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ABSTRACT: We numerically demonstrate total absorption in
graphene in the near-infrared and visible wavelength ranges by
means of critical coupling with guided resonances of a photonic
crystal slab. In this wavelength range, there is no plasmonic
response in undoped graphene, so the critical coupling is
entirely controlled by the properties of the photonic crystal
resonance. We discuss the general theory and conditions for
absorption enhancement and critical coupling in a thin film and
give design rules for a totally absorbing system. We present
examples in the near-infrared and visible, using both a lossless
metallic mirror and a realistic multilayer dielectric mirror.
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Over the past decade, graphene has been intensively
studied due to its unique electronic and optical

properties.1−3 Graphene exhibits remarkably high absorption
for an atomically thin layer (∼0.34 nm thickness), but in order
to realize many high-performance graphene-based optical
devices,4−6 enhancement of absorption up to 100% is highly
desirable.
Absorption enhancement of graphene has been studied

extensively in both the visible/near-infrared and the mid- to far-
infared. In the mid- to far-infrared (corresponding to a free-
space wavelength range of approximately 5−100 μm), graphene
exhibits a strong plasmonic response.2 The plasmon modes can
be accessed from free space by use of a grating coupler, where
an unpatterned graphene monolayer is deposited on a
subwavelength dielectric grating.7−9 Alternately, by shaping
the graphene into ribbons10 or disks,11 localized surface
plasmon modes can be excited. In the latter case, absorption
at resonance reaching 100% has been demonstrated numeri-
cally. By combining patterned graphene and the high doping
achievable with the use of ionic liquids, plasmonic response at
wavelengths approaching 3 μm has been observed.12

In contrast, in the visible and near-infrared (λ < 2 μm), the
plasmonic response is absent for undoped, unpatterned
graphene.13 In this wavelength range, the absorption of
monolayer graphene is defined by the fine structure constant
α = e2/ℏc, giving a single-pass absorption A = πα ≈ 2.3%.14 In
order to significantly enhance absorption in this wavelength
regime, one can place graphene near plasmonic nanoantennas15

or place the graphene inside a resonant Fabry−Perot cavity.16,17
While graphene inside a cavity can exhibit perfect absorption,
fabrication is challenging due to the need to build a multilayer
dielectric mirror on top of the graphene.
In this work, we investigate total absorption in graphene by

critical coupling18 to a guided resonance19−25 of a photonic
crystal slab, in the visible and near-infrared regime, where

graphene does not have any plasmonic response. The
geometry, shown schematically in Figure 1, consists of

monolayer graphene on top of a photonic crystal slab, backed
by a mirror. The photonic crystal is composed of a square
lattice of air holes in a high-index dielectric. When the leakage
rate of a mode out of the slab is equal to the absorption rate of
that mode in the graphene, the system is said to be critically
coupled, and all the incident light is absorbed. We note that a
similar structure has been studied in the mid- and far-infrared
regimes. References 7−9, however, exploit the dielectric grating
to couple into the plasmon modes of graphene in the mid- and
far-infrared. In contrast, for our range of wavelengths studied,
the lack of graphene plasmons results in a design and
underlying physics that are significantly different.
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Figure 1. Schematic of an absorption enhancement system for
graphene, using either (a) a lossless metallic mirror or (b) a multilayer
dielectric Bragg mirror (1.5 pairs are shown). The high-index dielectric
is blue, yellow represents the lossless metal, and green represents a
low-index dielectric. In both cases, light is incident normally from
above. The photonic crystal is described by its thickness d, lattice
period Λ, and hole radius r.

