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Abstract: Photonic crystals of one- or two-
dimensional periodicity can be used to achieve
three-dimensional ~ photon  confinement in
dielectric waveguides with modal volumes of the
order of a cubic half-wavelength. Since photonic
crystals of low-dimensional periodicity do not
have full three-dimensional bandgaps, the
microcavities undergo increasing radiation losses
with decreasing modal volumes. High-Q resonant
modes can be generated by reducing the strength
of the photon confinement. Increasingly, larger
modal volumes lead to lower radiation losses and
more efficient coupling to waveguide modes
outside the cavity.

1 Introduction

The confinement of light to small volumes has impor-
tant consequences on the properties of optical emission.
The density of electromagnetic states, for example, can
be significantly modified, and spontaneous emission
can be either enhanced or inhibited. Confined systems
can lead to the reduction in size and power requirement
of integrated optical components, to single-mode oper-
ation of light-emitting devices, to the reduction of las-
ing thresholds in semiconductor lasers, and to higher
modulation speeds [1].

Photonic bandgap (PBG) materials, also known as
photonic crystals, offer a method of achieving strong
photon confinement within volumes on the order of (A/
2n)?, where A is the emission wavelength and n is the
refractive index {2, 3]. The localised states arise from
the introduction of local defects inside photonic crys-
tals. The large index contrast which exists between the
different materials, necessary for achieving full three-
dimensional bandgaps, causes the amplitude of the
electromagnetic fields to fall off sharply away from the
defect, resulting in strong photon confinement.

Three-dimensional crystals have the ability to com-
pletely isolate a mode from its surroundings by opening
a gap along every direction in space. The fabrication of
three-dimensional crystals, however, poses a great tech-
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nological challenge. Several different geometries have
been suggested for the fabrication of three-dimensional
photonic crystals [4-10], but crystals with lower-dimen-
sional periodicity may provide a more viable alterna-
tive for achieving strong photon confinement in
dielectric structures.

One important aspect of structures with lower-
dimensional periodicity is the coupling to radiation
modes. By reducing the dimensionality of the crystal,
and by resorting to standard index guiding to confine
light along the nonperiodic directions, one no longer
has the ability to contain light completely, and leaves
open possible decay pathways through which light can
escape.

In this paper, we investigate three-dimensional con-
finement of light in low-dimensional photonic crystals.
We show that strong three-dimensional confinement
can be provided in part by a photonic crystal, and in
part by index confinement. We present a complete
modal analysis, and investigate the coupling of con-
fined optical modes to nonguided radiation modes.

2 Slab-waveguide microcavities

We consider a dielectric slab waveguide with a two-
dimensional photonic crystal. The photonic crystal is
used to confine light in the plane of the waveguide (say
the xjy-plane). It is up to the dielectric slab itself to
keep light from escaping along the transverse direction
(the z-direction). The modes inside the structure are
highly dependent on the finite nature of the waveguide
along the z-axis. The dimensions of the waveguide con-
stitute an integral part of the problem.

We begin by investigating a uniform slab waveguide,
and consider the effect of adding a periodic array of
holes. This approach is preferable over the reverse
approach, which consists of starting from a purely two-
dimensional photonic crystal and ‘adding’ the finite
nature of the structure along the z-direction, since
purely two-dimensional structures lack information
along the third dimension, making impossible the tran-
sition from an infinite structure to a finite structure.

We choose a slab waveguide with a large refractive
index (n = 3.4) and, for simplicity, assume that the
waveguide lies in air [11; 12]. (The effects of setting the
waveguide on a substrate will be discussed below.) The
thickness of the slab is 0.5 ¢ where g is a scaling
parameter which we define later. The use of a high-
index waveguide is twofold; first, the high index pro-
vides strong field confinement along the z-direction (i.e.
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the extent of the guided-modes outside the waveguidé 1§

small) allowing a large fraction of each mode to inter-
act with the photonic erystal. Second, a high-index con-
trast is required between the dielectric material and the
holes to open a bandgap in the xy-plane.

