
The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Distinguishing steric and electrostatic molecular
probe orientational ordering via their effects
on reorientation-induced spectral diffusion

Cite as: J. Chem. Phys. 154, 244104 (2021); doi: 10.1063/5.0053308
Submitted: 6 April 2021 • Accepted: 8 June 2021 •
Published Online: 23 June 2021

David J. Hoffman, Sebastian M. Fica-Contreras, Junkun Pan, and Michael D. Fayera)

AFFILIATIONS
Department of Chemistry, Stanford University, Stanford, California 94305, USA

a)Author to whom correspondence should be addressed: fayer@stanford.edu. Telephone: 650 723-4446

ABSTRACT
The theoretical framework for reorientation-induced spectral diffusion (RISD) describes the polarization dependence of spectral diffusion
dynamics as measured with two-dimensional (2D) correlation spectroscopy and related techniques. Generally, RISD relates to the orienta-
tional dynamics of the molecular chromophore relative to local electric fields of the medium. The predictions of RISD have been shown
to be very sensitive to both restricted orientational dynamics (generally arising from steric hindrance) and the distribution of local electric
fields relative to the probe (electrostatic ordering). Here, a theory that combines the two effects is developed analytically and supported with
numerical calculations. The combined effects can smoothly vary the polarization dependence of spectral diffusion from the purely steric case
(least polarization dependence) to the purely electrostatic case (greatest polarization dependence). Analytic approximations of the modified
RISD equations were also developed using the orientational dynamics of the molecular probe and two order parameters describing the
degree of electrostatic ordering. It was found that frequency-dependent orientational dynamics are a possible consequence of the combined
electrostatic and steric effects, providing a test for the applicability of this model to experimental systems. The modified RISD equations were
then used to successfully describe the anomalous polarization-dependent spectral diffusion seen in 2D infrared spectroscopy in a polystyrene
oligomer system that exhibits frequency-dependent orientational dynamics. The degree of polarization-dependent spectral diffusion enables
the extent of electrostatic ordering in a chemical system to be quantified and distinguished from steric ordering.
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I. INTRODUCTION

The dynamics of condensed-phase chemical systems are often
driven by the interplay of intermolecular electrostatic and steric
interactions. The relationship between these forces produces the
complex behavior of liquids with charged species, which has been
well studied in electrolytic and ionic liquid systems.1–5 These inter-
actions also dictate the behavior of many macromolecular sys-
tems, particularly in biological substrate–enzyme binding6–8 but
also in the interactions of polymers and membranes with small
molecules.9–12 Despite the fundamental importance of these interac-
tions, it is difficult to experimentally assess the relative contributions
of electrostatic and steric forces on measured chemical dynamics.

This work provides a theoretical basis for distinguishing elec-
trostatic and steric contributions to the orientational dynamics of a
probe molecule using polarization-selective two-dimensional (2D)
correlation spectroscopy. 2D correlation spectroscopy is a useful

method for the study of the structures and dynamics of chemical
systems.13–17 A key observable in 2D spectroscopies is spectral dif-
fusion. Spectral diffusion reports on the dynamics of a chemical
system by measuring the time-dependent frequencies of embedded
probe molecules across an inhomogeneously broadened absorption
spectrum. The instantaneous frequency of a chromophore depends
on its local environment. As the structures of the local environ-
ments evolve in time, each chromophore’s frequency moves through
the range of frequencies that compose the inhomogeneous spec-
trum. The dynamics of spectral diffusion can be characterized by the
frequency–frequency correlation function (FFCF),

C(t) = ⟨δω(t)δω(0)⟩, (1)

where δω(t) is the instantaneous frequency of the chromophore at
time t and the bracket indicates an ensemble average.
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While a chromophore’s frequency changes because the struc-
ture of its chemical environment evolves, it is also possible for a
chromophore’s frequency to vary because the chromophore itself
moves.18,19 On short time scales, the most significant chromophore
motion is reorientation. The theory of reorientation-induced spec-
tral diffusion18–22 (RISD) describes how the reorientation of a chro-
mophore affects its frequency, given a relationship between the
instantaneous frequency of the chromophore, the orientation of
the chromophore, and a vector field resulting from the environ-
ment (typically a local electric field).18,19 After RISD is quantified,
its effects on the FFCF can be accounted for to determine the com-
ponent of the spectral diffusion that arises from the evolution of
the local environment, which is termed structural spectral diffusion
(SSD).18 The effects of RISD have been seen and studied extensively
in two-dimensional infrared (2D IR) spectroscopy,18,19,21–27 but it
has also been demonstrated in electronic excited state spectroscopy
with dynamic Stokes shift measurements.20

RISD theory describes the polarization dependence of spec-
tral diffusion measurements.18,19 A schematic of the RISD effect is
shown in Fig. 1(a). In a typical 2D experiment, the first two laser

FIG. 1. (a) Schematic illustration of the RISD effect. A population of probe
molecules is labeled at time zero (filled distribution), which is aligned with the polar-
ization of the pump pulse. The color of the distribution reflects the probe molecules’
frequencies due to their orientation relative to the electric field (green arrow). As
time evolves, the probe molecules undergo orientational diffusion (curved arrows).
The probe molecules that remain aligned with the initial pump polarization (vertical
distribution) would have changed their frequency less than those that have rotated
in the electric field and are probed with the perpendicular polarization (horizontal
distribution). (b) If the electric field also induces ordering on the ensemble of probe
molecules, then the RISD effect is enhanced. The initial probe molecules are both
more likely to be aligned with the electric field at time zero and less likely to change
their orientations. The distribution probed with parallel polarization changes fre-
quency even less than in the free diffusion case, and the perpendicular polarization
exhibits an even greater relative frequency change.

pulses “label” the initial frequency of a chromophore. The chro-
mophore frequency is determined by the orientation of the probe
molecule relative to a local electric field (green arrows in Fig. 1)
and is represented by color in Fig. 1. The laser only labels chro-
mophores that have projections of their transition dipoles along the
polarization of the laser pulse [Fig. 1(a), filled distribution at t = 0].
The system then evolves in time. The chromophores will reorient
[Fig. 1(a), curved arrows] and the chemical environments will
structurally evolve. Both processes can cause the frequencies of the
chromophores to change.

A third pulse ends the evolution period and gives rise to a
fourth pulse, the vibrational echo. The heterodyne detected echo is
the signal that reports both the initial and final frequencies of the
chromophores. In effect, the third pulse initiates the read out of the
final frequencies of the system for chromophores that were originally
in the distribution at t = 0 and have a projection of their transition
dipoles in the direction of the third pulse’s polarization [Fig. 1(a),
filled distributions at time t]. If the third pulse has the same
polarization as the first two pulses and the echo is detected with
this polarization [XXXX or “parallel” polarization; vertical distri-
bution at time t in Fig. 1(a)], it will bias the measurement toward
molecules that have undergone little reorientation in the local
field, which results in a minimal frequency shift and a smaller
RISD contribution to the spectral diffusion. If the third pulse and
echo have polarizations orthogonal to the first pulses [XXYY or
“perpendicular” polarization; horizontal distribution at time t in
Fig. 1(a)], the signal will be biased toward molecules that have reori-
ented, resulting in a larger frequency shift and an increased RISD
contribution to the spectral diffusion.

