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A numerical scheme for treating fluid–land boundaries in inviscid shallow water flows is
derived that approximates boundary profiles with piecewise linear segments (shaved cells)
while conserving the domain-summed mass, energy, vorticity, and potential enstrophy.
The new scheme is a generalization of a previous scheme that also conserves these quan-
tities but uses stairsteps to approximate boundary profiles. Numerical simulations are car-
ried out demonstrating the conservation properties and accuracy of the piecewise linear
boundary scheme (the PLS) for inviscid flows and comparing its performance with that
of the stairstep scheme (the STS). It is found that while both schemes conserve all four
domain-summed quantities, the PLS generates depth and velocity fields that are one-half
to one order more accurate than those generated by the STS, and it generates vorticity
and potential vorticity fields that are at least as accurate as those generated by the STS
and often more accurate. The higher accuracy of the PLS is due to its ability to generate
smoother flow fields near boundaries of arbitrary shape.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Quadratically conservative numerical schemes (i.e. schemes that conserve the domain sums of the energy and enstrophy
or potential enstrophy) have been shown to be effective in eliminating nonlinear instabilities, controlling the accumulation
of truncation errors in the smallest resolved scales, and reducing biases in the flow statistics in long-term simulations.
Ketefian and Jacobson [1] (henceforth KJ09) present a brief review of the literature on such schemes. As they point out,
one aspect of these schemes that has not been studied in detail is their application to domains with arbitrarily shaped
fluid–land boundaries. For this reason, KJ09 developed a boundary scheme for the shallow water equations (SWEs) that con-
serves the domain-summed mass, energy, vorticity, and potential enstrophy in the presence of arbitrary boundaries. The
scheme expands upon that of Arakawa and Lamb [2] (henceforth AL81), which conserves these quantities away from bound-
aries. Although KJ09 demonstrated that this scheme is an improvement (both in terms of its conservation properties and its
accuracy) over several other boundary schemes, it has the disadvantage of using stairsteps to approximate boundary profiles.
We consider the stairstep approximation a disadvantage because, as demonstrated in various studies [3–5], it is too crude an
approximation of the boundary profile and thus can give rise to inaccurate solutions. In KJ09, this is reflected in the fact that
the L1 error norms of the fluid depth h and the velocity components u and v fail to converge with decreasing grid size (see
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Table 1 of KJ09 under ‘‘BVEM’’), indicating that next to boundaries, these quantities are not converging. (Note that the L1
error norm of a quantity is equal to the largest absolute error in that quantity throughout the flow domain; see Appendix C.)

In atmosphere and ocean models that use the altitude coordinate (as opposed to the terrain-following r coordinate) or that
do not use unstructured grids, the solution to the stairstep problem has been to use shaved cells or partial steps (the latter being
a special case of shaved cells; see, e.g. Fig. 4 of [3]) [3,4,6–8]. (In the literature, the shaved cell method is also referred to as the
cut cell method, the embedded boundary method, and the Cartesian grid method; see [9].) Adcroft et al. [3] demonstrated for
three test cases (advection of a scalar, large scale flow involving the topographic b effect, and flow over a Gaussian bump) that
the shaved cell approximation is more accurate than the partial step approximation, which in turn is more accurate than the
stairstep approximation. (Note that the latter is referred to in [3] as the full step approximation.) Similarly, Pacanowski and
Gnanadesikan [4] found that their ocean model simulated topographic waves far more accurately with partial steps than with
stairsteps, and Lu et al. [5] found partial steps to give a much more accurate solution than stairsteps in a simulation of channel
flow with a sloping bottom. Other researchers have come to similar conclusions regarding shaved cells or partial steps and have
incorporated them into their models. These include Steppeler et al. [7], Biastoch et al. [10], Skyllingstad and Wijesekera [11],
Spall and Pickart [12], Kohl and Stammer [13], Gnanadesikan et al. [14], Menemenlis et al. [15], and Walko and Avissar [8].

Various authors have derived quadratically conservative schemes on non-rectangular and irregular grids (which can poten-
tially be used to approximate boundary profiles more accurately than stairsteps). These include Sadourny et al. [16], Morton
and Roe [17], Ringler and Randall [18,19], Bonaventura and Ringler [20], and Sommer and Névir [21]. However, none of these
studies explicitly consider fluid–land boundaries. Studies that do consider boundaries include Salmon and Talley [22], Adcroft
et al. [3], Perot [23], and Salmon [24,25]. Salmon and Talley [22] extend the mass, energy, vorticity, and enstrophy (but not po-
tential enstrophy) conserving scheme of Arakawa [26] for 2D nondivergent flow to include concave and convex corners and
boundaries situated at arbitrary angles. Adcroft et al. [3] use shaved cells to improve the representation of topography in a
3D incompressible ocean model. The finite-volume approach they use conserves mass, momentum, and energy but not vortic-
ity, enstrophy, or potential enstrophy. Perot [23] derives discretizations of both the flux and rotational forms of the incompress-
ible Navier–Stokes equations on unstructured grids and shows results from simulations in a bounded square domain. The
discretization of the flux form conserves mass, momentum, and kinetic energy and the one of the rotational form conserves
mass, kinetic energy, and vorticity (but neither conserves enstrophy or potential enstrophy). Finally, in [25], Salmon extends
his mass, energy, vorticity, and potential enstrophy conserving scheme for the SWEs in unbounded domains [24] to domains
with boundaries. He presents simulations of one dimensional (1D) flow in a channel and two dimensional (2D) flows in a square
basin. In both cases, the boundaries are aligned with grid lines. No simulations are presented with arbitrarily shaped bound-
aries that cross the grid lines, but the paper states that ‘‘it would be easy in principle to adapt our method to a domain covered
by arbitrarily shaped triangles’’ and points out that the equations for the scheme applied to triangular cells have been derived in
part in [24]. One potential drawback of this scheme is the need to solve elliptic equations at each time step.

To improve on the accuracy of the stairstep boundary scheme of KJ09 (henceforth the STS) and to obtain depths and
velocities that converge to the exact solution near boundaries, in this paper we use the shaved cell method to better approx-
imate boundary profiles. In particular, we will derive a new scheme that uses piecewise linear line segments to approximate
boundaries while maintaining all four conservation properties of the AL81 scheme. We will refer to this new boundary
scheme as the piecewise linear scheme (PLS). The PLS is a generalization of the STS obtained by redefining some of the incre-
mental grid distances and areas at and near boundaries in the STS. This generalization is performed in such a way that the
conservation proofs in KJ09 for the STS remain valid for the PLS.

This paper is organized as follows. In Section 2, we briefly review the continuous SWEs and their conservation properties.
In Section 3, we present the grid layout and variable arrangement used in the PLS, and in Section 4, we present the discrete
equations. In Section 5, we discuss the conservation properties of the PLS, and in Section 6, we perform numerical tests to
compare the conservation properties of the PLS with those of the STS. These tests indicate that both schemes conserve all
four domain-summed quantities equally well. In Section 7, we perform grid refinement studies (GRSs) on a set of ten test
cases to compare the accuracy of the PLS with that of the STS. These GRSs indicate that the PLS simulates the depth h
and the velocity components u and v more accurately than the STS by 0.5 to 1 order in all test cases, and it simulates the
vorticity f and potential vorticity q about as accurately as the STS in some cases and more accurately in the remaining cases.
Finally, in Section 8, we summarize our results and present our conclusions.

2. Shallow water equations

The SWEs for flow on a flat plane or on the surface of a sphere can be expressed in 2D orthogonal curvilinear coordinates
(n,g) as follows [27,1]:
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(1) is the continuity equation, and (2) and (3) are the rotational or vector-invariant forms of the momentum equations
[28,23]. h is the depth of the fluid layer, and u and v are the layer-averaged velocity components along curves of constant
g and n, respectively, on the plane or sphere on which the flow evolves. q, K, and U are the potential vorticity, the kinetic
energy per unit mass, and the geopotential, respectively, defined as q = f/h, K = (u2 + v2)/2, and U = g(h + hbath). Here, f is
the absolute vorticity, given by
Fig. 1.
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where f is the Coriolis parameter and frel is the relative vorticity, defined as
frel ¼ mn
@

@n
v
n

� �
� @

@g
u
m

� �� �
ð5Þ
Sn and Sg are the n and g components of a momentum source (i.e. forcing) vector S and have units of stress. Also,
g = 9.81 m s�2 is the gravitational acceleration, and hbath(n,g) is the height of the bathymetry measured from some reference
surface. Finally, m and n are the inverse scale factors in the n and g directions, respectively. They are defined as follows. For a
small change dn in the n coordinate, m is the ratio of dn to the corresponding change in physical distance dsn along a curve of
constant g, i.e. m = dn/dsn. Similarly, n = dg/dsg, where dsg is the change in physical distance along a curve of constant n cor-
responding to a change dg in the g coordinate. For example, in Cartesian coordinates (n,g) = (x,y), m = n = 1; in cylindrical
coordinates (n,g) = (r,h), m = 1 and n = 1/r; and in spherical coordinates (n,g) = (k,/), m = 1/(acos/) and n = 1/a (where k is
longitude, / is latitude, and a is the radius of the sphere on which the flow evolves).

We take (1)–(3) to be valid in a domain Xf in the ng plane that is a subset of a rectangular domain X bounded by n = nmin,
n = nmax, g = gmin, and g = gmax (Fig. 1). Xf is the portion of X that consists of fluid (hence the ‘‘f’’ subscript). The rest of X
consists of land bodies. We assume periodic boundary conditions along the edges of X. Thus, in effect, X is repeated infi-
nitely many times in the ng plane in both the n and g directions. Since the boundaries of land bodies are rigid walls, the
no-flux condition must be enforced at such boundaries.

We can use (1)–(3) to derive the following evolution equations for the energy TE (where the ‘‘T’’ stands for ‘‘total’’, since
we are considering the sum of the kinetic and potential energies), vorticity f, potential vorticity q, and potential enstrophy P:
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Rectangular domain X in the ng plane consisting of a fluid portion Xf and several land bodies of arbitrary shape. The shaded regions are land and the
gion is fluid. Periodic boundary conditions are assumed along the edges of X. The shallow water equations (1)–(3) are valid in Xf but not within the
dies.
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Here, TE and P are given by
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and the vorticity source term S(f) is given by
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Since the advective terms in (1), (6), (7) and (9) are in flux form, their integrals over Xf vanish. This is true whether or not X
contains land bodies. Thus, in the absence of sources and sinks of momentum (i.e. when Sn = Sg = 0), the SWEs conserve the
domain integrals of mass, energy, vorticity, and potential enstrophy.

3. Grid layout and variable arrangement

In this section, we describe the grid layout and the arrangement of the dependent variables on the grid, both for the STS
and the PLS.

3.1. Grid layout

We discretize the rectangular region X in the ng plane into I grid boxes in the n direction and J grid boxes in the g direc-
tion. Each grid box has size Dn = (nmax � nmin)/I in the n direction and size Dg = (gmax � gmin)/J in the g direction. The grid
boxes are centered at coordinates (ni,gj), where ni = nmin + (i � 1/2)Dn for i = 1, . . . , I and gj = gmin + (j � 1/2)Dg for j = 1, . . . , J.
The eastern/western faces of these grid boxes (i.e. the faces that are parallel to lines of constant n) have n coordinates
ni+1/2 = nmin + iDn for i = 0, . . . , I, and the northern/southern faces (i.e. the faces that are parallel to lines of constant g) have
g coordinates gj+1/2 = gmin + jDg for j = 0, . . . , J. [We refer to the former as eastern/western faces and the latter as northern/
southern faces because in the special case of spherical coordinates, n = k represents the east–west direction (longitude)
and g = / represents the north–south direction (latitude). This is of course not necessarily the case in other coordinate sys-
tems.] We will refer to the lines n = ni+1/2 and g = gj+1/2 in the ng plane as the grid lines.

3.2. Variable arrangement away from boundaries

Away from fluid–land boundaries, we use the AL81 scheme to discretize the SWEs [2,1]. This scheme uses the staggered
Arakawa C-grid. On this grid, h is defined at grid box centers [i.e. at coordinates (ni,gj)], u is defined at the midpoints of east-
ern/western box faces [i.e. at (ni+1/2,gj)], v is defined at the midpoints of northern/southern box faces [i.e. at (ni,gj+1/2)], and f
is defined at box corners [i.e. at (ni+1/2,gj+1/2)].

When X contains land bodies, we can use either the stairstep scheme (STS) or the piecewise linear scheme (PLS) to
approximate fluid–land boundary profiles. The variable arrangement in the STS is described in detail in KJ09, but for conve-
nient comparison, we briefly summarize it below (Section 3.3). We then give a detailed description of the variable arrange-
ment in the PLS (Section 3.4).

3.3. Variable arrangement in the STS

As described in KJ09, in the STS, a given grid box is assumed to consist either entirely of fluid or entirely of land. If half or
more of the area of a grid box in the ng plane lies in fluid, then, in the model, that box is assumed to consist entirely of fluid.
Otherwise, it is assumed to consist entirely of land. This is shown in Fig. 2. We can see from this figure that in the STS, the
model fluid–land boundaries always fall on grid box faces. As in the continuous equations, in the STS, the dependent vari-
ables h, u, v, and f are defined in fluid and at boundaries, but they are undefined in land. Note that in the STS, we do not need
to make any modifications to the variable arrangement on the C-grid to account for the presence of land; whether a fluid grid
box is far from boundaries or is adjacent to one, h is still defined at the box center, u is still defined at the midpoints of the
eastern and western box faces, v is still defined at the midpoints of the northern and southern box faces, and f is still defined
at the four box corners. We will refer to these locations, respectively, as h-points, u-points, v-points, and f-points. Also, we
will refer to h-, u-, v-, and f-points that lie in fluid as fluid h-, u-, v-, and f-points; to h-, u-, v-, and f-points that lie in land as
land h-, u-, v-, and f-points; to u- and v-points that lie on box faces that coincide with the model boundaries as boundary
u- and v-points; and to f-points that lie at the endpoints of such box faces as boundary f-points. To enforce the no-flux
condition, we set u and v at boundary u- and v-points to zero, and to obtain f at boundary f-points in a way that conserves
vorticity and potential enstrophy, we solve specially formulated evolution equations for the vorticity [1].

3.4. Variable arrangement in the PLS

In the PLS, the model boundaries consist of the line segments joining the points of intersection of the exact boundary and
the grid box faces. This is shown in Fig. 3. We can see from this figure that in the piecewise linear case, the grid contains not



Fig. 2. Computational grid in the ng plane near a fluid–land boundary showing the distribution of fluid and land grid boxes in the stairstep scheme (STS). The
thick dashed curve is the exact boundary, and the set of thick solid line segments is the model boundary. The shaded boxes are land and the clear ones are
fluid. The dots denote h-points, the arrows denote u- and v-points, and the ‘‘�’’s denote f-points. ‘‘0’’s denote boundary u- and v-points. At such points, u and v
are set to zero to enforce the no-flux condition. Circled ‘‘�’’s denote boundary f-points, i.e. f-points at which an evolution equation is solved to obtain f.

Fig. 3. Computational grid in the ng plane near a fluid–land boundary showing the distribution of fluid, boundary, and land grid boxes in the piecewise
linear scheme (PLS). The thick dashed curve is the exact boundary, and the set of thick solid line segments is the model boundary. The shaded region is land
and the clear region is fluid. The dots denote h-points (at the centroids of the fluid portions of fluid and boundary boxes), the arrows denote u- and v-points
(at the midpoints of the fluid portions of fluid and partial faces), and the ‘‘�’’s denote f-points. Circled ‘‘�’’s denote boundary f-points (i.e. f-points at which
an evolution equation is solved to obtain f), and ‘‘�’’s within diamonds denote near-boundary f-points [i.e. fluid f-points that are surrounded by one or
more (but at most four) boundary boxes; see Section 4.4]. Land h-points, land u-points, land v-points, and land f-points are not marked because the values
of the dependent variables at such points are not physically meaningful.
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only boxes that lie completely in fluid or completely in land but also ones that lie partially in fluid and partially in land. We
will refer to these three types of boxes as fluid, land, and boundary boxes, respectively. We can also see from the figure that
the faces of a boundary box may lie completely in fluid, partially in fluid, or completely in land. A fourth possibility is that a
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box face lies exactly on a boundary. (For a boundary of arbitrary shape, this is a rare occurrence in the PLS, but it is always the
case in the STS because the stairstep approximation forces boundaries to lie exactly on box faces). We will refer to these four
types of faces as fluid, partial, land, and boundary faces, respectively. Similarly, the corners of a boundary box may lie in fluid,
exactly on a boundary (which is again rare in the PLS but is always the case at boundaries in the STS; see Fig. 2), or in land.
We will refer to these three types of corners as fluid, boundary, and land corners, respectively.

Due to the presence of these various types of boxes, faces, and corners, in the PLS we cannot always define the depen-
dent variables h, u, v, and f at the same locations as on the C-grid. We will now present a generalized variable arrangement
(GVA) on the grid that takes into account the presence of these various types of boxes, faces, and corners. Fig. 3 shows this
GVA near a fluid–land boundary, and Fig. 4 gives a more detailed view of it for a specific boundary grid box. Below, we will
consider the arrangement of each variable in the GVA. In doing so, we will require that the GVA reduce to the C-grid variable
arrangement (CVA) at fluid boxes, fluid faces, and fluid corners in order that we recover the AL81 scheme away from
boundaries.

