Chapter 12

Absorption and Emission of Radiation:
 Time Dependent Perturbation Theory Treatment

Want Hamiltonian for Charged Particle in E \& M Field
Need the potential U.
Force on Charged Particle:

$$
\vec{F}=e\left[\vec{E}+\frac{1}{c}(\vec{V} \times \vec{B})\right]
$$

Force (generalized form in Lagrangian mechanics) $j^{\text {th }}$ component:

Example:

$$
F_{j}=-\frac{\partial U}{\partial \boldsymbol{q}_{j}}+\frac{\boldsymbol{d}}{\boldsymbol{d} t}\left(\begin{array}{l|l}
\frac{\partial U}{\partial \dot{\boldsymbol{q}}_{j}}
\end{array}\right) \quad \begin{aligned}
& U \text { is the potential } \\
& \boldsymbol{q}_{j} \text { are coordinates }
\end{aligned}
$$

$$
F_{x}=-\frac{\partial U}{\partial x}+\frac{d}{d t}\left(\frac{\partial U}{\partial V_{x}}\right)
$$

since:

$$
V_{x}=\frac{d x}{d t}=\dot{x}
$$

Use the two equations for F to find U, the potential of a charged particle in an $E \& M$ field

Once we have U, we can write:

$$
\underline{\boldsymbol{H}}=\underline{\boldsymbol{H}}^{0}+\underline{\boldsymbol{H}}^{\prime}
$$

Where \underline{H}^{\prime} is the time dependent perturbation
Use time dependent perturbation theory.

Using the Standard Definitions from Maxwell's Eqs.

$$
\begin{aligned}
\vec{B}=\vec{\nabla} \times \vec{A} & \vec{E} \\
& \vec{A} \\
& \equiv \text { vector potential } \\
\phi & \equiv \text { scalar potential }
\end{aligned}
$$

Force on Charged Particle:

Then:

$$
\vec{F}=e\left[\vec{E}+\frac{1}{c}(\vec{V} \times \vec{B})\right]
$$

$$
\vec{F}=e\left[-\vec{\nabla} \phi-\frac{1}{c} \frac{\partial \vec{A}}{\partial t}+\frac{1}{c}(\vec{V} \times \vec{\nabla} \times \vec{A})\right]
$$

Components of $\mathrm{F}, \mathrm{F}_{\mathrm{x}}$, etc...

$$
\begin{gathered}
(\nabla \phi)_{x}=\frac{d \phi}{d x} \\
(\vec{V} \times \vec{\nabla} \times \vec{A})_{x}=V_{y}\left(\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right)-V_{z}\left(\frac{\partial A_{x}}{\partial z}-\frac{\partial A_{z}}{\partial x}\right)
\end{gathered}
$$

$(\vec{V} \times \vec{\nabla} \times \vec{A})_{x}=V_{y}\left(\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right)-V_{z}\left(\frac{\partial A_{x}}{\partial z}-\frac{\partial A_{z}}{\partial x}\right)$
Adding and Subtracting $V_{x} \frac{\partial A_{x}}{\partial x}$

$$
(\vec{V} \times \vec{\nabla} \times \vec{A})_{x}=V_{y} \frac{\partial A_{y}}{\partial x}+V_{z} \frac{\partial A_{z}}{\partial x}+V_{x} \frac{\partial A_{x}}{\partial x}-V_{x} \frac{\partial A_{x}}{\partial x}-V_{y} \frac{\partial A_{x}}{\partial y}-V_{z} \frac{\partial A_{x}}{\partial z}
$$

Total time derivative of A_{x} is

$$
\frac{d A_{x}}{d t}=\frac{\partial A_{x}}{\partial t}+\left(V_{x} \frac{\partial A_{x}}{\partial x}+V_{y} \frac{\partial A_{x}}{\partial y}+V_{z} \frac{\partial A_{x}}{\partial z}\right)
$$

Due to explicit variation of A_{x} with time.

Due to motion of particle -
Changing position at which A_{x} is evaluated.

Then:

$$
\frac{\partial A_{x}}{\partial t}-\frac{d A_{x}}{d t}=-V_{y} \frac{\partial A_{x}}{\partial y}-V_{z} \frac{\partial A_{x}}{\partial z}-V_{x} \frac{\partial A_{x}}{\partial x}
$$

Using this

$$
(\vec{V} \times \vec{\nabla} \times \vec{A})_{x}=\frac{\partial}{\partial x}(\vec{V} \cdot \vec{A})-\frac{d A_{x}}{d t}+\frac{\partial A_{x}}{\partial t}
$$

Since:

$$
\frac{\partial}{\partial x}(\vec{V} \cdot \vec{A})=\vec{V} \frac{\partial \vec{A}}{\partial x}+\frac{\vec{A} \vec{V}}{\partial X_{0}}=V_{x} \frac{\partial A_{x}}{\partial x}+V_{y} \frac{\partial A_{y}}{\partial x}+V_{z} \frac{\partial A_{z}}{\partial x}
$$

Substituting these pieces into equation for F_{x}

$$
\begin{aligned}
F_{x}= & e\left[-\frac{\partial \phi}{\partial x}-\frac{1}{c} \frac{\partial A_{x}}{\partial t}+\frac{1}{c}(\vec{V} \times \vec{\nabla} \times \vec{A})_{x}\right] \\
& (\vec{V} \times \vec{\nabla} \times \vec{A})_{x}=\frac{\partial}{\partial x}(\vec{V} \cdot \vec{A})-\frac{d A_{x}}{d t}+\frac{\partial A_{x}}{\partial t}
\end{aligned}
$$

