
Chapter 12



Absorption and Emission of Radiation:
Time Dependent Perturbation Theory Treatment
Want Hamiltonian for Charged Particle in E & M Field
Need the potential U.

Force (generalized form in Lagrangian mechanics)
jth component:

•

 
 = − +
  
 

j
j

j

U d UF
q dt q

∂ ∂
∂ ∂

U is the potential
qj are coordinates

Example:

x
x

U d UF
x dt V

∂ ∂
∂ ∂

 
= − +  

 

x
dxV x
dt

•= =
since:

( ) = + ×  

1F e E V B
c

  


Force on Charged Particle:
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Use the two equations for F to find U, 
the potential of a charged particle in an E & M field

Once we have U, we can write:

0H H H ′= +

Where H' is the time dependent perturbation

Use time dependent perturbation theory.
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Using the Standard Definitions from Maxwell’s Eqs.

B A= ∇×
  1E A

c t
∂ φ
∂

= − −∇
 

vector potential
 scalar potential

A
φ
≡
≡



( )1 1AF e V A
c t c
∂φ
∂

 
= −∇ − + ×∇× 

 



   

Then:

( ) y zx x
y zx

A AA AV A V V
x y z x

∂ ∂∂ ∂
∂ ∂ ∂ ∂

   
×∇× = − − −   

  

 

Components of F, Fx, etc…

( )x
d
dx
φφ∇ =

( ) = + ×  

1F e E V B
c

  


Force on Charged Particle:
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x
x

AV
x

∂
∂

Adding and Subtracting

( ) y z x
y z xx

A A AV A V V V
x x x

∂ ∂ ∂
∂ ∂ ∂

×∇× = + +
 

x x x
x y z

A A AV V V
x y z

∂ ∂ ∂
∂ ∂ ∂

− − −

( ) y zx x
y zx

A AA AV A V V
x y z x

∂ ∂∂ ∂
∂ ∂ ∂ ∂

   
×∇× = − − −   

  

 

x x x
x y z

x x A A AV V V
x yd t z

d A A
t

∂ ∂
∂

∂
∂∂
∂

∂
+ +

 
= +  

 

Total time derivative of Ax is

Due to explicit variation of
Ax with time.

Due to motion of particle -
Changing position at which Ax is evaluated.
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x x x x x
y z x

A dA A A AV V V
t dt y z x

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

− = − − −

Then:

Using this

( ) ( ) x x
x

dA AV A V A
x dt t

∂∂
∂ ∂

×∇× = ⋅ − +
   

Since:

( ) y zx
x y z

A AAA A VV A V V V V
x x x x x x

∂ ∂∂∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

= + = + +
  

 



0
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Substituting these pieces into equation for Fx

1 1 ( )x x
xF e V A

x c c
A
t∂ ∂

∂ ∂φ 
= − − + ×∇× 

 

 

( ) ( )
x

xxdAV A AV A
x dt t
∂
∂

∂
∂

×∇× = ⋅ − +
   

cancels

Then 1 1 x
x

dF e A V
x c t

A
c d

∂ φ
∂

  = − − ⋅ −    

 

A not function of V &
Vy Vz independent of Vx

( )x
x

A A V
V
∂
∂

= ⋅
 

because ( ) ( )x x y y

x
x

z z
xx

x

yx
x y

x x

A V A V A

VA

V
V

VAV A
V

A V

V

V

V

∂
∂

∂
∂

+ +

∂∂
=

⋅ =

+
∂
∂

+ +
∂ ∂

 



1 +        0      +      0      +      0

substitute
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( )1 1
x

x

dF e A V A V
x c c dt V
∂ ∂φ
∂ ∂

   = − − ⋅ − ⋅   
    

  

Therefore

x
x

dF
x dt V

U U∂ ∂
∂ ∂

 
= − +  

 

The general definition of Fx is:

U potential

Therefore:

eU e A Vcφ= − ⋅
 

Since φ is independent of V, can add in. 