First, we consider the depth h. Recall that in the CVA, there is a depth associated with each fluid box and that this depth is
located at the center of the box. Since the GVA must be identical to the CVA at fluid boxes, in the GVA we now associate a
depth with each fluid box and take this depth to be located at the center of the box. Next, we extend this approach to bound-
ary boxes by associating a depth with each such box and taking this depth to be located at the centroid of the fluid portion of
the box. [Note that the exact location within the fluid portion of the box where the depth is defined is not used in the PLS; the
scheme only needs an h value ‘‘associated with’’ the fluid or boundary box. We use the exact location only for calculating
Fig. 4. Detailed view of the generalized variable arrangement (GVA) in the PLS at a boundary grid box in the ng plane that is intersected on its southern and
eastern faces by a fluid–land boundary. The shaded region is land and the clear region is fluid. The thick line denotes the model boundary, and hbdy,i,j is the
angle in physical space that the boundary makes with a nearby curve of constant g, e.g. the curve on which g = gj�1/2, g = gj, or g = gj+1/2. Here, hbdy,i,j is
shown for the special case in which (n,g) represents Cartesian coordinates (x,y) and the grid is highly resolved (so that the curvature of the boundary can be
ignored). The dot within the fluid portion of the box denotes the location where the depth is defined; the thick arrows on the box faces denote the locations
where the velocity components are defined; and the ‘‘�’’s denote the locations where the vorticities are defined. The circled ‘‘�’’ denotes a boundary f-point,
and ‘‘�’’s within diamonds denote near-boundary f-points (Section 4.4). Also shown are the sizes in the n and g directions of the fluid portions of the box
faces, i.e. (Dn(v))i,j�1/2, (Dn(v))i,j+1/2, (Dg(u))i�1/2,j, and (Dg(u))i+1/2,j. Point B on the boundary is used in Appendix A in the derivation of the area AðhÞi;j associated
with a boundary h-point and in Appendix B in the derivation of the shifted coordinates nðvÞ�i;jþ1=2 and gðuÞ�iþ1=2;j . hbdy,B is the boundary angle evaluated at point B.
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error norms and for generating plots; see Appendix C.] Finally, note that strictly speaking, we should not associate a depth
with a land box because in the continuous equations, the dependent variables are not defined within land. Nevertheless, it
turns out that we can present the PLS more compactly (i.e. we can avoid the use of conditionals, which makes coding the
scheme more straightforward) if we assume that there is a depth associated with each land box. For convenience, we
now make this assumption. The exact location and value of this depth are not important, but for completeness, we take it
to be located at the center of each land box and set its value to zero. To denote quantities associated with the fluid, boundary,
or land grid box centered at (ni,gj) [or, more briefly, the box at (i, j)], we will use the subscript notation (. . .)i,j. Thus, the depth
associated with the box at (i, j) is hi,j. We will refer to the locations in fluid, boundary, and land boxes where hi,j is defined as
fluid, boundary, and land h-points, respectively, and we will let ðnðhÞi;j ;g

ðhÞ
i;j Þ denote their coordinates. In Figs. 3 and 4, fluid and

boundary h-points are marked by dots, and land h-points are not marked because the zero depths at such points do not have
any physical meaning.

Next, we consider the n direction velocity component u. Recall that in the CVA, there is a u value associated with each
eastern/western fluid face and that this value is located at the midpoint of the face. As above, for consistency with the
CVA, in the GVA we now associate a u value with each eastern/western fluid face and take it to be located at the midpoint
of the face. Next, we extend this approach to eastern/western partial faces by associating a u value with each such face and
taking this value to be located at the midpoint of the fluid portion of the face. Also, as in the STS, we associate a u value with
each eastern/western boundary face, take it to be located at the midpoint of the face, and set it to zero to enforce the no-flux
boundary condition. Finally, note that as with the depth at a land box, strictly speaking we should not associate a u value
with an eastern/western land face. Nevertheless, in order to present the PLS more compactly, we will associate a zero u value
with each such face. As explained in Section 4.1, this value must be zero in order for the no-flux boundary condition to be
automatically enforced. The exact location of this zero u value is not important, but for completeness, we will take it to be at
the midpoint of each land face. To denote quantities associated with the eastern/western face centered at (ni+1/2,gj) [or,
more briefly, the face at (i + 1/2, j)], we will use the subscript notation (. . .)i+1/2,j. Thus, the u value associated with the face
at (i + 1/2, j) is ui+1/2,j. We will refer to the locations on eastern/western fluid and partial faces where ui+1/2,j is defined as fluid
u-points, its locations on eastern/western boundary faces as boundary u-points, and its locations on eastern/western land
faces as land u-points. In Figs. 3 and 4, fluid u-points are marked by horizontal arrows, and land u-points are not marked
because the zero u values at such points do not have any physical meaning. Boundary u-points are not included in the figures
because they are rare in the PLS. We will let gðuÞiþ1=2;j denote the g coordinate of the u-point at (i + 1/2, j). Thus, u-points are
located at coordinates ðniþ1=2;g

ðuÞ
iþ1=2;jÞ, where gðuÞiþ1=2;j ¼ gj at eastern/western fluid, boundary, and land faces but not at east-

ern/western partial faces (Fig. 4).
We now consider the g direction velocity component v. The approach we use for v is analogous to the one above for u.

Thus, in the GVA, we associate a v value with each northern/southern face regardless of its type. At a fluid face, we take v
to be located at the midpoint of the face; at a partial face, we take it to be located at the midpoint of the fluid portion of
the face; at a boundary face, we take it to be located at the midpoint of the face and set it to zero to enforce the no-flux
boundary condition; and at a land face, we again take it to be located at the midpoint of the face and set it to zero. As with
u at eastern/western land faces, v at northern/southern land faces does not represent a physical quantity; its definition at
such faces is merely a convenience. To denote quantities associated with the northern/southern face centered at (ni,gj+1/2)
[or, more briefly, the face at (i, j + 1/2)], we will use the subscript notation (. . .)i,j+1/2. Thus, the v value associated with the
face at (i, j + 1/2) is vi,j+1/2. The definitions of fluid, boundary, and land v-points are the same as those of fluid, boundary,
and land u-points except that they apply to northern/ southern faces instead of eastern/western ones. We will let nðvÞi;jþ1=2 de-
note the n coordinate of the v-point at (i, j + 1/2). Thus, v-points are located at coordinates ðnðvÞi;jþ1=2;gjþ1=2Þ, where nðvÞi;jþ1=2 ¼ ni at
northern/southern fluid, boundary, and land faces but not at northern/southern partial faces (Fig. 4).

Finally, we consider the vorticity f. Recall that in the CVA, there is a vorticity associated with each fluid corner and that
this vorticity is located exactly at the corner. For consistency with the CVA, in the GVA we associate a vorticity with each fluid
corner and take it to be located exactly at the corner. We also associate a vorticity with each boundary corner (although these
are rare in the PLS) and take it to be located exactly at the corner. We now consider land corners. Unlike the case of h at land
boxes and u and v at land faces, the vorticity associated with a land corner is not necessarily unphysical. In the GVA, we asso-
ciate a physically meaningful vorticity with any land corner that has at least one neighboring fluid or boundary grid box, and
we take this vorticity to be located exactly at the corner. [This is obviously not the actual location of the vorticity because the
actual location cannot be within land; it must be within the fluid or on the fluid–land boundary. Since this actual location
(which it turns out we do not need to pinpoint) is within a grid box or two of that point on the exact boundary that is closest
to the land corner in consideration, taking the vorticity to be located exactly at the land corner is a first-order approximation
(in Dn and Dg) of its actual location]. On the other hand, we do not associate a vorticity with any land corner at which all four
neighboring boxes are land; instead, we leave the vorticity undefined at such a corner. To denote quantities associated with
the box corner at (ni+1/2,gj+1/2) [or, more briefly, the corner at (i + 1/2, j + 1/2)], we will use the subscript notation (. . .)i+1/2,j+1/2.
Thus, the vorticity associated with the corner at (i + 1/2, j + 1/2) is fi+1/2,j+1/2. We will refer to fluid corners as fluid f-points, to
boundary corners and to land corners having at least one neighboring fluid or boundary box as boundary f-points, and to
land corners at which all four neighboring boxes are land as land f-points. In Figs. 3 and 4, fluid f-points are marked by
‘‘�’’s and ‘‘�’’s within diamonds (the latter denoting near-boundary f-points; see Section 4.4) while boundary f-points
are marked by circled ‘‘�’’s. Land f-points are not marked because the vorticity is not defined at such points. Note that since
fluid and boundary f-points are located exactly at box corners, their coordinates are (ni+1/2,gj+1/2). As described in Section 4,
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we will calculate the vorticity at fluid f-points diagnostically using the neighboring velocity components, and we will obtain
the vorticity at boundary f-points prognostically by solving a discrete vorticity evolution equation.

Two quantities that are essential to the PLS are the sizes in the n and g directions of the fluid portions of box faces. We will
denote the size in the g direction of the fluid portion of any eastern/western face centered at (ni+1/2,gj) by (Dg(u))i+1/2,j, and we
will denote the size in the n direction of the fluid portion of any northern/southern face centered at (ni,gj+1/2) by (Dn(v))i,j+1/2.
These are shown in Fig. 4 for a boundary box that is intersected on its southern and eastern faces by a boundary (with land to
the southeast of the boundary). Note that these quantities are defined at all four types of faces (fluid, partial, land, and
boundary). At a fluid face, (Dg(u))i+1/2, j = Dg or (Dn(v))i,j+1/2 = Dn; at a partial face, 0 < (Dg(u))i+1/2,j < Dg or 0 < (Dn(v))i,j+1/2

< Dn; and at a land or boundary face, (Dg(u))i+1/2,j = 0 or (Dn(v))i,j+1/2 = 0.
4. The piecewise linear scheme

In this section, we give a detailed description of the PLS. This consists of the specification of the discrete equations, the
various incremental distances and areas appearing in these equations, the procedure used to obtain the vorticity at boundary
f-points, and the procedure used to evaluate the initial velocity field and the forcing terms in the momentum equations.

4.1. Discrete equations

First, we present the discrete equations used in the PLS. Recall that away from boundaries, these equations reduce to
those of the AL81 scheme [2,27].

We begin with the continuity equation (1). This is discretized at fluid and boundary h-points (i, j) as follows:
d
dt
ðPi;jÞ ¼ � ðdnFÞ þ ðdgGÞ

� 	
i;j ð12Þ
Here, dn(. . .) and dg(. . .) are the differencing operators in the n and g directions, respectively [e.g. (dnF)i,j = Fi+1/2,j � Fi�1/2,j]. Pi,j

is the mass (or, equivalently, the volume, since the fluid is assumed to have constant density) in the fluid portion of the box
at (i, j), Fi�1/2,j and Fi+1/2,j are the mass fluxes in the n direction through the western and eastern faces of the box, and Gi,j�1/2

and Gi,j+1/2 are the mass fluxes in the g direction through the southern and northern faces. Pi,j is given by
Pi;j ¼ ðAðhÞhÞi;j ð13Þ
where AðhÞi;j is the area associated with the fluid portion of the box. We say ‘‘associated with’’ instead of ‘‘of’’ because it turns
out that at a boundary box, AðhÞi;j should not be set to the geometric area of the fluid portion (although it does increase and
decrease with the geometric area, and it is zero at a land box and is equal to the geometric area at a fluid box). We will pres-
ent the expression for AðhÞi;j later below (Section 4.2). Note that (13) is valid at all three types of boxes (fluid, boundary, and
land) because we have defined hi,j at all three types (with hi,j = 0 at land boxes) and because the definition of AðhÞi;j given below
will also apply at all three types. The mass fluxes are given by
Fiþ1=2;j ¼ ð�h
n
uDsðuÞg Þiþ1=2;j ð14Þ

Gi;jþ1=2 ¼ ð�h
g
vDsðvÞn Þi;jþ1=2 ð15Þ
In these expressions, ð. . .Þn and ð. . .Þg are the arithmetic averaging operators in the n and g directions, respectively [e.g.
�hn

iþ1=2;j ¼ ðhiþ1;j þ hi;jÞ=2]. In (14), ðDsðuÞg Þiþ1=2;j is the physical distance corresponding to the size (Dg(u))i+1/2,j of the fluid portion
of the eastern/western box face at (i + 1/2, j). ðDsðvÞn Þi;jþ1=2 in (15) is defined in an analogous way at northern/southern box
faces. These distances are given by
ðDsðuÞg Þiþ1=2;j ¼
ðDgðuÞÞiþ1=2;j

nðuÞiþ1=2;j

ð16Þ

ðDsðvÞn Þi;jþ1=2 ¼
ðDnðvÞÞi;jþ1=2

mðvÞi;jþ1=2

ð17Þ
where nðuÞiþ1=2;j is the inverse scale factor n evaluated at the u-point at (i + 1/2, j), and mðvÞi;jþ1=2 is the inverse scale factor m eval-
uated at the v-point at (i, j + 1/2). (Note that m and n are known functions of n and g, and they are defined in fluid, at bound-
aries, and in land. Thus, they can be evaluated anywhere in the ng plane as necessary.) Expressions (16) and (17) are valid at
all four types of faces (fluid, partial, land, and boundary) because (Dg(u))i+1/2,j and (Dn(v))i,j+1/2 are each defined at all four
types [with ðDsðuÞg Þiþ1=2;j ¼ 0 and ðDsðvÞn Þi;jþ1=2 ¼ 0 at boundary and land faces because (Dg(u))i+1/2,j = 0 and (Dn(v))i,j+1/2 = 0 at
such faces; see Section 3.4]. This implies that the mass fluxes given by (14) and (15) are also valid at all four types of faces
[because we have defined uiþ1=2;j; vi;jþ1=2; ðDsðuÞg Þiþ1=2;j, and ðDsðvÞn Þi;jþ1=2 at all four types and because h is defined at all three
types of boxes]. Importantly, (14) and (15) assign a zero mass flux through any land or boundary faces that a boundary
box might have because ui+1/2,j and (Dg(u))i+1/2,j or vi,j+1/2 and (Dn(v))i,j+1/2 at such faces are set to zero. This will enforce the
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no-flux boundary condition at such boxes (at least as far as the continuity equation is concerned), thereby conserving the
domain-summed mass.

Next, we consider the momentum equations (2) and (3). These are discretized at fluid u-points (i + 1/2, j) and fluid v-
points (i, j + 1/2), respectively, as follows:
d
dt
ðuDsðuÞ�n Þiþ1=2;j ¼ G

g
�qng

n
þ 1

48
dn ðdgGÞðdndgqÞ
� 	

� 1
12

dn F
nðdg�qnÞ

h i
� 1

12
ðdnFÞðdg�qnÞ

n
� dnðK þUÞ

� �
iþ1=2;j

þ DsðuÞ�n

Sn

h

� ��� �
iþ1=2;j

ð18Þ

d
dt
ðvDsðvÞ�g Þi;jþ1=2

¼ �Fn�qng
g
� 1

48
dg½ðdnFÞðdndgqÞ� þ 1

12
dg½Ggðdn�qgÞ� þ 1

12
ðdgGÞðdn�qgÞ

g
� dgðK þUÞ

� �
i;jþ1=2

þ DsðvÞ�g
Sg

h

� ��� �
i;jþ1=2

ð19Þ
In these equations, ðDsðuÞ�n Þiþ1=2;j and ðDsðvÞ�g Þi;jþ1=2 are physical distances along curves of constant g and n, respectively, corre-
sponding to (yet to-be-determined) incremental changes in n and g. We will derive expressions for these distances in
Section 4.4. The kinetic energy per unit mass Ki,j and the geopotential Ui,j appearing on the right-hand sides (RHSs) of
(18) and (19) are given at h-points by
Ki;j ¼
1

AðhÞ
1
2

AðuÞu2
n
þ AðvÞv2

g
� �� �

i;j
at fluid and boundary h-points

undefined at land h-points

8><
>: ð20Þ

Ui;j ¼
gðhþ hbathÞi;j at fluid and boundary h-points
undefined at land h-points



ð21Þ
Ki,j and Ui,j will not be needed at land h-points, so we have left their values at such points undefined. In (20), the areas AðuÞiþ1=2;j

and AðvÞi;jþ1=2 are given at all u-points and all v-points, respectively, by
AðuÞiþ1=2;j ¼ ½DsðuÞ�n DsðuÞg �iþ1=2;j ð22Þ

AðvÞi;jþ1=2 ¼ ½DsðvÞn DsðvÞ�g �i;jþ1=2 ð23Þ
Note that AðuÞiþ1=2;j and AðvÞi;jþ1=2 are zero at boundary and land u- and v-points because ðDsðuÞg Þiþ1=2;j and ðDsðvÞn Þi;jþ1=2 are zero at such
points. The potential vorticity qi+1/2,j+1/2 appearing on the RHSs of (18) and (19) has a physically meaningful value at fluid and
boundary f-points but not at land f-points. Nevertheless, just as with h, u, and v, we will associate a zero q value with land f-
points in order to be able to express the PLS more compactly. More specifically, doing so will allow us to write just one vor-
ticity evolution equation at boundary f-points instead of having various cases as in Appendix A of KJ09. With this in mind, we
now define qi+1/2,j+1/2 as follows:
qiþ1=2;jþ1=2 ¼
f

hðqÞ

� �
iþ1=2;jþ1=2

at fluid and boundary f-points

0 at land f-points

8><
>: ð24Þ
The interpolated depth hðqÞiþ1=2;jþ1=2 in this expression is given by
hðqÞiþ1=2;jþ1=2 ¼
P

ng

AðfÞ

 !
iþ1=2;jþ1=2

at fluid and boundary f-points

undefined at land f-points

8>><
>>: ð25Þ
where the area AðfÞiþ1=2;jþ1=2 associated with f-points is given at all such points by
AðfÞiþ1=2;jþ1=2 ¼ ðA
ðhÞÞ

ng

iþ1=2;jþ1=2 ð26Þ
Also, the vorticity fi+1/2,j+1/2 in (24) is given by
fiþ1=2;jþ1=2 ¼
ðf þ frelÞiþ1=2;jþ1=2 at fluid f-points

undefined at land f-points

(
ð27Þ
where fi+1/2,j+1/2 is the Coriolis parameter (assumed here to be a known function of n and g) evaluated at (ni+1/2,gj+1/2) and
frel,i+1/2,j+1/2 is the relative vorticity. The latter is given by
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frel;iþ1=2;jþ1=2 ¼
1

AðfÞ
dnðvDsðvÞ�g Þ � dgðuDsðuÞ�n Þ
n o� �

iþ1=2;jþ1=2
at fluid f-points

undefined at land f-points

8><
>: ð28Þ
As discussed in Section 3.4, we have left fi+1/2,j+1/2 undefined at land f-points. Note that (27) does not specify a way of obtain-
ing the vorticity at boundary f-points. At such points, we will solve evolution equations to obtain fi+1/2,j+1/2 (Section 4.3). Note
also that care must be taken in evaluating the forcing terms ðSn=hÞ�iþ1=2;jþ1=2 and ðSg=hÞ�iþ1=2;jþ1=2 on the RHSs of (18) and (19) at
u- and v-points that are near boundaries in order to obtain a relative vorticity field that converges to the correct limit as the
grid is refined. This issue is discussed in Section 4.4.