Then $\quad F_{x}=e\left[-\frac{\partial}{\partial x}\left(\phi-\frac{1}{c} \vec{A} \cdot \vec{V}\right)-\frac{1 d A_{x}}{c d t}\right]$

$$
A_{x}=\frac{\partial}{\partial V_{x}}(\vec{A} \cdot \vec{V}) \quad \text { substitute }
$$

$$
\text { because } \frac{\partial}{\partial V_{x}}(\vec{A} \cdot \vec{V})=\frac{\partial}{\partial V_{x}}\left(A_{x} V_{x}+A_{y} V_{y}+A_{z} V_{z}\right)
$$

$$
\begin{gathered}
=A_{x} \frac{\partial V_{x}}{\partial K_{x}}+V_{x} \frac{\partial A_{x}}{\partial V_{x}}+A_{y} \frac{\partial V_{y}}{\partial V_{x}}+\cdots \quad \begin{array}{l}
A \text { not function of } V \& \\
V_{y} V_{z} \text { independent of } V_{x} \\
1
\end{array}+0+0+0
\end{gathered}
$$

Therefore

$$
\begin{aligned}
F_{x} & =e\left[-\frac{\partial}{\partial x}\left(\phi-\frac{1}{c} \vec{A} \cdot \vec{V}\right)-\frac{1}{c} \frac{d}{d t}\left(\frac{\partial}{\partial V_{x}}(\vec{A} \cdot \vec{V})\right)\right] \\
F_{x} & =\left[-\frac{\partial}{\partial x}\left(e \phi-\frac{e}{c} \vec{A} \cdot \vec{V}\right)+\frac{d}{d t}\left(\frac{\partial}{\partial V_{x}}\left(e \phi-\frac{e}{c} \vec{A} \cdot \vec{V}\right)\right)\right]
\end{aligned}
$$

Since ϕ is independent of V, can add in.
Goes away when taking $\frac{\partial}{\partial V_{x}}$
The general definition of F_{x} is:

$$
F_{x}=-\frac{\partial}{\partial x} U+\frac{d}{d t}\left(\frac{\partial}{\partial V_{x}} U\right) \quad U \rightarrow \text { potential }
$$

Therefore:

$$
U=e \phi-\frac{e}{c} \vec{A} \cdot \vec{V}
$$

Legrangian:

$$
\begin{aligned}
& L=T-U \\
& T \equiv \text { Kinetic Energy }
\end{aligned}
$$

For charged particle in E\&M Field:

$$
\begin{aligned}
L & =T-e \phi+\frac{e}{c} \vec{A} \cdot \vec{V} \\
T & =\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)
\end{aligned}
$$

The $i^{\text {th }}$ component of the momentum is give by

$$
P_{i}=\frac{\partial L}{\partial \dot{q}_{i}} \quad \text { where: } \quad \begin{aligned}
& \dot{q}_{i}=\frac{d q_{i}}{d t}=V_{i} \\
& \\
& \dot{q}_{x}=\dot{x}=V_{x}
\end{aligned}
$$

Therefore, $\quad \boldsymbol{P}_{\boldsymbol{x}}=\boldsymbol{m} \dot{\boldsymbol{x}}+\frac{\boldsymbol{e}}{\boldsymbol{c}} \boldsymbol{A}_{\boldsymbol{x}}$

The classical Hamiltonian:

$$
\begin{aligned}
H=P_{x} \dot{x}+P_{y} \dot{y}+P_{z} \dot{z}-L & \left(P_{x}=m \dot{x}+\frac{e}{c} A_{x}, \text { etc. }\right) \\
L & =T-e \phi+\frac{e}{c} \vec{A} \cdot \vec{V} \\
T & =\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& H=\left(m \dot{x}^{2}+\frac{e}{c} A_{x} \dot{x}\right)+\left(m \dot{y}^{2}+\frac{e}{c} \dot{y} A_{y}\right)+\left(m \dot{z}^{2}+\frac{e}{c} \dot{z} A_{z}\right) \\
& \quad-\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)-\frac{e}{c}\left(\dot{x} A_{x}+\dot{y} A_{y}+\dot{z} A_{z}\right)+e \phi
\end{aligned}
$$

This yields:

$$
H=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)+e \phi
$$

Want H in terms of momentum P_{x}, P_{y}, P_{z} since we know how to go from classical momentum to QM operators.

Multiply by m / m

$$
H=\frac{1}{2 m}\left((m \dot{x})^{2}+(m \dot{y})^{2}+(m \dot{z})^{2}\right)+e \phi
$$

Using:
$P_{i}=m \dot{q}_{i}+\frac{e}{c} A_{i}$ then $m \dot{q}_{i}=P_{i}-\frac{e}{c} A_{i}$

Classical Hamiltonian for a charged particle in any combination of electric and magnetic fields is:

$$
H=\frac{1}{2 m}\left[\left(p_{x}-\frac{e}{c} A_{x}\right)^{2}+\left(p_{y}-\frac{e}{c} A_{y}\right)^{2}+\left(p_{z}-\frac{e}{c} A_{z}\right)^{2}\right]+e \phi
$$

QM Hamiltonian

Make substitution: $\quad p_{x} \Rightarrow-i \hbar \frac{\partial}{\partial x}$
Then the term:
$\left(p_{x}-\frac{e}{c} A_{x}\right)^{2} \Rightarrow-\hbar^{2} \frac{\partial^{2}}{\partial x^{2}}+\frac{e^{2}}{c^{2}}\left|A_{x}\right|^{2}+i \frac{\hbar e}{c} \frac{\partial}{\partial x} A_{x}+i \frac{\hbar e}{c} A_{x} \frac{\partial}{\partial x}$

