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1. Complete Neural Network Calculations 

For an FFCF parameter neural network discussed in the main text with inputs x and 

output y, the explicit calculations to go from x to y are as follows: 
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For all three networks, the inputs x are: 
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where A∞ is the amplitude of a time-independent component, or offset, of the CLS if there is one. 

The values of log(s) become singular when s = 0, so in the case of A1 = 0, x(2) were arbitrarily 

defined to be +4 and when A2 = 0, x(4) was defined to be +6.7. The inputs are modified in the 

case of a triexponential or triexponential to an offset CLS decay, as discussed in the main text 

and in the following section. 

The ANN parameters xoff, xgain, b1, M1, b2, M2, yoff, and ygain are listed for the three 

networks in the Supporting Information Excel spreadsheet (each ANN has its own sheet). 

2. Complete Calculations for FFCF Delta Parameters 

As was discussed in the main text, we parameterize the CLS as follows: 
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 CLS( ) exp( / )w i w i
i

T A T   , (S6) 

from which we can derive the rescaled CLS time scales as: 

  1/2

FWHM /i i j ij
s A A    , (S7) 

where FWHM is the full width of the linear absorption spectrum in units of angular frequency 

(e.g., radians/ps) and the i are in ps. 

The CLS amplitudes and rescaled time components are input to the neural networks to 

get the associated FFCF σ terms. For CLS terms with up to two decay terms and with or without 

an offset (i.e., single exponential, single exponential to an offset, biexponential, or biexponential 

to an offset), the calculations are as follows: 
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where fi correspond to the neural networks for σi defined in the previous section and in the 

Supporting Information Excel spreadsheet. For a triexponential or triexponential to an offset, the 

modification can be applied as was described in the main text: 
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As the τi terms are conserved between the FFCF and the CLS, the Δi can be obtained for 

the standard σi from a simple calculation: 

 /i i i   , (S10) 
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which returns the Δi as an angular frequency (e.g. radians/ps). The offset term Δ∞ can similarly 

be constructed from the σ∞ and the linear absorption spectrum FWHM: 

 
FWHM

2 2ln 2
   , (S11) 

where Δ∞ will have the same units as the input FWHM term. 

3. Complete Calculations for FFCF Homogeneous Line Width 

Once the Δ’s are calculated, the only remaining unknown parameter in the FFCF is the 

homogeneous line width, Γ = (πT2)-1. To determine Γ, we will need to calculate the FWHM of 

the linear absorption line shape from the FFCF for an arbitrary Γ. 

From the definition of the FFCF (Eq. 5) input into the definition of the line shape 

function, g(t), (Eq. 3) we get for a generic FFCF: 

 2 2 2
2( ) / (exp( / ) 1)i i i i i

i

g t t T t t         , (S12) 

where the Δi have units of angular frequency. Eq. S12 can then be input into the linear response 

function: 

  1( ) exp ( )R t g t  . (S13) 

Eq. S13 is then Fourier transformed to obtain the absorption spectrum line shape. 

 For numerical calculations, first a tf was found that gave R1(tf) < .0005 to minimize 

apodization of the line shape. The interval from 0 to tf was then discretized into 100 equally 

spaced time steps at which R1 was evaluated. The discretized response function was zero-padded 

to a total of 512 time steps to increase the frequency resolution and fast Fourier transformed to 

yield the linear spectrum. The FWHM of the spectrum was calculated by interpolating the 

resulting line shape and finding the frequencies where the amplitude of the spectrum was half of 
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the maximum. This procedure for calculating the FWHM from a given FFCF will be denoted as 

Λ(T2;Δ1, Δ2,…; τ1, τ2,…). 

Before attempting to calculate the experimental FFCF, calculating Λ for a very large or 

infinite T2 can be done to make sure that Λ is less than the experimental FWHM. This validates 

the calculations that determine the Δ parameters and checks that there is a solution to the 

minimization problem. 

 Once it is known that a solution exists, the goal is then to minimize the function: 

   2

2 2 1 2 1 2( ) ; , ,...; , ,... FWHMh T T        (S14) 

which will yield the T2 that gives the correct FWHM. The algorithm described above for Λ does 

not have easily calculable derivatives that could be used for gradient descent algorithms, so a 

non-gradient simplex solver was used instead (fminsearch in the MATLAB software was used). 

This procedure is then capable of giving results within the precision of the calculation of Λ. 

4. Neural Network Standard Error and Error Propagation from CLS Fits  

 As can be seen in Fig. 7 of the main text, the ANNs provide high quality function 

approximations, but they are not exact. For the regressions in Fig. 7, the residuals have the 

statistics shown in Table S1. It should be noted that some of the error arises from computational 

errors in the training data themselves, so the reported standard deviations include noise from 

both the computational data and the neural network approximations themselves, and does not 

account for systematic errors that arose during the calculations of the training data. The residual 

is also typically larger with increased motional narrowing (See Fig. S1); only the total variance 

reported in Table S1 is used for these calculations. 
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Fig. S1: Residuals for neural networks relative to their training data. Statistics in Table S1. 