Article

pubs.acs.org/journal/apchd5

© XXXX American Chemical Society A dx.doi.org/10.1021/ph400090p | ACS Photonics XXXX, XXX, XXX−XXX

Terms of Use

pubs.acs.org/journal/apchd5
http://pubs.acs.org/page/policy/editorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_termsofuse.html


Using the structures shown in Figure 1, with the photonic
crystal made of silicon, we show that total absorption can be
achieved in monolayer graphene at 1.5 μm. Total absorption is
achievable using either a lossless metallic mirror or a realistic
multilayer dielectric mirror. The critical coupling effect is
robust, and the frequency where 100% absorption occurs can
be easily tuned by adjusting either the slab thickness or the
lattice period. Finally, a single structure can exhibit multiple
resonances all satisfying the critical coupling condition, a
capability that is potentially useful for multispectral photo-
detection.
The paper is structured as follows. In the Theoretical

Considerations section, we review the theory behind geo-
metries for absorption enhancement in thin films and give a
brief review of the concepts of guided resonance and critical
coupling. In the Conditions To Achieve Critical Coupling
section, we present an example of total absorption in graphene
in the near-infrared and discuss the requirements to achieve
this. In the Control of Critical Coupling section, we discuss the
control of critical coupling in this structure and show several
additional examples of total absorption. Finally, we give some
details on methods in the Materials and Methods section.

■ THEORETICAL CONSIDERATIONS

One-Dimensional Geometries for Absorption En-
hancement in a Thin Film. Before we discuss our results,
we present an overview of some of the methods and
considerations for enhancing absorption in a deep subwave-
length layer. In particular, we begin by focusing on layered
structures, where each layer is infinite in two dimensions, but
has a finite thickness in the third (“transverse”) dimension.
Such structures can be referred to as one-dimensional, since the
translational symmetry is only broken along the transverse
dimension. For simplicity, we consider a wave normally
incident on the film, as shown in Figure 2.
It has long been known that the maximum single-pass

absorption of a thin absorbing layer in air is 50%.26,27 The film
in air is a two-port system. Light can be injected from either
side of the structure; each side then constitutes a port. For a
very thin film, one can understand the 50% absorption limit
from a symmetry argument: a single wave incident from one
side can be decomposed into a superposition between an even
mode, where equal amplitude waves with the same phase
illuminate the film from both sides, and an odd mode, where
the two input waves are 180° out of phase. Only the even mode
can contribute to the absorption: since the odd mode has
vanishing fields at the thin film, it cannot contribute to the
absorption. A wave incident from one side has equal power in
the even and odd modes, and therefore the maximum
absorption for single illumination cannot exceed 50%. The

absorption of monolayer graphene falls well below the
theoretical limit in the visible and near-infrared, at around 2.3%.
More recently it was pointed out that a thin lossy slab

illuminated from both sides can act as a coherent perfect
absorber, absorbing all the incident light.28 This is illustrated in
Figure 2a. In this case, the condition for total absorption is that
the determinant of S is zero, where S is the scattering matrix of
the absorbing layer. This condition is equivalent to |r| = |t|.
Considering that in the visible and near-infrared |t|2 ≈ 0.97 and
|r|2 ≈ 0 for monolayer graphene in air, one cannot construct a
coherent perfect absorber from monolayer graphene.
In order to overcome the 50% limit for a thin film

illuminated by a single source, the simplest scheme is to add
a mirror to the system. This changes the system from a two-
port system to a one-port system, since the film can be accessed
by the incident wave from only one side. In this case, the
reflection off the front of the film can be canceled by the wave
exiting the cavity made by the film and back mirror, as
illustrated in Figure 2b.
Certain lossy films are amenable to this kind of critical

coupling, where putting them on a dielectric spacer backed with
a mirror is enough to achieve total absorption.29 In fact, the
condition for achieving complete absorption in the geometry of
Figure 2b can be expressed in the simple form |r| = |r2 − t2|,
where r and t are the Fresnel reflection and transmission
coefficients of the thin film. (When including a spacer, with n ≠
1, the condition is modified to |r1| = |r1r2 − t1t2|, where r1 is the
reflection coefficient from the front of the film−spacer pair and
t2 is the transmission from the spacer through the film.) For
graphene in the visible and near-infrared, the condition for
simple critical coupling cannot be satisfied. Therefore, one in
fact cannot achieve total absorption in graphene in this way, as
evidenced by a recent numerical study.30