The operator operates on a function, ψ. Using the product rule:

$$
\begin{gathered}
i \frac{\hbar e}{c} \frac{\partial}{\partial x} A_{x} \psi(x)=i \frac{\hbar e}{c} \frac{\partial A_{x}}{\partial x} \psi(x)+i \frac{\hbar e}{c} A_{x} \frac{\partial \psi(x)}{\partial x} \\
\left(p_{x}-\frac{e}{c} A_{x}\right)^{2} \Rightarrow-\hbar^{2} \frac{\partial^{2}}{\partial x^{2}}+\frac{e^{2}}{c^{2}}\left|A_{x}\right|^{2}+i \frac{\hbar e}{c} \frac{\partial A_{x}}{\partial x}+2 i \frac{\hbar e}{c} A_{x} \frac{\partial}{\partial x}
\end{gathered}
$$

The total QM Hamiltonian in three dimensions is:
$\underline{H}=\frac{1}{2 m}\left(-\hbar^{2} \nabla^{2}+\frac{e^{2}}{c^{2}}|A|^{2}+\frac{i \hbar e}{c} \vec{\nabla} \cdot \vec{A}+2 \frac{i \hbar e}{c} \vec{A} \cdot \vec{\nabla}\right)+e \phi$
This is general for a charged particle in any combination of electric and magnetic fields

For light \rightarrow E \& M Field

$\phi=0 \quad$ (no scalar potential)
And since
$\vec{\nabla} \cdot \vec{A}+\frac{1}{c^{2}} \frac{\partial \phi}{\partial t}=0 \quad$ (Lorentz Gauge Condition)
Then:

$$
\vec{\nabla} \cdot \vec{A}=\mathbf{0}
$$

Weak field approximation: $\quad|A|^{2}$ is negligible

Therefore, for a weak light source

$$
\underline{H}=\frac{1}{2 m}\left(-\hbar^{2} \nabla^{2}+\underset{\text { kinetic energy of particle }}{\frac{2 i \hbar e}{c}} \vec{A} \cdot \vec{\nabla}\right)
$$

For many particles interacting through a potential V, add potential term to Hamiltonian.
Combine potential energy term with kinetic energy term to get normal many particle Hamiltonian for an atom or molecule.

$$
\underline{\boldsymbol{H}}^{0}=-\sum_{j} \frac{\hbar^{2}}{2 m_{j}} \nabla_{j}^{2}+V \quad \text { Time independent }
$$

The remaining piece is time dependent portion due to light.

$$
\underline{H}^{\prime}=\sum_{j} \frac{e}{m_{j} c} i \hbar \underline{\vec{A}}_{j} \cdot \overrightarrow{\vec{V}}_{j}
$$

The total Hamiltonian is

$$
\underline{\boldsymbol{H}}=\underline{\boldsymbol{H}}^{0}+\underline{\boldsymbol{H}}^{\prime}
$$

Use $\underline{H}^{0}+\underline{H}^{\prime}$ in time dependent perturbation calculation.

E \& M Field \rightarrow Plane wave propagating in z direction (x-polarized light) unit vectors $\vec{i} \Rightarrow x$

$$
\begin{aligned}
& \overrightarrow{\boldsymbol{j}} \Rightarrow y \\
& \overrightarrow{\boldsymbol{k}} \Rightarrow z
\end{aligned}
$$

$$
\vec{A}=\vec{i} A_{x} \quad \text { with } A_{x}=A_{x}^{0} \cos \left[2 \pi v\left(t-\frac{z}{c}\right)\right]
$$

To see this is E \& M plane wave, use Maxwell's equations

$$
\begin{aligned}
\vec{E} & =-\frac{1}{c} \frac{\partial}{\partial t} \vec{A}=\vec{i} \frac{2 \pi v}{c} A_{x}^{0} \sin 2 \pi v\left(t-\frac{z}{c}\right) \\
\vec{B} & =\vec{\nabla} \times \vec{A}=\vec{j} \frac{2 \pi v}{c} A_{x}^{0} \sin 2 \pi v\left(t-\frac{z}{c}\right)
\end{aligned}
$$

$$
\vec{\nabla} \times \vec{A}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
A_{x} & 0 & 0
\end{array}\right|
$$

Equal amplitude \vec{B} and \vec{E} fields, perpendicular to each other, propagating along z.

To use time dependent perturbation theory we need:

$$
\left\langle\Psi_{m}^{0}\right| \underline{\boldsymbol{H}}^{\prime}\left|\Psi_{n}^{0}\right\rangle=\left\langle\Psi_{m}^{0}\right|-\sum_{j} \frac{\boldsymbol{e}}{\boldsymbol{m}_{j} \boldsymbol{c}} \underline{\boldsymbol{A}}_{x j} \underline{\boldsymbol{P}}_{x j}\left|\Psi_{n}^{0}\right\rangle
$$

Dipole Approximation:

Most cases of interest, wavelength of light much larger than size of atom or molecule

Take A_{x} constant spatially \rightarrow two particles in different parts of molecule will experience the same A_{x} at given instant of time.

