′ ′=

Example

Can insert            between         because          

Therefore

1 1U U U U+ −= =

Copyright – Michael D. Fayer, 2018



Isomorphism between operators in abstract vector space

and matrix representatives.

Because of isomorphism not necessary to distinguish
abstract vectors and operators
from their matrix representatives.

The matrices (for operators) and the representatives (for vectors)
can be used in place of the real things.
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Hermitian Operators and Matrices

Hermitian operator

x A y y A x=

Hermitian operator Hermitian Matrix

A A+=

+  - complex conjugate transpose  - Hermitian conjugate
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1 2, NU U U

1

2

0 0
0 0
0

0 N

A

α
α

α

 
 
 ′ =
 
 
 





 

A U Uα=

Theorem (Proof:  Powell and Craseman, P. 303 – 307, or linear algebra book)

For a Hermitian operator A in a linear vector space of N dimensions,

there exists an orthonormal basis,

relative to which A is represented by a diagonal matrix

.

The vectors,        , and the corresponding real numbers, αi, are the

solutions of the Eigenvalue Equation

and there are no others.

iU
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Application of Theorem

Operator A represented by matrix

in some basis              .   The basis is any convenient basis.

In general, the matrix will not be diagonal.

A

{ }ie

There exists some new basis eigenvectors

{ }iU

in which        represents operator and is diagonal eigenvalues.A′

To get from            to      

unitary transformation.

{ } { }.i iU U e=

{ }ie { }iU

1A U AU −′ = Similarity transformation takes matrix in arbitrary basis
into diagonal matrix with eigenvalues on the diagonal.
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Matrices and Q.M.

Previously represented state of system by vector        in abstract vector space.

Dynamical variables represented by linear operators.

Operators produce linear transformations.

Real dynamical variables (observables) are represented by Hermitian operators.

Observables are eigenvalues of Hermitian operators.

Solution of eigenvalue problem gives eigenvalues and eigenvectors.

y A x=

A S Sα=
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Matrix Representation

Hermitian operators replaced by Hermitian matrix representations.

In proper basis,       is the diagonal Hermitian matrix and
the diagonal matrix elements are the eigenvalues (observables).

A suitable transformation               takes      (arbitrary basis) into
(diagonal – eigenvector basis)

Diagonalization of matrix gives eigenvalues and eigenvectors.

Matrix formulation is another way of dealing with operators
and solving eigenvalue problems.

A A→

A′

1U AU − A
A′

1 .A U AU −′ =

U takes arbitrary basis into eigenvectors.
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All rules about kets, operators, etc. still apply.

Example

Two Hermitian matrices

can be simultaneously diagonalized by the same unitary

transformation if and only if they commute.

 and A B

All ideas about matrices also true for infinite dimensional matrices.

Copyright – Michael D. Fayer, 2018



Example – Harmonic Oscillator

Have already solved – use occupation number representation kets and bras
(already diagonal).

( )2 21
2

H P x= + ( )1
2

a a a a+ += +

1a n n n= − 1 1a n n n+ = + +

0 1 2 3 ⋅ ⋅ ⋅ ⋅

0
1
2
3a =
⋅
⋅
⋅
⋅

0 1 0 0 0

0 0 2 0 0

0 0 0 3 0

0 0 0 0 4

 ⋅ ⋅ ⋅
 
 
 
 
 
 
 ⋅ ⋅
 ⋅ ⋅ 
 ⋅ ⋅
  ⋅ 

0 0 0

0 1 1
0 2 0

1 0 0
1 1 0

1 2 2
1 3 0

a

a
a

a
a

a
a

=

=
=

=
=

=
=





matrix elements of a
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0 0 0 0