4.2. Area AðhÞi;j associated with h-points

We now derive expression for the area AðhÞi;j associated with each h-point. In order for the PLS to reduce to the AL81 scheme
at a fluid h-point, AðhÞi;j at such a point must be given by [see Eq. (15) of KJ09]
AðhÞi;j ¼
Dn
mi;j

Dg
ni;j

at fluid h-points ð29Þ
where mi,j and ni,j are the inverse scale factors evaluated at the fluid h-point at (i, j) [i.e. at (ni,gj)]. The RHS of (29) is just an
approximation to the geometric area of the fluid box associated with the h-point. The most straightforward generalization of
this to a boundary h-point is to set AðhÞi;j to the geometric area of the fluid portion of the grid box associated with that bound-
ary h-point. However, we have found that this choice of AðhÞi;j gives poor results for the kinetic energy per unit mass Ki,j at
boundary h-points. This is because in the limit of an infinitely refined grid, the use of such an AðhÞi;j in (20) at a boundary
h-point does not yield the correct value of K. In Appendix A, we derive the proper expression for AðhÞi;j by requiring that
(20) give the correct value of K at boundary h-points in the limit of infinite grid resolution. The final result is given in expres-
sion (120) of that appendix. Combining (120) with (29) and defining AðhÞi;j to be zero at land h-points, we obtain the following
general expression for AðhÞi;j :
AðhÞi;j ¼

Dn
mi;j

Dg
ni;j

at fluid h-points

AðuÞ
n

cos2 hbdy þ AðvÞ
g

sin2 hbdy

� �
i;j

at boundary h-points

0 at land h-points

8>>>>><
>>>>>:

ð30Þ
Here, hbdy,i,j is the angle in physical space (as opposed to in the ng plane) that the boundary line segment in the boundary box
at (i, j) makes with a nearby curve of constant g, e.g. the curve on which g = gj�1/2, g = gj, or g = gj+1/2. In Fig. 4, we show hbdy,i,j

for the special case in which (n,g) = (x,y) (so that the ng plane is identical to the xy plane, which is physical space). In general,
however, the angle hbdy that the boundary makes with a curve of constant g in physical space is not the same as the angle it
makes with the horizontal line in the ng plane corresponding to that curve. For instance, (n,g) might represent a stretched
Cartesian coordinate system. In such a case, there will be a distortion in the shape of the fluid–land boundary in the process
of mapping it from physical space (i.e. the xy plane) to the ng plane. For the configuration shown in Fig. 4 [and without
assuming that (n,g) = (x,y)], hbdy,i,j is given by
hbdy;i;j ¼ tan�1
Dg=niþ1=2;j � ðDsðuÞg Þiþ1=2;j

Dn=mi;j�1=2 � ðDsðvÞn Þi;j�1=2

" #
¼ tan�1

Dg=niþ1=2;j � DgðuÞiþ1=2;j=nðuÞiþ1=2;j

Dn=mi;j�1=2 � DnðvÞi;j�1=2=mðvÞi;j�1=2

" #
ð31Þ
where mi,j�1/2 and ni+1/2,j are the inverse scale factors m and n evaluated at (ni,gj�1/2) and (ni+1/2,gj), respectively. The numer-
ator on the RHS of (31) is the distance corresponding to the land portion of the eastern face of the boundary box, and the
denominator is the distance corresponding to the land portion of the southern face. For other configurations, e.g. if the
boundary segment intersects the southern and northern faces of the box instead of its southern and eastern faces, other
expressions must be used to obtain hbdy,i,j. As with (31), such expressions can be obtained using straightforward geometric
arguments.

4.3. Vorticity equation at boundary f-points

Next, we outline the procedure used to obtain the vorticity at boundary f-points. For this purpose, we need the discrete
flux-form vorticity equation at a fluid f-point. We can derive this by taking dn(. . .) of (19), subtracting from the result dg(. . .)
of (18), and using the definition of f given by (27) and (28). This gives
d
dt
ðAðfÞfÞiþ1=2;jþ1=2 ¼ � ðdnFðfÞÞ þ ðdgGðfÞÞ

h i
iþ1=2;jþ1=2

þ ½AðfÞSðfÞ�iþ1=2;jþ1=2 ð32Þ
where we have used the fact that fi+1/2,j+1/2 is not a function of time. The vorticity fluxes FðfÞi;jþ1=2 and GðfÞiþ1=2;j in (32) are given by
[see Eqs. (49) and (50) of KJ09]
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FðfÞi;jþ1=2 ¼ F
n�qng

g
� 1

12
dg½F

nðdg�qnÞ� � 1
12
ðdgG

gÞðdnqÞ
� �

i;jþ1=2
ð33Þ

GðfÞiþ1=2;j ¼ G
g
�qng

n
� 1

12
dn½G

gðdn�qgÞ� � 1
12
ðdnF

nÞðdgqÞ
� �

iþ1=2;j
ð34Þ
and the source term SðfÞiþ1=2;jþ1=2 is given by
SðfÞiþ1=2;jþ1=2 ¼
1

AðfÞ
dn DsðvÞ�g

Sg

h

� ��
 �
� dg DsðuÞ�n

Sn

h

� ��
 �� �� �
iþ1=2;jþ1=2

ð35Þ
Note that (35) is a discrete counterpart of (11). Eq. (32) describes the evolution of the average vorticity fi+1/2,j+1/2 within the
rectangular control volume (CV) of dimensions Dn � Dg centered at the fluid f-point at (i + 1/2, j + 1/2) (see Fig. 3 of KJ09).
AðfÞiþ1=2;jþ1=2 is the physical area associated with this CV and is given by (26).

The procedure we use in the PLS to obtain the vorticity at boundary f-points is a generalization of the one presented in
KJ09 for the STS. Thus, it is instructive to review the latter before presenting the former. In the STS, we obtain the vorticity at
a boundary f-point by solving an evolution equation for the vorticity at that point. To derive this equation, we first consider
(32) to be the sum of four equations, one for each quarter of the rectangular CV centered at the fluid f-point at (i + 1/2, j + 1/2)
(see Fig. 5 of KJ09). We will refer to the vorticity equations for the quarters as quarter vorticity equations (QVEs). The QVEs
for the northwest (NW), northeast (NE), southwest (SW), and southeast (SE) quarters surrounding a fluid f-point are given by
d
dt
ðAðfÞ;NWfÞiþ1=2;jþ1=2 ¼ � ðF̂ðfÞ;N � FðfÞ;NWÞ þ ðGðfÞ;NW � ĜðfÞ;WÞ

h i
iþ1=2;jþ1=2

þ ½AðfÞ;NWSðfÞ�iþ1=2;jþ1=2 ð36Þ

d
dt
ðAðfÞ;NEfÞiþ1=2;jþ1=2 ¼ � ðF

ðfÞ;NE � F̂ðfÞ;NÞ þ ðGðfÞ;NE � ĜðfÞ;EÞ
h i

iþ1=2;jþ1=2
þ ½AðfÞ;NESðfÞ�iþ1=2;jþ1=2 ð37Þ

d
dt
ðAðfÞ;SWfÞiþ1=2;jþ1=2 ¼ � ðF̂ðfÞ;S � FðfÞ;SWÞ þ ðĜðfÞ;W � GðfÞ;SWÞ

h i
iþ1=2;jþ1=2

þ ½AðfÞ;SWSðfÞ�iþ1=2;jþ1=2 ð38Þ

d
dt
ðAðfÞ;SEfÞiþ1=2;jþ1=2 ¼ � ðF

ðfÞ;SE � F̂ðfÞ;SÞ þ ðĜðfÞ;E � GðfÞ;SEÞ
h i

iþ1=2;jþ1=2
þ ½AðfÞ;SESðfÞ�iþ1=2;jþ1=2 ð39Þ
Note that the only difference between (36)–(39) and Eqs. (51)–(59) of KJ09 is that the former include source terms while the
latter do not. The various areas and vorticity fluxes in (36)–(39) are given by Eqs. (67)–(72) and (A.37)–(A.45) of KJ09, so we
do not repeat them here.

Like fluid f-points, boundary f-points in the STS (e.g. the ones shown in Fig. 2) have CVs associated with them. These con-
sist of the union of those quarters of the rectangle of dimensions Dn � Dg centered at the boundary f-point that lie in fluid
(see Fig. 4 of KJ09). (Note that in the STS, a quarter is physically either completely in fluid or completely in land because the
grid box that it is a part of consists either completely of fluid or completely of land.) The area AðfÞiþ1=2;jþ1=2 associated with a
boundary f-point is the sum of the areas of the fluid quarters around that f-point; it is given by one of the 12 expressions
in Appendix A of KJ09. Each fluid quarter around a boundary f-point has a valid QVE associated with it given by one of (36)–
(39). [On the other hand, a land quarter does not have a valid QVE because many or all of the quantities in the vorticity equa-
tion for such a quarter are undefined (because they are located within land, and in the STS, physical quantities are left unde-
fined within land; see KJ09).] Thus, a boundary f-point can have up to three valid QVEs associated with it, one for each fluid
quarter. The overall vorticity equation for the boundary f-point is obtained by adding together these valid QVEs. Since in the
STS there are 12 possible fluid–land configurations around a boundary f-point (see Section 6 of KJ09), the vorticity equation
at a boundary f-point can be any one of 12 possibilities. These 12 equations can be obtained by adding the source term
[A(f)S(f)]i+1/2,j+1/2 to the RHSs of the 12 vorticity equations listed in Appendix A of KJ09. For example, we can obtain the vor-
ticity equation at a boundary f-point that has fluid to its northwest and land to its northeast, southwest, and southeast by
adding [A(f)S(f)]i+1/2,j+1/2 to the RHS of Eq. (A.1) of KJ09. This gives
d
dt
ðAðfÞfÞiþ1=2;jþ1=2 ¼ FðfÞ;NW

iþ1=2;jþ1=2 � GðfÞ;NW
iþ1=2;jþ1=2 þ ½A

ðfÞSðfÞ�iþ1=2;jþ1=2 ð40Þ
The equations in Appendix A of KJ09 are missing the source terms because in deriving them, it was assumed that there are no
forcing terms on the RHSs of the momentum equations.

In the PLS, we use the following generalization of the STS procedure to obtain the vorticity at boundary f-points. We again
associate a CV with each boundary f-point (although we do not specify the exact shape of this CV), and again we solve a flux-
form vorticity equation at each such point to obtain the vorticity. To derive the vorticity equation at a boundary f-point, as in
the STS we consider the fluid–land natures of the quarters of the rectangle of dimensions Dn � Dg centered at the boundary
f-point. As long as the grid box that a quarter is a part of contains some fluid (i.e. has a positive AðhÞi;j ), the quarter is assigned a
fluid area equal to one-fourth the fluid area associated with the box (i.e. AðhÞi;j =4), and it is assumed to have a valid QVE [which
is again one of (36)–(39)]. Note that the quarter itself does not have to physically lie in fluid in order to have a valid QVE. For
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example, in Fig. 3, all four quarters of the rectangle of dimensions Dn � Dg centered at the boundary f-point at (i + 1/2, j � 1/
2) are completely in land, but the northwestern quarter of this rectangle has a valid QVE because the grid box that it is a part
of [the one centered at (ni,gj)] contains some fluid. As in the STS, in the PLS the overall vorticity equation for a boundary f-
point is given by the sum of the valid QVEs at that f-point (of which there can be at most three). Also, as might be expected,
the area AðfÞiþ1=2;jþ1=2 associated with a boundary f-point is given by the sum of the fluid areas of those quarters around that f-
point that have valid QVEs. This can be seen by expanding the numerical averaging operators on the RHS of (26) and noting
that AðhÞi;j is zero at land boxes.

Due to the way we have defined AðhÞi;j ; Fiþ1=2;j; Gi;jþ1=2, and qi+1/2,j+1/2 (namely, due to the fact that AðhÞi;j is zero at land h-
points, Fi+1/2,j is zero at land u-points, Gi,j+1/2 is zero at land v-points, and qi+1/2,j+1/2 is zero at land f-points), we can (and will)
use (32) [along with (26), (33) and (34)] as the vorticity equation at any boundary f-point. This is because it can be shown
that using (26), (32), (33) and (34) along with expressions (30), (14), (15) and (24) for AðhÞi;j ; Fiþ1=2;j; Gi;jþ1=2, and qi+1/2,j+1/2 gives
the same vorticity equation at a boundary f-point as adding together the valid QVEs at that f-point (as is done in Appendix A
of KJ09). The proof of this consists of substituting the zero values of AðhÞi;j ; Fiþ1=2;j; Gi;jþ1=2, and qi+1/2,j+1/2 at land h-, u-, v-, and f-
points, respectively, into (26), (32), (33) and (34) and comparing the resulting vorticity equation at a boundary f-point with
the appropriate equation in Appendix A of KJ09. Thus, (32) along with (26), (33) and (34) provide a compact way of present-
ing (and programming) the various possible vorticity equations at boundary f-points.

Finally, we briefly describe the procedure used to evaluate the source term SðfÞiþ1=2;jþ1=2 in the boundary vorticity equations,
both for the STS and the PLS. Note that we cannot use (35) to calculate SðfÞiþ1=2;jþ1=2 at a boundary f-point because (35) at such a
point involves undefined or unphysical values (e.g. h, Sn, and Sg within land). In general, as in KJ09, we can obtain SðfÞiþ1=2;jþ1=2 at
a boundary f-point by fitting polynomial functions of n and g to Sg/nh and Sn/mh, respectively (using values of Sg/nh and Sn/
mh from within the fluid near the boundary f-point in consideration), taking the analytic derivatives of these polynomial
functions with respect to n and g, and evaluating the results at the boundary f-point. However, if an analytic expression
for S(f) as a function of n, g, and t is available, it is more convenient to obtain SðfÞiþ1=2;jþ1=2 by simply evaluating that expression
at the location of the boundary f-point. (Such a function must of course be defined in both fluid and land and must be con-
tinuous as it crosses the fluid–land boundary.) This is what we do in the numerical tests in Sections 6 and 7.

Recall from Section 3.4 that we have taken boundary f-points to be located exactly at grid box corners (and thus within
land). Thus, either procedure described above for obtaining SðfÞiþ1=2;jþ1=2 at boundary f-points requires evaluation of some quan-
tity within land. This is not a problem as long as the boundary f-points approach the boundary as the grid is refined (which
they will do because they are by definition always within a grid box of the boundary, i.e. they are first-order approximations
in Dn and Dg of the location of the exact boundary). We have also tried the more complicated approach of locating boundary
f-points exactly on fluid–land boundaries but have found no significant differences in results.
4.4. Incremental distances ðDsðuÞ�n Þiþ1=2;j and ðDsðvÞ�g Þi;jþ1=2 and evaluation of initial velocity field and forcing terms

To complete our presentation of the PLS, we now derive expressions for the incremental distances ðDsðuÞ�n Þiþ1=2;j and
ðDsðvÞ�g Þi;jþ1=2 appearing in (18), (19), (22), (23), (28), and (35). This derivation will also yield the procedure for evaluating
the initial velocity field and the momentum forcing terms on the RHSs of (18) and (19).

The distances ðDsðuÞ�n Þiþ1=2;j and ðDsðvÞ�g Þi;jþ1=2 must be defined at all three types of u- and v-points because they appear in

expressions (22) and (23) for the areas AðuÞiþ1=2;j and AðvÞi;jþ1=2, and the latter are needed at all three types of points. First, recall

from Section 4.1 that ðDsðuÞg Þiþ1=2;j and ðDsðvÞn Þi;jþ1=2 in (22) and (23) are zero at boundary and land u- and v-points. Thus, it does

not matter how ðDsðuÞ�n Þiþ1=2;j and ðDsðvÞ�g Þi;jþ1=2 are defined at such points (as long as they are not left undefined). For simplicity,

we now define ðDsðuÞ�n Þiþ1=2;j and ðDsðvÞ�g Þi;jþ1=2 at boundary and land u- and v-points to be zero, i.e.
ðDsðuÞ�n Þiþ1=2;j ¼ 0 at boundary and land u-points ð41Þ
ðDsðvÞ�g Þi;jþ1=2 ¼ 0 at boundary and land v-points ð42Þ
Next, we consider ðDsðuÞ�n Þiþ1=2;j and ðDsðvÞ�g Þi;jþ1=2 at fluid u- and v-points. In analogy with (16) and (17), we now express these
distances at fluid u- and v-points in terms of increments (Dn(u)⁄)i+1/2,j and (Dg(v)⁄)i,j+1/2 in the n and g directions, respectively,
i.e.
ðDsðuÞ�n Þiþ1=2;j ¼
ðDnðuÞ�Þiþ1=2;j

mðuÞ�iþ1=2;j

at fluid u-points ð43Þ

ðDsðvÞ�g Þi;jþ1=2 ¼
ðDgðvÞ�Þi;jþ1=2

nðvÞ�i;jþ1=2

at fluid v-points ð44Þ
where (Dn(u)⁄)i+1/2,j and (Dg(v)⁄)i,j+1/2 are still to be determined. mðuÞ�iþ1=2;j in (43) is the inverse scale factor m associated with the

u-point at (i + 1/2,j), and nðvÞ�i;jþ1=2 in (44) is the inverse scale factor n associated with the v-point at (i,j + 1/2). (Here, we say
‘‘associated with’’ instead of ‘‘evaluated at’’ because, as described below, it turns out that at u- and v-points that are near
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boundaries, mðuÞ�iþ1=2;j and nðvÞ�i;jþ1=2 correspond to m and n evaluated not exactly at the u- and v-points but at slightly shifted loca-
tions.) To determine (Dn(u)⁄)i+1/2,j and (Dg(v)⁄)i,j+1/2, first note that in order to recover the AL81 scheme at fluid faces (i.e. away
from boundaries), we must have
ðDnðuÞ�Þiþ1=2;j ¼ Dn at eastern=western fluid faces ð45Þ
DgðvÞ�
� 


i;jþ1=2 ¼ Dg at northern=southern fluid faces ð46Þ
This can be seen by comparing the left-hand sides (LHSs) of Eqs. (16) and (17) in KJ09 with the LHSs of Eqs. (18) and (19) and
to (43) and (44) here. To determine (Dn(u)⁄)i+1/2,j and (Dg(v)⁄)i,j+1/2 at partial faces, we impose the constraint that the vorticity
source term SðfÞiþ1=2;jþ1=2 given by (35) yield the correct value (at fluid f-points) in the special case in which m, n, Sn/h, and Sg/h
are all constants, say mo, no, (Sn/h)o, and (Sg/h)o. We can see from (11) that in this case, S(f) = 0. Substituting (43) and (44) into
(35), we obtain
SðfÞiþ1=2;jþ1=2 ¼
1

AðfÞ
dn

DgðvÞ�

nðvÞ�
Sg

h

� ��
 �
� dg

DnðuÞ�

mðuÞ�
Sn

h

� ��( )" #" #
iþ1=2;jþ1=2

ð47Þ
Setting mðuÞ�iþ1=2;j ¼ mo; nðvÞ�i;jþ1=2 ¼ no; ðSn=hÞ�iþ1=2;j ¼ ðSn=hÞo, and ðSg=hÞ�i;jþ1=2 ¼ ðSg=hÞo, requiring that SðfÞiþ1=2;jþ1=2 equal the exact
value of zero, and rearranging terms, we can rewrite (47) as
ðSg=hÞo
no