Dipole Approximation:

Pull A_{x} out of bracket since it is constant spatially

$$
\begin{aligned}
\left\langle\Psi_{m}^{0}\right| \underline{H}\left|\left|\Psi_{n}^{0}\right\rangle\right. & =-\frac{e}{c} A_{x} \sum_{j} \frac{1}{m_{j}}\left\langle\Psi_{m}^{0}\right| \underline{P}_{x j}\left|\Psi_{n}^{0}\right\rangle \\
& =i \frac{e \hbar}{c} A_{x} \sum_{j} \frac{1}{m_{j}}\left\langle\Psi_{m}^{0}\right| \frac{\partial}{\partial x_{j}}\left|\Psi_{n}^{0}\right\rangle
\end{aligned}
$$

$\frac{\partial}{\partial x_{j}}$ doesn't operate on time dependent part of ket, pull time dependent phase factors out of bracket.
$\left\langle\Psi_{m}^{0}(q, t)\right| \underline{H^{\prime}}\left|\Psi_{n}^{0}(q, t)\right\rangle=i \frac{e \hbar}{c} A_{x} e^{i\left(E_{m}-E_{n}\right) t / \hbar} \sum_{j} \frac{1}{m_{j}}\left\langle\psi_{m}^{0}(q)\right| \frac{\partial}{\partial x_{j}}\left|\psi_{n}^{0}(q)\right\rangle$
Need to evaluate $\left\langle\psi_{m}^{0}\right| \frac{\partial}{\partial x_{j}}\left|\psi_{n}^{0}\right\rangle$
Can express in terms of x_{j} rather then $\frac{\partial}{\partial x_{j}}$

First for one particle ψ 's can write following equations:

$$
\begin{equation*}
\frac{d^{2} \psi_{m}^{0^{*}}}{d x^{2}}+\frac{2 m}{\hbar^{2}}\left[E_{m}-V(x)\right] \psi_{m}^{0^{*}}=0 \tag{1}
\end{equation*}
$$

complex conjugate of
Schrödinger equation

$$
\begin{equation*}
\frac{d^{2} \psi_{n}^{0}}{d x^{2}}+\frac{2 m}{\hbar^{2}}\left[E_{n}-V(x)\right] \psi_{n}^{0}=0 \tag{2}
\end{equation*}
$$

Left multiply (1) by $\boldsymbol{x} \psi_{n}^{0}$
Left multiply (2) by $\boldsymbol{x} \boldsymbol{\psi}_{m}^{0^{*}}$

$$
\begin{align*}
& x \psi_{n}^{0} \frac{d^{2} \psi_{m}^{0^{*}}}{d x^{2}}+\frac{2 m}{\hbar^{2}} x \psi_{n}^{0} \psi_{m}^{0^{*}} E_{m}-\frac{2 m}{\hbar^{2}} V(x) x \psi_{n}^{0} \psi_{m}^{0^{*}}=0 \tag{1}\\
& x \psi_{m}^{0^{*}} \frac{d^{2} \psi_{n}^{0}}{d x^{2}}+\frac{2 m}{\hbar^{2}} x \psi_{m}^{0^{*}} \psi_{n}^{0} E_{n}-\frac{2 m}{\hbar^{2}} V(x) \times \psi_{m}^{0^{*}} \psi_{n}^{0}=0 \tag{2}
\end{align*}
$$

Subtract

$$
x \psi_{n}^{0} \frac{d^{2} \psi_{m}^{0^{*}}}{d x^{2}}-x \psi_{m}^{0^{*}} \frac{d^{2} \psi_{n}^{0}}{d x^{2}}+\frac{2 m}{\hbar^{2}} \psi_{m}^{0^{*}} x \psi_{n}^{0}\left(E_{m}-E_{n}\right)=0
$$

$$
x \psi_{n}^{0} \frac{d^{2} \psi_{m}^{0^{*}}}{d x^{2}}-x \psi_{m}^{0^{*}} \frac{d^{2} \psi_{n}^{0}}{d x^{2}}+\frac{2 m}{\hbar^{2}} \psi_{m}^{0^{*}} x \psi_{n}^{0}\left(E_{m}-E_{n}\right)=0
$$

Transpose

$\frac{2 m}{\hbar^{2}}\left(E_{n}-E_{m}\right) \psi_{m}^{0^{*}} x \psi_{n}^{0}=x \psi_{n}^{0} \frac{d^{2} \psi_{m}^{0 *}}{d x^{2}}-x \psi_{m}^{0^{*}} \frac{d^{2} \psi_{n}^{0}}{d x^{2}}$

Integrate
$\frac{2 m}{\hbar^{2}}\left(E_{n}-E_{m}\right) \int_{-\infty}^{\infty} \psi_{m}^{0^{*}} x \psi_{n}^{0} d x=\int_{-\infty}^{\infty}\left(x \psi_{n}^{0} \frac{d^{2} \psi_{m}^{0^{*}}}{d x^{2}}-x \psi_{m}^{0^{0}} \frac{d^{2} \psi_{n}^{0}}{d x^{2}}\right) d x$
This is what we want. $\left\langle\psi_{m}^{0}\right| x\left|\psi_{n}^{0}\right\rangle$