1 0 0 0

0 2 0 0

0 0 3 0

0 0 0 4

a+

 ⋅ ⋅
 

⋅ ⋅ 
 ⋅ ⋅ =

⋅ ⋅ 
 
 ⋅ ⋅
 ⋅ ⋅ ⋅ ⋅⋅ ⋅ 

( )1
2

H a a a a+ += +

0 1 0 0

0 0 2 0

0 0 0 3
40 0 0 0

a a+

 ⋅ ⋅
 

⋅ ⋅ 
 ⋅ ⋅ =

⋅ 
 
 ⋅⋅⋅ ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 

0 0 0 0

1 0 0 0

0 2 0 0

0 0 3 0

0 0 0 4

 ⋅ ⋅
 

⋅ ⋅ 
 ⋅ ⋅ 

⋅ ⋅ 
 
 ⋅ ⋅
 ⋅ ⋅ ⋅ ⋅⋅ ⋅ 

1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4

⋅ 
 ⋅ 
 = ⋅
 ⋅ 
 ⋅ ⋅ ⋅ ⋅ ⋅ 
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0 0 0 0

1 0 0 0

0 2 0 0

0 0 3 0

0 0 0 4

a a+

 ⋅ ⋅ ⋅
 

⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ =

⋅ ⋅ ⋅ 
 
 ⋅ ⋅ ⋅
 
⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ 

0 1 0 0

0 0 2 0

0 0 0 3
40 0 0 0

 ⋅ ⋅
 

⋅ ⋅ 
 ⋅ ⋅ 

⋅ 
 
 ⋅⋅⋅ ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 

0 0 0 0
0 1 0 0
0 0 2 0
0 0 0 3

⋅ 
 ⋅ 
 = ⋅
 ⋅ 
 ⋅ ⋅ ⋅ ⋅ ⋅ 

( )1
2

H a a a a+ += +
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a a+ a a+

1 0 0 0 1 2 0 0 0
0 3 0 0 0 3 2 0 0

1 0 0 5 0 0 0 5 2 0
2

0 0 0 7 0 0 0 7 2
H

⋅ ⋅   
   ⋅ ⋅   
   = =⋅ ⋅
   ⋅ ⋅   
   ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅   

HAdding the matrices        and          and multiplying by ½ gives 

The matrix is diagonal with eigenvalues on diagonal.  In normal units
the matrix would be multiplied by       . ω

This example shows idea, but not how to diagonalize matrix when you
don’t already know the eigenvectors.
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Diagonalization

Eigenvalue equation

uAu α=

matrix representing
operator

representative of 
eigenvector

eigenvalue

0uAu α− =

( ) ( )
1

0 1,2
N

ij ij j
j

a u i Nα δ
=

− = =∑ 

In terms of the components

( )

( )

( )

11 1 12 2 13 3

21 1 22 2 23 3

31 1 32 2 33 3

0

0

0

a u a u a u

a u a u a u

a u a u a u

α

α

α

− + + + =

+ − + + =

+ + − + =







This represents a system of equations
We know the  aij.
We don't know
α - the eigenvalues
ui - the vector representatives,

one for each eigenvalue.
Copyright – Michael D. Fayer, 2018



Besides the trivial solution

1 2 0Nu u u= = =

( )
( )

( )

11 12 13

21 22 23

31 32 33 0

a a a
a a a
a a a

α
α

α

− ⋅ ⋅ ⋅
− ⋅ ⋅ ⋅

−
=

⋅ ⋅
⋅ ⋅
⋅ ⋅

A solution only exists if the determinant of the coefficients of the ui vanishes.

Expanding the determinant gives Nth degree 
equation for the unknown α's (eigenvalues).

know aij, don't know α's
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* * *
1 1 2 2 1N Nu u u u u u+ + ⋅ ⋅ ⋅ + =

Then substituting one eigenvalue at a time into 
system of equations, the ui
(eigenvector representatives) are found.
N equations for u's gives only N - 1 conditions.

Use normalization.

( )

( )

( )

11 1 12 2 13 3

21 1 22 2 23 3

31 1 32 2 33 3

0

0

0

a u a u a u

a u a u a u

a u a u a u

α

α

α

− + + + =

+ − + + =

+ + − + =









Example - Degenerate Two State Problem

Basis  - time independent kets orthonormal. α β

0H Eα α γ β= +

0H Eβ β γ α= +
α and β not eigenkets.
Coupling γ.

These equations define H.