To achieve total absorption in graphene, the conceptually
simplest method is to to place the film inside an asymmetric
Fabry−Perot cavity, with a perfect back mirror and a partially
transmitting front mirror, as shown in Figure 2c. Total
absorption occurs when the absorption rate in the film is
equal to the rate at which energy enters the cavity, or (roughly
speaking) |t|2 = A, where t is the transmission of the front
mirror in the absence of the cavity and A is the absorption of
the film. The exact analytic condition for this case is
complicated if expressed in terms of the indices and thicknesses
of the layers since it is a five-layer problem. Also, the fabrication
can be difficult, since it may involve growing a multilayer
dielectric mirror on top of graphene.

Guided Resonance of Photonic Crystal Slabs. If one is
willing to leave the relative simplicity of one-dimensional
problems and their analytic descriptions, one can instead
employ a photonic crystal slab as the resonator, in a one-port
configuration with a mirror, as illustrated in Figure 1. In a

Figure 2. One-dimensional geometries for total absorption in a thin film, in order of increasing complexity. In each case, coherent interference causes
cancellation of the shaded outgoing wave(s). (a) Geometry for a coherent perfect absorber, where both input beams are totally absorbed. (b) Critical
coupling of a thin film with dielectric spacer and perfect mirror. (c) The film inside a Fabry−Perot cavity with partially transmitting front mirror (|r|
< 1) and perfect back mirror.
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photonic crystal slab, a correct choice of the in-plane periodicity
enables phase-matched coupling between a guided mode and
free-space radiation, creating a guided resonance.19−21 In the
vicinity of the frequency of a guided resonance, the field inside
the film can be significantly enhanced.
The field distribution for a guided resonance in the resonator

given in Figure 1a, though without the graphene layer, is shown
in Figure 3. The silicon photonic crystal slab (ε = 12.1) has
lattice period Λ = 900 nm, thickness d = 90 nm, and hole radius
r = 0.17Λ = 153 nm, and the system is illuminated from above
by a plane wave at λ = 1.5 μm. Figure 3a shows |E|2 at its
maximum in the plane of the photonic crystal (just above the
mirror), and Figure 3b shows |E|2 in cross-section at the edge of
the unit cell. The air hole and the slab boundaries are indicated
by the white lines. The peak field magnitude inside the slab is
enhanced by a factor of 4.3 × 104 over the incident wave
amplitude, while the peak field magnitude at the face of the slab
is enhanced by 1.4 × 103. The energy stored in one unit cell of
the slab as a function of frequency is shown in Figure 3c. The
normalized input power is 1 W per unit cell. This resonance has
a Q of ∼280.
If a thin lossy film with T ≈ 1 is placed on the photonic

crystal slab, it has little impact on the light entering the slab or
on the field distribution inside the slab. For example, if we
include graphene in the system of Figure 1a, the pattern of the
field distribution on resonance inside the photonic crystal slab
is largely unchnaged; however, the enhancement factors both
inside the slab and at the slab surface (where the graphene layer
sits) drop by a factor of 4 each, to 1.1 × 104 and 350,
respectively. When the leakage rate of the guided resonance out
of the slab is equal to the absorption rate in the film, we have
critical coupling, and all incident power is absorbed. We
emphasize that the phenomena of critical coupling is
completely general and could be applied to any lossy atomically
thin film, not just graphene.
As a side note, critical coupling to graphene can also be

accomplished in a two-port system utilizing an all-pass photonic
crystal filter,31 with additional structural complexity. In this
paper we focus on the geometries of Figure 1.
Review of Coupled Mode Theory. In this paper we will