Need to show that it is equal to $\left\langle\psi_{m}^{0}\right| \frac{\partial}{\partial x_{j}}\left|\psi_{n}^{0}\right\rangle$
$\frac{2 m}{\hbar^{2}}\left(E_{n}-E_{m}\right) \int_{-\infty}^{\infty} \psi_{m}^{0^{*}} x \psi_{n}^{0} d x=\int_{-\infty}^{\infty}\left(x \psi_{n}^{0} \frac{d^{2} \psi_{m}^{0^{*}}}{d x^{2}}-x \psi_{m}^{0^{*}} \frac{d^{2} \psi_{n}^{0}}{d x^{2}}\right) d x$
Integrate right hand side by parts:
$\left\{\begin{aligned} u & =x \psi_{n}^{0} \\ d v & =\frac{d^{2} \psi_{m}^{0^{*}}}{d x^{2}} d x\end{aligned}\right.$

$$
\left.\int_{-\infty}^{\infty} u d v=\left.u v\right|_{-\infty} ^{\infty}-\int_{-\infty}^{\infty} v d u\right\}
$$

and collecting terms

Because wavefunctions vanish at infinity, this is 0 , so we have:

$$
=\int_{-\infty}^{\infty}\left[-\frac{d}{d x}\left(x \psi_{n}^{0}\right) \frac{d \psi_{m}^{0^{*}}}{d x}+\frac{d}{d x}\left(x \psi_{m}^{0^{*}}\right) \frac{d \psi_{n}^{0}}{d x}\right] d x
$$

using product rule
$=-\psi_{n}^{0} \frac{d \psi_{m}^{0^{*}}}{d x}-x \frac{d \psi_{n}^{0}}{d x} \frac{d \psi_{m}^{0^{*}}}{d x}+\psi_{m}^{0^{*}} \frac{d \psi_{n}^{0}}{d x}+x \frac{d \psi_{m}^{0^{* *}}}{d x} \frac{d \psi_{n}^{0}}{d x} \quad 2^{\text {nd }}$ and $4^{\text {th }}$ terms cancel
$=\int_{-\infty}^{\infty}\left(-\psi_{n}^{0} \frac{d \psi_{m}^{0^{*}}}{d x}+\psi_{m}^{0^{*}} \frac{d \psi_{n}^{0}}{d x}\right) d x=2 \int_{-\infty}^{\infty} \psi_{m}^{0^{*}} \frac{d \psi_{n}^{0}}{d x} d x$
Integrating this by parts \rightarrow equals second term

Therefore, finally, we have:

$$
\left\langle\psi_{m}^{0}\right| \frac{d}{d x}\left|\psi_{n}^{0}\right\rangle=-\frac{m}{\hbar^{2}}\left(E_{m}-E_{n}\right)\left\langle\psi_{m}^{0}\right| \underline{x}\left|\psi_{n}^{0}\right\rangle
$$

This can be generalized to more then one particle by summing over x_{j}.

Substituting into

$$
\left\langle\Psi_{m}^{0}(q, t)\right| \underline{H^{\prime}}\left|\Psi_{n}^{0}(q, t)\right\rangle=i \frac{e \hbar}{c} A_{x} e^{i\left(E_{m}-E_{n}\right) t / \hbar} \sum_{j} \frac{1}{m_{j}}\left\langle\psi_{m}^{0}(q)\right| \frac{\partial}{\partial x_{j}}\left|\psi_{n}^{0}(q)\right\rangle
$$

gives

$$
\left\langle\Psi_{m}^{0}(q, t)\right| \underline{H^{\prime}}\left|\Psi_{n}^{0}(q, t)\right\rangle=-i \frac{1}{c \hbar} A_{x}\left(E_{m}-E_{n}\right) x_{m n} e^{i\left(E_{m}-E_{n}\right) t / \hbar}
$$

with:

$$
\left.x_{m n}=\left\langle\psi_{m}^{0}\right| e \sum_{j} \underline{x}_{j}\left|\psi_{n}^{0}\right\rangle \quad \text { Operator }- \text { (charge } \times \text { length }\right) \text { - dipole }
$$

x-component of "transition dipole."

Absorption \& Emission Transition Probabilities

$\frac{d C_{m}}{d t}=-\frac{i}{\hbar} \sum_{n} C_{n}\left\langle\Psi_{m}^{0}(q, t)\right| \underline{H}^{\prime}\left|\Psi_{n}^{0}(q, t)\right\rangle$
Time Dependent Perturbation Theory:
Take system to be in state $\left|\Psi_{n}^{0}(\boldsymbol{q}, \boldsymbol{t})\right\rangle$ at $\boldsymbol{t}=0$

$$
C_{n}=1 \quad C_{m \neq n}=0
$$

Short time $\rightarrow C_{m \neq n} \approx 0$
Using result for E\&M plane wave:

$$
\begin{gathered}
\frac{d C_{m}}{d t}=-\frac{1}{c \hbar^{2}} A_{x}\left(E_{m}-E_{n}\right) x_{m n} e^{i\left(E_{m}-E_{n}\right) t / \hbar} \\
x_{m n}=\left\langle\psi_{m}^{0}\right| e \sum_{j} \underline{x}_{j}\left|\psi_{n}^{0}\right\rangle
\end{gathered}
$$

Equations of motion of coefficients

For light of frequency v :

$$
\begin{aligned}
A_{x} & =A_{x}^{0} \cos (2 \pi v t) \quad \text { vector potential } \\
& =\frac{1}{2} A_{x}^{0}\left(e^{i 2 \pi v t}+e^{-i 2 \pi v t}\right)
\end{aligned}
$$

Therefore:
note sign difference

$$
\frac{d C_{m}}{d t}=-\frac{1}{2 c \hbar^{2}} A_{x}^{0} x_{m n}\left(E_{m}-E_{n}\right)\left(e^{i\left(E_{m}-E_{n}+h \nu\right) t / \hbar}+e^{i\left(E_{m}-E_{n}-h \nu\right) t / \hbar}\right)
$$

