Effects of Local CO₂ Domes and of Global CO₂ Changes on California's Air Pollution and Health Mark Z. Jacobson Atmosphere/Energy Program Dept. of Civil & Environmental Engineering Stanford University Environmental Protection Agency Hearing on California Waiver Washington, DC, March 5, 2009 ## Reasons Used to Deny California's Previous Waiver Request Stephen L. Johnson, U.S. EPA Administrator, Federal Register, Mar. 6, 2008. - 1) Globally-emitted CO₂ does not affect California's health more or less than it affects overall U.S. health. - 2) Because CO₂ becomes well-mixed in the atmosphere, local California CO₂ emissions don't affect California's air pollution any more than CO₂ emissions from outside of California affect California's air pollution. No scientific study has shown either of these arguments to be correct. One study, which has not been challenged, shows by cause and effect that California's health is disproportionately damaged. Another now shows that local CO₂ enhances local air pollution and health. ### Studies Linking Global Warming to Enhanced U.S. Ozone Air Pollution Thompson et al., Atmos. Environ., 23, 519-532, 1989 Sanderson et al., J. Geophys. Res., 30, 1936, 2003 Mickley et al. GRL, 31, L24103, 2004 Stevenson et al., Faraday Disc., 130, 1-17, 2005 Murazaki and Hess, 111, D05301, 2006 Liao et al., J. Geophys. Res., 111, D12304, 2006 Brasseur et al., J. Clim 3832-3951, 2006 Unger et al., J. Geophys. Res., 111, D12313, 2006 Nolte et al., J. Geophys. Res., 113, D14307, 2008 Jacobson and Streets, J. Geophys. Res., in press, 2009 http://www.stanford.edu/group/efmh/jacobson/ Influence_of_futureanthropogenicemissions.html ### Studies Showing Sensitivity of Ozone or Organic Gases to Temperature in California Aw and Kleeman, J. Geophys. Res., 108, 4365, 2003 Steiner et al., J. Geophys. Res., 111, D18303, 2006 Kleeman, Climatic Change, 87, S273-S292, 2008 Motallebi et al., J. Climate Change, 87 S293-S308, 2008 ### Studies Linking U.S. Temperature Increases to Ozone Health Effects Knowlton et al., Env. Health Persp., 112, 1557-63, 2004 Bell et al. Climatic Change, 82, 61-76, 2007 Study Showing Cause and Effect Link Between Global CO₂ Emissions and U.S. Ozone and PM Health Effects Through Feedbacks to T, H₂O, Meteorology -- Different Impacts in Calif. v. U.S. Jacobson, Geophys. Res., Lett., 35, L03809, 2008 #### Increases in H₂O and Temperature Both Increase Surface Ozone in Polluted Air But Not Clean Air California has 6 of the 10 most polluted U.S. cities \rightarrow Suffers the largest impact of higher T, H₂O among states. The impact will still be largest in California even with 60% reductions in vehicular emissions. ### **Changes Resulting From Historic CO₂ Alone** 3-D simulations \rightarrow CO₂ increases temperature, water vapor, precipitation, biogenic organics, carcinogens, particles ### **Changes Resulting From Historic CO₂ Alone** CO₂ increases particles, ozone Additional U.S. pollution deaths/yr per 1.8 °F (1 K) +1000 (350-1800) 40% due to ozone; 60% due to aerosol particles 30% of deaths in California, which has 12% of U.S. population Additional world deaths/yr per 1.8 °F (1 K) +21,600 (7400-39,000) ### Data Studies Showing CO₂ Domes in Cities Idso et al., Phys. Geography, 19, 95-108, 1998 Idso et al., Atmos. Environ., 35, 995-1000, 2001 Gratani and Varone, Atmos. Env., 39, 2619-2624, 2005 Newman et al., J. Geophys. Res., 113, D23304, 2008 Rigby et al., Atmos. Environ., 42, 8943-8953, 2008 ### Measured CO₂ in a City #### Downtown Salt Lake City (420-440 ppmv) Salt Lake City