account for the numerical simulations of the structures of
Figure 1 using the coupled mode theory formalism. Coupled
mode theory is used to describe the input−output properties of
a resonator,32 where direct and indirect pathways interfere
coherently. This formalism can account for both enhancement

and suppression of absorption, as well as the asymmetric Fano
line shape.33 We consider a resonator such as those shown in
Figure 1 with stored energy |a|2 in a single resonance at ω0,
which interacts with input and output waves of amplitude u and
y, respectively, with the power given by |u|2 and |y|2. The direct
pathway corresponds to reflection from the structure without
the excitation of the resonance, whereas the indirect pathway
consists of resonant excitation.
For a lossless resonator, we are free to choose our reference

plane so that the reflection coefficient from the direct pathway
is −1. If the time rate of amplitude change in the resonator with
no input wave is given by the external leakage rate γe, then it
can be shown by energy conservation and time reversibility
arguments that the energy transfer rate between the incoming
wave and the cavity and between the outgoing wave and the
cavity are both proportional to 2γe, with the phase fixed to be
real by our choice of the background reflection coefficient.
Then in the presence of material loss in the cavity as
characterized by a small intrinsic loss rate δ, the system can
be described by the equations

ω γ δ γ̇ = − − +a j a u( ) 20 e e (1)

γ= −y a u2 e (2)

This gives us the reflection coefficient
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From eq 3, we see that when the system is driven on
resonance (ω = ω0), and the external leakage and intrinsic loss
rates are the same (γe = δ), then the reflection coefficient
vanishes, and all incident power is absorbed.
In this paper we will use the guided resonance to achieve

critical coupling to graphene. While critical coupling is not a
new phenomena, photonic crystal guided resonances provide a
particularly effective mechanism for critical coupling into
graphene. The high transmittance and low single-pass
absorption of graphene in this regime minimally perturb the
behavior of the underlying resonator. Therefore, to design for
critical coupling, one can focus attention on the design of the

Figure 3. Distribution of |E|2 and stored energy for a guided resonance at 1.5 μm in a photonic crystal slab on a lossless metallic mirror (structure of
Figure 1a). The boundaries of the air hole and the slab are indicated in white. The silicon photonic crystal slab (ε = 12.1) has lattice period Λ = 900
nm, thickness d = 90 nm, and hole radius r = 0.17Λ = 153 nm. Panel a shows |E|2 at its maximum in the plane of periodicity, while panel b shows a
cross-section at the edge of the unit cell. The region below the slab is lossless metal. Panel c shows the stored energy in one unit cell of the slab (for
an input power of 1 W per unit cell) as a function of frequency in the vicinity of the guided resonance. The resonance has a Q of 280.
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photonic crystal itself. Also, since graphene absorption in this
regime is largely independent of frequency, the placement of
the guided resonance frequency is not crucial; instead,
controlling the external leakage rate is sufficient to achieve
critical coupling. In the photonic crystal slab structure, the
external leakage rate is controlled by the ratio of the hole radius
to the periodicity r/Λ, and therefore simply tuning the radius
itself is sufficient to achieve critical coupling, as we will
demonstrate in the next section. Moreover, once r/Λ is chosen,
the location of the total absorption can be adjusted over a wide
range of frequencies by adjusting either the thickness d or the
lattice period Λ, while leaving r/Λ fixed, as we demonstrate in
the Control of Critical Coupling section.