Multiplying through by dt, integrating and choosing constant of integration such that $C_{m}=0$ at $t=0$

note sign differences

$$
C_{m}=\frac{i}{2 c \hbar} A_{x}^{0} X_{m n}\left(E_{m}-E_{n}\right)\left[\frac{e^{i\left(E_{m}-E_{n}+h v\right) t / \hbar}-1}{\left(E_{m}-E_{n}+h v\right)}+\frac{e^{i\left(E_{m}-E_{n}-h v\right) t / \hbar}-1}{\left(E_{m}-E_{n}-h v\right)}\right]
$$

Rotating Wave Approximation

Consider Absorption $\boldsymbol{E}_{\boldsymbol{m}}>\boldsymbol{E}_{\boldsymbol{n}}$

This term large, keep. Drop first term.

$$
\left(E_{m}-E_{n}-h v\right) \rightarrow 0 \quad \text { as } \quad h \nu \rightarrow\left(E_{m}-E_{n}\right) \Rightarrow \text { denominator goes to } 0
$$

For Absorption - Second Term Large \rightarrow Drop First Term

Then,
Probability of finding system in $\left|\Psi_{m}^{0}\right\rangle$ as a function of frequency, $v \rightarrow C_{m}^{*} C_{m}$

Using the trig identities:

$$
\left(e^{i x}-1\right)\left(e^{-i x}-1\right)=2(1-\cos x)=4 \sin ^{2} x / 2
$$

Get:

$$
C_{m}^{*} C_{m}=\frac{1}{c^{2} \hbar^{2}}\left|A_{x}^{0}\right|^{2}\left|x_{m n}\right|^{2}\left(E_{m}-E_{n}\right)^{2} \frac{\sin ^{2}\left[\frac{\left(E_{m}-E_{n}-h \nu\right) t}{2 \hbar}\right]}{\left[\left(E_{m}-E_{n}-h v\right)\right]^{2}}
$$

$$
\begin{aligned}
\boldsymbol{E}_{m}-\boldsymbol{E}_{n}=\boldsymbol{E} & \text { energy difference between two eigenkets of } \underline{H}^{0} \\
\Delta \boldsymbol{E}=\boldsymbol{E}-\boldsymbol{h} v & \text { amount radiation field is off resonance. }
\end{aligned}
$$

$\boldsymbol{E}_{m}-\boldsymbol{E}_{n}=\boldsymbol{E} \quad$ energy difference between two eigenkets of \underline{H}^{0} $\Delta \boldsymbol{E}=\boldsymbol{E}-\boldsymbol{h} \boldsymbol{\nu}$ amount radiation field is off resonance.

Plot of $\mathrm{C}_{\mathrm{m}}{ }^{*} \mathrm{C}_{\mathrm{m}}$ vs $\Delta \mathrm{E}$:

Maximum at $\Delta \mathrm{E}=\mathbf{0}$

$$
\left|C_{m}\right|_{\max }^{2}=Q \frac{t^{2}}{(2 \hbar)^{2}} \quad Q=\frac{1}{c^{2} \hbar^{2}}\left|A_{x}^{0}\right|^{2}\left|x_{m n}\right|^{2}\left(E_{m}-E_{n}\right)^{2}
$$

Maximum probability $\propto t^{2}$ - square of time light is applied.
Probability only significant for width $\sim 4 \pi \hbar / t$

$$
1 \mathrm{ps} \rightarrow 67 \mathrm{~cm}^{-1}
$$

Determined by uncertainty principle. For square pulse: $\Delta v \Delta t=0.886$
$1 \mathrm{ps} \rightarrow 30 \mathrm{~cm}^{-1}$ from uncertainty relation

The shape is a square of zeroth order spherical Bessel function.
t increases \rightarrow Height of central lobe increases, width decreases. Most probability in central lobe

10 ns pulse $\rightarrow \quad$ Width $\sim 0.03 \mathrm{~cm}^{-1}$, virtually all probability

$$
t \rightarrow \infty \quad \rightarrow \quad C_{m}^{*} C_{m} \rightarrow \text { Dirac delta function } \delta(\Delta E=0) ; \quad h \nu=\left(E_{m}-E_{n}\right)
$$

Total Probability \rightarrow Area under curve

$$
\begin{aligned}
\int_{-\infty}^{\infty} C_{m}^{*} C_{m} d \Delta v & =\frac{1}{h} \int_{-\infty}^{\infty} C_{m}^{*} C_{m} d \Delta E=\frac{Q}{h} \int_{-\infty}^{\infty} \frac{\sin ^{2}(\Delta E t / 2 \hbar)}{(\Delta E)^{2}} d \Delta E \\
& =\frac{Q}{h} \frac{t}{2 \hbar} \int_{-\infty}^{\infty} \frac{\sin ^{2} x}{x^{2}} d x \quad Q=\frac{1}{c^{2} \hbar^{2}}\left|A_{x}^{0}\right|^{2}\left|x_{m n}\right|^{2}\left(E_{m}-E_{n}\right)^{2} \\
& =\frac{Q t}{4 \hbar^{2}} \quad \begin{array}{l}
\text { Probability linearly proportional to } \\
\text { time light is applied. }
\end{array}
\end{aligned}
$$

Since virtually all probability at $\Delta \mathrm{E}=0$,
evaluate $\left|A_{x}^{0}\right|^{2}$ (in Q) at frequency $\left(E_{m}-E_{n}\right) / \hbar=v_{m n}$
Therefore:

$$
C_{m}^{*} C_{m}=\frac{\pi^{2} v_{m n}^{2}}{c^{2} \hbar^{2}}\left|A_{x}^{0}\left(\widetilde{v_{m n}}\right)\right|_{\substack{2 \\
\uparrow \\
\text { transition dipole bracket }}}^{\text {Related to intensity of light }} \begin{gathered}
\text { as shown below. }
\end{gathered}
$$

Probability increases linearly in t.
Can't let $C_{m}^{*} C_{m}$ get too big if time dependent perturbation theory used.
Limited by excited state lifetime.
Must use other methods for high power, "non-linear" experiments (Chapter 14).