Despite the success of the RISD theory,18–21,28 it is common
to underestimate the degree of the spectral diffusion polarization
dependence. While the most extreme departures have motivated the
use of different mechanisms for polarization-dependent spectral dif-
fusion,21,29 generally these cases have been assigned to deviations
from an assumption in the original RISD theory: coupling between
the orientational dynamics of the chromophores and the structural
dynamics,23,24 heterogeneous orientational dynamics of the chro-
mophores,26 or electrostatic ordering of the probe molecules to their
local electric fields.22,25 The effect of electrostatic ordering may be
particularly important in 2D IR spectroscopy, as IR probe molecules
are often small and have large permanent dipole moments and the
local electric fields experienced by the probe molecules can be quite
large (on the order of GV/m).30–32 The effects of the electrostatic
ordering further decrease the degree of RISD seen in the parallel
polarization while enhancing the RISD seen in the perpendicular
polarization [see Fig. 1(b)].22 The electrostatic ordering also pro-
duces restricted angular motion of the probe molecule analogous to
steric confinement.

This work expands on previous numerical analysis of the effect
of electrostatic ordering on RISD22 by developing an analytic theory
to describe the combined effects of electrostatic and steric confine-
ment on polarization-dependent spectral diffusion dynamics. This
combination results in a mild dependence of the chromophore’s
orientational dynamics on its frequency, which may provide an indi-
cator that electrostatic ordering should be considered for a chemical
system. The results show that there is a wide range of polarization-
dependent RISD behaviors between the pure steric and electrostatic
cases arising from the same orientational dynamics of the probe
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molecules. The magnitude of the difference in measured spectral
diffusion between the parallel and perpendicular polarizations is
shown to depend on the degree of electrostatic ordering experienced
by the molecular chromophore and provides an experimental mea-
surement of this property. Additionally, key analytical results and
approximations are produced, which match the existing numerical
results in the literature for the case of pure electrostatic ordering. The
theory demonstrates that such ordering could account for many of
the quantitative differences between the standard RISD theoretical
predictions18,19 and experimental measurements.

The new RISD equations were applied to polarization-selective
2D IR spectra of the CN stretch of the long-lived vibrational probe
phenyl selenocyanate in a low molecular weight polystyrene sys-
tem. While the polarization dependence of spectral diffusion in
these systems is significantly greater than that predicted by standard
RISD theory,18,19 the dependence was quantitatively described by
taking into account electrostatic ordering. The relationship between
the electrostatic order parameters measured with RISD and the
results of first-order Stark shift30–33 calculations are also consid-
ered. It was found that the degree of electrostatic ordering is in
accord with the electric field determined by the Stark shift for the
system.

II. BACKGROUND THEORY
A. Background theory of RISD

This section presents an overview of RISD as presented in the
original publications by Kramer et al.,18,19 which will be referred
to as “standard RISD theory” throughout this work. In particular,
the standard RISD theory involves a first-order Stark effect interac-
tion, probe molecules with parallel transition and difference dipole
moments, and no correlations between the orientations of the probe
molecules and the local electric fields (no electrostatic ordering).
Sections III and IV extend the RISD theory to include the combined
effects of electrostatic ordering and steric hindrance on first-order
Stark effect RISD. The main text considers probes with coincident
transition, difference, and permanent dipole moments, while the
supplementary material considers probes with non-coincident
dipole moments.

In general, the experiments that report on spectral diffu-
sion do so using polarized laser pulses to excite the molecular
transition of interest. The probability of an interaction occurring
between a molecular transition and the laser pulse is proportional
to ε̂ ⋅ μ̂T , where ε̂ and μ̂T are the unit vectors of the laser elec-
tric field and molecular transition dipole moment, respectively. The
polarization-dependent FFCFs [Eq. (1)], obtained from third-order
spectroscopy, are ensemble averages that are polarization-weighted
for each light–matter interaction as follows:19

⟨δω(t)δω(0)⟩p =
1

Ip(t)
⟨(ε̂α ⋅ μ̂T(t))

2δω(t)(ε̂β ⋅ μ̂T(0))
2δω(0)⟩,

(2)
where ε̂α is the laser polarization vector at time t and ε̂β is
the polarization vector at time zero. Ip(t) is a time-dependent,
polarization-dependent normalization factor, defined as

Ip(t) = ⟨(ε̂α ⋅ μ̂T(t))
2
(ε̂β ⋅ μ̂T(0))

2
⟩, (3)

which is equivalent to the third-order signal intensity obtained in a
pump–probe experiment.34

The standard RISD theory generally uses a first-order Stark
effect interaction for the instantaneous frequency.18,19 (RISD has
also been derived for the second-order Stark effect21 but is not
considered in this work.) For the first-order Stark effect,

δω(t)∝ F⃗(t) ⋅ μ̂D(t) − ⟨F⃗ ⋅ μ̂D⟩

∝ ∣F⃗(t)∣(cos(θF(t)) − ⟨cos θF⟩), (4)

where F is the local electric field experienced by the probe molecule
and θF is the angle between the electric field and the dipole moment
difference vector μD (difference between the dipole moment in the
ground and first excited states for the measured transition). In
general, the difference dipole can have a different orientation from
the transition dipole. The main text will consider the common case
where the two vectors are parallel, while the supplementary material
provides analogous results for the general case. To the lowest
order, the RISD observables have a quadratic dependence on the
angle between the two dipoles, so the uniaxial case is still a good
approximation when the two vectors are nearly coincident.

If the time-evolution of the direction of the E-field is slow or
comparable to the orientational relaxation of the probe molecule,
Eqs. (2) and (4) can be combined and factored into a contribu-
tion from the reorientation of the probe molecule (RISD) and from
structural evolution of the medium [structural spectral diffusion,
SSD(t)],18

⟨δω(t)δω(0)⟩p
⟨δω2⟩

=
1

Ip(t)⟨δω2⟩
⟨
(ε̂α ⋅ μ̂T(t))

2
(cos θF(t)− ⟨cos θF⟩)

×(ε̂β ⋅ μ̂T(0))
2
(cos θF(0)− ⟨cos θF⟩)

⟩

× SSD(t)

≈
⎛

⎝

Rp(t)⟨cos2 θF⟩ − ⟨cos θF⟩
2

⟨cos2 θF⟩ − ⟨cos θF⟩
2
⎞

⎠
× SSD(t)

= R̃p(t) × SSD(t), (5)

where Rp(t) = ⟨cos θF(t) cos θF(0)⟩p/Ip(t)⟨cos2 θF⟩ is the
“intermediary” RISD component and R̃p(t) is the “observable”
RISD component. As demonstrated in Eq. (5), the observable
RISD is the term that is seen by polarization-selective spectral
diffusion measurements. The intermediary RISD term, which
does not account for a non-zero value of ⟨cos θF⟩, has useful
conserved behaviors between analogous electrostatic and steric
potentials that will allow the observable RISD to be more easily
calculated (Sec. III B). Both R̃p(t) and Rp(t) are normalized
to 1. The approximation in the second line of Eq. (5) comes
from estimating the cross terms in the ensemble average as
⟨(ε̂α ⋅ μ̂T(t))2

(ε̂β ⋅ μ̂T(0))
2 cos(θF(t))⟩ ≈ Ip(t)⟨cos θF⟩, which is

accurate within a few percent for all cases examined in this work.
The approximation is exact in the isotropic case [(ε̂ ⋅ μ̂T)

2
= 1/3]

or in the absence of electrostatic ordering [⟨cos θF⟩ = 0 and
R̃p(t) = Rp(t)].

Equation (5) contains two Stark order parameters ⟨cos θF⟩ and
⟨cos2 θF⟩, which appear in the definition of the observable RISD
components. ⟨cos θF⟩ is the average Stark shift normalized to the
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Stark coupling and corresponds microscopically to the net tendency
of probe molecules to point toward the local electric fields they are
experiencing. ⟨cos2 θF⟩ relates to the spectral linewidth from the
Stark effect (i.e., variance = ⟨cos2 θF⟩ − ⟨cos θF⟩

2) normalized to the
Stark coupling and relates to the net tendency of probe molecules to
be parallel to the local electric field.