� dn DgðvÞ�
� 
� 	

iþ1=2;jþ1=2 ¼
ðSn=hÞo

mo
� ½dgðDnðuÞ�Þ�iþ1=2;jþ1=2 ð48Þ
Since mo, no, (Sn/h)o, and (Sg/h)o are free to take on any value, (48) can hold only if
dn DgðvÞ�
� 
� 	

iþ1=2;jþ1=2 ¼ 0 ð49Þ
and
½dgðDnðuÞ�Þ�iþ1=2;jþ1=2 ¼ 0 ð50Þ
(49) implies that (Dg(v)⁄)i,j+1/2 must be the same at two neighboring fluid v-points along a line of constant g regardless of
whether the northern/southern faces on which these v-points are located are fluid or partial faces. Since we know from
(46) that (Dg(v)⁄)i,j+1/2 equals Dg at a northern/southern fluid face, it must also equal Dg at a northern/southern partial face.
Thus, we have
DgðvÞ�
� 


i;jþ1=2 ¼ Dg at fluid v-points ði:e: at both fluid and partial northern=southern facesÞ ð51Þ
Similarly, (45) and (50) imply
ðDnðuÞ�Þiþ1=2;j ¼ Dn at fluid u-points ði:e: at both fluid and partial eastern=western facesÞ ð52Þ
Substituting these into (43) and (44) and combining the results with (41) and (42), we obtain
ðDsðuÞ�n Þiþ1=2;j ¼
Dn

mðuÞ�iþ1=2;j

at fluid u-points

0 at boundary and land u-points

8><
>: ð53Þ

ðDsðvÞ�g Þi;jþ1=2 ¼
Dg

nðvÞ�i;jþ1=2

at fluid v-points

0 at boundary and land v-points

8><
>: ð54Þ
In Cartesian coordinates (n,g) = (x,y), we have Dn = Dx, Dg = Dy, and mðuÞ�iþ1=2;j ¼ nðvÞ�i;jþ1=2 ¼ 1 (because m and n have the uniform
value of 1 regardless of where they are evaluated). Thus, for the special case of Cartesian coordinates, (53) and (54) reduce to
ðDsðuÞ�n Þiþ1=2;j ¼
Dx at fluid u-points
0 at boundary and land u-points



ð55Þ

ðDsðvÞ�g Þi;jþ1=2 ¼
Dy at fluid v-points
0 at boundary and land v-points



ð56Þ
What remains now is to determine mðuÞ�iþ1=2;j and nðvÞ�i;jþ1=2 at fluid u- and v-points for the general case of orthogonal curvilinear
coordinates (n,g). We will determine these along with the forcing terms ðSn=hÞ�iþ1=2;j and ðSg=hÞ�i;jþ1=2 by requiring that in the

limit of an infinitely refined grid, the vorticity source term SðfÞiþ1=2;jþ1=2 given by (35) approach the correct limit. In Appendix B,

we show that if we simply evaluate ½DsðuÞ�n ðSn=hÞ��iþ1=2;j and ½DsðvÞ�g ðSg=hÞ��i;jþ1=2 at near-boundary u- and v-points exactly where
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u and v are defined at such points [i.e. at the coordinates ðniþ1=2;g
ðuÞ
iþ1=2;jÞ and ðnðvÞi;jþ1=2;gjþ1=2Þ, respectively], then SðfÞiþ1=2;jþ1=2 at

near-boundary f-points will not converge to the correct value as the grid is refined. Here, we define near-boundary u-
and v-points as those fluid u- and v-points that are surrounded by one or (at most) two boundary boxes, and we define
near-boundary f-points as those fluid f-points that are surrounded by one or more (but at most four) boundary boxes. In
Figs. 3 and 4, such f-points are denoted by ‘‘�’’s within diamonds. We also show in Appendix B that in order to allow

SðfÞiþ1=2;jþ1=2 at near-boundary f-points to converge to the correct limit, the forcing terms ½DsðuÞ�n ðSn=hÞ��iþ1=2;j and

½DsðvÞ�g ðSg=hÞ��i;jþ1=2 in the momentum equations (18) and (19) at near-boundary u- and v-points must be evaluated at the

shifted locations ðniþ1=2;g
ðuÞ�
iþ1=2;jÞ and ðnðvÞ�i;jþ1=2;gjþ1=2Þ, respectively, instead of exactly at the u- and v-points [which are at

ðniþ1=2;g
ðuÞ
iþ1=2;jÞ and ðnðvÞi;jþ1=2;gjþ1=2Þ]. This implies that mðuÞ�iþ1=2;j; nðvÞ�i;jþ1=2; ðSn=hÞ�iþ1=2;j, and ðSg=hÞ�i;jþ1=2 must be obtained by evalu-

ating m, n, Sn/h, and Sg/h at the shifted locations. [Recall from (53) and (54) that ðDsðuÞ�n Þiþ1=2;j and ðDsðvÞ�g Þi;jþ1=2 are defined in

terms of mðuÞ�iþ1=2;j and nðvÞ�i;jþ1=2, so the latter must be evaluated at the same locations as the former.] The procedure for determin-

ing the coordinates nðvÞ�i;jþ1=2 and gðuÞ�iþ1=2;j is presented in Appendix B. As an example, we show in Fig. 12 the shifted locations

ðniþ1=2;g
ðuÞ�
iþ1=2;jÞ and ðnðvÞ�i;jþ1=2;gjþ1=2Þ along with the locations of u- and v-points near a portion of the inner boundary of the

northeastern quarter of the annulus used in some of the accuracy tests in Section 7. Note that away from boundaries (i.e.

at non-near-boundary u- and v-points), nðvÞ�i;jþ1=2 ¼ nðvÞi;jþ1=2 ¼ ni and gðuÞ�iþ1=2;j ¼ gðuÞiþ1=2;j ¼ gj.
Finally, note that expression (28) for the relative vorticity frel,i+1/2,j+1/2 has the same form as expression (35) for the vor-

ticity source term SðfÞiþ1=2;jþ1=2; we can obtain one from the other by replacing u and v with (Sn/h)⁄ and (Sg/h)⁄ or vice versa.
Thus, to ensure that the initial relative vorticity field converges at near-boundary f-points as the grid is refined, we must
evaluate the initial velocity components at near-boundary u- and v-points at the shifted locations instead of where u and
v are defined. [We cannot do this at later times because in calculating frel,i+1/2,j+1/2 using (28), we must use whatever values
the model has generated for ui+1/2,j, ui+1/2,j+1, vi,j+1/2, and vi+1,j+1/2.] In Section 7, we demonstrate that evaluating the initial
velocity components and the forcing terms at the shifted locations improves the accuracy of the model by allowing the (rel-
ative) vorticity to converge to the correct limit at near-boundary f-points.
5. Proofs of conservation properties

We have generalized the PLS from the STS in such a way that the conservation proofs presented in KJ09 for the STS still
hold for the PLS. As a result, like the STS, the PLS conserves (as a function of time) the domain-summed mass MASStot and
vorticity VORTtot to within roundoff error, and it conserves the domain- summed total energy TEtot (sum of the kinetic and
potential energies) and potential enstrophy PENSTtot to within time integration errors. These quantities are defined as
follows:
MASStot ¼
X

fld: & bdy:
h-points

Pi;j ð57Þ

TEtot ¼
X

fld: & bdy:
h-points

1
2

AðuÞu2�h
nn

þ AðvÞv2�h
gg
þ gPðhþ 2hbathÞ

� �
i;j

ð58Þ

VORTtot ¼
X

fld: & bdy:
f-points

ðAðfÞfÞiþ1=2;jþ1=2 ð59Þ

PENSTtot ¼
X

fld: & bdy:
f-points

AðfÞ
1
2

f2

hðqÞ

" #
iþ1=2;jþ1=2

ð60Þ
MASStot is conserved because the discrete continuity equation (12) is in flux form and the no-flux condition is enforced at
boundary and land faces of boundary boxes. The conservation of the remaining three quantities can be proven using proce-
dures identical to the ones used in KJ09 for the STS. This is because the only differences between the STS and PLS are in the
choices of the area AðhÞi;j and the distances ðDsðuÞ�n Þiþ1=2;j; ðDsðuÞg Þiþ1=2; j; ðDsðvÞn Þi;jþ1=2, and ðDsðvÞ�g Þi;jþ1=2. [The STS uses AðhÞi;j ¼
DnDg=ðmnÞi;j; ðDsðuÞ�n Þiþ1=2;j ¼ Dn=miþ1=2;j; ðDsðuÞg Þiþ1=2;j ¼ Dg=niþ1=2;j; ðDsðvÞn Þi;jþ1=2 ¼ Dn=mi;jþ1=2, and ðDsðvÞ�g Þi;jþ1=2 ¼ Dg=ni;jþ1=2. In
these, mi,j and ni,j are obtained by evaluating m and n at h-points (ni, gj); mi+1/2,j and ni+1/2,j are obtained by evaluating m
and n at u-points (ni+1/2, gj); and mi,j+1/2 and ni,j+1/2 are obtained by evaluating m and n at v-points (ni, gj+1/2).] The conservation
proofs in KJ09 do not depend on how these quantities are defined. In this paper, we have taken advantage of this fact to
derive a more accurate scheme. In Section 6, we demonstrate these conservation properties via numerical simulations.
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6. Conservation tests

To demonstrate the conservation properties of the PLS and compare them with those of the STS, we begin by performing
two simulations, one with each scheme, of advection of a vortex around an elliptic island. We set up the simulations as fol-
lows. We use Cartesian coordinates (n,g) = (x,y) and a square domain that extends from �10 km to 10 km in both directions.
We assume periodic boundary conditions along the edges of this domain and embed in it an elliptic island (Fig. 5). Since
bathymetric effects are not the focus of this paper, for simplicity we set the bathymetry hbath(x,y) to zero. Also, we neglect
rotation for now by setting f = 0. (We will consider the case with rotation later below.) We use a uniform grid with
I � J = 40 � 40 points, so the grid sizes are Dx = Dy = 500 m. We initialize the flow with a rotating core of positive vorticity
centered at (x,y) = (�10 km,0 km) [Fig. 5, panels (a) and (b)]. The expressions for the initial h, u, and v fields are given by
expressions (90)–(92) of KJ09, so we do not repeat them here. Also, the easterly forcing used to advect the vortex is given
by expression (93) of KJ09 but with the constant 3.5 � 10�3 m2 s�2 therein replaced with 10�3 m2 s�2. We integrate both
simulations to t = 106 s � 11.6 d using the fourth-order Runge–Kutta (RK4) method and a time step of Dt = 5 s. The initial
and final vorticity fields for each scheme are shown in Fig. 5.

We find that both the STS and the PLS conserve MASStot and VORTtot to within roundoff error. Also, both schemes conserve
TEtot after about t = 10,000 s, which is when the forcing shuts off. (Note that the forcing adds energy to this flow between
5000 s and 10,000 s. Thus, energy is conserved only after about 10,000 s; see Section 8.1 of KJ09.) Finally, as expected, both
schemes conserve PENSTtot to within time integration errors. The initial value of PENSTtot for both schemes is 0.123 m s�2;
the deviation from this value by the end of the simulation is 1.19 � 10�11 m s�2 for the STS and 1.05 � 10�11 m s�2 for the
PLS. We know that these deviations are due to time integration errors because they decrease with decreasing Dt. For
Fig. 5. Vorticity f (in s�1) and velocities at t = 0 s and t = 106 s � 11.6 d from simulations of advection of a vortex around an elliptic island performed on a
Dx = Dy = 500 m grid. Panels (a) and (c) show results from the STS, and panels (b) and (d) show results from the PLS. Both simulations are without rotation
(f = 0). The maximum velocity magnitude is 0.85 m s�1 in (a), (b), and (d) and 0.67 m s�1 in (c). All four plots use the same vector length scale for the velocity
and the same color scale for the vorticity. For plotting purposes, u, v, and f have been interpolated from u-, v-, and f-points to h-points (Appendix C).
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example, with a Dt of 2.5 s, we obtain a deviation in PENSTtot of 3.90 � 10�13 m s�2 for the STS and 3.40 � 10�13 m s�2 for the
PLS. For both schemes, these values correspond to a factor of about 32 = 25 reduction in the PENSTtot deviation. Thus, the time
integration errors seem to be behaving as o(Dt5). This is faster than the o(Dt4) behavior one might expect from RK4, but in
any case it indicates that the errors in PENSTtot are due to the time integration.

To demonstrate that the conservation properties still hold when rotation is present, we have rerun the four simulations
above (STS and PLS with Dt = 5 s and 2.5 s) with f = 10�4 s�1. The final velocity and vorticity fields are of course different than
the ones without rotation because the inertial rotations of the velocity vectors change the path of the vortex, but our con-
clusions about the conservation properties are identical, i.e. in both schemes, MASStot and VORTtot are conserved to within
roundoff error, and TEtot and PENSTtot are conserved to within time integration errors.
7. Accuracy tests

As in KJ09, in this paper we determine the accuracies of the STS and PLS by performing grid refinement studies (GRSs).
Performing a GRS entails simulating the same flow configuration on a set of successively finer grids, calculating various
norms of the errors in the dependent variables h, u, v, and f (or any other quantity of interest that depends on these variables
such as the potential vorticity q = f/h), and observing the behaviors of these error norms with decreasing grid size. The error
norms we calculate are the L1, L2, and L1 norms of the absolute error jD/j in some quantity / (where / can be h, u, v, f, q,
etc.). We denote these error norms by kD/k1, kD/k2, and kD/k1, respectively. The definitions of these norms and the meth-
ods used to calculate them are given in Appendix C. The rates at which the error norms converge to zero as the grid is refined
determine the accuracy of the scheme; the larger the rates are for a given dependent variable, the more accurately the
scheme simulates that variable.

In addition to the STS and PLS, we perform GRSs with a version of the piecewise linear scheme in which the initial velocity
field and/or the forcing terms at near-boundary u- and v-points are not evaluated at the shifted locations but at the locations
where u and v are defined. We refer to this version of the piecewise linear scheme as the UNPLS (where the ‘‘UN’’ is for
‘‘unshifted’’). By comparing the accuracy results of the UNPLS with those of the PLS, we will be able to demonstrate that
the use of the shifted locations in the PLS indeed improves the accuracy of the model.

Although the prognostic variables in the boundary schemes are h, u, and v within the fluid and f at boundaries, in the tests
in this section we also consider how accurately the schemes simulate the potential vorticity q. This is because an important
feature of the SWEs is the conservation of potential vorticity q following a fluid particle (in the absence of sources and sinks).
(Note that here, we mean conservation in a different sense than the conservation of domain-integrated quantities discussed
in Section 2.) Eq. (8) states this mathematically since its LHS is the material derivative of q (i.e. Dq/Dt). From (8), we see that
when S(f) = 0, q is simply advected by the flow. Thus, when S(f) is zero, a numerical scheme for the SWEs should accurately
advect q. Of course, when S(f) is not zero, q is not conserved following a fluid particle, but a robust scheme should be able to
simulate q accurately in this case as well. In the tests in this section, we check for this by observing the convergence rates of
the L1, L2, and L1 error norms of q.

We perform the GRSs on ten test cases (TCs) of shallow water flow. Table 1 summarizes various aspects of these TCs. The
first six TCs are 1D channel flows for which analytic solutions are available, and the last four are 2D flows in an annulus for
which there are no analytic solutions. Note that in the channel flow TCs, we orient the channel at an angle to the grid. Thus,
the flow generated by the model is 2D. Also, in the annulus flow TCs, we obtain the ‘‘exact’’ solutions by performing highly
resolved simulations in cylindrical coordinates (n,g) = (r,h) (Section 7.2). For most of the TCs, we perform three GRSs (one
with the STS, a second with the PLS, and a third with the UNPLS), but for TCs 7, 8, and 9 we perform only two because
Table 1
Test cases (TCs) used to determine the accuracies of the stairstep (STS), piecewise linear (PLS), and unshifted piecewise linear (UNPLS) schemes. For each TC, the
table specifies the flow geometry, whether or not there is external forcing, the value of the Coriolis parameter f, whether or not an analytic solution is available,
and the initial conditions.

TC # Geometry Forcing? Coriolis
param. f

Analytic
solution?

Initial conditions

1 Channel at 30� to x axis No 0 Yes Time-independent solution given by Eqs. (61)–(63) (h uniform at 5 m; u and v
spatially variable)

2 Channel at 30� to x axis Yes 0 Yes Eqs. (70) and (71) (h uniform at 5 m; u = v = 0)
3 Channel at 30� to x axis No 10�2 s�1 Yes Time-independent solution given by Eqs. (73)–(75) (h, u, and v all spatially

variable)
4 Channel at 10� to x axis No 0 Yes Time-independent solution given by Eqs. (61)–(63) (h uniform at 5 m; u and v

spatially variable)
5 Channel at 10� to x axis Yes 0 Yes Eqs. (70) and (71) (h uniform at 5 m; u = v = 0)
6 Channel at 10� to x axis No 10�1 s�1 Yes Time-independent solution given by Eqs. (73)–(75) (h, u, and v all spatially

variable)
7 Annulus No 0 No Gaussian hill of h given by Eq. (76) with hpeak = 0.1 m; u = v = 0
8 Annulus No 10�3 s�1 No Gaussian hill of h given by Eq. (76) with hpeak = 0.05 m; u = v = 0
9 Annulus No 10�3 s�1 No Gaussian hill of h given by Eq. (76) with hpeak = 0.05 m; u and v given by Eqs.

(79)–(84)
10 Annulus Yes 0 No h uniform at 5 m; u = v = 0



Fig. 6. Orientation of the channel in the model domain in the xy plane. The shaded regions are land (the channel walls) and the clear regions are fluid. The
channel walls are at an angle hchan to the x axis. The model uses the (x,y) coordinate system, so the flow in the model is 2D. The channel-aligned coordinate
system (X,Y) (with X denoting the along-channel distance and Y the cross-channel distance) is only used in the derivation of analytic solutions for various
1D channel flows (Appendix E). The dimensions of the domain in the x and y directions, Lx and Ly, must be related by Ly = Lx tanhchan in order for the periodic
boundary conditions along the edges of the domain to be satisfied. wchan and wwall are the channel width and the wall thickness, respectively, and
w = wchan + wwall is the distance between wall centerlines. Also shown is the velocity profile U(Y) or U(Y, t) used in the analytic solutions in TCs 1–6 in
Section 7.1.
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for these, the PLS and UNPLS are equivalent. That’s because in these TCs, there is no forcing and the initial velocity field is
zero near boundaries, so the shifted coordinates are not needed. We perform all the GRSs in Cartesian coordinates
(n,g) = (x,y), and in all simulations, we use the fourth-order Runge–Kutta method (RK4) to advance the solution forward
in time.