Fig.1  Schematic diagram o electric slab waveguide of thickness 0.5 a
ang refractive index 3»3gr 4 !
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Fig.2 Band diagram of slab waveguide shown in Fig. 1

@® cven, [J odd

Solid lines correspond to guided modes; shaded region corresponds to contin-
uum of radiation modes; guided modes are labelled even or odd with respect
to xy-plane of symmetry in middle of slab

The slab is shown in Fig. 1. Its corresponding disper-
sion relation is shown in Fig. 2. The solid lines corre-
spond to guided modes; the shaded region corresponds
to the continuum of radiation (i.e. nonguided) modes.
The guided modes are labelled even and odd with
respect to the horizontal plane of symmetry in the xy-
direction, in the middle of the waveguide. We have
chosen this labelling convention over the more tradi-
tional TE and TM convention since TE and TM modes
are not strictly defined in slabs of finite extent (finite in
the x or y directions) such as strip waveguides. Odd
modes, for example, are characterised by the absence of
electric field components in the x and y directions at
the centre of the waveguide. A quantum well located at
the centre of the waveguide could be designed such that
light from the well would be unable to couple to the
odd modes. The dispersion relation is plotted using the
scalable parameter a which is defined below.

The band structure shown in Fig. 2 is continuous;
there is no upper bound on the wavevector. The intro-
duction of a periodic array of holes into the slab
waveguide has the effect of limiting the wavevector,
folding the dispersion relation into the first Brillouin
zone, and splitting the guided-mode bands. Fig. 3
shows a slab waveguide with a triangular array of
holes. The holes have a radius of 0.30 a, where a is the
lattice constant of the array. The associated band struc-

ture is shown in Fig. 4. Again, the shaded region above-
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the light line corresponds to the continuum of radiation
modes. Below the light line, modes remain perfectly
guided and propagate undisturbed through the holes
without loss. A gap can be seen between the first and
second even bands.

Fig.3 Schematic diagram of slab waveguide with two-dimensional array
of holes with radius 0.3 a, where a is lattice constant of periodic array
Parameters of slab are identical to those in Fig. 1

r M K T
(I;i?. 4  Band diagram for slab waveguide shown in Fig. 3
n.

y lowest nine bands are labelled even and odd, to avoid overloading Fig-
ure; guided modes do not exist above cut-off frequency of 0.66 c/a

The introduction of holes in the waveguide has two
other effects; first, it creates a frequency cut-off for
guided modes. Every mode above the frequency 0.66 ¢/
a is folded into the radiation continuum, and is Bragg
scattered out of the slab. The cut-off frequency is inde-
pendent of the refractive index of the slab or the size of
the holes, and depends only on the lattice geometry of
the array of holes. The other effect consists of shifting
the guided modes to higher frequencies, The shift arises
from the removal of high-index material in the holes,
resulting in a reduction of the effective index of the
waveguide. The shift has implications for mode match-
ing between the mode in the PBG section and the one
in the uniform (i.e holeless) section, and for radiation
loss from the PBG slab.

For purposes of comparison, we show in Figs, 5 and
6 the corresponding structure and band diagram for a
purely two-dimensional system. The structure can be
viewed as a slab of infinite thickness with no field vari-
ation along the z-axis. The dielectric material is chosen
to have the same index of refraction as the waveguide
above, with holes of equal size. Fig. 6 shows how
strongly the band diagram is affected by the finite
nature of the structure along the z-axis.