Structural evolution of the medium can produce changes in the
magnitude of the E-field, but if it randomizes the direction of the
E-field on a time scale fast compared to orientational relaxation [i.e.,
SSD(t) decays to zero quickly compared to R̃p(t)], then RISD is not
observed. The RISD framework can also include “scalar” structural
spectral diffusion as an additive component to Eq. (5),18 but empir-
ically most data appear to be well described entirely through vector
coupling.

If the distribution of the electric fields and dipole moments are
both globally isotropic and isotropic with respect to each other (i.e.,
no electrostatic ordering to the local field), Eq. (5) can be analytically
evaluated to obtain the polarization-dependent RISD terms.18,19 In
the special case where μT = μD, this gives

Rp,H(t) = R̃p,H(t) =
C1(t) + p

5(2C1(t) + 3C3(t))
1 + pC2(t)

, (6)

where p is the polarization weighting (p = 0 for isotropic, +4/5 for
XXXX, and −2/5 for XXYY) and Cl(t) = ⟨Pl(μ̂T(t) ⋅ μ̂T(0))⟩ is the
lth order Legendre polynomial orientational correlation function of
the molecular transition dipole, which describes the orientational
diffusion of the probe molecule’s transition dipole. A more gen-
eral case where μT ≠ μD has been previously examined in the case
of free angular diffusion20 and is summarized in the supplementary
material.

C2(t) can be determined experimentally using polarization-
selective pump–probe experiments and related techniques.34,35 If
the measured orientational relaxation is a single exponential decay,
it determines Dm, the orientational diffusion constant. Then, the
other Cl(t) are determined using Cl(t) = exp(−l(l + 1)Dmt). How-
ever, if the orientational relaxation is non-exponential (such as
from wobbling-in-a-cone dynamics36,37), Eq. (6) can still be used,
but a model of the non-exponential dynamics is required to con-
struct C1(t) and C3(t). This has been previously presented using
wobbling-in-a-cone dynamics18 and heterogeneous dynamics.26

This work will focus on the effects of different angular poten-
tials on the RISD correlation functions, such as from wobbling-in-a-
cone dynamics or electrostatic alignment. The equilibrium distribu-
tion of probe molecule orientations to an angular potential, V(Ω), is
given by a Boltzmann distribution,

ρ(Ω) =
exp(−βV(Ω))

∫ dΩ exp(−βV(Ω))
, (7)

with β = 1/kBT and Ω describing a probe molecule’s orientation
relative to a given coordinate frame. The angular potential V is a
function of the orientation of the electric field and/or steric align-
ment vector. For free angular diffusion, this is simply V(Ω) = 0,
and for the wobbling-in-a-cone model that was previously examined
analytically in the context of RISD,36–38

V(ΩH) =

⎧⎪⎪
⎨
⎪⎪⎩

0, μ̂T ⋅ Ĥ ≥ cos α
∞, μ̂T ⋅ Ĥ < cos α,

(8)

where ΩH describes the orientation of the molecular transition
dipole, μT , relative to the orientation of the steric hard cone poten-
tial, Ĥ, and α is the half-angle of the cone. Figure 2(a) illustrates these
potentials relative to different electric field orientations. These dia-
grams show that the electric field orientation (dashed black arrows)
sets the probe frequency [Eq. (4), color] but does not affect the shape
of the probe’s angular distribution [Eq. (7)] in either case.

To examine the effect of electrostatic alignment of probe
molecules to the local electric field on the time dependence of
the RISD components, a numerical Markov chain model similar
to that developed by Ren and Garrett-Roe was employed.22 The
Markov chain model describes the orientational relaxation of a
probe molecule in a given angular potential, V(Ω), as a biased ran-
dom walk on a discretized unit sphere. A full description of the
calculation can be found in the supplementary material. Using the
Markov chain model, the analytic RISD results can be reproduced
for cases without electrostatic ordering. Figure 2(b) shows that

FIG. 2. (a) Probe orientation and frequency distributions for different electric field
orientations for the case of free diffusion (top) and a wobbling-in-a-cone steric
potential (bottom). The colors indicate the probes’ frequencies. (b) The results of
the Markov chain calculations22 for the RISD components in the case of free diffu-
sion (filled symbols) and with a wobbling-in-a-cone steric potential (open symbols)
compared to the analytical theory [curves, from Eq. (6)].
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the numerical calculations (symbols) quantitatively reproduce the
analytic results18,19 (curves) given in Eq. (6) for the case of free
diffusion and wobbling-in-a-cone dynamics.

B. Analytic limits of the RISD terms
The RISD correlation function shown in Eq. (5) is a correlation

function describing rotational diffusion of the probe molecule. Such
correlation functions describing small-angle rotational diffusion can
be expressed analytically as follows:

⟨A(Ω(t))B(Ω(0))⟩ = ∫ dΩ(0)∫ dΩ(t)A(Ω(t))

× G(Ω(t)∣Ω(0), t)B(Ω(0))ρ(Ω(0)), (9)

where G is the Green’s function describing a molecule in orientation
Ω at time t given it was in orientation Ω(0) at time t = 0. The Green’s
function has a well-known expansion in terms of Wigner rotation
matrices, which encodes the full time dependence of orientational
diffusion.20,39,40 The overall time dependence of an orientational cor-
relation function in an angular potential is typically a sum of many
exponential contributions, thus making it challenging to derive use-
ful analytic results.36,41 However, the initial and long-time behavior
of these correlation functions are relatively tractable.38

The initial value of the correlation function goes as

⟨A(Ω(0))B(Ω(0))⟩ = ∫ dΩ(0)A(Ω(0))B(Ω(0))ρ(Ω(0)), (10)

where the Green’s function in Eq. (9) behaves as a Dirac delta func-
tion. Similarly, in the long-time limit the correlation function takes
the value

⟨A(Ω(t →∞))B(Ω(0))⟩ = ⟨A(Ω)⟩⟨B(Ω)⟩, (11)

where the initial and final measurements are independent and both
at equilibrium. In the case of an azimuthally symmetric potential,
these expectation values can be written compactly as38

⟨A(Ω)⟩ = ∫ dΩ(t)A(Ω(t))ρ(Ω(t))

=∑
l

(2l + 1)
8π2 Sl ∫ dΩ(t)A(Ω(t))Dl

00(Ω(t)), (12)

where Dl
mn(Ω) is a Wigner rotation matrix and Sl is the order

parameter (expectation value) for the lth Legendre polynomial
Pl(cos θ) in the angular potential V(Ω). The order parameters for
the given azimuthally symmetric potential are then calculated as

Sl =
1
2

π

∫

0

dθ sin θPl(cos θ)ρ(θ). (13)

Any ensemble-averaged azimuthally symmetric observable can then
be described in terms of the Sl order parameters.

The observables present in the RISD correlation function
[Eq. (5)] can also be readily expressed in terms of rotation matrices.20

Equation (12) can then be evaluated using Wigner rotation matrix
identities for changing coordinate frames and integrations.20,39,40

The calculations are further detailed in the supplementary material.

III. ELECTROSTATIC ORDERING
A. Initial and long-time values of the RISD
components

This section will use the tools presented in Sec. II B to obtain
analytic results for the RISD correlation functions in the presence of
only electrostatic ordering. These results will then be expanded on in
Sec. III B to obtain a full approximation for R̃p(t) under appropriate
conditions. The effects of electrostatic ordering can be included by
assigning the potential of22,38,41

V(ΩFP) = −VF(μ̂P ⋅ F̂)

= −VFD1
00(ΩFP) (14)

for a harmonic potential well depth, VF , and the molecular perma-
nent dipole moment, μP, with orientation ΩFP relative to the local
electric field. The depth of the potential is given by the product of
the permanent dipole strength and the local electric field strength,
VF = ∣μP∣∣F∣. VF describes the tendency of the probe molecule to
align to that local field, where a larger value of VF indicates greater
alignment. For simplicity, μP will also be assumed to be coincident
with the transition and difference dipole moments. This case occurs
frequently for small vibrational probe molecules. The general case is
discussed in the supplementary material.