The original AL81 scheme (without land) is second-order accurate in Dn and Dg. Thus, the most we can expect from the
GRSs is second-order convergence of the errors [although in some cases (e.g. TCs 4–6), we obtain rates that are slightly higher
than this theoretical maximum, e.g. 2.2; see Table 3]. For each GRS, we have plotted the L1, L2, and L1 error norms of h, u, v, f,
and q as functions of the grid size at regular time intervals and have observed their rates of convergence to zero. In some
cases, these rates stay essentially unchanged with time and grid size. For these, we report a single convergence rate. In other
cases, the rates vary with time and/or grid size (i.e. the error norm as a function of the grid size might not be perfectly linear
on a log–log plot). For these, we list a range of rates (e.g. 1.5–2).
7.1. Test cases 1–6: channel flows

First, we discuss the six channel flow TCs. Fig. 6 shows the orientation of the channel with respect to the Cartesian coor-
dinate system (x,y) used in the model. We can see from this figure that the channel is situated at an angle hchan to the x axis.
Thus, as far as the model is concerned, the flow is 2D. TCs 1–3 are with hchan = 30�, and TCs 4–6 are with hchan = 10�. In order
for the channel geometry to satisfy the periodic boundary conditions along the edges of the domain, the domain sizes Lx and
Ly in the x and y directions must be related by Ly = Lx tanhchan. In all six TCs, we use Lx = 20 km. Thus, in TCs 1–3,
Ly � 11.55 km, and in TCs 4–6, Ly � 3.53 km. The perpendicular distance w between the centerlines of the two walls in
Fig. 6 is Lx sinhchan. This distance is also equal to the sum of the wall-to-wall width of the channel wchan and the width of
the wall wwall, i.e. w = wchan + wwall. We choose wwall to be 0.19w in all six TCs. Thus, wchan = 0.81w = 0.81Lx sinhchan. For
TCs 1–3, this gives wchan = 8.1 km, and for TCs 4–6, it gives wchan = 2.81 km.

The grids we use in the GRSs of TCs 1–3 have sizes Dx � Dy = 250 m � 251.02 m, 125 m � 125.51 m, 62.5 m � 62.76 m,
and 31.25 m � 31.38 m. The corresponding time steps are 20 s, 10 s, 5 s, and 2.5 s for TCs 1 and 2 and 10 s, 5 s, 2.5 s, and
1.25 s for TC 3. The grids for TCs 4–6 have sizes Dx � Dy = 125 m � 125.95 m, 62.5 m � 62.97 m, 31.25 m � 31.49 m, and
15.625 m � 15.743 m. The corresponding time steps are 10 s, 5 s, 2.5 s, and 1.25 s for TCs 4 and 5 and 4 s, 2 s, 1 s, and
0.5 s for TC 6. (See Appendix D for a discussion of the procedure used to set the time step.) We integrate all six TCs to a max-
imum time of t = 20,000 s.

Motion can be initiated in the model by specifying appropriate initial conditions (i.e. by specifying a nonzero initial veloc-
ity and/or a nonuniform depth) and/or by specifying an external forcing. We are interested in the accuracies of the STS, PLS,
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and UNPLS in both of these situations. We are also interested in the effects of rotation (i.e. zero vs. nonzero Coriolis param-
eter f) and boundary angle hbdy (Fig. 4) on accuracy. The channel flow TCs are designed to assess the effects of these factors on
the accuracies of the schemes under the constraint that there be an analytic solution with which the results can be com-
pared. For this purpose, in Appendix E we derive two analytic solutions for 1D channel flow. First, we derive a solution
for the non-rotating case (f = 0) that has a nonzero initial velocity and a nonzero (but transient) forcing. This solution [ex-
pressed in a Cartesian coordinate system (X,Y) aligned with the channel; see Fig. 6] is given by Eqs. (189), (194), (198)
and (200). (Note that either the initial velocity or the forcing can be set to zero if desired; the solution will still be non-trivial.
However, if the forcing is set to zero, the solution will become time-independent.) One drawback of using this solution as a
test case is that h is constant in space and time. Thus, some of the terms in the discrete equations (e.g. the pressure gradients)
will be zero or negligible. To activate these terms and to include the effects of rotation, in Appendix E we derive a second
analytic solution for the case of a constant (nonzero) f and zero forcing. In this case, the solution [again in the channel-
aligned (X,Y) coordinate system] is given by Eqs. (189), (204) and (205). We can see from (205) that the fluid depth is
now spatially variable. Note that the solution in this case is time-independent. (We were unable to find a time-dependent
analytic solution for f – 0.)

We now discuss the use of these analytic solutions in TCs 1–6. In TCs 1 and 4, we test the accuracies of the schemes for the
case of no rotation, no forcing, and a time-independent solution. The analytic solution in this case [expressed in the channel-
aligned coordinate system (X,Y)] is given by (189), (194), (198) and (200) with (SX/h)bot, (SX/h)ctr, and (SX/h)top in (200) set to
zero (i.e. no forcing). This solution can be expressed in terms of the model coordinate system (x,y) and its velocity compo-
nents u and v as
h ¼ ho ð61Þ
uðx; yÞ ¼ UðYðx; yÞÞ � cos hchan ð62Þ
vðx; yÞ ¼ UðYðx; yÞÞ � sin hchan ð63Þ
where, from (200), the along-channel velocity U(Y) is given by
UðYÞ ¼ Uctr þ ðUtop � UbotÞ
Y

wchan
þ 2ðUtop � 2Uctr þ UbotÞ

Y
wchan

� �2

ð64Þ
In (62) and (63), the cross-channel distance Y (measured from the channel centerline; see Fig. 6) is given in terms of x and y
as follows:
Yðx; yÞ ¼
�wþ ð�x sin hchan þ y cos hchanÞ in the upper-left channel in Fig: 6
�x sin hchan þ y cos hchan in the central channel in Fig: 6
w� ð�x sin hchan þ y cos hchanÞ in the lower-right channel in Fig: 6

8><
>: ð65Þ
In TCs 1 and 4, we choose ho = 5 m in (61) and Ubot = �1 m s�1, Uctr = 1 m s�1, and Utop = 0.5 m s�1 in (64). The resulting cross-
channel velocity profile U(Y) is shown in Fig. 6. Note that since the solution is time-independent, the initial conditions are
given by (61)–(63). Also, since there is no forcing, the vorticity source term S(f) is zero in these two TCs.

In TCs 2 and 5, we test the accuracies of the schemes for the case of no rotation, no initial velocity, and a gradual, transient
forcing that ramps up the velocity to some steady-state solution. The analytic solution [expressed in the (X,Y) coordinate
system] is again given by (189), (194), (198) and (200) but now with Ubot, Uctr, and Utop in (200) set to zero (i.e. no initial
velocity). In terms of the (x,y) model coordinate system and its velocity components u and v, the solution is given by
h ¼ ho ð66Þ
uðx; y; tÞ ¼ UðYðx; yÞ; tÞ � cos hchan ð67Þ
vðx; y; tÞ ¼ UðYðx; yÞ; tÞ � sin hchan ð68Þ
where Y(x,y) is again given by (65) and, from (200), U(Y, t) is given by
UðY ; tÞ ¼ ðSX=hÞctr þ ðSX=hÞtop � ðSX=hÞbot

n o Y
wchan

þ 2 ðSX=hÞtop � 2ðSX=hÞctr þ ðSX=hÞbot

n o Y
wchan

� �2
" #

� IðtÞ ð69Þ
with I(t) given by (198). The initial conditions are
h ¼ ho ð70Þ
u ¼ v ¼ 0 ð71Þ
In TCs 2 and 5, we choose ho = 5 m in (66) and (70) and (SX/h)bot = �2 � 10�4 m s�2, (SX/h)ctr = 2 � 10�4 m s�2, and (SX/h)top =
10�4 m s�2 in (69). These values are chosen such that as t ?1, (66)–(68) become identical to (61)–(63). The shape of the
resulting velocity profile U(Y, t) is shown in Fig. 6. Note that the shape of U(Y, t) does not change in time but its magnitude
does.

The vorticity source term S(f) for TCs 2 and 5 can be obtained in the (X,Y) coordinate system by setting (n,g) = (X ,Y) and
m = n = 1 in (11). This gives



G.S. Ketefian, M.Z. Jacobson / Journal of Computational Physics 230 (2011) 2751–2793 2769
SðfÞ ¼ @

@X
SY

h

� �
� @

@Y
SX

h

� �
Substituting (190) and (195) into this, carrying out the differentiation with respect to Y, and rewriting the result as a function
of x and y, we obtain
SðfÞðx; y; tÞ ¼ � 1
wchan

ðSX=hÞtop � ðSX=hÞbot

n o
þ 4 ðSX=hÞtop � 2ðSX=hÞctr þ ðSX=hÞbot

n oYðx; yÞ
wchan

� �
� TðtÞ ð72Þ
where T(t) is given by (196). In TCs 2 and 5, we obtain the source term SðfÞiþ1=2;jþ1=2 on the RHS of the discrete flux-form vorticity
equation (32) at the boundary f-point at (i + 1/2, j + 1/2) by evaluating (72) at (ni+1/2,gj+1/2) = (xi+1/2,yj+1/2) and multiplying the
result by the area AðfÞiþ1=2;jþ1=2.

Finally, in TCs 3 and 6, we check the accuracies of the schemes for the case of f – 0. We set the forcing in these two TCs to
zero because the only analytic solution we have when f – 0 is a steady-state solution without forcing. The analytic solution is
thus given by Eqs. (189), (204) and (205) of Appendix E. In terms of the model coordinate system (x,y) and its velocity com-
ponents u and v, we can write this solution as
hðx; yÞ ¼ hbot �
f
g

wchan �
Uctr

2
2

Yðx; yÞ
wchan

� �
þ 1


 �
þ Utop � Ubot

8
4

Yðx; yÞ
wchan

� �2

� 1

( )"

þUtop � 2Uctr þ Ubot

12
8

Yðx; yÞ
wchan

� �3

þ 1

( )#
ð73Þ

uðx; yÞ ¼ UðYðx; yÞÞ � cos hchan ð74Þ
vðx; yÞ ¼ UðYðx; yÞÞ � sin hchan ð75Þ
where U(Y) is given by (204) [which is identical to (64)] and Y(x,y) is given by (65). In both TCs 3 and 6, we choose
Ubot = �1 m s�1, Uctr = 1 m s�1, and Utop = 0.5 m s�1, which are the same values used in TCs 1 and 4. As in the latter two
TCs, the vorticity source term S(f) is zero in TCs 3 and 6 because the forcing is zero. Note that hbot and f must be chosen such
that the RHS of (73) is positive for all Y between �wchan/2 and wchan/2. In addition, in order for rotational scales [determined
by the Rossby radius of deformation R = (gh)1/2/f] to be resolved by the domain, we require that R be smaller than wchan. To
satisfy these requirements, we have chosen hbot = 50 m and f = 10�2 s�1 for TC 3 and hbot = 50 m and f = 10�1 s�1 for TC 6. For
TC 3 (for which wchan = 8.1 km), these values give minimum and maximum h values of 45.2 m and 50.7 m and corresponding
R values of 2.11 km and 2.23 km. For TC 6 (for which wchan = 2.81 km), we get minimum and maximum h values of 33.3 m
and 52.4 m and corresponding R values of 181 m and 227 m.

The rates of convergence obtained from the GRSs of TCs 1–3 (hchan = 30�) are listed in Table 2, and the rates from the GRSs
of TCs 4–6 (hchan = 10�) are listed in Table 3. Note that in all our GRSs (including the ones for TCs 7–10 in Section 7.2), the
largest absolute error is invariably at or near (i.e. within a grid box or two of) a boundary. Thus, the L1 error norm (which
is defined as the largest absolute error in a variable anywhere in the flow domain; see Appendix C) represents the error at or
near boundaries. With this in mind, we now draw the following conclusions from Tables 2 and 3:

1. In all TCs, the convergence rates of all three error norms of h, u, and v for the PLS are larger than those for the STS. In
almost all cases, these rates are about 1 order higher for the PLS. The only exception to this is kDhk1 for the f – 0 TCs
(3 and 6). In these TCs, the kDhk1 convergence rates are still larger for the PLS than for the STS but only by 0.4–0.6 order.

2. u and v near boundaries (as measured by kDuk1 and kDvk1) do not converge for the STS (i.e. they have convergence rates
of 0) but always converge for the PLS and UNPLS. Similarly, h near boundaries does not converge for the STS except for the
f – 0 TCs, but it always converges for the PLS and UNPLS.

3. The convergence rates of h for the PLS and UNPLS are identical in all six TCs.
4. The convergence rates of f and q for the UNPLS are generally smaller than those for the PLS and STS. In fact, except for TC 6

[and possibly also TC 5, in which kDfk2 does not converge but kDfk1 does (although at the minimal rate of 0.2–0.3)], f and
q near boundaries do not converge for the UNPLS. On the other hand, for the PLS, f and q near boundaries converge in all
TCs. This shows that the use of the shifted locations in the PLS is an effective means of bringing about convergence of the
relative vorticity frel,i+1/2,j+1/2 and/or the vorticity source term SðfÞiþ1=2;jþ1=2 at near-boundary f-points, and this in turn
improves the convergence rates of f and q both near and away from boundaries.

5. The convergence rates of u and v for the PLS are always at least as large as those for the UNPLS and often somewhat larger.
This indicates that having qi+1/2,j+1/2 converge at near-boundary f-points in the PLS also helps u and v converge faster. [We
emphasize the convergence of qi+1/2,j+1/2 here because it is qi+1/2,j+1/2, not fi+1/2,j+1/2, that appears in the nonlinear terms on
the RHSs of the momentum equations (18) and (19).]

6. In the unforced TCs (1, 3, 4, and 6), f converges somewhat faster for the PLS than for the STS. In these TCs, the error norms
of f for the STS are more jagged functions of the grid size and are more variable in time than they are for the PLS. In the
forced TCs (2 and 5), f converges slightly faster for the STS than for the PLS. In these TCs, the error norms of f are very
smooth functions of the grid size and time for both schemes.



Table 2
Rates of convergence of the L1, L2, and L1 error norms of h, u, v, f, and q with decreasing grid size for TCs 1–3 (channel at hchan = 30� to the x axis) obtained from
grid refinement studies with the stairstep (STS), piecewise linear (PLS), and unshifted piecewise linear (UNPLS) schemes.

h u v f q

TC 1 (channel at 30�, no forcing, f = 0)
STS L1 0.7–0.8 0.9 0.8–0.9 1–1.4 1.6

L2 0.6 0.5 0.5 0.8–1.4 1.5
L1 0 0 0 0–1 0.9–1.1

PLS L1 1.6–1.7 2 1.8–1.9 1.5 1.5
L2 1.5 1.5 1.5 1.5 1.5
L1 0.9–1 1 1 1–1.2 1–1.2

UNPLS L1 1.6–1.7 1.5 1.5–1.6 0.6 0.6
L2 1.5 1.4 1.5 0.5 0.5
L1 0.9–1 0.7–1 0.8–1.1 0 0

TC 2 (channel at 30�, with forcing, f = 0)
STS L1 0.9 1 1 1.8 2

L2 0.5 0.5 0.5 1.4–1.6 1.4–1.5
L1 0 0 0 1.1–1.2 0.8–0.9

PLS L1 2 2 2 1.7 1.8
L2 1.5 1.5 1.5 1.6 1.6
L1 0.9–1 1 1 1.1–1.3 1.1–1.3

UNPLS L1 2 1.6 1.9 0.7 0.7
L2 1.5 1.4 1.5 0.5 0.5
L1 0.9–1 0.9 0.9–1.1 0 0

TC 3 (channel at 30�, no forcing, f = 10�2 s�1)
STS L1 0.8–0.9 1 0.9–1 0.9–1 1.7

L2 0.8–1 0.5 0.5 0.8–0.9 1.5
L1 0.3–0.4 0 0 0.4–0.5 1

PLS L1 2 2 2 1.5 1.7
L2 1.6 1.5 1.5 1.4 1.5
L1 1 1 1 1–1.1 1.1–1.2

UNPLS L1 2 1.5–1.6 1.7 0.6 0.6
L2 1.6 1.4 1.4–1.5 0.5 0.5
L1 1 0.8–1 0.9–1.1 0 0

2770 G.S. Ketefian, M.Z. Jacobson / Journal of Computational Physics 230 (2011) 2751–2793
7. q for the STS and PLS converges at about the same rate (possibly slightly faster for the STS in the forced TCs). For both
these schemes, the error norms of q are very smooth functions of the grid size and time in all TCs (even in the GRSs with
the STS in which the error norms of f are jagged functions of the grid size and variable in time).

The results of these channel flow TCs indicate that overall, the PLS is the most accurate scheme because it simulates h, u,
and v more accurately than the STS, f and q about as accurately as the STS, h as accurately as the UNPLS, u and v slightly more
accurately than the UNPLS, and f and q more accurately than the UNPLS.
7.2. Test cases 7–10: annulus flows

We now discuss the four TCs of flow in an annulus. We use the same annulus geometry in all four TCs, with the inner
boundary at r = 5 km and the outer boundary at r = 25 km (where r is the radial distance from the origin). Also, to perform
the GRSs, we use the same set of (Cartesian) grids in all four TCs. These grids have sizes Dx = Dy = 500 m, 250 m, 125 m, and
62.5 m. The corresponding time steps are 10 s, 5 s, 2 s, and 1 s for TCs 7–9 and 5 s, 2 s, 1 s, and 0.5 s for TC 10. (See Appendix D
for a discussion of the procedure used to set the time step.)

Since we do not have analytic solutions for these TCs, we obtain the ‘‘exact’’ solution for each TC by performing a simu-
lation in cylindrical coordinates (n,g) = (r,h) on a highly refined grid. (Recall that the exact solution is needed for the calcu-
lation of the error norms; see Appendix C.) We do this because any simulation of the annulus geometry in cylindrical
coordinates is more accurate than one in Cartesian coordinates with comparable resolution. This is because in (r,h) space,
the boundaries of the annulus can be made to lie exactly along grid lines. This eliminates the need for stairsteps (which
are present in the simulations with the STS in Cartesian coordinates) or boundary boxes (i.e. boxes that lie partially in fluid
and partially in land that are present in the simulations with the PLS and UNPLS in Cartesian coordinates), both of which are
sources of error and reduce the accuracy of the model. Note that since there are no stairsteps or boundary boxes in cylindri-
cal coordinates, the STS, PLS, and UNPLS reduce to the same scheme in this coordinate system (but only for the particular
case of the annulus geometry considered here). To obtain the ‘‘exact’’ solutions for TCs 7–9, we use a cylindrical grid with



Table 3
Rates of convergence of the L1, L2, and L1 error norms of h, u, v, f, and q with decreasing grid size for TCs 4–6 (channel at hchan = 10� to the x axis) obtained from
grid refinement studies with the stairstep (STS), piecewise linear (PLS), and unshifted piecewise linear (UNPLS) schemes.

h u v f q

TC 4 (channel at 10�, no forcing, f = 0)
STS L1 0.9–1.1 0.9–1 0.9–1 1.3–1.4 1.7

L2 0.9–1 0.5 0.5 1.3–1.4 1.5
L1 0 0 0 1–1.2 1–1.1

PLS L1 1.9 2.2 2 1.5 1.5
L2 1.7 1.5 1.7 1.5 1.5
L1 0.8–1 1 1–1.1 1–1.2 1–1.2

UNPLS L1 1.9 1.4–1.5 1.8 0.4–0.5 0.4
L2 1.7 1.3–1.4 1.7 0.4 0.3
L1 0.8–1 1–1.2 1–1.2 0 0

TC 5 (channel at 10�, with forcing, f = 0)
STS L1 0.9 1 1 2.1 2.1

L2 0.4 0.5 0.5 1.7 1.5
L1 0 0 0 1 0.9–1

PLS L1 1.9 2.2 2 1.9 1.9
L2 1.7 1.5 1.7 1.6 1.5
L1 0.9 1 1.1 1 1.1

UNPLS L1 1.9 1.5 2 0.5 0.4
L2 1.7 1.3 1.7 0 0
L1 0.9 1.2 1.1 0.2–0.3 0.2–0.3

TC 6 (channel at 10�, no forcing, f = 10�1 s�1)
STS L1 0.9–1 1 0.9–1 0.9–1.1 1.7

L2 0.9–1.1 0.5 0.5 1–1.1 1.5
L1 0.5–0.6 0 0 0.5–1.1 1

PLS L1 1.8–2.2 2.2 2.1–2.2 1.4 1.7
L2 1.9 2 2.2 1.2 1.5
L1 1 1.2–1.4 1.5 0.7–0.9 1.1

UNPLS L1 1.8–2.2 2.2 2.1–2.2 1.3–1.4 1.7
L2 1.9 2 2.2 1–1.2 1.5
L1 1 1.5–1.6 1.5–1.6 0.7–0.9 1.1–1.2
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sizes Dr � Dh = 62.5 m � 0.14� and a time step of 1 s, and to obtain the ‘‘exact’’ solution for TC 10, we use a grid with
Dr � Dh = 15.625 m � 0.27� and a time step of 2 s.