If a defect is introduced in the PBG structure shown
in Fig. 3, localised states can be formed in the vicinity
of the defect. Since each localised state has a specific
symmetry with respect to the mirror plane, it is possible
to create an even state between the first and second
even bands, orthogonal to odd states.
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Fig.5  Schematic diagram of purely two-dimensional photonic crystal
Dielectric material has refractive index of 3.4 and holes have radius of 0.3 «

0.4

03 | -

02 -

frequency, c/a

0
r M K r
Fig.6  Band diagram of two-dimensional crystal shown in Fig. 5

If, for example, light were to originate from a quan-
tum well located at the middle of the waveguide,
atomic transitions could be made to couple only to
even modes. Figs. 7¢ and b show the electric-field
energy density of such a localised state for the case
where a single hole has been removed from the periodic
array. The resonant state is doubly degenerate, and has
a dipole-like symmetry in the horizontal plane. Its fre-
quency is centred at 0.30 ¢/a.

Fig.7  Electric-field energy density of three-dimensionally confined state
inside slab waveguide with two-dimensional array of holes

Energy density is shown in two different planes:

a Horizontal plane in middle of waveguide

b Vertical yz-plane

Peaks in energy density are shown in black; zero energy density is shown in
white; dashed lines indicate edges of dielectric material; localised state is cre-
ated by filling single hole: quality factor Q,,, of state is 240
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Two competing decay mechanisms contribute to the
overall decay rate of this resonant state; coupling to
guided modes in the waveguide (the desired decay
mechanism) and decay to radiation modes. Because the
resonant mode is strongly localised in real space, it is
highly extended in wavevector space. Limiting the cou-
pling between this mode and the radiation continuum
is necessary to achieve efficient coupling to guided
modes. The total quality factor of the resonant mode
Q,,; 1s a measure of the optical energy stored in the
microcavity over the total cycle-average power radiated
out of the cavity. It is defined as f/Af, where Af is the
width of the resonance, and it is given by [13]:

Lt 1
Qtot ng Qrad

where 1/Q,, is a measure of the coupling to waveguide
modes and 1/Q,,, is a measure of the coupling to radia-
tion modes. To compute Q,,,, we use a finite-difference
time-domain computational scheme [14] which first
involves pumping energy into the cavity, and monitor-
ing its decay. A resonator can sustain a total of Q,,
oscillations before its energy decays by a factor e>7 (or
approximately 0.2%) of its original value. A more
detailed description of this procedure can be found
elsewhere [15]. The mode shown in Figs. 7a and b has a
quality factor Q,,, of 240.

Since the structure does not have a complete three-
dimensional bandgap, Q,,, is finite. Hence, it is not
possible to increase mode confinement and Q,,, indefi-
nitely. As the mode confinement increases, coupling to
radiation modes also increases, and eventually domi-
nates over coupling to guided modes inside the
waveguide. Moreover, coupling to radiation modes are
enhanced when the waveguide is positioned on top of a
substrate. The substrate provides a favourable escape
route, and may cause significant radiation loss. It will
be shown, however, in the following Section that strong
field confinement and low loss can be achieved when
dielectric waveguides are located on low-index materi-
als.

By itself, Q,,, is not sufficient to determine the frac-
tion of the energy which is coupled to guided modes,
and the fraction which is coupled to radiation modes.
By increasing the modal volume of the localised state,
we can reduce the coupling to radiation modes (i.e.
increase Q,,;) and, provided the coupling to guided
modes remains largely unchanged, increase Q,,. The
modal volume can be increased, for example, by creat-
ing a different type of defect in the structure. If, instead
of removing a single hole from the two-dimensional
array, we reduce the radius of seven nearest-neighbour
holes from 0.3 « to 0.2 ¢ otherwise leaving the structure
unchanged, the dipole-like mode shown in Figs. 74 and
b would become more extended in real space and its
O, would increase to 2500. (The new resonant state
has the same frequency as the one shown in Figs. 7a
and b).