■ CONDITIONS TO ACHIEVE CRITICAL COUPLING
Critical coupling is demonstrated in Figure 4a (green curve) for
graphene on a photonic crystal slab backed by a lossless
metallic mirror (the structure of Figure 1a). The slab is silicon
(ε = 12.1) with an array of air holes on a square lattice, with
lattice constant Λ = 900 nm, thickness d = 90 nm, and hole
radius r = 0.17Λ = 153 nm. In addition to being easy to
fabricate, square lattice photonic crystals have the attractive
property of being polarization-independent at normal in-
cidence, due to their 90° rotational symmetry. The total
absorption occurs at 0.667 μm−1, or 1.5 μm, and the line width
(full width at half-maximum) is 0.0064 μm−1, or 14 nm.
In order to achieve total absorption, several design principles

were considered in the system design.
First, the backing mirror should be as close to perfect as

possible, since any transmission through it represents energy
leakage out of the system, and this energy therefore cannot be
absorbed. For the result in Figure 4a, we used a lossless metal
mirror. (We demonstrate critical coupling with a dielectric
mirror in the Control of Critical Coupling) section.
Second, the lattice constant Λ, in addition to the requirement

for enabling an incident wave to excite a guided resonance,
must be smaller than the wavelength of interest. In our design,
we chose Λ = 900 nm, to stay below the target wavelength of
1.5 μm. The lattice of air holes acts as a 2-D grating. Any
diffraction orders beyond 0 will scatter the incident light off
normal and thus provide unrecoverable loss channels in a
planar structure. In contrast, for our choice of a subwavelength
grating, only the zero-order (forward) mode will propagate. All
higher orders will be evanescent.
Finally, for ease of tuning, it is advantageous to keep the

resonator modes to zero-order in the transverse (thickness)

direction. A lower-order guided resonance mode has a better
overlap with the graphene layer compared with higher-order
modes and hence a larger intrinsic loss rate δ. Consequently,
using a lower-order guided resonance to achieve critical
coupling requires a lower external quality factor, which
increases the operating bandwidth and provides better
tolerance to fabrication errors. Therefore, in our design we
chose the slab to be 90 nm thick, a factor of 10 less than Λ, to
ensure that higher-order transverse modes are cut off.
The critically coupled spectrum is compared to the results

from coupled-mode theory in Figure 4b. We fit the spectrum of
the total energy stored near a guided resonance as a Lorentzian
function of frequency. For the slab without graphene, the
center frequency of the Lorentzian gives the resonance
frequency ω0, and the half-width at half-maximum gives the
external leakage rate γe. When we repeat the calculation with
graphene, the half-width at half-maximum gives us γe + δ, and
hence we obtain the intrinsic loss rate δ. Once the parameters
are obtained, we verify them by calculating the system
absorption using eq 4. In the vicinity of the resonance, coupled
mode theory models the system very well, as shown in Figure
4b. The deviation between the theory and the simulation occurs
only in the regions away from resonance, since the theory
assumes a lossless direct (nonresonant) pathway and gives zero
loss away from the resonance. Our results therefore indicate
that coupled mode theory can provide an adequate description
for the design of critical coupling in this system.

■ CONTROL OF CRITICAL COUPLING
In the photonic crystal guided resonance system, the external
leakage rate γe is mostly controlled by the ratio r/Λ between
the radius of the holes and the periodicity. Therefore, adjusting
r/Λ enables us to tune through critical coupling, as shown in
Figure 4a. For a fixed periodicity Λ = 900 nm, as r is increased
from 81 nm to 234 nm, the external leakage rate γe increases. As
a result, the total resonant line width γe + δ increases as seen in
Figure 4a, since the intrinsic loss rate δ of the resonance is
largely independent of the radius. In this range of radius, the
system evolves from undercoupling, through critical coupling,
to the overcoupling regime. Adjusting r also changes the
resonant frequency of the system; increasing the hole radius
pushes the resonance frequency higher.
Once we have achieved critical coupling by radius tuning, we

can adjust the resonance frequency by changing the thickness d
and/or the lattice period Λ, while maintaining the same r/Λ
ratio. This is possible because the external leakage rate γe of the