Global background 385 ppmv Kennecott (390-395 ppmv) http://co2.utah.edu/ ### Aug-Oct L.A. Changes Due to Local CO₂ 3-D model results - numbers in parentheses are population-weighted values Change in surface H₂O Change in column CO₂ from local CO₂ emissions "CO₂ Dome" CO₂ emissions increase population-weighted column water vapor ### **Aug-Oct L.A. PM_{2.5} Deaths From CO₂ Dome** Numbers in parentheses are population-weighted values Change in surface PM_{2.5} #### Additional PM deaths/yr CO₂ emissions increase population-weighted PM_{2.5} and PM_{2.5} deaths ### Aug-Oct L.A. O₃ Deaths From CO₂ Dome Numbers in parentheses are population-weighted values CO_2 emissions increase population-weighted O_3 and O_3 deaths -118 -116 -119 # Spatial Correlation Between Increased Local CO₂ and Increased Local O₃ (left) & PM_{2.5} (right) in Los Angeles ### Feb-Apr L.A. PM_{2.5} Deaths From CO₂ Dome Numbers in parentheses are population-weighted values Change in surface PM_{2.5} #### Additional PM deaths/yr CO₂ emissions increase population-weighted PM_{2.5} and PM_{2.5} deaths ### Feb-Apr L.A. O₃ Deaths From CO₂ Dome Numbers in parentheses are population-weighted values Additional O₃ deaths/yr Change in surface O₃ CO_2 emissions increase population-weighted O_3 and O_3 deaths ## 1-Year Changes in California Due to Local CO₂ Numbers in parentheses are population-weighted values CO₂ emissions increase population-weighted temperatures, water vapor ### 1-Year Changes Due to Local CO₂ Numbers in parentheses are population-weighted values CO₂ emissions increase population-weighted O₃ and O₃ deaths ### 1-Year Changes Due to Local CO₂ Numbers in parentheses are population-weighted values CO₂ emissions increase population-weighted PM_{2.5} and PM_{2.5} deaths -125 -120 # Spatial Correlations Between Increased Local CO₂ and Increased Temp. (left) & H₂O (right) in California ## Spatial Correlations Between Increased Local CO₂ and Increased O₃ (left) & PM_{2.5} (right) in California # Spatial Correlations Between Increased H_2O and Increased O_3 (left) & $PM_{2.5}$ (right) in California ### Correlation Between Wildfires and Local Ozone Increases Jaffe et al., Environ. Sci. Technol, 42, 5885-5891, 2008 Each 1 million acres burned increased regional O₃ by 2 ppbv ### Correlation Between Higher Temperatures Temperatures and Wildfire Increases Westerling et al., Science, 313, 940-943, 2006 #### Summary Locally-emitted CO_2 produces CO_2 domes, which increase local ozone and $PM_{2.5}$ premature deaths in California by ~50-100/yr. Thus, reducing locally-emitted CO_2 will reduce local air pollution and mortality. This result contradicts the basis for all previous local air pollution regulation worldwide, which has ignored CO_2 . Globally-emitted CO_2 increases temperatures and water vapor, which increase ozone and $PM_{2.5}$, increasing U.S. annual air pollution deaths by about 1000 (350-1800) and cancers by 20-30 per 1 K rise in CO_2 -induced temperatures, with 40% due to O_3 and 60% due to O_4 . Increases in annual worldwide deaths are ~22,000 (7400-39,000) per 1 K. Ozone and O_4 from wildfires triggered by higher temperatures due to O_4 should enhance this death rate. 30% of the additional U.S. deaths from global CO₂ changes occur in California, which has 12% of the population. These deaths are occurring today, as temperatures have risen 0.75 K. Thus, enhanced global CO₂ damages California more than it damages other states. ### Modeled (w/ & w/o emCO₂) vs. Obs L.A. O₃ Solid=with emCO₂; dashed=no emCO₂; dots=data (EPA)