Table S1: Neural Network Residuals Statistics. Errors relative to the calculated training data 

Network Standard Error Maximum Residual 

log(σ1) 0.01452 0.29999 

log(σ2) 0.01173 0.57731 

σ∞ 0.00138 0.07817 

 

The variance of the neural network approximation can be propagated through to the 

corresponding Δ terms using standard methods: 
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 Assuming that the errors between different networks are uncorrelated, the variance in the 

calculation of the homogeneous line width is: 

    
2

Var Var i
i i



 

    
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The gradients of Γ are calculated numerically in the neighborhoods of the algorithmically 

determined Δi parameters. The systematic errors of the calculation of Γ was not considered. 

 For experimental data, there will also be error in the CLS fit parameters and the FWHM 

of the absorption line shape. The CLS fit parameters are also highly covariant with each other: 

for instance, if one amplitude increases, other amplitudes will tend to decrease. To properly 

accommodate these correlations, the complete covariance matrix is required. Including the 

intrinsic error of the neural network calculations and the extrinsic error from the experimental 

parameters, we get for a generic FFCF parameter q and experimental parameters B: 

    Var ( ) Var ( ) ( ) Cov( ) ( )Tq B q q B q      . (S17) 

Here β is the “true value” of B, which is the value which B is normally distributed around under 

the central limit theorem. In practice, β is the actual fit value of the experimental parameters, 

neglecting error. Cov(B) is the covariance matrix of the experimental parameters, and ∇q(β) is 

the gradient of relevant FFCF parameters with respect to the experimental parameters. As in Eq. 

S16, these gradients are calculated numerically in the neighborhood of β. The variance of an 

FFCF parameter is then the sum of the intrinsic variance introduced by the neural networks 

Var(q(β)) and the variance introduced by uncertainty in the experimental parameters. 

Generally the error from the fit parameters was seen to be much larger than the intrinsic 

error from the neural networks. Additionally, these calculations demonstrate that the 

homogeneous line width Γ is the term with the highest uncertainty in these calculations. The Δ 
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terms principally have errors introduced by the intrinsic neural network variance, the error in the 

corresponding CLS amplitude, and, if the component is motionally narrowed, in the variance of 

the time constant. However, the Γ terms depend on every Δ term, which means it has error that 

arises from each neural network calculation (Eq. S16), each CLS amplitude, and each time 

constant for a motionally narrowed component. The end result is much higher relative error in 

the Γ term than the Δ terms. 

5. Calculations of a Quantum FFCF in Various Limits 

In Section V. C of the main text, the results of modifying a classical, motionally 

narrowed FFCF with two different quantum FFCF phenomena were presented. In particular, two 

limiting cases that are of importance for 2D ES as indicated by Šanda et Al:1 the Stokes shift 

from the overdamped limit and the high frequency coupling from the underdamped limit. For the 

Stokes shift, the high temperature overdamped limit was implimented with the following 

complex-valued line shape function for an FFCF component: 

  2 /2
( ) / 1tkT

g t i e t  


     
 

. (S18) 

Where λ is the coupling strength/magnitude of the Stokes shift. The line shape function can then 

be used in the response functions to calculate the absorption spectrum or 2D spectra as usual. 

Using: 

 2 2 kT
 


, (S19) 

it is clear that in the low coupling/high temperature limit, Eq. S18 goes to the classical Gaussian 

process line shape function (Eq. 6). However, Eq. S18 is itself a (weaker) high temperature 

approximation, and is only valid in the regime that kT > ħ/τ. 
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For the model calculations in Section V. C, the highly motionally narrowed FFCF of the 

CN stretch of MeSCN in H2O was used, which has parameters (Δ1 = 7.4 cm-1, τ1 = 0.4 ps, Δ2 = 

2.6 cm-1, τ2 = 1.7 ps, T2 = 1 ps). The temperature condition depends on the fastest time constant, 

so the lowest temperature that can be examined in this limit is T = ħ/kτ1 = 20 K. From this 

calculation, the greatest coupling strength, λ, could be determined for each line shape component 

by putting in T and Δ1 or Δ2 into Eq. S19 and solving for λ. This procedure gives λ1 ≈ 0.3 Δ1 and 

λ2 ≈ 0.1 Δ2. The results for T = 20 K were presented in the main text.  

For the underdamped limit, it was assumed that the oscillatory part and the diffusive part 

of the response function were separable as: 

 1 3 1 3 1 3( , , ) ( , , ) ( , , )tot w dif w vib wR t T t R t T t R t T t  (S20) 

For a total response function Rtot that is made up of a classical, diffusive component Rdif (again 

using the CN stretch of MeSCN in H2O parameters for the model calculation) and an oscillatory 

part Rvib. The line shape function for the underdamped, vibrational part is then: 

  2 2
( ) coth 1 cos sin 2

2
t tg t e t i e t i t

kT
             


 (S21) 

Where λ is still a coupling parameter, γ is the damping rate, and Ω is the oscillation frequency, 

which is much greater than γ. For the model calculations shown in the main text, T = 300 K, λ = 

0.75 ps-1, Ω = 78 ps-1, and γ = 0.5 ps-1. The effect of motional narrowing in the diffusive part was 

found to be totally independent of the choice of parameters. 
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