Figure 4. Demonstration and analysis of critical coupling. The simulated structure is shown in Figure 1a. The Si photonic crystal slab (ε = 12.1) has
lattice spacing Λ = 900 nm and thickness 90 nm and is backed by a lossless metallic mirror. Panel a shows the transition from undercoupling,
through critical coupling, to overcoupling, by adjusting hole radius r. Total absorption occurs at 1.5 μm, for r = 0.17Λ = 153 nm. The critically
coupled resonance is analyzed using coupled mode theory in panel b. The excellent fit in the vicinity of the resonance validates the theory.
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zero-order resonances is relatively stable with respect to either d
or Λ, and the absorption of graphene is essentially independent
of frequency in this regime. These factors combine to provide a
nearly ideal example of critical coupling.
As thickness is increased, the resonance frequency is pushed

down, as shown in Figure 5a. Similarly, increasing Λ pushes the
resonance to longer wavelength (lower frequency), as shown in
Figure 5b. In both cases, critical coupling is maintained in spite
of significant change of the resonant frequencies. In Figure 5,
the frequency of total absorption is shifted by the same amount
as in Figure 4a, by changing the thickness by ±4% (Figure 5a)
or the lattice spacing by ±6% (Figure 5b) while maintaining
critical coupling. In Figure 5a, the frequency of total absorption
is tuned over a range of 4γe, which shows that the critical
coupling is a fairly robust effect for such a resonant system.

Figure 6a shows the spectrum for the same system as in
Figure 4b, with Λ = 900 nm, r/Λ = 0.17, and d = 90 nm, but
over a broader frequency range. As can be seen, there are two
resonances that are critically coupled and several others that are
close. Due to the frequency-independent absorption of
graphene and the stable Q of these resonances, one can
simultaneously tune the leftmost two resonances through critical
coupling, as shown in Figure 6b. Therefore, we have shown that
a single structure can simultaneously achieve critical coupling at
multiple resonances, which is an important consideration for
multispectral light detection.
In this paper up to now, we have chosen a lossless metallic

mirror for simplicity. Here we show that the same critical
coupling effect can be achieved with a more realistic dielectric
Bragg mirror as well. Figure 7a shows critical coupling for the

Figure 5. Adjusting the location of the guided resonance while maintaining critical coupling. (a) Λ = 900 and r/Λ = 0.17 while d is allowed to vary.
(b) d = 90 nm and r/Λ = 0.17, while Λ is allowed to vary. Due to the relatively stable resonance Q and graphene’s constant absorption, the
normalized hole radius does not need to be retuned in order to maintain critical coupling.

Figure 6.Multiple resonances can be simultaneously tuned through critical coupling. The silicon slab has Λ = 900 nm, thickness d = 90 nm, and hole
radius r = 0.17Λ = 153 nm. The spectrum is shown in panel a, with several critically coupled peaks visible. Simultaneous tuning of two adjacent
resonances through critical coupling by adjusting the hole radius is shown in panel b.

Figure 7. (a) Total absorption for a silicon photonic crystal with 5.5-pair dielectric Bragg mirror, as illustrated in Figure 1b. The photonic crystal has
d = 90 nm, Λ = 900 nm, and r = 0.21Λ = 189 nm. (b) Critical coupling in the visible (λ = 566 nm), using Ta2O5 photonic crystal (ε = 4.4) and
lossless metallic mirror. This system has d = 220 nm, Λ = 390 nm, and r = 0.317Λ = 123 nm.

ACS Photonics Article

dx.doi.org/10.1021/ph400090p | ACS Photonics XXXX, XXX, XXX−XXXE



structure illustrated in Figure 1b. Using d = 90 nm, Λ = 900
nm, and r = 0.21Λ = 189 nm, we can achieve A = 0.996 by
using a Bragg mirror with only 5.5 pairs, composed of alternate
layers of Si (ε = 12.1) and SiO2 (ε = 2.1). The mirror is
centered at λ0 = 1.5 μm, and the layer thicknesses were chosen
as λ0/4n, where n is the refractive index of the layer in question.
Using this Bragg mirror, the total system is under 2 μm thick,
or just over 4/3 free-space wavelength. In practice, the use of a
dielectric Bragg mirror is likely preferable to the use of a real
metal mirror (for example a few hundred nanometers of Au),
because the proximity of the metal to the photonic crystal can
easily lead to parasitic absorption in the metal exceeding the
absorption in the graphene.
For illustration purposes we have focused on the near-