The top row of Fig. 3(a) illustrates this potential for various
electric field orientations. Unlike the wobbling-in-a-cone case
[Fig. 2(a)] or the steric harmonic case discussed in Sec. III B
[Fig. 3(a), bottom row], both the angular confinement and frequency
map change with changing electric field orientation. As discussed in
Sec. II, it is difficult to get complete analytic expressions for the RISD
results due to electrostatic alignment. However, important initial
and final values of the RISD correlation functions are readily cal-
culable in terms of Sl, the orientational order parameters calculated
with Eq. (13) and summarized in Table I.

The Stark effect expectation values ⟨cos θF⟩ and ⟨cos2 θF⟩ used
in the definition of the RISD component in Eq. (5) can be calculated
in the electric field frame using Eq. (12),

⟨cos θF⟩ = S1(βVF), (15)

⟨cos2 θF⟩ =
1
3
+

2
3

S2(βVF). (16)

These values reflect how the overall frequency distribution changes
in the presence of electrostatic ordering [Fig. 3(a), top row]. The
values of ⟨cos θF⟩ and ⟨cos2 θF⟩ in the presence of the electrostatic
ordering can then be markedly different from the free diffusion or
pure steric hindrance cases, where their values are instead 0 and
1/3, respectively. As will be shown in Sec. III B, this is ultimately
the most significant difference between electrostatic ordering and an
equivalent steric potential for moderate VF .

The long-time limiting behavior of the correlation functions
for the probe orientational dynamics [Eq. (3)] and the RISD
effect [Eq. (5)] can be found using Eq. (11). The angular restric-
tion reported by the probe molecule’s transition dipole (e.g., as
measured by a complementary polarization-selective pump–probe
experiment) tends toward the well-known result,34,36
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FIG. 3. (a) Probe orientation and frequency distributions for different electric field
orientations for an electrostatic potential (top) and the equivalent steric harmonic
potential (bottom). The results of the Markov chain model22 for orientation in an
electrostatic potential (b) and in an equivalent steric harmonic potential (c) with βV
= 2 (symbols). Both potentials are constructed to produce identical orientational
correlation functions. For the electrostatic potential, the observable RISD compo-
nents (right-side scale) are shifted relative to the new average frequency (dashed
black line). The isotropic curve goes to zero, while the XXXX and XXYY curves
go to static offsets. The steric potential components more closely resemble the
wobbling-in-a-cone result in Fig. 2, where all curves go to positive offsets. For (b),
the dashed curves are the results of the analytic approximations, Eq. (26). For (c),
the solid curves are the standard RISD theory18,19 [Eq. (6)].

Ip(t →∞) =
1
9
(1 + p(S2(βVF))

2
), (17)

where p is the same polarization weighting as in Eq. (5) (0 for
isotropic, +4/5 for XXXX, and −2/5 for XXYY). In the lab frame, the
measured value of S2 will tend toward zero in sufficiently fast systems
due to the reorientation of the local electric fields. Using the results

TABLE I. Orientational order parameters for ρ(θ) ∼ exp(x cos θ).

l Sl(x)

1 coth x − 1
x

2 3x coth x−x2−3
x2

3 (x2+15)x coth x−6x2−15
x3

in Eqs. (16) and (17), the value of the intermediary RISD component
Rp(t) in a stationary electrostatic potential is

Rp,F(t →∞) =
3S1

2
+

3p
25(2S1 + 3S3)

2

(1 + pS2
2)(1 + 2S2)

, (18)

where the Sl are again functions of βVF . This result can be com-
pared against the full RISD time dependence, which can be calcu-
lated using the Markov chain method22 summarized in Sec. II A.
Representative results of this calculation with βVF = 2 are shown
in Fig. 3(b), which reproduces the previous numerical results by
Ren and Garrett-Roe.22 In the isotropic case [p = 0, black points in
Fig. 3(b)], Eq. (18) is equivalent to ⟨cos θF⟩

2
/⟨cos2 θF⟩ [black dashed

line in Fig. 3(b)]. Plugging in Rp for the isotropic case into Eq. (5)
shows that the observable isotropic electrostatic RISD component,
R̃Iso(t), must then go to zero in the long-time limit [right-side scale,
Fig. 3(b)]. This is in contrast to the isotropic RISD component in the
presence of steric hindrance, which goes to a static offset at long time
[Fig. 2(b), open black squares].

The parallel electrostatic RISD component [p = +4/5, red points
in Fig. 3(b)] will then go to a positive offset, while the perpendicular
RISD component [p = −2/5, blue points in Fig. 3(b)] will go to a neg-
ative offset. This arises because the initially excited probe molecule
is more likely to be aligned with the electric field at time zero
[Fig. 1(b)]. If the distribution is probed with the parallel polariza-
tion, the measurement will have comparably less contribution from
molecules rotating into that direction, resulting in a bias toward
molecules that have not moved and an even larger positive offset.
By contrast, probing with the perpendicular polarization biases the
measurement toward probe molecules that have moved more than
average, resulting in a negative offset. As will be shown in Sec. III B,
the entire time dependence of the electrostatic RISD components
can be well approximated [Fig. 3(b), curves] using the limits and
expectation values developed above.

B. Approximating the RISD time-dependence
in the weak field limit

This section will use the results from Sec. III A to develop a
full approximation of R̃p(t) in the presence of electrostatic ordering.
Toward this end, the analogous steric potential to the electrostatic
potential in Eq. (14) can be examined,

V(ΩHP) = −VH(μ̂P ⋅ Ĥ). (19)

This form results in a steric harmonic potential that is analogous
to the wobbling-in-a-cone potential given in Eq. (8) (for large VH ,
1–cos α ≈ 2/βVH) and is closely related to the “Gaussian cone”
potential previously studied in the literature.42 Significantly, the
potential given by Eq. (19) generates Legendre orientational poly-
nomial correlation functions, Cl(t), that are quantitatively identical
to the Cl(t) from the electrostatic potential in Eq. (14) when VH =VF
[i.e., the shapes of the distributions in Fig. 3(a), top and bottom rows
are the same besides orientation]. This means that the orientational
diffusion of probe molecules in the potential given by Eq. (19) is the
same as the reorientation of probe molecules dictated by Eq. (14),
and the long-time behavior of Ip(t) is still given by Eq. (17), with VH
instead of VF .
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The steric harmonic potential interacts with the polarization-
weighted FFCF more like the steric wobbling-in-a-cone potential
[Fig. 2(b), open symbols] than the electrostatic potential [Fig. 3(b)].
The similarity between the steric potentials can be seen by com-
paring the bottom row of Fig. 3(a) to the bottom row of Fig. 2(a).
Importantly, the values of ⟨cos θF⟩ and ⟨cos2 θF⟩ are 0 and 1/3,
respectively, in both cases. The results of the steric harmonic poten-
tial with βVH = 2 are shown in Fig. 3(c), where it can be seen that
all three of the RISD components go to a positive offset at long time
[again similar to the wobbling-in-a-cone potential in Fig. 2(b)]. The
steric harmonic potential can also be quantitatively described by the
analytic RISD equations given in Eq. (6) [Fig. 3(c), curves].