(1)

3  Strip-waveguide microcavities

Instead of using a slab waveguide and a two-dimen-
sional photonic crystal, we also could have used a strip
waveguide (to confine light along two dimensions) and
a one-dimensional photonic crystal (to confine light
along the third dimension). The basic strip-waveguide
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structure-is shown in Fig. 8 with its corresponding dis-
persion relation.in Fig. 9. The waveguide consists of a
high-index strip (stich-as silicon; n = 348 at A =
1.55um) on a low-index layer (such as SiO,; n = 1.44).
The low-index layer separates the guided mode from
the underlying high-index substrate, -and allows for
strong field confinement.

Fig.8 Schematic diagram of high-index strip waveguide (n = 3.48) on
low-index layer (n = 1.44

Waveguide has dimensions 0.4 a x 1.2 @ and is single mode over wide fre-
quency range

o 1 i A
[+ 62 0.4 0.6 o8
wavevector, 2r/a
Fig.9 Band diagram of waveguide shown in Fig. 8
® even, [J odd

Solid lines correspond to guided modes; shaded region corresponds to contin-
uum of radiation modes; guided modes are labelled even or odd with respect
to xy-plane in middle of high-index strip

The guided modes are shown by solid lines in Fig. 9.
The modes are labelled even and odd with respect to
the horizontal plane in the middle of the strip
waveguide. We should point out that the horizontal
plane is not a perfect plane of symmetry for this sys-
tem. The presence of a low-index layer and a substrate
breaks the symmetry along the z-axis. However, the
mode classification based on the horizontal plane
remains approximately valid when the refractive index
of the underlying layer is low, and when the thickness
of the layer is large enough to isolate the modes from
the substrate. The horizontal plane provides a very use-
ful classification scheme. Again, in the case where light
originates from a quantum well located at the middle
of the strip waveguide, atomic transitions could be
made to couple only to even modes.

The shaded region in Fig. 9 corresponds to the con-
tinuum of radiation modes. The slope of the light line
is determined by the refractive index of the low-index
layer. This layer increases the coupling of the defect
state (which we will introduce shortly) to the radiation
modes. Fig. 10 shows a strip waveguide with an array
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of holes. The holes have the effect of .folding the
guided-mode bands into the first Brillouin zone. In
addition to showing modes lying below the light line,
Fig. 11 shows ‘guided’ bands which are folded inside
the radiation continuum. These leaky-mode bands,
which are shown by white bars, are not truly guided.
Since modes above the light line are free to leak out of
the guide, they behave like resonant states with a spe-
cific “lifetime’. The lifetime "inside the waveguide
depends on the losses, which in turn depend on the
coupling strength to the radiation modes, which, in
turn, depends on the strength of the perturbation (i.e.
the size of the holes). The bars are used to indicate that
each data point has a certain frequency width, though
no effort was made to correlate the length of the bars
to the lifetime of the modes.

Fig.10  Schematic diagram of strip waveguide with one-dimensional
array of holes of radius 0.23 a
Parameters of waveguide are identical to those in Fig. 8

frequency, cfa
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Fig.11  Band diagram for waveguide shown in Fig. 10
Guided modes do not exist above cut-off frequency of 0.35 c/a; white bars cor-
respond to leaky modes folded into radiation continuum

The solid black lines correspond to guided modes
which exist in spite of the presence of holes. The modes
do not leak out. When a defect is introduced in the
periodic array, the defect mode, which is made up pri-
marily of guided modes, couples far less to radiation
modes than it would if, say, the defect state was located
above the light line in the second-order gap.

Before showing a defect state, we show, in Figs. 12
and 13, the band diagram for a purely one-dimensional
structure. The even and odd modes are degenerate. It is
clear, upon inspection of Figs. 11 and 13 that the finite
nature of the waveguide plays a significant role in
shaping the band diagram of the one-dimensional pho-
tonic crystal.
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Fig.12  Schematic diagram of purely one-dimensional photonic crystal
High-dielectric material has refractive index of 3.48 and low-dielectric material
has refractive index of 1.00
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Fig.13  Band diagram of one-dimensional crystal shown in Fig. 12

We now investigate the radiation losses of a defect
state. We introduce a defect in the hole array, as shown
in Fig. 14, and create a state inside the bandgap. The
resonant mode is strongly confined within the micro-
cavity and has a frequency of 0.27 ¢/a. The modal vol-
ume, V, is defined by [3]:

VPrae = / P(r)d®r (2)

where P(r) is the total electromagnetic energy density
of the mode and P, is the peak value of P(r). Using
this definition, a modal volume of 0.004 «* is com-
puted, where a is the lattice constant of the periodic
hole array, which corresponds to a volume of only five
times (A/2n)3.