infrared wavelength range near 1.5 μm. The same critical
coupling concept applies equally to the visible wavelength
range, in spite of the fact that the available range of index
contrast for lossless dielectrics is much larger in the near-
infrared. In Figure 7b, we give an example of total absorption at
1.767 μm−1, or 566 nm. The losses in silicon become
appreciable for wavelengths shorter than about 1 μm, and
silicon becomes opaque in the visible. Therefore, we used
tantalum pentoxide (Ta2O5) for the photonic crystal, which is
lossless in this regime, but has a relatively high dielectric
constant (ε = 4.5). The structure in Figure 7b has d = 220 nm,
Λ = 390 nm, and r = 0.317Λ = 123 nm, backed by a lossless
metallic mirror.
Finally, in Figure 8 we show the angular dependence of the

critically coupled structure from Figure 4a. We fix the parallel
component of the wave vector of the incident plane wave to be
along the [10] direction, but vary the angle of incidence for the
input beam, for both s-polarization (electric field perpendicular
to the plane of incidence; Figure 8a) and p-polarization
(electric field parallel to the plane of incidence; Figure 8b). For
both polarizations, there are broad angular ranges where strong
absorption occurs. For the s-polarized case, the lowest-order
resonance near 0.667 μm−1 (1.5 μm) exhibits minimal
frequency shift as a function of angle, until around 40°, while
the higher-order resonance near 0.75 μm−1 exhibits frequency
splitting. In contrast, for p-polarization (Figure 8b), both
resonances exhibit frequency splitting and a substantial shift of
resonance as a function of angle.
In conclusion, we have shown that through the use of a

photonic crystal resonator, the absorption of monolayer
graphene can reach 100% in the near-infrared and visible,
through the mechanism of critical coupling. The system under

study has robust performance, is simple to fabricate, and can be
made in an all-dielectric (lossless) form. The present work
could be directly applied in the design of advanced photo-
detectors and modulators with tiny dimensions. In addition, the
concept could be extended to other two-dimensional materials,
such as graphane (in which an H atom is chemically bonded to
each C atom) or MoS2.

■ MATERIALS AND METHODS

Graphene can be modeled either as a conductive film with
complex conductivity and vanishing thickness or as a thin
anisotropic layer with complex refractive index in-plane, and n
= 1 in the transverse direction. (In practice, the thickness is so
small that the anisotropy can in general be ignored.) In our
calculations we used the latter approach, with n = 3 + j5.446λ/3
μm−1 for the refractive index of graphene.34 The graphene
thickness is taken as 0.34 nm. All simulations in this work were
performed using the S4 implementation35 of the rigorous
coupled wave analysis (RCWA) method.36 We used ε = 12.1
for silicon, ε = 2.1 for SiO2, and ε = 4.5 for Ta2O5.
Here we assumed that there is no Pauli state-blocking effect

near the wavelength of 1.5 μm. Xia13 has noted that with a
chemical potential of −350 meV, as appropriate for an as-
prepared graphene sample grown by chemical vapor deposition,
the Pauli state-blocking effect becomes significant for wave-
lengths longer than 1.43 μm, slightly reducing graphene’s
single-pass absorption. We expect that such Pauli state-blocking
effects can be suppressed at 1.5 μm through a different choice
of chemical potential. Furthermore, by dynamically adjusting
the chemical potential via electrostatic gating, the total
absorption in the critically coupled resonator could be
modulated, since adjusting the lossy layer’s optical properties
can move the system either toward or away from the critical
coupling condition, thereby providing strong modulation of the
absorption.
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