The general asymptotic behavior of the RISD components in
the steric harmonic potential can be evaluated using Eq. (11),

Rp,H(t →∞) =
S1

2
+

p
5(2S1

2
+ 3S3

2
)

1 + pS2
2 , (20)

where Sl are here functions of βVH . Equation (20) is also consis-
tent with the asymptotic behavior of Cl(t →∞) = Sl

2 in Eq. (6)
(however, this identity between the free-diffusion RISD expression
and the steric RISD offset does not hold in the general case where
μT ≠ μD; see supplementary material).

While steric hindrance can be arbitrarily high for a given
chemical system, the electrostatic ordering experienced by usual
molecular dipole moments in typical local electric fields at moderate
temperatures will correspond to βVF < 4.11 In these cases, the values
of S2

2 and S3 will be very small and can be neglected in Eqs. (18)
and (20). While the isotropic components in these two expres-
sions differ by a factor of ∼3, the anisotropic components [given by
RAniso(t) = Rp(t) − RIso(t)] have a similar structure in this limit,

RAniso,H(t →∞) ≈
4p
10

S1
2, (21)

RAniso,F(t →∞) ≈
12p/25
1 + 2S2

S1
2. (22)

Looking at the coefficients of Eqs. (21) and (22), it can be seen that
the electrostatic case is 1.2× larger than the corresponding steric har-
monic case. Furthermore, the S2 term in the denominator of Eq. (22)
will then make the electrostatic case slightly smaller and closer to the
steric case. In this weak field limit, these anisotropic components
are then nearly identical, i.e., RAniso,F(t →∞) ≈ RAniso,H(t →∞).
Furthermore, this approximation illustrates that the enhanced
polarization dependence in RISD caused by electrostatic ordering
arises from the final step in Eq. (5) to generate the observable R̃p(t)
terms [cf. Figs. 3(b) and 3(c), right-side scale].

Using the Markov chain calculations,22 it can be shown that this
approximation is excellent at all times within the weak field approx-
imation [Fig. 4(a), symbols: electrostatic, curves: steric harmonic].
By construction, a steric system and an electrostatic system where
VF =VH will have identical Legendre orientational correlation func-
tions, Cl(t) [as the probe molecule orientational distributions in
Fig. 3(a) all have the same shape]. Additionally, the RISD compo-
nents of the steric harmonic cone can be described using the stan-
dard RISD theory presented in Sec. II A [Fig. 3(c)]. The anisotropic
RISD components shown in Fig. 4(a) can be described in terms of
the analytic expression in Eq. (6) for this case,

FIG. 4. (a) Differences between intermediary RISD components using the elec-
trostatic and steric harmonic potentials (points and curves, respectively) for the
various values of βV . Electrostatic results derived from the Markov chain model22

and steric results derived from Eq. (6). Squares: RXXXX, circles: RXXYY. For the
same value of βV , both cases have similar polarization dependences and iden-
tical orientational correlation functions. The RISD polarization dependence from
electrostatic ordering can be well approximated by standard RISD theory18,19

[Eq. (23)]. (b) The isotropic RISD component from the steric harmonic potential
can be scaled and shifted using Stark order parameters to yield an approximation
[curves, Eq. (25)] for the electrostatic RIso correlation function (squares).

RAniso(t) ≈
C1(t) + p

5(2C1(t) + 3C3(t))
1 + pC2(t)

− C1(t). (23)

As the polarization differences are conserved in the
intermediary RISD components [Eqs. (21) and (22), Fig. 4(a)],
the observable RISD components’ polarization differences then
depend entirely on the values of the Stark order parameters,

R̃Aniso(t) = (1 −
⟨cos θF⟩

2

⟨cos2 θF⟩
)(RAniso(t)). (24)

The magnitude of the time-dependent RISD polarization difference
between different measurements is dictated entirely by the steric
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RISD results [Eq. (23)] and the values of the Stark effect order
parameters [Eqs. (15) and (16)]. Therefore, the RISD polarization
difference provides an experimental way to calculate the ratio of
these two quantities.

Furthermore, if RIso can be analytically approximated for the
electrostatic case in terms of known terms, the full time dependent
electrostatic RISD components can be described analytically using
Rp(t) = RIso(t) + RAniso(t), which allows the structural spectral dif-
fusion to be determined. As C1(t) is RIso in the pure steric case
[Eq. (6)] and is known analytically, it will then be rescaled to have
the same limiting behavior as the electrostatic RIso. Using C1(0) = 1,
C1(t →∞) = (S1(βVF))

2
= ⟨cos θF⟩

2 (in the electrostatic case), and
the result in Eq. (20), an approximate normalized RIso can be
constructed after some algebra,

RIso(t) ≈ (1 − n)C1(t) + n,

n =
b
a
(1 − a)
(1 − b)

, (25)

where a = ⟨cos2 θF⟩ and b = ⟨cos θF⟩
2 [Eqs. (15) and (16)]. The

results of this approximation are shown in Fig. 4(b) for a variety
of VF . The approximate analytical RIso [curves, Eq. (25)] closely
matches the numerically calculated Riso (squares). Equation (25) can
be combined with Eq. (23) to give a complete description of the
RISD in the presence of electrostatic ordering in terms of only the
Legendre orientational correlation functions and the Stark effect
order parameters,

R̃p(t) =
(1 − b)Rp,H(t) + (b − b

a)C1(t) − b + b2

a

(1 − b)(1 − b
a)

, (26)

where Rp,H(t) is the RISD component in the absence of electrostatic
ordering [Eq. (6)]. In Fig. 3(b), Eq. (26) (curves) can be compared
to the Markov chain results (symbols), illustrating that this ana-
lytic expression can closely reproduce the numerical results from the
literature for RISD in the presence of electrostatic ordering.22 Addi-
tionally, in the limit that βVF goes to 0, Eq. (26) becomes simply
Rp,H(t), restoring the original RISD result for free diffusion.

The above results provide a full analytic approximation for
RISD in the case of electrostatic ordering in the weak field limit,
which has been previously examined numerically.22 The resulting
expression in Eq. (26) introduces only a single new parameter, βVF
[via Eqs. (15) and (16)], beyond what is required for the stan-
dard RISD analysis18,19 [Eq. (6)]. As will be shown in Sec. IV B,
Eq. (26) can be applied without modification to the case of combined
electrostatic and steric ordering.

IV. COMBINING ELECTROSTATIC
AND STERIC ORDERING
A. Frequency-dependent orientational dynamics

In many physical systems, both steric and electrostatic effects
will contribute to the dynamics experienced by a probe molecule.
This section will focus on an observable consequence of their
combined effects on the orientational dynamics of the chemical
system, while Sec. IV B will examine the impacts on the RISD

correlation functions. The resulting frequency-dependent orienta-
tional dynamics discussed below provide an experimental indicator
of electrostatic effects on RISD.

A new angular potential, V , will be the sum of those described
previously, V(Ω) = V1(Ω) + V2(Ω), i.e., the sum of the electrostatic
potential [Eq. (14), top row of Fig. 3(a)] and the harmonic steric
potential [Eq. (19), bottom row of Fig. 3(a)] or the sum of the electro-
static potential and the steric hard cone [wobbling-in-a-cone model,
Eq. (8), bottom row of Fig. 2(a)]. These new combined potentials
are illustrated in Fig. 5(a). This section will mainly look at the com-
bined electrostatic/steric harmonic potential, as it has the additive
property of

V(ΩKP) = VF(μ̂P ⋅ F̂) + VH(μ̂P ⋅ Ĥ)

= μ̂P ⋅ (VF F̂ + VHĤ)

= VK cos θK , (27)

FIG. 5. (a) Probe orientation and frequency distributions for different electric field
orientations for the combined electrostatic/steric harmonic and electrostatic/hard
cone models. The shape and color of the distributions depend on the relative
orientations of the contributions. (b) Calculations illustrating frequency-dependent
orientational dynamics in the presence of both steric and electrostatic ordering
for both steric potentials. As the steric and electrostatic potentials become more
aligned, the Stark frequency shift [⟨cos θF⟩ per Eq. (4)] will tend to increase
and the orientational mobility of the probe molecule will tend to decrease (S2
increases). Black parametric curve from Eqs. (28) and (29). Red curve is a guide
to the eye.
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with VK =
√

V2
F + V2

H + 2VFVH cos γ and cos γ = (F̂ ⋅ Ĥ). The new
combined potential K maintains azimuthal symmetry for all orien-
tations of the component steric and electrostatic potentials, although
the strength, VK , and potential orientation vary with γ. By contrast,
the hard cone combined potential is only azimuthally symmetric
when the two component vectors are parallel.