Goes away when taking 
xV

∂
∂

x
x

de eF A V A Vc cx dt V
e eφ∂ ∂

∂
φ

∂
     = − − ⋅ + − ⋅     

     

  

Copyright – Michael D. Fayer, 2018



Legrangian:
L = T – U
T ≡ Kinetic Energy

eL T e A Vcφ= − + ⋅
 

For charged particle in E&M Field:

( )2 2 21
2

T m x y z= + +  

i
i

LP
q

∂
∂

=


The ith component of the momentum is give by

x x
eP mx A
c

= +

where: i
i i

x x

dqq V
dt

q x V

= =

= =



 

Therefore,
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The classical Hamiltonian:

x y zH P x P y P z L= + + −  

2 2 2
x y z

e e eH mx A x my yA mz zAc c c
     = + + + + +     
     
     

Therefore

( ) ( )2 2 21
2 x y z

em x y z xA yA zA ec φ− + + − + + +    

( )2 2 21
2

H m x y z eφ= + + +  

This yields:

(                            , etc.)x x
eP mx A
c

= +

eL T e A Vcφ= − + ⋅
 

( )2 2 21
2

T m x y z= + +  
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Want H in terms of momentum Px, Py, Pz
since we know how to go from classical momentum to QM operators.

( ) ( ) ( )( )2 2 21
2

H mx my mz e
m

φ= + + +  

Multiply by m/m

  then  i ii i i i
emq P A
c

eP mq A
c

= −= + 

Using:

Classical Hamiltonian for a charged particle in any combination of
electric and magnetic fields is:

2 2 21
2 x x y y z z

e e eH p A p A p A e
m c c c

φ
      = − + − + − +      
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QM Hamiltonian

Make substitution: xp i
x

∂
∂

⇒ − 

2 2 2
22

2 2x x x x x
e ep A A
c

ei A
cx

A
c xc
ei

x
∂
∂∂

∂∂
∂

 − ⇒ − + + + 
 







Then the term:

The operator operates on a function, ψ. 
Using the product rule:

( ( )( )) x
xx

Aei xc
ei A xc x

x
xx

ei Ac
ψψψ∂

+
∂∂

∂∂
=

∂
 

Same. Pick up
factor of two

2 2 2
22

2 2 2x
x x x x

Ae e e ep A A i i Ac cc x c x x
∂∂ ∂

∂ ∂ ∂
 − ⇒ − + + + 
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The total QM Hamiltonian in three dimensions is:

2
22 2

2
1 2

2
e i e i eH A A A e

m c c c
φ

 
= − ∇ + + ∇ ⋅ + ⋅∇ + 

 

  

 



This is general for a charged particle in
any combination of electric and magnetic fields

2AWeak field approximation: is negligible

2
1 0A
c t

∂ φ
∂

∇ ⋅ + =


0A∇ ⋅ =


For light  E & M Field

φ = 0 (no scalar potential)

And since 

Then:

(Lorentz Gauge Condition)
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2 21 2
2

i eH A
m c
 = − ∇ + ⋅∇ 
 

 





kinetic energy of particle

Therefore,  for a weak light source

For many particles interacting through a potential V,
add potential term to Hamiltonian.
Combine potential energy term with kinetic energy term to get normal
many particle Hamiltonian for an atom or molecule.

2
0 2

2 j
j j

H V
m

= − ∇ +∑ 

Time independent

0H H H ′= +

j j
j j

eH i A
m c

′ = ⋅ ∇∑
 



Use H0 + H' in time dependent perturbation calculation.

The remaining piece is time dependent portion due to light.