Have result in terms of vector potential, A_{x}^{0}.
Want in terms of intensity, I.
Poynting vector:

$$
\vec{S}=\frac{c}{4 \pi} \vec{E} \times \vec{B}
$$

For plane wave:

$$
\vec{S}=\vec{k} \frac{c}{4 \pi} \frac{4 \pi^{2} v^{2}}{c^{2}}\left|A_{x}^{0}\right|^{2} \sin ^{2} 2 \pi v(t-z / c)
$$

Intensity \rightarrow time average magnitude of Poynting vector
Average $\sin ^{2}$ term over \boldsymbol{t} from 0 to $2 \boldsymbol{\pi} \rightarrow \mathbf{1 / 2}$
Therefore:

$$
I_{x}=\frac{\pi v^{2}}{2 c}\left|A_{x}^{0}\right|^{2}
$$

and

$$
C_{m}^{*} C_{m}=\frac{2 \pi}{c \hbar^{2}} I_{x}\left|x_{m n}\right|^{2} t
$$

Linear in intensity. Linear in time.

This is the big result.

$C_{m}^{*} C_{m}=\frac{2 \pi}{c \hbar^{2}} I_{x}\left|x_{m n}\right|^{2} t$
Linear in intensity. Linear in time.
$\boldsymbol{X}_{m n}=\langle\boldsymbol{m}| \underline{X}|\boldsymbol{n}\rangle \quad$ Transition dipole bracket for x polarized light.

Can have light with polarizations x, y, or z, i. e., I_{x}, I_{y}, I_{z}
Then:

$$
C_{m}^{*} C_{m}=\frac{2 \pi}{c \hbar^{2}}\left[I_{x}\left|x_{m n}\right|^{2}+I_{y}\left|y_{m n}\right|^{2}+I_{z}\left|z_{m n}\right|^{2}\right] t
$$

$x_{m n}, y_{m n}$, and $z_{m n}$ are the transition dipole brackets for light polarized along x, y, and z, respectively

Another definition of "strength" of radiation fields

radiation density:

$$
\begin{aligned}
& \rho\left(v_{m n}\right)=\frac{1}{4 \pi} \frac{E^{2}\left(v_{m n}\right)}{E^{2}\left(v_{m n}\right)}=\frac{2 \pi^{2} v_{m n}^{2}}{c^{2}}\left|A^{0}\left(v_{m n}\right)\right|^{2}
\end{aligned}
$$

Then

$$
\left|A^{0}\left(v_{m n}\right)\right|^{2}=\frac{2 c^{2}}{\pi v_{m n}^{2}} \rho\left(v_{m n}\right)
$$

Isotropic radiation

$$
\left|A_{x}^{0}\left(v_{m n}\right)\right|^{2}=\left|A_{y}^{0}\left(v_{m n}\right)\right|^{2}=\left|A_{z}^{0}\left(v_{m n}\right)\right|^{2}=\frac{1}{3}\left|A^{0}\left(v_{m n}\right)\right|^{2}
$$

For isotropic radiation

$$
C_{m}^{*} C_{m}=\frac{2 \pi}{3 \hbar^{2}}\left\{\left|x_{m n}\right|^{2}+\left|y_{m n}\right|^{2}+\left|z_{m n}\right|^{2}\right\} \rho\left(v_{m n}\right) t
$$

Einstein "B Coefficients" for absorption and stimulated emission

Probability of transition taking place in unit time (absorption) for isotropic radiation

$$
B_{n \rightarrow m} \rho\left(v_{m n}\right)=\frac{2 \pi}{3 \hbar^{2}}\left|\mu_{m n}\right|^{2} \rho\left(v_{m n}\right)
$$

where

$$
\begin{aligned}
& \left|\mu_{m n}\right|^{2}=\left|x_{m n}\right|^{2}+\left|y_{m n}\right|^{2}+\left|z_{m n}\right|^{2} \\
& \uparrow \\
& \text { transition dipole bracket }
\end{aligned}
$$

For emission (induced, stimulated) everything is the same except keep first exponential term in expression for probability amplitude.

$\overline{-}-E_{m}$| stimulated emission |
| :--- |
| need radiation field |

$\xrightarrow{\downarrow} E_{n}$
Previously, initial state called n. Now initial state m, final state n.
$E_{m}>E_{n}$.
$C_{n}=\frac{i}{2 c \hbar} A_{x}^{0} x_{m n}\left(E_{n}-E_{m}\right)\left[\frac{e^{i\left(E_{n}-E_{m}+h \nu\right) t / \hbar}-1}{\left(E_{n}-E_{m}+h v\right)}+\frac{e^{i\left(E_{m}-E_{m}-h \nu\right) t / \hbar}-1}{\left(E_{n}-E_{m}-h v\right)}\right]$

Rotating wave approximation. Keep this term.

$$
B_{m \rightarrow n} \rho\left(v_{m n}\right)=B_{n \rightarrow m} \rho\left(v_{m n}\right)
$$

Einstein B coefficient for absorption
equals B coefficient for stimulated emission.

Restrictions on treatment

1. Left out spontaneous emission
2. Treatment only for weak fields
3. Only for dipole transition
4. Treatment applies only for $C_{m}^{*} C_{m} \ll 1$
5. If transition dipole brackets all zero

$$
\left|\mu_{m n}\right|=0
$$

Higher order terms lost when we took vector potential constant spatially over molecule:
Lose \rightarrow Magnetic dipole transition
Electric Quadrupole
Magnetic Quadrupole
Electric Octapole
etc...
Only important if dipole term vanishes.