If the steric potential can have orientations independent of
the electric field direction, there will be sub-populations of probe
molecules that cannot reach their equilibrium orientation relative
to the electric field. Based on the Stark effect frequency relation-
ship [Eq. (4)], different sub-populations then have different average
frequencies based on their combined potential. Furthermore, these
sub-populations will exhibit different orientational dynamics due to
the differences in the strengths or geometries of the combined poten-
tials. In general, the probe’s orientational dynamics will be more
restricted if the potentials overlap constructively (cos γ ∼ +1) and
less restricted if the potentials overlap destructively (cos γ ∼ −1) [e.g.,
Fig. 5(a), top row]. Similarly, the frequency will be higher if the
potentials are aligned (resulting in a larger ⟨cos θF⟩) and lower if the
potentials are misaligned. Therefore, the combined steric and elec-
trostatic potentials will result in frequency-dependent orientational
dynamics of the probe molecules.

For the combined electrostatic/steric harmonic potential
[Eq. (27)], the dependence of frequency and angular restriction can
be worked out explicitly as a function of the angle between the two
potentials, γ. The orientational restriction as measured by, e.g., a
polarization-selective pump–probe experiment goes as

⟨P2(cos θK)⟩ = S2(βVK(γ)), (28)

while the frequency dependence from the Stark effect would go as

⟨cos θF⟩ = cos(η)S1(βVK(γ))

=
VF + VH cos γ

VK(γ)
S1(βVK(γ)), (29)

where η is the angle between the electrostatic potential and the new
combined potential K. Equations (28) and (29) show that the fre-
quency dependence is much more sensitive to the angle γ than the
experimentally measured angular restriction. The combined poten-
tials can also be numerically calculated by the Markov chain model,
which gives results for the electrostatic/steric hard cone potential
as well. For the steric harmonic potential calculation, βVF = 3 and
βVH = 15. For the hard cone potential, βVF = 3 and α = 33○ were
used.

Figure 5(b) illustrates the long-time behavior of the probe ori-
entational dynamics as a function of ⟨cos θF⟩, which is related to
the probe frequency [Eq. (4)], for both types of combined poten-
tials. The expected overall trend can be seen, where the orientational
dynamics become more restricted as the potentials become more
aligned and ⟨cos θF⟩ increases. Additionally, frequency-dependent
dynamics appear regardless of the exact shape of the steric poten-
tial, although the exact behavior differs between the steric har-
monic (Fig. 5 black symbols) and hard cone potentials (red
symbols). The steric harmonic potential combines cleanly, and
the calculated points are described well by the parametric curve
described by Eqs. (28) and (29) (black curve). The hard cone model,
by contrast, demonstrates a local maximum at moderate ⟨cos θF⟩

(the red dashed curve is an aid to the eye). This effect arises from the

electrostatic alignment causing the probe molecules to bunch up
against the side of the hard cone potential [Fig. 5(a), bottom row],
creating a higher degree of net alignment than if the cone was
perfectly aligned with the electric field.

While Fig. 5 shows that frequency-dependent orientational
dynamics are a possible consequence of combined electrostatic and
steric potentials, it does not guarantee their presence. As shown by
Eqs. (28) and (29), the relative angles of the component potentials
affect the frequency dependence more than the degree of angular
restriction. A high degree of steric ordering [e.g., VK (γ) ∼ VH] or
small degree of electrostatic ordering (βVF < 1) greatly suppresses
the effect. On the other hand, it is also not likely that this simple
model is a complete description of frequency-dependent orienta-
tional dynamics, as it does not account for heterogeneity in the elec-
tric field strength or steric potential strength or shape.11 These effects
matter more when characterizing individual frequency subensem-
bles (orientational relaxation in frequency resolved pump–probe
experiments11,12) than when characterizing full ensemble behavior
using 2D IR to obtain the FFCF. Figure 5 also demonstrates the
dependence of frequency-dependent orientational dynamics on the
shape of the component potentials, making it extremely challeng-
ing to characterize experimental frequency-dependent orientational
dynamics using analogous calculations. Despite these caveats, the
presence of frequency-dependent orientational dynamics supports
consideration of combined electrostatic-steric influence on RISD,
discussed below.

B. RISD in combined potentials in the weak field limit
This section will demonstrate the validity of the RISD approxi-

mation in Eq. (26) for systems with both electrostatic and steric
effects. Unlike the frequency-dependent orientational dynamics dis-
cussed in Sec. IV A, spectral diffusion is typically characterized as an
ensemble average of the entire line shape. Therefore, the resulting
correlation functions involve integrating over all possible combina-
tions of steric and electrostatic potential orientations. Within the
constraints of the weak field limit that was considered in Sec. III B,
this integration can be well approximated with a new effective angu-
lar potential. This new effective potential will then enable straight-
forward calculations of the expectation values and limiting behavior
of the RISD functions for the combined electrostatic/steric harmonic
potential introduced above.

The effective potential VX is then defined as an integral of the
combined potential [e.g., Eq. (27)] over all relative angles of the
orientations of the component potentials, γ,

exp(βVX cos θKP) ∼ ∫ dγ sin γ exp(βVK(γ) cos θKP + κ cos γ),
(30)

where κ is a parameter that describes the relative alignment between
the steric and electrostatic potentials. For κ = 0, the two potentials
are isotropic relative to each other, while large κ means that the two
potentials generally have the same orientation. Relative to the lab
frame, the distributions of probe molecules, electric fields, and steric
potentials are still assumed to be isotropic. A quantitative descrip-
tion of the effective potential, VX , can be found in the supplementary
material, but it can be qualitatively understood using just the
moments of cos(η), which describe the angles between the various
combined potentials and the local electric fields.
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The effective potential can then be used to approximate the
integrals over γ for the expectation values described in Sec. IV A. For
the angular restriction of the probe molecule [such as in Eq. (28)],
this is simply

⟨⟨Pl(cos θK)⟩⟩ ≈ Sl(βVX). (31)

The average Stark shift [integral over Eq. (29)] and the second Stark
order parameter are given by

⟨⟨cos θF⟩⟩ ≈ ⟨cos η⟩S1(βVX), (32)

⟨⟨cos2 θF⟩⟩ ≈
1
3
+

2
3
⟨P2(cos η)⟩S2(βVX). (33)

These results can be seen to recover the simpler cases that were
discussed in previous sections. In the case of a pure electrostatic
potential (VX = VF and VH = 0), ⟨cos η⟩ = ⟨P2(cos η)⟩ = 1. The
above then simplifies to the results in Sec. III A. Similarly, a pure
steric potential randomly oriented with respect to the electric field
(VX = VH and VF = κ = 0) gives ⟨cos η⟩ = ⟨P2(cos η)⟩ = 0, resulting
in ⟨⟨cos θF⟩⟩ = 0 and ⟨⟨cos2 θF⟩⟩ = 1/3.