The total Hamiltonian is
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E & M Field  Plane wave propagating in z direction (x-polarized light)

i x

j y

k z

⇒

⇒

⇒







unit vectors

xA iA=
 

0 cos 2x x
zA A t
c

πν
  = −    

with 

vector potential

To see this is E & M plane wave, use Maxwell's equations

01 2 sin 2x
zE A i A t

c t c c
∂ πν πν
∂

 = − = − 
 

 

x 02 sin 2x
zB A j A t

c c
πν πν  = ∇ = − 

 

  

Equal amplitude                 fields,
perpendicular to each other,
propagating along z.

 and B E
 

x

0 0x

i j k

A
x y z

A

∂ ∂ ∂
∇ =

∂ ∂ ∂
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0 00 0' x j xm
jj

m n j n
e A PmH cΨ −Ψ = ΨΨ ∑

To use time dependent perturbation theory we need:

Dipole Approximation:

Most cases of interest, wavelength of light much larger
than size of atom or molecule

Å = 200
Å

32 10  nm
atom, molecule 1 10

xλ >

−

Take Ax constant spatially   two particles in different parts of molecule will 
experience the same Ax at given instant of time.

molecule

part of a cycle
of light
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Pull Ax out of bracket since it is constant spatially

Dipole Approximation:

0 0 0 01' x jm n x m n
j j

eH A P
c m

Ψ Ψ = − Ψ Ψ∑

0 01
x m n

j j j

ei A
c m x

∂
∂

= Ψ Ψ∑

0 0
m n

jx
∂ψ ψ

∂
Need to evaluate

jx
∂

∂
Can express in terms of xj rather then

jx
∂

∂
doesn’t operate on time dependent part of ket, pull 
time dependent phase factors out of bracket.

( ) /0 0 0 01( , ) ( , ) ( ) ( )m ni E E t
m n x m n

j j j

eq t H q t i A e q q
c m x

∂ψ ψ
∂

−′Ψ Ψ = ∑
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First for one particle         can write following equations: 'sψ

[ ]
2 0*

0*
2 2

2(1)            ( ) 0m
m m

d m E V x
d x
ψ ψ+ − =



[ ]
2 0

0
2 2

2(2)            ( ) 0n
n n

d m E V x
d x
ψ ψ+ − =



Left multiply (1) by 0
nxψ

Left multiply (2) by 0*
mxψ

2 0*
0* 0*0 0 0

2 2 2
2 2(1)            ( ) 0m

n n m m n m
d m mx x E V x x
d x
ψψ ψ ψ ψ ψ+ − =

 

2 0
0* 0*0 0 0*

2 2 2
2 2(2)            ( ) 0n

m m n n m n
d m mx x E V x x
d x
ψψ ψ ψ ψ ψ+ − =
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Subtract
2 20* 0

0*0 0* 0
2 2 2

2  ( ) 0m n
n m m n m n

d d mx x x E E
d x d x
ψ ψψ ψ ψ ψ− + − =



complex conjugate of
Schrödinger equation



2 20* 0
0*0 0* 0

2 2 2
2  ( ) 0m n

n m m n m n
d d mx x x E E
d x d x
ψ ψψ ψ ψ ψ− + − =



Transpose

2 20* 0
0* 0 0 0*

2 2 2
2 ( )   m n

n m m n n m
d dm E E x x x
d x d x
ψ ψψ ψ ψ ψ− = −



Integrate

( ) 0* 0
2

2
n m m n

m E E x dxψ ψ
∞

−∞

− =∫


2 0* 2 0
0 0*

2 2
m n

n m
d dx x dx
dx dx
ψ ψψ ψ

∞

−∞

 
− 

 
∫

This is what we want. 

0 0
m n

jx
∂ψ ψ

∂

0 0
m nxψ ψ

Need to show that it is equal to
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( ) 0* 0
2

2
n m m n

m E E x dxψ ψ
∞

−∞

− =∫


2 0* 2 0
0 0*

2 2
m n

n m
d dx x dx
dx dx
ψ ψψ ψ

∞

−∞

 
− 

 
∫

Integrate right hand side by parts:
0
nu xψ=

2 0*

2
mddv d x

d x
ψ

=
udv uv vdu

∞ ∞
∞

−∞
−∞ −∞

= −∫ ∫

0* 0
0 0*m n
n m

d d dx
d x d x
ψ ψψ ψ

∞

−∞

 
= − + 

 
∫

Integrating this by parts  equals second term

Because wavefunctions vanish at infinity, this is 0, so we have:

( ) ( )
0* 0

0 0*m n
n m

d dd dx x dx
d x d x d x d x

ψ ψψ ψ
∞

−∞

 
= − + 

 
∫

and collecting terms

using product rule
0* 0 0* 0 0* 0

0 0*m n m n m n
n m

d d d d d dx x
dx dx dx dx dx dx
ψ ψ ψ ψ ψ ψψ ψ= − − + + 2nd and 4th terms cancel
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0
0*2 n
m

d dx
d x
ψψ

∞

−∞

= ∫



Therefore, finally, we have:

( )0 0 0 0
2m n m n m n

d m E E x
d x

ψ ψ ψ ψ= − −


This can be generalized to more then one particle by summing over xj.

( ) /0 0 1( , ) ( , ) ( ) m ni E E t
m n x m n mnq t H q t i A E E x e

c
−′Ψ Ψ = − − 



0 0
mn m j n

j
x e xψ ψ= ∑

with:

x-component of "transition dipole."

( ) /0 0 0 01( , ) ( , ) ( ) ( )m ni E E t
m n x m n

j j j

eq t H q t i A e q q
c m x

∂ψ ψ
∂

−′Ψ Ψ = ∑

Substituting into

gives

Operator – (charge × length) - dipole
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Absorption & Emission Transition Probabilities

0 0( , ) ( , )m
n m n

n

dC i C q t H q t
dt

′= − Ψ Ψ∑


Time Dependent Perturbation Theory:

0 ( , )n q tΨTake system to be in state                   at t = 0

Cn=1 Cm≠n=0

Short time  Cm≠n ≈ 0

Equations of motion
of coefficients

( ) ( ) /
2

1 m ni E E tm
x m n mn

dC A E E x e
dt c

−= − − 



0 0
mn m j n

j
x e xψ ψ= ∑

Using result for E&M plane wave:

No longer coupled equations.

Transition dipole bracket.
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For light of frequency ν:

0 cos(2 )x xA A tπν=

( )0 2 21
2

i t i t
xA e eπν πν−= +

Therefore:

( ) ( ) ( )( )/ /0
2

1
2

m n m ni E E h t i E E h tm
x mn m n

dC A x E E e e
d t c

ν ν+ −− −= − − + 



note sign difference

vector potential
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Multiplying through by dt, integrating and 
choosing constant of integration such that Cm = 0 at t = 0

( )
( )

( )
( )

( )
/ /

0 1 1
2

m n m ni E E h t i E E h t

m x mn m n
m n m n

i e eC A x E E
c E E h E E h

ν ν

ν ν

− −+ − − −
= − + 

− −  + −

 



note sign differences

Rotating Wave Approximation

Consider Absorption Em > En

Em

En

(Em – En – hν)  0 ( ) denominator goes to 0m nh E Eν → − ⇒as 

This term large, keep.
Drop first term.
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For Absorption – Second Term Large Drop First Term

Then, 
Probability of finding system in            as a function of frequency, ν0

mΨ *
m mC C

( )
[ ]

2

2 22* 0
22 2

( )sin
1 2

( )

m n

m m x mn m n
m n

E E h t

C C A x E E
c E E h

ν

ν

− − 
  = −

− −





( ) ( ) 21 1 2(1 cos ) 4sin / 2ix ixe e x x−− − = − =

Using the trig identities:

Get:

m nE E E− = energy difference between two eigenkets of H0

E E hν∆ = − amount radiation field is off resonance.
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∆E

0
4π/t

Q t2
22( )



 

Plot of Cm
*Cm vs ∆E:

2
2

2max (2 )m
tC Q=


( )2 220
2 2
1

x mn m nQ A x E E
c

= −


Maximum at ∆E=0

Maximum probability ∝ t 2 – square of time light is applied.