Fig.14  Schematic diagram of strip-waveguide microcavity
Parameters of waveguide are identical to those shown in Fig. 10

Using again a finite-difference time-domain scheme,
we compute the transmission through the structure
[14]. Results are shown in Fig. 15. The computation
shows a wide bandgap, and a sharp resonant peak with
a quality factor Q,,, of 280. Transmission outside the
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gap is large which suggests that the modes remain
guided as they propagate through the holes, and
undergo little scattering. At resonance, the coupling
efficiency exceeds 82%. The coupling occurs from the
waveguide mode via the evanescent field through the
array of holes. By increasing the number of holes, the
reflectivity of the array is increased. However, as we
increase the number of holes, we also increase the radi-
ation losses, hence reduce the throughput of the micro-
cavity. The peak transmission through the cavity is
given by:

2

Tmaa: — Qéot (3)
wy

For the structure shown in Fig. 14, we find a value for
Q. of 310. As T,,, approaches unity, Q,, becomes
equal to Q,, and, from eqn. 1, Q,,, becomes infinitely
large. In this case, the cavity mode would decay
entirely into the waveguide.

1.0

08 | .

04 F

transmitted intensity

02 F

0 | s

023 025 0.27 0.29 0.31 0.33 0.35
frequency, c/a
Fig.15  Transmission properties of waveguide microcavity shown in
Fig. 14

At resonance, transmission exceeds 82%; the three-dimensionally confined
state has quality factor Q,,, of 280

Now, by coupling an optical transition to the micro-
cavity resonance, the spontaneous emission rate can be
enhanced by a factor n over the rate without a cavity.
The expression for 7 is given as [16]:

_ Qo ( c )3 @
"= 4wV

where v is the optical transition frequency. For the spe-
cific strip-waveguide microcavity described above, the
maximum enhancement is calculated to be 35, which is
significantly larger than any enhancement yet meas-
ured. This large spontaneous emission enhancement
could lead to faster modulation of optical devices, and
to the development of zero-threshold lasers.

4 Microcavities operating above the light line

The existence of bandgaps between leaky-mode bands
above the light line (as shown in Fig. 11) suggests that
it may also be possible to create defect states above the
light line, though these defect states couple more heav-
ily to radiation modes. A demonstration of this effect
was published by Krauss et al. in 1997 [17]. They used
an Al ,Ga gAs waveguide (n = 3.5) on an Al ;5Ga gsAs
layer (n = 3.3). Instead of using holes, the authors
elected to use deep and narrow grooves. A schematic
diagram of the structure is shown in Fig. 16.

We compute the band diagram for this structure and
show the results in Fig. 17, both with and without
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grooves on the same plot. The slope of the light line is
determined by the index of AljsGagsAs. The solid
black region corresponds to guided modes. At a fre-
quency of 0.50 c/a, for example, there are 18 modes
tightly packed close to the light line. Since the mode
density is large, we did not label the modes according
to their symmetry, to avoid overloading the figure.
Moreover, the horizontal plane does not constitute a
valid plane for mode characterisation in this case since
the waveguide is highly asymmetric in the vertical
direction.