The new Stark effect order parameters in Eqs. (32) and (33)
apply for the observable RISD equations [Eq. (5) or the approxima-
tion in Eq. (26)] when the steric hindrance persists long enough to
affect the equilibrium distribution of probe frequencies. This con-
dition requires the evolution of the steric hindrance to be essen-
tially static on spectroscopically relevant time scales, i.e., in slowly
evolving systems such as polymers. In systems with complex ori-
entational dynamics, the final measured orientational restriction is
likely the correct parameter to use, and the moments of cos(η) must
be considered. If complete orientational randomization is achieved
on the experimental time scale, the appropriate Stark effect param-
eters should be the simple Boltzmann parameters used in Sec. III A
[Eqs. (15) and (16)].

Finally, the long-time behavior of the RISD correlation func-
tions can be examined. Using the same approximations yields

Rp,X(t →∞) ≈

⎛

⎝

(1 + 2⟨P2(cos η)⟩)(25S1
2
+ p(2S1 + 3S3)

2
)

+(2 − 2⟨P2(cos η)⟩)(3p(S1 − S3)
2
)

⎞

⎠

25(1 + pS2
2)(1 + 2⟨P2(cos η)⟩S2)

,

(34)
where Sl are functions of βVX . Equation (34) also simplifies to the
pure electrostatic case [Eq. (18)] for ⟨P2(cos η)⟩ = 1 and simplifies
to the pure steric case [Eq. (20)] for ⟨P2(cos η)⟩ = 0.

Equation (34) can be used to construct a weak-field approxima-
tion for the time-dependent RISD functions in the combined poten-
tial that is analogous to the approximation developed for the pure
electrostatic case in Sec. III B. The first important scenario is when
both VF and VH are small such that VX is also small and S2

2 and
S3 can be assumed to be approximately zero. The anisotropic RISD
component [RAniso(t) = Rp(t) − RIso(t)] can then be approximated as

RAniso,X(t →∞) ≈
(

4(1 + 2⟨P2(cos η)⟩)
+3(2 − 2⟨P2(cos η)⟩)

)

1 + 2⟨P2(cos η)⟩S2

pS1
2

25
. (35)

The numerator can vary from 1.2× to 1×, the value of the
pure steric case, RAniso,H [Eq. (21)], for κ > 0, and the true values will
again tend to be closer for moderate S2(βVX). This result suggests
that the same time-dependent approximation [Eq. (23)] applies for
the combined potential as well. After approximating the isotropic
RISD function RIso(t) with Eq. (25) using the Stark effect order
parameters in Eqs. (32) and (33), the full RISD time-dependent
function can again be estimated using Eq. (26).

The second important weak-field case is when VH is large but
VF is small, and the orientation of the steric potential is not highly
correlated with the electrostatic potential. In this case, VX ∼ VH and
is large enough that Eq. (35) is a poor approximation. However,
⟨P2(cos η)⟩ ∼ 0, so the RISD offset for the polarization-weighted
and isotropic components can be described by the pure steric case in
Eq. (21), which immediately implies that Eq. (6) describes the RISD
time dependence. Unlike the true pure steric case, it is still possi-
ble for there to be an average Stark shift, ⟨⟨cos θF⟩⟩ > 0 [Eq. (32)],
as ⟨cos η⟩ is much more sensitive to electrostatic contributions
than ⟨P2(cos η)⟩. The fully normalized RISD function can still be
represented using Eq. (26).

FIG. 6. Markov chain results for RISD components in the presence of both steric
and electrostatic ordering (symbols). Each case has the same orientational corre-
lation functions as the cases shown in Fig. 3 (βVX ≈ 2). In all cases, the calculated
values closely match the analytic approximation in Eq. (26) (solid curves). For
the corresponding observable RISD (right-side scale), the differences between
polarization components (intercepts on the right-side axis) increase (bottom to
top) as more electrostatic ordering is added. The differences between polarization
components enable the degree of electrostatic ordering to be determined.
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Example RISD correlation functions for combinations of steric
potentials and harmonic potentials are shown in Fig. 6. The probe
molecule has the same orientational dynamics in each of the cases
shown and the cases illustrated in Fig. 3 (β VX ≈ 2). Through
the combination of steric and electrostatic potentials, a continuous
range of polarization-dependent spectral diffusion is possible for the
same orientational dynamics observed with a polarization-selective
pump–probe experiment. Considering the observable RISD compo-
nents [Eq. (13), right-side scale of Fig. 6], the differences between
different RISD polarization components increase with increasing
electrostatic contribution until it reaches the purely electrostatic case
illustrated in Fig. 3(b). Reducing the electrostatic contribution will
similarly decrease the polarization differences until the purely steric
case [Fig. 3(c)] is reached. Therefore, the degree of polarization dif-
ference measured experimentally reports on the overall degree of
ordering of the probe molecule by the local electric field [Eq. (24)].
Significantly, all of the dynamics can still be described using the ana-
lytic approximations developed in Sec. III B [curves in Fig. 6, from
Eq. (26)], indicating that the RISD approximation is valid in the
case of combined electrostatic and steric dynamics as detailed in this
section.

V. EXAMPLE APPLICATION TO 2D IR OF A PROBE
MOLECULE IN A POLYSTYRENE OLIGOMER

The new RISD approximations were applied to a chemical
system that displays strongly polarization-dependent spectral dif-
fusion dynamics. Ultrafast IR experiments on small vibrational
probe molecules embedded in polymers have displayed substan-
tial frequency-dependent orientational dynamics measured with
polarization-selective pump–probe experiments.11,12 The frequency
dependence is prominent even for oligomers with chains that
are only a few units long. As discussed in Sec. IV A, this indi-
cates that steric effects and possibly electrostatic effects may be
needed to describe the system’s spectral diffusion. The results
of IR polarization-selective pump–probe and polarization-selective
2D IR experiments on the CN stretch of phenyl selenocyanate
(PhSeCN, Sigma-Aldrich) in very low molecular weight polystyrene
oligomer systems with five monomer units (Mw 580, Agilent) are
shown in Fig. 7. Representative 2D spectra can be found in the
supplementary material. The experimental methods used to acquire
the data are identical to those described previously for high molecu-
lar weight polymeric systems,11,12 and a complete description of the
low Mw polystyrene oligomer system will be the subject of a future
publication.

The PhSeCN/polystyrene oligomer system exhibited analogous
strongly frequency-dependent orientational dynamics that have
been previously reported for high molecular weight polystyrene.12

The anisotropies [r(t) = 0.4 C2(t)] are shown in Fig. 7(a) for three fre-
quencies across the inhomogeneously broadened CN stretch absorp-
tion spectrum. For nitriles such as PhSeCN, a larger electric field
causes the frequency of the nitrile stretch to decrease.30–33 Figure 7(a)
shows that a larger average field correlates with more restricted ori-
entational dynamics as demonstrated by a decrease in the amplitude
of the rapid decay component of the biexponential decay occurring
on an ∼10 ps time scale. Similar behavior was derived in Sec. IV A.