Probability only significant for width ~4π/t

Determined by uncertainty principle.  For square pulse: ∆ν∆t = 0.886

1 ps  67 cm-1

1 ps  30 cm-1  from uncertainty relation

m nE E E− = energy difference between two eigenkets of H0

E E hν∆ = − amount radiation field is off resonance.
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The shape is a square of zeroth order spherical Bessel function.

t increases   Height of central lobe increases, width decreases.
Most probability in central lobe

10 ns pulse  Width ~0.03cm-1, virtually all probability

  Dirac delta function δ(∆E=0) ;      hν = (Em - En) t →∞ *
m mC C
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Total Probability Area under curve

( )

2
* *

2
1 sin ( /2 )

m m m m
Q EtC C d C C d E d E

h h E
ν

∞ ∞ ∞

−∞ −∞ −∞

∆
∆ = ∆ = ∆

∆∫ ∫ ∫


2

2
sin

2
Q xt d x
h x

∞

−∞

= ∫


24
Qt=


Probability linearly proportional to 
time light is applied.

( )2 220
2 2
1

x mn m nQ A x E E
c

= −




Since virtually all probability at ∆E = 0, 

evaluate (in Q) at frequency 
20

xA ( ) /m n mnE E ν− =

Therefore:

( )
2 2 2 2* 0
2 2

mn
m m x mn mnC C A x t

c
π ν ν=


transition dipole bracket

Probability increases linearly in t.

*
m mC CCan’t let             get too big if time dependent perturbation theory used.

Limited by excited state lifetime.

Must use other methods for high power, “non-linear” experiments (Chapter 14).

Related to intensity of light
as shown below.
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0Have result in terms of vector potenti
Want in terms of intensity, 

al, .xA

Poynting vector:

4
cS E Bπ= ×

  

2 2 20 2
2

4 sin 2 ( / )4 x
cS k A t z c

c
π ν πνπ= −

 

For plane wave:

Intensity  time average magnitude of Poynting vector
Average sin2 term over t from 0 to 2π 1/2

Therefore: 2 20

2x xI A
c

πν
=

2*
2

2
m m x mnC C I x t

c
π=


and
Linear in intensity.
Linear in time.

I.
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Can have light with polarizations x, y, or z, i. e., Ix, Iy, Iz

Then:
2 2 2*

2
2

m m x mn y mn z mnC C I x I y I z t
c
π  = + + 


xmn, ymn, and zmn are the transition dipole brackets for 
light polarized along x, y, and z, respectively
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2*
2

2
m m x mnC C I x t

c
π=


Linear in intensity.
Linear in time.

nxmx
mn
= Transition dipole bracket for x polarized light.

This is the big result.



Another definition of “strength” of radiation fields

radiation density:

21( ) ( )
4mn mnEρ ν ν
π

=

average

2 2 22 0
2

2( ) ( )mn
mn mnE A

c
π νν ν=

( )
220
2

2 ( )mn mn
mn

cA ν ρ ν
πν

=

Then

( ) ( ) ( ) ( )22 2 20 0 0 01
3x mn y mn z mn mnA A A Aν ν ν ν= = =

Isotropic radiation

{ }2 2 2*
2

2 ( )
3m m mn mn mn mnC C x y z tπ ρ ν= + +


For isotropic radiation
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Probability of transition taking place in unit time (absorption)
for isotropic radiation

2
2

2( ) ( )
3n m mn mn mnB πρ ν µ ρ ν→ =


2 2 2 2
mn mn mn mnx y zµ = + +

where

transition dipole bracket

Einstein “B Coefficients” for absorption and stimulated emission
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For emission (induced, stimulated) everything is the same except
keep first exponential term in expression for probability amplitude.

need radiation field
Em

En

stimulated emission

( ) ( )m n mn n m mnB Bρ ν ρ ν→ →=

Einstein B coefficient for absorption
equals B coefficient for stimulated emission.

Previously, initial state called n.
Now initial state m, final state n.
Em > En.