Fig.16  Schematic diagram of strip-waveguide microcavity designed to
operate above light line

Strip has thickness of 0.9 a, width of 9.0 @ and refractive index of 3.5, and lies
on layer of index 3.3; grooves are 1.6 a deep and 0.2 a long
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0 05 1.0 1.5 2.0
wavevector, 2r/a
Fig.17  Band diagram of waveguide shown in Fig. 16 with and without

grooves
Black region corresponds to guided modes in absence of grooves; at frequency
of 0.5 c/a, for example, there are 18 modes tightly packed close to light line;
white bars correspond to leaky modes folded into radiation continuum in pres-
ence of grooves; leaky mode is shown only for lowest guided mode

When grooves are added to the uniform waveguide,
every mode is folded into the radiation continuum. We
show in Fig. 17 the folded lowest-order mode. The
length of the white bars is not meant to correspond
exactly to the frequency width of the mode. By intro-
ducing a defect, the authors created a state at fre-
quency 0.49 c/a above the light line, in the third-order
gap. Although Fig. 17 shows only one folded resonant
band, several of them are present, each coupling to a
different degree with the incoming mode. If the incom-
ing mode is the lowest order waveguide mode, the larg-
est coupling should occur with the lowest-order
resonant mode.

We compute the transmission using again a finite-dif-
ference time-domain method. The simulations are car-
ried out in two dimensions since the three-dimensional
computational cell is too large. We assume that the
structure is infinite in the lateral direction (i.e. we
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assume an infinitely wide waveguide, with no field var-
iation along that direction). The two-dimensional simu-
lations resemble the case of the lowest order mode.
Results are shown in Fig. 18. The transmitted intensity
through the array of grooves is normalised to the inten-
sity in a uniform waveguide without grooves.

The edges of the third-order gap match well with
those published in [17]. The large Fabry—Perot fringes
outside the gap are due to the small number of
grooves. At resonance, the transmission efficiency is
close to 4%. The resonance is centered at 0.49 c/a, and
it has a quality factor Q,,, close to 1000. The modal
volume of the experimental structure exceeds the one
presented in the previous Section by more than two
orders of magnitude [Note 1]. While guided modes out-
side the gap propagate through the grating with an effi-
ciency of up to 65%, the resonant mode experiences
severe loss as it ‘bounces’ back and forth, roughly one
thousand times, inside the cavity before escaping. As it
spends more time inside the cavity, the resonant mode
couples increasingly to radiation modes. From eqns. 1
and 3, we find Q,, = 5000 and Q,,; = 1250. One could
increase transmission at resonance by reducing Q,,
which would have the effect of reducing the total time
light spends inside the cavity. However, if transmission
is to be made comparable to the one presented in the
previous Section, it will be paramount for Q,,; to
remain much greater than Q,,. Any reduction of the
modal volume will result in a reduction of Q,,. To
achieve a large value for both Q,,; and T,,, while
maintaining a very small modal volume, the cavity
must be operated in a gap below the light line.

1'0 L ¥ 1
0.8 .
&
§ ]
€ 0.6
o
Q
£
E 04 b
7]
C
8
02 7
0 1 A 1
0.40 0.45 0.50 0.55 0.60
frequency, c/a
Fig.18 Transmission properties of waveguide microcavity shown in
Fig. 16

Transmission at resonance is 4%; quality factor Q,,, is close to 1000; transmis-
sion could be made larger than 4% by reducing Q,,

5 Conclusion

We have presented a rigorous modal analysis of pho-
ton confinement in dielectric structures. We have
shown that strong field confinement and low radiation
loss can be achieved in microcavities using a combina-
tion of the PBG effect and index confinement. These
microcavities readily lend themselves to microfabrica-
tion, and do not require elaborate three-dimensional
lithography processing. Furthermore, by including
quantum wells inside the waveguides, these microcavi-
ties may provide a means to fabricate ultra-fast and
ultra-low-threshold optical devices.

Note 1: The lateral dimension of the resonant mode was assumed to be
equal to the width of the waveguide. This approximation should yield an
underestimate of the mode volume.
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