0

0

H E
H
H
H E

α α
β α γ
α β γ
β β

=
=
=
=

The matrix elements are

0

0

E
H

E

α β
α γ
β γ
 

=  
 

And the Hamiltonian matrix is

Copyright – Michael D. Fayer, 2018



0

0

( ) 0

( ) 0

E

E

λ α γ β

γ α λ β

− + =

+ − =

The corresponding system of equations is

0

0

0
E

E
λ γ

γ λ
−

=
−

These only have a solution if 
the determinant of the coefficients vanish.

Ground State
E  =  0

E0

2γ

Excited State

Dimer Splitting
( )2 2

0 0E λ γ− − =

Expanding

0Eλ γ+ = +

0Eλ γ− = −

Energy Eigenvalues

2 2 2
0 02 0E Eλ λ γ− + − =

0

0

E
E
γ

γ
 
 
 

Take the
matrix

Make into determinant.
Subtract λ from the diagonal
elements.
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a b

a b

α β

α β

+ +

− −

+ = +

− = +

+ −[ ],a b+ + [ ],a b− −

To obtain Eigenvectors
Use system of equations for each eigenvalue.

Eigenvectors associated with λ+ and λ-.

and                are the vector representatives of        and

in the ,  basis set.α β
We want to find these.
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0Eλ γ+ = +

11 12( ) 0H a H bλ+ + +− + =

21 22( ) 0H a H bλ+ + ++ − =

First, for the
eigenvalue

write system of equations. 

0a bγ γ+ +− + =

0a bγ γ+ +− =

The result is

H11 12 21 22; ; ;H H H H H H H Hαα αβ βα ββ= = = = Matrix elements of 

0

0

H E
H
H
H E

α α
β α γ
α β γ
β β

=
=
=
=

The matrix elements are
0 0 0( )E E a bγ γ+ +− − + =

0 0 0( )a E E bγ γ+ ++ − − =
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An equivalent way to get the equations is to use a matrix form.

0

0

0
0

E a
E b

λ γ
γ λ

+ +

+ +

−    
=    −    

Substitute 0Eλ γ+ = +

0 0

0 0

0
0

E E a
E E b

γ γ
γ γ

+

+

− −    
=    − −    

0
0

a
b

γ γ
γ γ

+

+

−     
=    −    

Multiplying the matrix by the column vector representative gives equations.

0a bγ γ+ +− + =

0a bγ γ+ +− =
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0a bγ γ+ +− + =

0a bγ γ+ +− =
The two equations are identical.

a b+ +=

Always get N – 1 conditions for the N unknown components.
Normalization condition gives necessary additional equation.

2 2 1a b+ ++ =

1
2

a b+ += =

1 1
2 2
α β+ = +

Then

and

Eigenvector in terms of the
basis set. 

α β
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For the eigenvalue
0Eλ γ− = −

using the matrix form to write out the equations

0

0

0
0

E a
E b

λ γ
γ λ

− −

−−

−    
=    −    

Substituting 0Eλ γ− = −

0
0

a
b

γ γ
γ γ

−

−

    
=    

    

0a bγ γ− −+ =

0a bγ γ− −+ =

a b− −= −
1 1
2 2

a b− −= = −

1 1
2 2
α β− = −

These equations give

Using normalization

Therefore
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1H U H U −′ =

Can diagonalize by transformation

diagonal     not diagonal

Transformation matrix consists of representatives of eigenvectors
in original basis.

1/ 2 1/ 2

1/ 2 1/ 2

a a
U

b b
+ −

+ −

  
= =     −   

1 1/ 2 1/ 2

1/ 2 1/ 2
U −  

=   − 
complex conjugate transpose
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0

0

1/ 2 1/ 2 1/ 2 1/ 2

1/ 2 1/ 2 1/ 2 1/ 2

E
H

E
γ

γ

    ′ =        − −    

Then

0

0

1 1 1 11
2 1 1 1 1

E
H

E
γ

γ
    ′ =     − −    

1/ 2Factoring out            , one from each matrix.

0 0

0 0

1 11
2 1 1

E E
H

E E
γ γ
γ γ

+ −  ′ =    + − +−  

after matrix multiplication

0

0

0
0

E
H

E
γ

γ
+ ′ =  − 

more matrix multiplication

diagonal with eigenvalues on diagonal
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