7.2.1. Test case 7: irrotational gravity waves
First, we consider irrotational flow (i.e. f = 0). We set f = 0 and Sn = Sg = 0 (i.e. no forcing), and we initialize the flow with

u = v = 0 and h given by
h ¼ ho þ hpeak � exp �fðx� xoÞ2 þ ðy� yoÞ
2g

ð3 kmÞ2

" #
ð76Þ
where ho = 5 m, hpeak = 0.1 m, xo = ro cosho, and yo = ro sinho with ro = 15 km and ho = 60�. This corresponds to a Gaussian hill of
fluid of peak height 0.1 m (relative to the 5 m background depth) centered at (r,h) = (15 km,60�) [Fig. 7, panel (a)]. We inte-
grate these initial conditions to a maximum time of 10,000 s. As the integration advances, gravity waves propagate out from
the fluid hill and reflect off the boundaries. Many such reflections occur during the integration period. As an example, we
show in panel (b) of Fig. 7 the depth and velocity fields at t = 2000 s from the PLS simulation on the 500 m grid (which is
the coarsest Cartesian grid). Note that since in this TC the initial velocity and the forcing are both zero, the shifted coordi-
nates nðvÞ�i;jþ1=2 and gðuÞ�iþ1=2;j (Section 4.4) are not needed. Thus, the PLS and UNPLS reduce to the same scheme. Here, we refer to
this scheme simply as the PLS.

Table 4 lists the convergence rates of the error norms of h, u, and v for the STS and PLS for TC 7. We can see from this table
that these rates are 0.5–1 order higher for the PLS than for the STS. In particular, kDuk1 and kDvk1 converge at a rate be-
tween 1 and 2 for the PLS, but they do not converge at all for the STS. This indicates that u and v near boundaries converge for
the PLS but not for the STS.

If the vorticity source term S(f) is zero, we can rewrite Eq. (7) as
@f
@t
¼ � mu

@f
@n
þ nv

@f
@g

� �
� fð$ � uÞ ð77Þ
where the velocity divergence in orthogonal curvilinear coordinates is given by



Fig. 7. (a) Initial fluid depth h (in m) for TCs 7 (irrotational gravity waves) and 8 (rotational gravity waves), (b) h and velocities at t = 2000 s for TC 7, (c)
vorticity f (in s�1) and velocities at t = 2000 s for TC 8, and (d) potential vorticity q (in m�1 s�1) and velocities at t = 20,000 s for TC 8. All figures are from PLS
simulations on the Dx = Dy = 500 m grid. For clarity, velocity vectors in (b), (c), and (d) are shown at only every second grid point. The maximum velocity
magnitude is 0.033 m s�1 in (b), 0.017 m s�1 in (c), and 0.015 m s�1 in (d). For plotting purposes, u, v, and f have been interpolated from u-, v-, and f-points
to h-points (Appendix C). Rates of convergence are listed in Table 4.
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From (77), we see that if f is initially zero everywhere, it will remain zero at all later times. In the current TC, f is initially
zero, and S(f) is zero because Sn = Sg = 0. Thus, f should remain zero throughout the integration. Both the STS and the PLS
maintain this property of the continuous equations. For both schemes and considered over all the grids, the vorticity at
the end of the simulation consists of a noisy field of roundoff error having maximum absolute value less that 10�17 s�1.
7.2.2. Test case 8: rotational gravity waves
Next, we consider flow in which vorticity is initially present due only to the Coriolis effect (i.e. initially, there is no relative

vorticity, only planetary vorticity). To ensure that rotation has a significant effect in this flow, we set f to the relatively high
value of 10�3 s�1 (i.e. relative to the usual value of 10�4 s�1 used for mid-latitudes). We use the same initial conditions and
zero forcings as in TC 7 except that we set hpeak = 0.05 m instead of 0.1 m. (The choice of hpeak = 0.05 m vs. 0.1 m is random
and makes no difference in the results). Thus, as in TC 7, the PLS and UNPLS in this TC reduce to the same scheme which we
refer to simply as the PLS.

We integrate this TC to 20,000 s. As in TC 7, gravity waves propagate out from the initial fluid hill, but unlike in TC 7, they
now transport vorticity. The gravity waves are rotational because the initial fluid hill quickly generates a velocity divergence,
and this in turn interacts with the nonzero initial vorticity (f = f) to produce a nonzero vorticity tendency [via the second
term on the RHS of (77)]. These rotational gravity waves reflect off the boundaries many times throughout the integration.



Table 4
Rates of convergence of the L1, L2, and L1 error norms of h, u, v, f, and q with decreasing grid size for TCs 7 (irrotational gravity waves), 8 (rotational gravity
waves), and 10 (forced flow) obtained from grid refinement studies with the stairstep (STS), piecewise linear (PLS), and unshifted piecewise linear (UNPLS)
schemes. All three TCs use the annulus geometry. In TCs 7 and 8, the PLS and UNPLS reduce to the same scheme, so results from the UNPLS are not listed. Also, in
TC 7, no convergence rates are listed for f and q because these variables remain at their exact value of zero (within roundoff error) during all simulations.

h u v f q

TC 7 (irrotational gravity waves, f = 0)
STS L1 1.4 1.3 1.3 – –

L2 1.4 0.5–1.5 0.5–1.5 – –
L1 1–1.5 0 0 – –

PLS L1 2 2 2 – –
L2 2 2 2 – –
L1 1–2 1–2 1–2 – –

TC 8 (rotational gravity waves, f = 10�3 s�1)
STS L1 1.4 1.3 1.3 1.4 2

L2 1.4 1–1.5 1–1.5 1.4 2
L1 1–1.5 0 0 1–1.5 2

PLS L1 2 2 2 2 2
L2 2 2 2 2 2
L1 1–2 1–2 1–2 1–2 2

TC 10 (forced flow, f = 0)
STS L1 1 0.9–1 0.9–1 1 1

L2 0.5–1 0.5 0.5 0.5 0.5
L1 0 0 0 0 0

PLS L1 2 2 2 1.5 1.5
L2 1.6–1.8 1.5–1.6 1.5–1.6 1.2 1.2
L1 1 1–1.1 1–1.1 0.4–0.6 0.4–0.6

UNPLS L1 2 1.8–2 1.8–2 0.9 0.9
L2 1.6–1.8 1.3–1.5 1.3–1.5 0.5 0.5
L1 1 0.9–1 0.6–1 0 0
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As an example, we show in panel (c) of Fig. 7 the vorticity and velocity fields at t = 2000 s from the PLS simulation on the
500 m grid.

Table 4 lists the convergence rates of the error norms of h, u, v, f, and q for the STS and PLS for TC 8. As in TC 7, these rates
are 0.5–1 order higher for the PLS than for the STS, and again u and v near boundaries converge for the PLS but not for the STS.
Note also that for both schemes, all three error norms of q converge at a rate of 2. This is discussed further in the following
section.

7.2.3. Test case 9: potential vorticity advection
Although q in TC 8 is nonzero, its spatially varying part is generated at and remains very near the location of the initial hill

of fluid; it does not approach and interact with the boundaries. This can be seen in panel (d) of Fig. 7, which shows q and the
velocities at the final time of t = 20,000 s from the PLS simulation on the 500 m grid. The potential vorticity field does not
move much after it has been generated because the flow in TC 8 consists only of gravity waves, and these do not generate
a persistent velocity field that can advect q any significant distance. Since the AL81 scheme away from boundaries is second-
order accurate and since by design, both the STS and the PLS can handle a constant potential vorticity field perfectly (i.e. to
within roundoff error; see Section 6 of KJ09), in TC 8 all three error norms of q converge at a rate of 2 for both schemes
(Table 4).

Although this is a reassuring result, we are also interested in the accuracy of the boundary schemes when the spatially
variable part of the potential vorticity interacts with the boundaries. To generate a flow in which this occurs, we choose
TC 9 such that it is identical to TC 8 in all ways except that the initial velocity field is nonzero. In terms of the cylindrical
velocity components ur and uh, this field is given by
urðr; hÞ ¼ ð0:8 m s�1Þ � cosð2hÞ � BðrÞ ð79Þ
uhðrÞ ¼ ð0:1 m s�1Þ � BðrÞ ð80Þ
where the radial dependence B(r) is given by
BðrÞ ¼ exp � r � ro

3 km

� �2
� �

� 1� cos10 p
20 km

ðr � 5 kmÞ
n oh i

ð81Þ
Note that ur at the annulus boundaries (at r = 5 km and 25 km) is zero as required by the no-flux boundary condition, and it
can be shown that the initial vorticity at the boundaries (which must be specified as part of the initial conditions) is zero as
well. The initial Cartesian velocity components u and v are given by



Fig. 8.
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u ¼ urðr; hÞ cos h� uhðr; hÞ sin h ð82Þ
v ¼ urðr; hÞ sin hþ uhðr; hÞ cos h ð83Þ
where
r ¼ ðx2 þ y2Þ1=2 and h ¼ tan�1ðy=xÞ ð84Þ

Panel (a) of Fig. 8 shows the initial q and velocity fields corresponding to (79) and (80) on the 62.5 m grid (which is the finest
Cartesian grid). Note that as in TCs 7 and 8, the PLS and UNPLS reduce to the same scheme in this TC because the forcing is
again zero and the initial velocity field is nonzero only in a region away from the boundaries [Fig. 8, panel (a)]. Again, we
refer to this scheme simply as the PLS.

We integrate this TC to 80,000 s in order to give q enough time to reach and interact fully with the inner boundary of the
annulus. The q and velocity fields at this final time from the PLS simulation on the 62.5 m grid are shown in panel (b) of Fig. 8.
We can see that by this time, the core of positive q has rotated counterclockwise, and its western end has reached and is
being stretched around the inner boundary. The bulk of the core of positive q is being advected around the east side of
the island, but a thin filament is being advected around the west side. This filament gets progressively thinner until it cannot
be resolved even on the finest grid. This starts to occur gradually after about 80,000 s. For this reason, we do not integrate
beyond this time.

In this TC, the initial nonzero velocity field generates additional gravity waves, i.e. in addition to the ones generated by the
initial Gaussian hill of fluid. These steepen and break relatively early in the simulation (around t = 10,000 s). This wave
Various fields from the PLS simulation of TC 9 (potential vorticity advection) on the Dx = Dy = 62.5 m grid. (a) Initial potential vorticity q (in m�1 s�1)
ocities, (b) q and velocities at t = 80,000 s, (c) fluid depth h (in m) and velocities at t = 80,000 s, and (d) vorticity f (in s�1) and velocities at t = 80,000 s.
ity, velocity vectors are shown at only every 16th grid point. The maximum velocity magnitude is 0.81 m s�1 in (a) and 0.51 m s�1 in (b)–(d). Panels
(b) use the same color scale, and all four panels use the same vector length scale. For plotting purposes, u, v, f, and q have been interpolated from u-,
f-points to h-points (Appendix C).



Fig. 9. L1, L2, and L1 error norms of q at t = 80,000 s for TC 9 (potential vorticity advection) from the STS and PLS. The dashed lines are reference lines having
the indicated slopes.
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steepening and breaking is marked by the appearance of fronts and oscillations in the h, u, v, and f fields. The oscillations
arise presumably because the infinitely steep fronts cannot be resolved on any of the grids. These fronts and oscillations ap-
pear as streaks in panels (c) and (d) of Fig. 8, which show h and f along with the velocity vectors at t = 80,000 s from the PLS
simulation on the 62.5 m grid. The fronts and oscillations are also present in the ‘‘exact’’ simulation on the highly-resolved
cylindrical grid. As a result, it is not possible to reliably calculate the error norms of h, u, v, and f after about t = 10,000 s.
Surprisingly (and fortunately), however, q remains quite smooth, as can be seen in panel (b) of Fig. 8. Throughout the inte-
gration period, its L1, L2, and L1 error norms converge at rates of 1.5, 1.5, and 1–2, respectively, for the STS and at rates of 2, 2,
and 1–2, respectively, for the PLS. Note that kDqk1 is a somewhat jagged function of the grid size for both schemes, but it is
almost always smaller in magnitude for the PLS than the STS. As an example, we show in Fig. 9 the error norms of q as func-
tions of Dx or Dy at t = 80,000 s. [In this figure, the sharp decrease in the error norms of the PLS as we move from the 125 m
to the 62.5 m (the finest) grid is due to the fact that the accuracy of the simulation on the 62.5 m grid approaches that of the
‘‘exact’’ simulation in cylindrical coordinates.] Thus, both the STS and the PLS advect potential vorticity around the inner
annulus boundary reasonably well, but the PLS does a slightly better job.

7.2.4. Test case 10: forced flow
Since most simulations with the SWEs are going to involve some type of forcing (e.g. wind forcing), in this final TC we

consider such a flow. We initialize the flow with u = v = 0 and h = ho = 5 m, and for simplicity, we set f = 0. In the simulation
in cylindrical coordinates used to obtain the ‘‘exact’’ solution, we initiate motion using the forcing terms Sn/mh = Sr/h and Sg/
nh = rSh/h on the RHSs of the momentum equations (2) and (3). Here, Sr and Sh are the cylindrical components of the stress
vector S (Section 2). We choose these to be
Sr ¼ �ð10�3 m2 s�2Þ h
ho
ðc0 þ c1r þ c2r2Þ cos4 1

2
h� 2p

3

� �� �
� TðtÞ ð85Þ

Sh ¼ ð10�3 m2 s�2Þ h
ho
ðc0 þ c1r þ c2r2Þ cos4 1

2
h� p

3

� �� �
� TðtÞ ð86Þ
where c0 = 1.75, c1 = �3.0 � 10�4 m�1, c2 = 10�8 m�2, and T(t) is the time-dependent part of the forcing. We choose this to be
the same as the time-dependent part of the forcing in the forced 1D channel flow TCs 2 and 5, i.e. Eq. (196) of Appendix E.
Substituting (85) and (86) into (11), we can show that the vorticity source term S(f) on the RHS of (7) is given by
SðfÞ ¼ mn
@

@n
Sg

nh

� �
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@g
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Fig. 10. Various fields from TC 10 (forced flow) on the Dx = Dy = 500 m grid. (a) Stress vector field S (in m2 s�2) and vorticity source term S(f) (in s�2) given
by Eqs. (85)–(87) with T(t) set to 1, shown here for the PLS; (b) fluid depth h (in m) and velocities at t = 50,000 s from the PLS; (c) potential vorticity q (in
m�1 s�1) and velocities at t = 10,000 s (which corresponds to about the end of the forcing period) from the PLS; (d) q and velocities at t = 50,000 s from the
PLS; (e) h and velocities at t = 50,000 s from the STS near the inner boundary of the northeastern quarter of the annulus; and (f) h and velocities at
t = 50,000 s from the PLS near the inner boundary of the northeastern quarter of the annulus. For clarity, vectors in (a)–(d) are shown at only every second
grid point. The maximum stress magnitude in (a) is 6.1 � 10�4 m2 s�2. The maximum velocity magnitudes are 0.64 m s�1 in (b), (d), and (f) and 0.63 m s�1 in
(c) and (e). Panels (c) and (d) use the same vector length scale and color scale, as do panels (e) and (f). For plotting purposes, u, v, and q have been
interpolated from u-, v-, and f-points to h-points (Appendix C). Rates of convergence are listed in Table 4.
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In cylindrical coordinates, we obtain the source term in the discrete flux-form vorticity equation (32) at the boundary f-point
at (i + 1/2, j + 1/2) by evaluating (87) at (ni+1/2,gj+1/2) = (ri+1/2,hj+1/2) and multiplying the result by the associated area
AðfÞiþ1=2;jþ1=2.

In Cartesian coordinates, we initiate motion using the forcing functions Sn/mh = Sx/h and Sg/nh = Sy/h on the RHSs of the x
and y direction momentum equations (2) and (3). The Cartesian stress components Sx and Sy are obtained using
Sx ¼ Srðr; h; tÞ cos h� Shðr; h; tÞ sin h ð88Þ
Sy ¼ Srðr; h; tÞ sin hþ Shðr; h; tÞ cos h ð89Þ
where Sr and Sh are given by (85) and (86), and r and h are calculated from x and y using (84). As in cylindrical coordinates, we
obtain the source term in the discrete flux-form vorticity equation at the boundary f-point at (i + 1/2, j + 1/2) by evaluating
(87) at (ni+1/2,gj+1/2) = (xi+1/2,yj+1/2) [with r and h in (87) obtained from xi+1/2 and yj+1/2 using (84)] and multiplying the result by
the area AðfÞiþ1=2;jþ1=2. Panel (a) of Fig. 10 shows the stress vector field S given by (85) and (86) or (88) and (89) and the corre-
sponding vorticity source term S(f) given by (87) on the 500 m Cartesian grid. Note that in the figure, S and S(f) are shown at
their maximum values in time, i.e. with T(t) set to 1.

Since the forcing in this TC is nonzero near boundaries, the PLS and UNPLS are no longer equivalent. Thus, as in TCs 1–6,
in this TC we perform three GRSs—one with the STS, a second with the PLS, and a third with the UNPLS. We integrate this
TC to t = 50,000 s in order to give the flow sufficient time to evolve on its own after the forcing stops (at t � 10,000 s). Panel
(b) of Fig. 10 shows the depth and velocity fields at t = 50,000 s, and panels (c) and (d) show the potential vorticity and
velocity fields at t = 10,000 s and t = 50,000 s, respectively. All three panels are for the PLS on the 500 m grid. Comparing
panels (c) and (d), we can see that between the end of the forcing and the end of the simulation, the potential vorticity
gets advected around both the inner and outer boundaries of the annulus. Thus, the flow interacts strongly with the
boundaries.