Einstein "A coefficient" - Spontaneous Emission

Want: $A_{m \rightarrow n}$ spontaneous emission coefficient
$N_{m}=$ number of systems (molecules) in state of energy \boldsymbol{E}_{m} (upper state)
$N_{n}=$ number of systems (molecules) in state of energy E_{n} (lower state)
At temp T, Boltzmann law gives:

$$
\frac{N_{m}}{N_{n}}=\frac{e^{-E_{m} / k_{B} T}}{e^{-E_{n} / k_{\mathrm{B}} T}}=e^{-h v_{m n} / k_{\mathrm{B}} T}
$$

At equilibrium:

rate of downward transitions = rate of upward transitions

$$
\overbrace{\text { spontaneous emission }}^{N_{m}\left\{A_{m \rightarrow n}+B_{m \rightarrow n} \rho\left(v_{m n}\right)\right\}=N_{n} B_{n \rightarrow m} \rho\left(v_{m n}\right)} \text { absorption }
$$

Using $\quad \frac{N_{m}}{N_{n}}=\frac{e^{-E_{m} / k_{B} T}}{e^{-E_{n} / k_{B} T}}=e^{-h v_{m m} / k_{B} T}$

$$
e^{-h \nu_{m n} / k_{B} T}=\frac{B_{n \rightarrow m} \rho\left(v_{m n}\right)}{A_{m \rightarrow n}+B_{m \rightarrow n} \rho\left(v_{m n}\right)}
$$

Solving for $\rho\left(v_{m n}\right)$

$$
\rho\left(v_{m n}\right)=\frac{A_{m \rightarrow n} e^{-h v_{m n} / k_{B} T}}{-B_{m \rightarrow n} e^{-h v_{m n} / k_{B} T}+B_{n \rightarrow m}}
$$

$$
B_{n \rightarrow m}=B_{m \rightarrow n}
$$

Then:

$$
\rho\left(v_{m n}\right)=\frac{\frac{A_{m \rightarrow n}}{B_{m \rightarrow n}}}{e^{h_{v_{m} /} / k_{B} T}-1}
$$

Take "sample" to be black body, reasonable approximation. Planck's derivation (first QM problem)

$$
\rho\left(v_{m n}\right)=\frac{8 \pi h v_{m n}^{3}}{c^{3}} \frac{1}{e^{h \nu_{m n} / k_{B} T}-1}
$$

Gives

$$
\begin{aligned}
& A_{m \rightarrow n}=\frac{8 \pi h v_{m n}^{3}}{c^{3}} B_{m \rightarrow n} \\
& A_{m \rightarrow n}=\frac{32 \pi^{3} v_{m n}^{3}}{3 c^{3} \hbar}\left|\mu_{m n}\right|^{2}
\end{aligned}
$$

Spontaneous emission - no light necessary,

$$
I=0, v^{3} \text { dependence. }
$$

Spontaneous Emission:
v^{3} dependence
No spontaneous emission - NMR
$v \cong 10^{8} \mathrm{~Hz}$
Optical spontaneous emission
$v \cong 10^{15} \mathrm{~Hz}$
Typical optical spontaneous emission time, $10 \mathrm{~ns}\left(10^{-8} \mathrm{~s}\right)$.
$\left(\frac{\boldsymbol{v}_{\text {NMR }}}{\boldsymbol{v}_{\text {optical }}}\right)^{3}=\left(\frac{10^{8}}{\mathbf{1 0}^{15}}\right)^{3}=10^{-21}$
NMR spontaneous emission time $-10^{13} \mathrm{~s}$ ($>10^{5}$ years).
Actually longer, magnetic dipole transition much weaker than optical electric dipole transition.

Quantum Treatment of Spontaneous Emission (Briefly)

Radiation Field \rightarrow Photons
State of field $|\boldsymbol{n}\rangle$
same as Harmonic Oscillator kets

Number operator

$$
\begin{aligned}
a^{+} a|n\rangle= & \boldsymbol{n}|\boldsymbol{n}\rangle \\
& \text { number of photons in field }
\end{aligned}
$$

Absorption:

$$
a|n\rangle=\sqrt{n}|n-1\rangle
$$

Removes photon - probability proportional to bracket squared $\propto n \propto$ intensity need photons for absorption

Emission

creation operator
Probability $\propto \mathbf{n}+1$
when n very large $n \gg 1, n \propto$ Intensity
However, for

$$
n=0 \quad a^{+}|0\rangle=\sqrt{\mathbf{1}}|\mathbf{1}\rangle
$$

Still can have emission from excited state in absence of radiation field.

QM E-field operator:

$$
\underline{E}_{\vec{k}}=i\left(\hbar \omega_{\vec{k}} / 2 \varepsilon_{0} V\right)^{1 / 2} \varepsilon_{\vec{k}}\left\{\underline{a}_{\vec{k}} \exp \left(-i \omega_{\vec{k}} t+i \vec{k} \cdot \vec{r}\right)-\underline{a}_{\vec{k}}^{+} \exp \left(i \omega_{\vec{k}} t+i \vec{k} \cdot \vec{r}\right)\right\}
$$

Even when no photons, E-field not zero. Vacuum state. All frequencies have E-fields. "Fluctuations of vacuum state."
Fourier component at $\Delta E=\hbar \omega$ induces spontaneous emission.