( )
( )

( )
( )

( )
/ /

0 1 1
2

n m m mi E E h t i E E h t

n x mn n m
n m n m

i e eC A x E E
c E E h E E h

ν ν

ν ν

− −+ − − −
= − + 

− −  + −

 



Rotating wave approximation.  Keep this term.
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Restrictions on treatment
1. Left out spontaneous emission
2. Treatment only for weak fields
3. Only for dipole transition
4. Treatment applies only for
5. If transition dipole brackets all zero

* 1m mC C 

0mnµ =

Higher order terms lost when we took vector potential
constant spatially over molecule:
Lose  Magnetic dipole transition

Electric Quadrupole
Magnetic Quadrupole
Electric Octapole
etc…

Only important if dipole term vanishes.
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Einstein “A coefficient” – Spontaneous Emission

m nB → n mB →

m nA →

, Einstein B Coefficients

induced
emission

absorption

Want: spontaneous emission coefficient

Nm = number of systems (molecules) in state of energy Em (upper state)

Nn =  number of systems (molecules) in state of energy En (lower state)

At temp T, Boltzmann law gives:

B

B

/
/

/

m B
mn

n

E k T
h k Tm

E k T
n

N e eN e
ν

−
−

−= =

Copyright – Michael D. Fayer, 2018



At equilibrium:

rate of downward transitions = rate of upward transitions

{ }( ) ( )m m n m n mn n n m mnN A B N Bρ ν ρ ν→ → →+ =

/

/

( )
mn B

h k Tmn B

h k T
m n

mn
m n n m

A e
B e B

ν

ν

ρ ν −

−
→

→ →

=
− +

Solving for ( )mnρ ν

/ ( )
( )

mn Bh k T n m mn

m n m n mn

Be
A B

ν ρ ν
ρ ν

− →

→ →

=
+

Using B

B

/
/

/

m B
mn

n

E k T
h k Tm

E k T
n

N e eN e
ν

−
−

−= =

spontaneous emission stimulated emission absorption
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n m m nB B→ →=

Then:

/( )
1

h k Tmn B

m n

m n
mn

A
B

e
νρ ν

→

→=
−

/

3

3
8 1( )

1
h k Tmn B

mn
mn

h
c e

ν

π νρ ν =
−

Take “sample” to be black body, reasonable approximation.
Planck’s derivation (first QM problem)

3

3
8 mn

m n m n
hA B
c

π ν
→ →=

3 3
2

3
32

3
mn

m n mnA
c
π ν µ→ =


Gives

Spontaneous emission – no light necessary,
I = 0, ν 3 dependence.
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Spontaneous Emission:

ν 3 dependence

No spontaneous emission - NMR

ν ≅ 108 Hz

Optical spontaneous emission

ν ≅ 1015 Hz

3 38

15
21110 0

10
NMR

optical

ν
ν

−
   

= =       

Typical optical spontaneous emission time, 10 ns (10-8 s).

NMR spontaneous emission time – 1013 s (>105 years).
Actually longer, magnetic dipole transition much weaker than
optical electric dipole transition.
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Quantum Treatment of Spontaneous Emission (Briefly)

Radiation Field  Photons

State of field n
same as Harmonic Oscillator kets

Number operator

a a n n n+ =

number of photons in field
Absorption:

1a n n n= −

annihilation operator

Removes photon – probability proportional to bracket squared
∝ n ∝ intensity

need photons for absorption
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Emission

1 1a n n n+ = + +

creation operator

one more photon in field

Probability ∝ n + 1
when n very large n >> 1, n ∝ Intensity 

However, for
0 1 1a+ =n = 0

Still can have emission from excited state in absence of radiation field.

{ }1/ 2
o( /2 ) exp( ) exp( )k kk k k kkE i V a i t ik r a i t ik rω ε ε ω ω+= − + ⋅ − + ⋅    



 

 



QM E-field operator:

Even when no photons, E-field not zero.  Vacuum state.  All frequencies have 
E-fields.  “Fluctuations of vacuum state.”  
Fourier component at      induces spontaneous emission.E ω∆ = 
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