Table 4 lists the convergence rates of the error norms of h, u, v, f, and q for all three schemes for TC 10. We can see from
this table that the convergence rates for h, u, and v are about 1 order larger for the PLS and UNPLS than for the STS. The L1 and
L2 error norms of h, u, and v converge faster for the PLS and UNPLS than for the STS because as we move from coarser to finer
grids, the model boundaries in the PLS and UNPLS shift much less than in the STS. (This is also the reason for the higher con-
vergence rates of the L1 and L2 error norms of h, u, and v for the PLS and UNPLS in all the other TCs, including TCs 1–6.) This is
in turn due to the fact that the boundary profile on any given grid is much more accurately approximated with the PLS and
UNPLS than with the STS. Panels (e) and (f) of Fig. 10 show the depth and velocity fields for the STS and PLS, respectively, near
the inner boundary of the northeastern quarter of the annulus on the 500 m grid at t = 50,000 s. (The corresponding figure for
the UNPLS is indistinguishable from the one for the PLS and is therefore not shown.) We can see from this figure that h, u, and
v near the boundary are jagged for the STS but are smooth for the PLS (and UNPLS). The jaggedness in the STS fields comes
about because the fluid velocity must change both its magnitude and direction abruptly to get around the steps. To get
around convex corners, the flow accelerates, giving rise to large velocities and minima (depressions) in the depth. On the
other hand, at concave corners, the flow slows down and the fluid piles up, giving rise to maxima in the depth. Note that
the jaggedness in h, u, and v near boundaries in the STS does not disappear as the grid is refined. This is because even though
the size of the boundary steps decreases with decreasing grid size, the steps themselves never go away. As a result, h, u, and v
near stairstep boundaries do not converge to those near a smooth (in this case circular) boundary even as the flow far from
the boundary converges to the exact solution. This is reflected in the fact that the L1 error norms of h, u, and v for the STS
have convergence rates of 0. [Recall that kDuk1 and kDvk1 for the STS also fail to converge in TCs 1–8. However, kDhk1 for
the STS converges in some of these TCs (3, 6, 7, and 8) but not others (1, 2, 4, and 5). We have not been able to determine the
circumstances under which kDhk1 for the STS converges or fails to converge. On the other hand, kDhk1, kDuk1, and kDvk1
for the PLS and UNPLS converge in all of TCs 1–8 and TC 10.]

We can also see from Table 4 that the PLS simulates h with the same accuracy as the UNPLS, and it simulates u and v
slightly more accurately (by 0.1–0.2 order). Also, the STS and UNPLS simulate f and q with about the same accuracy while
the PLS simulates it more accurately by about 0.5 order. (Note that f and q behave almost identically in this TC because the
relative changes in h in any of the simulations are much smaller than the relative changes in f. Thus, q = f/h � f/ho = f/5 m,
and any conclusions drawn here about the error norms of f also apply to the error norms of q.) Most notably, kDfk1 (rep-
resenting the error in f at or near boundaries) converges at a rate of 0.4–0.6 for the PLS but does not converge for the STS and
UNPLS. This result demonstrates that the evaluation of the forcing terms at the shifted locations in the PLS is indeed effective
in increasing the accuracy of the scheme. This procedure allows f near boundaries to converge. This in turn helps improve the
convergence rates of kDfk1 and kDfk2 (which are 0.9 and 0.5 for the UNPLS and 1.5 and 1.2 for the PLS) as well as the con-
vergence rates of all three error norms of u and v (by 0.1–0.2 order). Thus, it is clear in this TC that the PLS is the most accu-
rate of the three boundary schemes.
8. Conclusion

We have presented a new boundary scheme for use with the mass, energy, vorticity, and potential enstrophy conserving
scheme of Arakawa and Lamb [2] for the inviscid shallow water equations that uses piecewise linear line segments to
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approximate boundary profiles. The new boundary scheme is a generalization of a previous scheme that uses stairsteps to
approximate boundary profiles [1]. Here, we refer to the new piecewise linear scheme as the PLS and the previous stairstep
scheme as the STS. Both boundary schemes maintain all four conservation properties of the original Arakawa and Lamb
scheme [2] for unbounded flows.

We have performed numerical tests to compare the conservation properties and accuracy of the PLS with those of the STS.
The conservation tests demonstrated that, like the STS, the PLS conserves the domain-summed mass and vorticity to within
roundoff error and the domain-summed energy and potential enstrophy to within time integration errors. The accuracy tests
involved performing grid refinement studies (GRSs) and observing the rates of convergence of the L1, L2, and L1 error norms
of h, u, v, f, and q with decreasing grid size. We performed these GRSs on a total of ten test cases. The first six of these were
channels flows (for which analytic solutions are available), and the last four were annulus flows (for which analytic solutions
are not available, so we obtained the ‘‘exact’’ solutions by performing simulations in cylindrical coordinates on highly refined
grids). To demonstrate that the use of the shifted locations in the PLS is effective in improving the accuracy of the model, for
each test case we ran GRSs not only with the STS and PLS but also with a version of the piecewise linear scheme which we
refer to as the UNPLS that does not make use of the shifted locations, i.e. it evaluates the initial velocity components and the
forcing terms exactly at (the unshifted) u- and v-points. The GRSs of the ten test cases with the STS, PLS, and UNPLS yielded
the following accuracy results:

1. The PLS simulates h, u, and v more accurately than the STS by 0.5–1 order. For the PLS, h, u, and v near boundaries always
converge (as measured by the convergence rates of their L1 error norms). For the STS, u and v near boundaries never con-
verge while h near boundaries converges in some test cases but not others.

2. In some test cases, the PLS simulates f and q about as accurately as the STS while in other cases, it simulates f and q more
accurately (e.g. by 0.5 order). In none of the test cases does the STS simulate f and/or q significantly more accurately (i.e.
by more than 0.2 order) than the PLS.

3. The UNPLS simulates h as accurately as the PLS but simulates u and v somewhat less accurately than the PLS (but still
more accurately than the STS). Just as for the PLS, h, u, and v near boundaries always converge for the UNPLS.

4. In most test cases, the PLS simulates f and q much more accurately (e.g. by 1 order) than the UNPLS. In fact, in most cases,
f and q near boundaries do not converge for the UNPLS, but they converge in all cases for the PLS. This shows that the use
of the shifted locations in the PLS allows f and q near boundaries to converge (which in turn helps increase the conver-
gence rates of u and v).

5. The only one of the three boundary schemes for which all five of the quantities h, u, v, f, and q converge near boundaries in
all test cases is the PLS.

Given these accuracy results and the fact that the STS, PLS, and UNPLS conserve the domain-summed mass, energy,
vorticity, and potential enstrophy equally well (note that the use of the shifted locations has no effect on conservation
properties, so the PLS and UNPLS conserve the same four domain-summed quantities), we conclude that the PLS is superior
to the STS and UNPLS. (The STS was in turn shown in KJ09 to be an improvement over several other non-conserving stairstep
boundary schemes). We plan to generalize the PLS to the equations governing 3D atmospheric and oceanic flows.
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Appendix A. Derivation of AðhÞi;j at boundary h-points

In this appendix, we derive an expression for the area AðhÞi;j associated with a boundary h-point (which exist only in the
PLS). We will choose AðhÞi;j at such points so that the discrete expression for Ki,j given by (20) converges to the correct limit
as the grid is refined and the boundary h-point approaches the fluid–land boundary.

Let (nB,gB) denote the coordinates of some point, say point B, on a fluid–land boundary in the ng plane (Fig. 4). In the anal-
ysis below, we will use the following limiting process. We will keep the location of B fixed, and we will consider progres-
sively finer grids, focusing on each grid on the specific boundary box that happens to encompass point B. In the limit of
an infinitely refined grid, the area of the boundary box will go to zero, and the h-point associated with the box, the two
u-points on its eastern and western faces, and the two v-points on its northern and southern faces will all converge to point
B (whether these u- and v-points are fluid or land).

On a given grid, let ðnðhÞi;j ;g
ðhÞ
i;j Þ denote the coordinates of the boundary h-point associated with the boundary box that hap-

pens to encompass point B. From (20), Ki,j at this h-point is given by
Ki;j ¼
1

AðhÞi;j

1
2

AðuÞu2
n
þ AðvÞv2

g
� �

i;j
ð90Þ
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Expanding the averaging operators on the RHS, we get
Ki;j ¼
1

4AðhÞi;j

ðAðuÞu2Þiþ1=2;j þ ðA
ðuÞu2Þi�1=2;j þ ðA

ðvÞv2Þi;jþ1=2 þ ðA
ðvÞv2Þi;j�1=2

h i
ð91Þ
Since ðnðhÞi;j ;g
ðhÞ
i;j Þ approaches point B as we consider progressively finer grids, in the limit of infinite grid refinement the RHS of

(91) must converge to the value of K at point B. To obtain this value, we first express the n and g velocity components u and v
as follows:
u ¼ U cos a ð92Þ
v ¼ U sin a ð93Þ
Here, U is the magnitude of the velocity and a = tan�1(v/u) is its direction. Recall from Section 2 that in the continuous case, K
is given by
K ¼ 1
2
ðu2 þ v2Þ
Substituting (92) and (93) into this, we get
K ¼ 1
2
½ðU cos aÞ2 þ ðU sinaÞ2� ¼ 1

2
U2
Evaluating this at point B, we obtain
KB ¼
1
2

U2
B ð94Þ
where UB is the velocity magnitude at point B. This is the value that Ki,j must converge to as we consider progressively finer
grids. To determine the conditions under which this requirement is satisfied, we must first express the RHS of (91) in terms
of UB. This requires that we first express u and v in terms of UB. To obtain such expressions, it will be convenient to first ex-
pand U and a in terms of the separations in the n and g directions between point B and some generic point (n,g) within the
fluid. We will denote these separations by X and Y, i.e.
X ¼ n� nB; Y ¼ g� gB ð95Þ
For small X and Y [i.e. as the generic point (n,g) approaches B], we can expand U and a about (nB,gB) to first order in X and Y as
follows:
U ¼ UB þ a1X þ a2Y ð96Þ
a ¼ aB þ b1X þ b2Y ð97Þ
Here, UB, a1, a2, aB, b1, and b2 are (generally time-dependent) coefficients that are not functions of n and g (or X and Y). [We do
not include bilinear terms, e.g. a3XY and b3XY, on the RHSs of (96) and (97) because these are effectively second-order terms.
This is due to the fact that we are refining the grid in both the n and g directions, so X and Y go to zero simultaneously. The
results obtained in this appendix are the same whether or not we include these terms.] Note that (96) satisfies the require-
ment that U = UB at point B (i.e. when X = Y = 0). Also, aB is the value of a at point B. We must now substitute (96) and (97)
into the RHSs of (92) and (93). First, however, we use trigonometric identities to rewrite cosa and sina as follows:
cos a ¼ cos½ða� aBÞ þ aB� ¼ cosða� aBÞ cos aB � sinða� aBÞ sin aB ð98Þ
sin a ¼ sin½ða� aBÞ þ aB� ¼ sinða� aBÞ cos aB þ cosða� aBÞ sinaB ð99Þ
For convenience, we define the angle b as follows:
b ¼ b1X þ b2Y ð100Þ
Note that b is first order in X and Y. Thus, it goes to zero as X and Y go to zero. Substituting (100) into (97), we get
a� aB ¼ b ð101Þ
Using (101), we can rewrite (98) and (99) as follows:
cos a ¼ cos aB cos b� sin aB sin b

sina ¼ cos aB sin bþ sinaB cos b
Substituting these into (92) and (93), we get
u ¼ ðcos aB cos b� sinaB sin bÞU ð102Þ
v ¼ ðcos aB sin bþ sin aB cos bÞU ð103Þ
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We now keep only those terms on the RHSs of (102) and (103) that are zeroth- or first-order in X or Y. For small jbj, the series
expansions for cosb and sinb are given by
cos b ¼ 1� 1
2

b2 þ � � � ; sin b ¼ b� 1
6

b3 þ � � �
Substituting these into (102) and (103) and keeping only terms that are zeroth- or first- order in b, we obtain
u ¼ ðcos aB � b sinaBÞU
v ¼ ðb cos aB þ sinaBÞU
Substituting in (96) and (100), we can rewrite these as
u ¼ ½cos aB � ðb1X þ b2YÞ sinaB�ðUB þ a1X þ a2YÞ
v ¼ ½ðb1X þ b2YÞ cos aB þ sinaB�ðUB þ a1X þ a2YÞ
Carrying out the multiplications on the RHSs and retaining only zeroth- and first-order terms in X and Y, we obtain
u ¼ UB cos aB þ ða1 cos aB � UBb1 sin aBÞX þ ða2 cos aB � UBb2 sin aBÞY
v ¼ UB sinaB þ ða1 sinaB þ UBb1 cos aBÞX þ ða2 sin aB þ UBb2 cos aBÞY
These are the required expressions for u and v in terms of UB [and the other coefficients on the RHSs of (96) and (97)]. Squar-
ing these and again retaining only zeroth- and first-order terms in X and Y, we get
u2 ¼ ðUB cos aBÞ2 þ 2UB cos aBða1 cos aB � UBb1 sin aBÞX þ 2UB cos aBða2 cos aB � UBb2 sin aBÞY ð104Þ

v2 ¼ ðUB sin aBÞ2 þ 2UB sin aBða1 sin aB þ UBb1 cos aBÞX þ 2UB sin aBða2 sin aB þ UBb2 cos aBÞY ð105Þ
These expressions are valid for small X and Y. Evaluating (104) at the u-points on the eastern and western faces of the bound-
ary box at (i, j) [i.e. at ðniþ1=2;g

ðuÞ
iþ1=2;jÞ and ðni�1=2;g

ðuÞ
i�1=2;jÞ], we obtain
u2
iþ1=2;j ¼ ðUB cos aBÞ2 þ 2UB cos aBða1 cos aB � UBb1 sinaBÞXiþ1=2 þ 2UB cos aBða2 cos aB � UBb2 sin aBÞY ðuÞiþ1=2;j ð106Þ

u2
i�1=2;j ¼ ðUB cos aBÞ2 þ 2UB cos aBða1 cos aB � UBb1 sinaBÞXi�1=2 þ 2UB cos aBða2 cos aB � UBb2 sin aBÞY ðuÞi�1=2;j ð107Þ
where ðXiþ1=2;Y
ðuÞ
iþ1=2;jÞ and ðXi�1=2;Y

ðuÞ
i�1=2;jÞ are the X and Y values at these u-points and are given by
Xiþ1=2 ¼ niþ1=2 � nB; Y ðuÞiþ1=2;j ¼ gðuÞiþ1=2;j � gB ð108Þ

Xi�1=2 ¼ ni�1=2 � nB; Y ðuÞi�1=2;j ¼ gðuÞi�1=2;j � gB ð109Þ
Similarly, evaluating (105) at the v-points on the northern and southern faces of the boundary box at (i, j) [i.e. at
ðnðvÞi;jþ1=2;gjþ1=2Þ and ðnðvÞi;j�1=2;gj�1=2Þ], we obtain
v2
i;jþ1=2 ¼ ðUB sin aBÞ2 þ 2UB sin aBða1 sin aB þ UBb1 cos aBÞXðvÞi;jþ1=2 þ 2UB sin aBða2 sin aB þ UBb2 cos aBÞYjþ1=2 ð110Þ

v2
i;j�1=2 ¼ ðUB sin aBÞ2 þ 2UB sin aBða1 sin aB þ UBb1 cos aBÞXðvÞi;j�1=2 þ 2UB sin aBða2 sin aB þ UBb2 cos aBÞYj�1=2 ð111Þ
where ðXðvÞi;jþ1=2;Yjþ1=2Þ and ðXðvÞi;j�1=2;Yj�1=2Þ are the X and Y values at these v-points and are given by
XðvÞi;jþ1=2 ¼ nðvÞi;jþ1=2 � nB; Yjþ1=2 ¼ gjþ1=2 � gB ð112Þ

XðvÞi;j�1=2 ¼ nðvÞi;j�1=2 � nB; Yj�1=2 ¼ gj�1=2 � gB ð113Þ
Note that in obtaining (106), (107), (110) and (111), we have assumed that (i + 1/2, j) and (i � 1/2, j) are fluid u-points and
(i, j + 1/2) and (i, j � 1/2) are fluid v-points. (This is the case that is illustrated in Fig. 4.) However, as we move to finer grids,
these u- and v-points can alternate between being fluid and land (although at least one of these u-points and at least one of
these v-points will always be fluid). Fortunately, in this analysis, it does not matter what we set u2

iþ1=2;j and v2
i;jþ1=2 to at land u-

and v-points because at such points, u2
iþ1=2;j and v2

i;jþ1=2 will be multiplied by AðuÞiþ1=2;j and AðvÞi;jþ1=2 [see (91)], which will be zero
(Section 4.1). Thus, we can use (106), (107), (110) and (111) in our analysis whether or not the corresponding u- and v-points
are fluid or land. Substituting (106), (107), (110) and (111) into (91) and rearranging terms, we obtain
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Ki;j ¼ U2
B

1

4AðhÞi;j

cos2 aB AðuÞiþ1=2;j þ AðuÞi�1=2;j

� �
þ sin2 aB AðvÞi;jþ1=2 þ AðvÞi;j�1=2

� �h i

þ 2UBa1
1

4AðhÞi;j

cos2 aB AðuÞiþ1=2;jXiþ1=2 þ AðuÞi�1=2;jXi�1=2

� �
þ sin2 aB AðvÞi;jþ1=2XðvÞi;jþ1=2 þ AðvÞi;j�1=2XðvÞi;j�1=2

� �h i

þ 2UBa2
1

4AðhÞi;j

cos2 aB AðuÞiþ1=2;jY
ðuÞ
iþ1=2;j þ AðuÞi�1=2;jY

ðuÞ
i�1=2;j

� �
þ sin2 aB AðvÞi;jþ1=2Yjþ1=2 þ AðvÞi;j�1=2Yj�1=2

� �h i

� 2U2
Bb1

1

4AðhÞi;j

cos aB sin aB AðuÞiþ1=2;jXiþ1=2 þ AðuÞi�1=2;jXi�1=2

� �
� AðvÞi;jþ1=2XðvÞi;jþ1=2 þ AðvÞi;j�1=2XðvÞi;j�1=2

� �h i

� 2U2
Bb2

1

4AðhÞi;j

cos aB sin aB AðuÞiþ1=2;jY
ðuÞ
iþ1=2;j þ AðuÞi�1=2;jY

ðuÞ
i�1=2;j

� �
� AðvÞi;jþ1=2Yjþ1=2 þ AðvÞi;j�1=2Yj�1=2

� �h i
ð114Þ
We now take the limit of this expression as we consider progressively finer grids. In this limit, the areas
AðhÞi;j ; AðuÞiþ1=2;j; AðuÞi�1=2;j; AðvÞi;jþ1=2, and AðvÞi;j�1=2 all go to zero. We will assume here that the ratios of AðuÞiþ1=2;j; AðuÞi�1=2;j; AðvÞi;jþ1=2, and
AðvÞi;j�1=2 to AðhÞi;j remain finite. We will verify this assumption later below after we derive the expression for AðhÞi;j at a boundary
h-point. Note that Xiþ1=2; Y ðuÞiþ1=2;j; Xi�1=2; Y ðuÞi�1=2;j; XðvÞi;jþ1=2; Yjþ1=2; XðvÞi;j�1=2, and Yj�1/2 also go to zero as we consider progressively
finer grids. Thus, the terms involving X and Y on the RHS of (114) go to zero in this limit and we obtain
Ki;j ! U2
B