However, the degree of frequency dependence seen in this sys-
tem is much greater than can be reasonably obtained with the model

FIG. 7. (a) The frequency-dependent orientational dynamics of PhSeCN in a low
MW polystyrene oligomer. The frequency dependence suggests that a combined
electrostatic/steric model should be employed. Inset: frequency-dependent order
parameter of C2(t), illustrating a much greater degree of frequency-dependent ori-
entational dynamics than can be obtained with the model calculations [Fig. 5(b)].
(b) The polarization-dependent CLS decay data (symbols) of the same system.
The standard RISD model18,19 (dashed curves) systematically underestimates the
polarization difference of the data. Using the combined electrostatic/steric model,
the experimental data can be described quantitatively (solid curves). Inset: the
structural spectral diffusion determinations, showing more correlated structural
dynamics when electrostatic ordering is included although the difference is small.

presented in this work. Using Eqs. (28) and (29), VH ∼ VF ∼ 10,
which would correspond to extremely strong local fields.11 The
frequency-dependent order parameter of C2(t) after the fast first dif-
fusive process [Fig. 7(a), inset] can be compared to the results of
the model calculation in Fig. 5(b). The much greater range spanned
in Fig. 7(a) likely arises from correlated heterogeneity in the steric
restriction experienced by probe molecules and local electric field
strengths,11,12 which is not accounted for by the model in this work.
In particular, a distribution of electrostatic and steric component
potential strengths (VF and VH , respectively), which are positively
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correlated with each other (larger VH coincides with larger VF),
could explain the observed trend.

The polarization-dependent center line slope (CLS) analysis
reports on the polarization-dependent FFCF that is described by
the RISD theory [symbols, Fig. 7(b)].43,44 To avoid the effects of
polarization-dependent motional narrowing, the CLS decays are first
converted to the FFCF before the RISD equations are applied.28

The RISD fit curves can then be converted back to CLS decays for
comparison to the experimental data [curves, Fig. 7(b)].

The polarization-dependent CLS curves for the CN stretch of
PhSeCN in polystyrene were first analyzed using the standard RISD
equations18,19 [Eq. (6)]. As the CLS observable is dominated by the
center frequencies of the line shape,27 a frequency-weighted C2(t)
was constructed, which ultimately closely resembled the anisotropic
curve at the line center of 2156 cm−1. This multiexponential C2(t)
curve was then described using the wobbling-in-a-cone model,18,36,37

which allows the corresponding C1(t) and C3(t) to be constructed for
use in Eq. (6). The RISD equations are then applied by performing a
global fit of the FFCF for both polarizations with the various Cl(t)
held constant, and the parameters describing the structural spec-
tral diffusion (SSD) allowed to float. The results of this procedure
are the dashed lines in Fig. 7(b). As can be seen, this calculation
systematically underestimates the observed polarization dependence
in the CLS, which again suggests that electrostatic ordering may be
impacting this system.

The approximate RISD equations with electrostatic ordering
were then employed. The experimental data were fit to the analytic
expression developed in Sec. III B [Eq. (26)]. The Stark effect order
parameters were assumed to follow from the Boltzmann distribution
[Eq. (14)] with potential depth VF . The angle between the measured
transition and permanent dipole moments for the PhSeCN nitrile
stretch is ∼15○,45 which is sufficiently near collinearity that ⟨cos2 θF⟩

and ⟨cos θF⟩
2 can reasonably be determined using Eqs. (15) and (16)

(see the supplementary material). Additionally, possible steric effects
on the Stark parameters as discussed in Sec. IV B appear to be neg-
ligible at equilibrium [curves in Fig. 7(a) tend to zero]. As before,
all of the Cl(t) were fixed during fitting, while the SSD parameters
and the βVF parameter contained in the Stark order parameters were
allowed to float. The resulting fits using this procedure are shown as
the solid curves in Fig. 7(b). The fit was found to describe the experi-
mental data exceedingly well, with a resulting value of βVF = 1.65.
Fit residuals can be found in the supplementary material. At all
times, the SSD shows more structural correlation than predicted
using the standard RISD equations,18,19 as more of the experimen-
tally measured decay arises from RISD effects. However, the overall
time dependence of the SSD was otherwise not strongly impacted by
electrostatic effects (see inset). Similarly, the value of βVF is too small
to significantly impact the observed orientational dynamics shown
in Fig. 7 (especially at short times) and cannot solely explain the
frequency-dependent orientational dynamics.11

The value of the electrostatic potential depth, βVF , can be com-
pared to a similar value determined from the solvatochromism expe-
rienced by the probe molecule in the polystyrene matrix. Using the
vibrational Stark effect parameters previously determined from the
solvatochromism of PhSeCN,11,32 the 2156 cm−1 absorption center
frequency corresponds to an electric field of 0.63 ± 0.13 GV/m.
As PhSeCN has a permanent dipole moment of ∼4 D,45 this cor-
responds to an estimated value of βVF of 2.0 ± 0.4 at room

temperature, which is within error of the value of 1.65 obtained in
the RISD analysis. A nearly coincident value between the measured
RISD βVF and the estimated βVF from the Stark shift could indicate
that the local electrostatic fields are slowly varying, and there are no
anomalous correlations in the relative orientations of the compo-
nent steric and electrostatic potentials [κ is small in Eq. (30)]. As
these conditions are plausible for polystyrene oligomers, the sim-
ilarity between the electrostatic ordering parameter and the linear
Stark shift parameter provides additional support for the validity
of the modified RISD fit. The combined electrostatic/steric RISD
model provides an excellent description of the spectral diffusion of
the PhSeCN/polystyrene system.

VI. CONCLUDING REMARKS
The theory of reorientation-induced spectral diffusion18–22 was

expanded to include the combined effects of steric and electro-
static ordering. These phenomena have previously been examined
separately but have not been combined into a single framework.
Using analytic and numerical methods, the effects of including
both types of potentials were determined explicitly. Critically, it
was found that the RISD components for simple probe molecules
in a purely electrostatic potential or in the new combined poten-
tials could be well approximated analytically in terms of Legendre
polynomial orientational correlation functions describing the reori-
entation of the probe molecule and two order parameters describing
the electrostatic ordering. These new results can be directly applied
in fitting experimental data without performing lengthy numerical
calculations.

By combining both a steric and electrostatic potential, it was
found that a continuous range of behavior in the RISD polariza-
tion dependence can be observed for the same orientational dynam-
ics measured using polarization-selective pump–probe experiments.
The polarization dependence ranges from the smallest dependence
(a pure steric potential) to the largest (pure electrostatic). These
findings suggest that the degree of RISD polarization dependence
can indicate the degree of electrostatic ordering experienced by a
probe molecule present in a chemical system. Additionally, it was
found that the presence of both electrostatic and steric potentials will
result in frequency-dependent orientational dynamics, providing an
experimental test for the combined effects. Application of the results
presented here to the analysis of 2D IR data may be able to determine
if the combined steric/electrostatic effects, as opposed to other phe-
nomena, give rise to an anomalously large polarization dependence
in spectral diffusion.

The results were applied to the polarization-dependent spec-
tral diffusion seen in 2D IR experiments on the CN stretch of
PhSeCN in a low molecular weight polystyrene oligomer. The
PhSeCN/polystyrene system exhibits frequency-dependent orienta-
tional dynamics, which is suggestive of the combined electrostatic
and steric ordering. While the standard RISD theory18,19 systemat-
ically underestimates the polarization-dependent spectral diffusion,
the new theory was able to quantitatively describe the experimental
data. The resulting electrostatic potential depth was also found to be
within error of an analogous parameter obtained from vibrational
Stark effect spectral analysis of PhSeCN in polystyrene, providing an
independent support of the method.
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As many important chemical systems include both strong elec-
tric fields and substantial steric ordering, this modified theory of
reorientation-induced spectral diffusion can be applicable to a wide
class of materials. Ultimately, it enables additional structural infor-
mation to be gathered from a chemical system by observing the
magnitude of the polarization dependence of spectral diffusion in 2D
IR experiments while also providing a more accurate determination
of the structural dynamics of the chemical system itself.

SUPPLEMENTARY MATERIAL

See the supplementary material for the Markov chain model
(S1), analytic calculations with arbitrary dipole moment orientations
(S2), note on RISD time dependence with arbitrary dipole moment
orientations (S3), approximating the effective potential VX (S4), and
representative 2D spectra and RISD fit residuals (S5).
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