1

4AðhÞi;j

cos2 aB AðuÞiþ1=2;j þ AðuÞi�1=2;j

� �
þ sin2 aB AðvÞi;jþ1=2 þ AðvÞi;j�1=2

� �h i
as we consider progressively finer grids

ð115Þ

Recall that the correct limit for Ki,j is given by the RHS of (94). Thus, we now require that the RHS of (115) approach that of
(94), i.e.
U2
B

1

2AðhÞi;j

cos2 aBðAðuÞÞ
n

i;j þ sin2 aBðAðvÞÞ
g

i;j

� �
! 1

2
U2

B as we consider progressively finer grids ð116Þ
Note that we have used the numerical averaging operators to rewrite the terms involving AðuÞiþ1=2;j and AðvÞi;jþ1=2 in (116) more
compactly. (116) is equivalent to requiring that
AðhÞi;j ! AðuÞ
n

cos2 aB þ AðvÞ
g

sin2 aB

� �
i;j

as we consider progressively finer grids ð117Þ
Recall that aB is the value of the velocity angle a at the boundary point B. Since the velocity vector at the boundary must be
tangent to the boundary, aB must equal hbdy,B or hbdy,B ± p, where hbdy,B is the angle in physical space that the boundary makes
with a curve of constant g passing through point B (see Fig. 4 and the more detailed description of hbdy given in Section 4.2).
Thus,
cos2 aB ¼ cos2 hbdy;B; sin2 aB ¼ sin2 hbdy;B ð118Þ
Substituting these into (117), we obtain the following requirement on AðhÞi;j at boundary h-points:
AðhÞi;j ! AðuÞ
n

cos2 hbdy;B þ AðvÞ
g

sin2 hbdy;B

� �
i;j

as we consider progressively finer grids ð119Þ
To satisfy this, we now set AðhÞi;j at boundary h-points as follows:
AðhÞi;j ¼ AðuÞ
n

cos2 hbdy þ AðvÞ
g

sin2 hbdy

� �
i;j

ð120Þ
Here, hbdy,i,j is the angle in physical space that the linear boundary segment within the boundary box at (i, j) makes with a
curve of constant g. Note that as we consider progressively finer grids, hbdy,i,j converges to hbdy,B because in this limit, the
curvature of the boundary can be ignored. Thus, the RHS of (120) converges to that of (119). Eq. (120) is the expression
we use in calculating AðhÞi;j at boundary h-points.

Now that we have derived the expression for AðhÞi;j at boundary h-points, we can confirm the assumption made above that
the limits of the ratios of AðuÞiþ1=2;j; AðuÞi�1=2;j; AðvÞi;jþ1=2, and AðvÞi;j�1=2 to AðhÞi;j remain finite as we consider progressively finer grids. Since
AðhÞi;j given by (120) satisfies (119), we will simply work with (119). Substituting (118) into (119) and expanding the numerical
averaging operators, we obtain
AðhÞi;j !
1
2

AðuÞiþ1=2;j cos2 aB þ
1
2

AðuÞi�1=2;j cos2 aB þ
1
2

AðvÞi;jþ1=2 sin2 aB þ
1
2

AðvÞi;j�1=2 sin2 aB

as we consider progressively finer grids ð121Þ
Since the box at (i, j) is a boundary box, at least one of AðuÞiþ1=2;j and AðuÞi�1=2;j and at least one of AðvÞi;jþ1=2 and AðvÞi;j�1=2 is positive, and all
four of these areas are always nonnegative. Also, cos2aB and sin2aB cannot both be zero; at least one of them must be po-
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sitive. Thus, each of the four terms on the RHS of (121) is nonnegative, and at least one is always positive. This implies that
each of the four terms is greater than or equal to zero and less than or equal to their sum. Consider, for instance, the first term
on the RHS of (121). From the argument above, we have
0 6
1
2

AðuÞiþ1=2;j cos2 aB 6
1
2

AðuÞiþ1=2;j cos2 aB þ
1
2

AðuÞi�1=2;j cos2 aB þ
1
2

AðvÞi;jþ1=2 sin2 aB þ
1
2

AðvÞi;j�1=2 sin2 aB ð122Þ
Dividing this by AðhÞi;j (which is always positive), taking the limit as we consider progressively finer grids, and substituting in
(121), we get
0 6
1
2

AðuÞiþ1=2;j

AðhÞi;j

cos2 aB 6 1 as we consider progressively finer grids ð123Þ
If cosaB is zero, then all terms on the RHS of (114) involving the ratio of AðuÞiþ1=2;j to AðhÞi;j drop out and we do not have to worry
about whether this ratio remains finite as we consider progressively finer grids. Thus, in (123), we only need to consider the
case of cosaB being nonzero. Then cos2aB is positive, so we can rewrite (123) as
0 6
AðuÞiþ1=2;j

AðhÞi;j

6
2

cos2 aB
as we consider progressively finer grids ð124Þ
Since the RHS of (124) is a constant, we see that AðuÞiþ1=2;j=AðhÞi;j remains finite, as assumed in the derivation above. We can use
analogous procedures to show that the ratios of AðuÞi�1=2;j; AðvÞi;jþ1=2, and AðvÞi;j�1=2 to AðhÞi;j also remain finite as we consider progres-
sively finer grids.

Appendix B. Derivation of the shifted coordinates n
ðvÞ�
i;jþ1=2 and g

ðuÞ�
iþ1=2;j

In this appendix, we show that if in the piecewise linear scheme the forcing terms ½DsðuÞ�n ðSn=hÞ��iþ1=2;j and
½DsðvÞ�g ðSg=hÞ��i;jþ1=2 in the discrete momentum equations (18) and (19) at near-boundary u- and v-points are evaluated exactly
where u and v are defined, then the vorticity source term SðfÞiþ1=2;jþ1=2 in the discrete vorticity equation (32) at near-boundary f-
points will not converge to the correct limit as the grid is refined. We then derive the (n,g) coordinates of the locations where
the forcing terms must be evaluated in order for SðfÞiþ1=2;jþ1=2 at near-boundary f-points to converge to the correct limit. Recall
from Section 4.4 that near-boundary u- and v-points are fluid u- and v-points that are surrounded by one or (at most) two
boundary boxes, and near-boundary f-points are fluid f-points that are surrounded by one or more (but at most four) bound-
ary boxes. In Figs. 3 and 4, near-boundary f-points are denoted by ‘‘�’’s within diamonds. Note that near-boundary f-points
are always located on one of the corners of a boundary box. Thus, as the grid is refined, they approach the fluid–land
boundary.

To demonstrate that SðfÞiþ1=2;jþ1=2 at near-boundary f-points does not converge to the correct limit if the forcing terms at
near-boundary u- and v-points are evaluated exactly where u and v are defined, we consider as simple a case as possible.
Thus, we use Cartesian coordinates (n,g) = (x,y) with m = n = 1, and we assume the stress components are given by
Sx ¼ 0 and Sy ¼ ðaþ bxÞh ð125Þ
where a and b are arbitrary constants. Then the forcing terms in the continuous momentum equations (2) and (3) are given
by
Sn

mh
¼ Sx

h
¼ 0 and

Sg

nh
¼ Sy

h
¼ aþ bx ð126Þ
From (11), the corresponding exact expression for S(f) is
SðfÞ ¼ @

@x
Sy

h

� �
� @

@y
Sx

h

� �
¼ b ð127Þ
We will now evaluate the discrete expression for SðfÞiþ1=2;jþ1=2 given by (35) at the near-boundary f-point at (i + 1/2, j + 1/2) in
Fig. 11, and we will then check whether its limit as the grid is refined (and the near-boundary f-point approaches the bound-
ary) corresponds to the RHS of (127). In Fig. 11, we have assumed for simplicity that the boundary is linear and passes exactly
through the boundary f-points at (i + 1/2, j � 1/2) and (i + 3/2, j + 1/2). Thus, the coordinates of the u-points at (i + 1/2, j) and
(i + 1/2, j + 1) are ðniþ1=2;g

ðuÞ
iþ1=2;jÞ ¼ ðxiþ1=2; yjÞ and ðniþ1=2;g

ðuÞ
iþ1=2;jþ1Þ ¼ ðxiþ1=2; yjþ1Þ, respectively, and the coordinates of the v-

points at (i, j + 1/2) and (i + 1, j + 1/2) are ðnðvÞi;jþ1=2;gjþ1=2Þ ¼ ðxi; yjþ1=2Þ and ðnðvÞiþ1;jþ1=2;gjþ1=2Þ ¼ ðxiþ1; yjþ1=2Þ, respectively. Since
these two u-points and two v-points are all of fluid type, we have [from (55) and (56)]
ðDsðuÞ�n Þiþ1=2;j ¼ ðDsðuÞ�n Þiþ1=2;jþ1 ¼ Dx ð128Þ
ðDsðvÞ�g Þi;jþ1=2 ¼ ðDsðvÞ�g Þiþ1;jþ1=2 ¼ Dy ð129Þ



Fig. 11. Linear fluid–land boundary in the ng plane (which in this case is identical to the Cartesian xy plane) used to demonstrate that if the forcing terms in
the momentum equations at near-boundary u- and v-points are evaluated exactly where u and v are defined, the vorticity source term SðfÞiþ1=2;jþ1=2 at near-
boundary f-points does not approach the correct limit as the grid is refined. The thick solid line is the model boundary, and hbdy is the angle the boundary
makes with lines of constant g. The shaded region is land and the clear region is fluid. The dots denote h-points, the arrows denote u- and v-points, and the
‘‘�’’s denote f-points. Circled ‘‘�’’s denote boundary f-points, and ‘‘�’’s within diamonds denote near-boundary f-points [i.e. fluid f-points that are
surrounded by one or more (but at most four) boundary boxes]. The u-points at (ni+1/2,gj) and (ni+3/2,gj+1) and the v-points at (ni,gj�1/2) and (ni+1,gj+1/2) are
near-boundary u- and v-points [i.e. fluid u- and v-points that are surrounded by one or (at most) two boundary boxes].
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Substituting these into (35) and expanding the differencing operators, we obtain
SðfÞiþ1=2;jþ1=2 ¼
1

AðfÞiþ1=2;jþ1=2

Dy
Sy

h

� ��
iþ1;jþ1=2

� Sy

h

� ��
i;jþ1=2

( )
� Dx

Sx

h

� ��
iþ1=2;jþ1

� Sx

h

� ��
iþ1=2;j

( )" #
ð130Þ
We now use (126) to evaluate the forcing terms in this expression exactly at the locations where u and v are defined. This
gives
SðfÞiþ1=2;jþ1=2 ¼
1

AðfÞiþ1=2;jþ1=2

Dy ðaþ bxiþ1Þ � ðaþ bxiÞf g � Dxf0� 0g½ � ¼ Dy

AðfÞiþ1=2;jþ1=2

bðxiþ1 � xiÞ ¼ b
DxDy

AðfÞiþ1=2;jþ1=2

ð131Þ
It remains to calculate AðfÞiþ1=2;jþ1=2. From (26), we see that this is just the arithmetic average of AðhÞi;jþ1; AðhÞiþ1;jþ1; AðhÞi;j ; AðhÞiþ1;j. Since
in Fig. 11 the h-points at (i, j + 1), (i + 1, j + 1), and (i, j) are all of fluid type, we have from (30)
AðhÞi;jþ1 ¼ AðhÞiþ1;jþ1 ¼ AðhÞi;j ¼ DxDy ð132Þ
Also, since (i + 1, j) is a boundary h-point, we see from (30) that in order to obtain AðhÞiþ1;j, we need AðuÞiþ1=2;j; AðuÞiþ3=2;j; AðvÞiþ1;j�1=2, and
AðvÞiþ1;jþ1=2. These are given by (22) and (23). Since (i + 1/2, j) is a fluid u-point, (i + 3/2, j) is a land u-point, (i + 1, j � 1/2) is a land
v-point, and (i + 1, j + 1/2) is a fluid v-point, we have [from (55) and (56)]
ðDsðuÞ�n Þiþ1=2;j ¼ Dx; ðDsðuÞ�n Þiþ3=2;j ¼ 0 ð133Þ
ðDsðvÞ�g Þiþ1;j�1=2 ¼ 0; ðDsðvÞ�g Þiþ1;jþ1=2 ¼ Dy ð134Þ
Also, from (16) and (17) and the subsequent discussion, we have
ðDsðuÞg Þiþ1=2;j ¼ Dy; ðDsðuÞg Þiþ3=2;j ¼ 0 ð135Þ

ðDsðvÞn Þiþ1;j�1=2 ¼ 0; ðDsðvÞn Þiþ1;jþ1=2 ¼ Dx ð136Þ
Substituting (133)–(136) into (22) and (23), we obtain
AðuÞiþ1=2;j ¼ DxDy; AðuÞiþ3=2;j ¼ 0 ð137Þ

AðvÞiþ1;j�1=2 ¼ 0; AðvÞiþ1;jþ1=2 ¼ DxDy ð138Þ
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Then
ðAðuÞÞ
n

iþ1;j ¼
1
2

DxDy and ðAðvÞÞ
g

iþ1;j ¼
1
2

DxDy ð139Þ
Substituting these into (30) (with the i index increased by one), we get
AðhÞiþ1;j ¼
1
2

DxDy
� �

cos2 hbdy þ
1
2

DxDy
� �

sin2 hbdy

� �
iþ1;j
¼ 1

2
DxDy ð140Þ
We now substitute (132) and (140) into (26) to obtain
AðfÞiþ1=2;jþ1=2 ¼
1
4

3DxDyþ 1
2

DxDy
� �

¼ 7
8

DxDy ð141Þ
Finally, we substitute (141) into (131) to obtain
SðfÞiþ1=2;jþ1=2 ¼
8
7

b ð142Þ
Since b is a constant, the RHS of (142) does not change as the grid is refined and the near-boundary f-point at (i + 1/2,j + 1/2)
approaches the boundary. Thus, in the limit of an infinitely refined grid, SðfÞiþ1=2;jþ1=2 does not approach the correct value given
by (127). This shows that if the forcing terms at near-boundary u- and v-points are evaluated exactly where u and v are de-
fined, the vorticity source term at near-boundary f-points can take on the wrong value regardless of grid resolution, reducing
the accuracy of the scheme.

We will now derive the (n,g) coordinates of the locations where the forcing terms in the discrete momentum equations at
near-boundary u- and v-points must be evaluated in order for SðfÞiþ1=2;jþ1=2 at near-boundary f-points to converge to the correct
limit as the grid is refined. As in Appendix A, we let (nB,gB) denote the coordinates of some point, say point B, on a fluid–land
boundary in the ng plane (Fig. 4). In the analysis below, we will consider the following limiting process. We will keep the
location of B fixed, and we will consider progressively finer grids, focusing on each grid on the near-boundary f-point closest
to B. This f-point will always be at one of the corners of the boundary box that happens to encompass point B. In the limit of
an infinitely refined grid, the area of the encompassing boundary box will go to zero, and the near-boundary f-point will
converge to point B.

On a given grid, let (ni+1/2,gj+1/2) denote the coordinates of the near-boundary f-point that is closest to point B. From (35),
the source term SðfÞiþ1=2;jþ1=2 on the RHS of the discrete vorticity equation at this f-point is given by
SðfÞiþ1=2;jþ1=2 ¼
1

AðfÞ
dn DsðvÞ�g

Sg

h

� ��
 �
� dg DsðuÞ�n

Sn

h

� ��
 �� �� �
iþ1=2;jþ1=2

ð143Þ
Comparing this to (11), we can see that the first term involving Sg on the RHS of (143) is a discrete counterpart of mn � @(Sg/
nh)/@n evaluated at (ni+1/2,gj+1/2), and the second term is a discrete counterpart of mn � @(Sn/mh)/@g at this same point. Using
the fact that ðDsðvÞ�g Þi;jþ1=2 ¼ Dg=nðvÞ�i;jþ1=2 at fluid v-points [see (54)] and expanding the dn(. . .) operator, we can rewrite the first
term on the RHS of (143) as follows:
1

AðfÞ
dn DsðvÞ�g

Sg

h

� ��
 �� �
iþ1=2;jþ1=2

¼ Dg
AðfÞiþ1=2;jþ1=2

1
nðvÞ�

Sg

h

� ��
 �
iþ1;jþ1=2

� 1
nðvÞ�

Sg

h

� ��
 �
i;jþ1=2

" #
ð144Þ
Similarly, using the fact that ðDsðuÞ�n Þiþ1=2;j ¼ Dn=mðuÞ�iþ1=2;j at fluid u-points [see (53)] and expanding the dg(. . .) operator, we can
rewrite the second term on the RHS of (143) as follows:
1

AðfÞ
dg DsðuÞ�n

Sn

h

� ��
 �� �
iþ1=2;jþ1=2

¼ Dn

AðfÞiþ1=2;jþ1=2

1
mðuÞ�

Sn

h

� ��
 �
iþ1=2;jþ1

� 1
mðuÞ�

Sn

h

� ��
 �
iþ1=2;j

" #
ð145Þ
Since (ni+1/2,gj+1/2) approaches point B as we consider progressively finer grids, in the limit of infinite grid refinement the RHS
of (144) must converge to the quantity mn � @(Sg/nh)/@n evaluated at B, and the RHS of (145) must converge to the quantity
mn � @(Sn/mh)/@g evaluated at B. To obtain the values of these quantities at B, it will be convenient to first expand Sn/mh and
Sg/nh in terms of the separations in the n and g directions between point B and some generic point (n,g) within the fluid. We
will denote these separations by X and Y, i.e.
X ¼ n� nB; Y ¼ g� gB ð146Þ
For small X and Y [i.e. as the generic point (n,g) approaches B], we can expand Sn/mh and Sg/nh about (nB,gB) to first order in X
and Y as follows:
Sn

mh
¼ a0 þ a1X þ a2Y þ a3XY ð147Þ

Sg

nh
¼ b0 þ b1X þ b2Y þ b3XY ð148Þ
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Here, a0, a1, a2, b0, b1, and b2 are (generally time-dependent) coefficients that are not functions of n and g (or X and Y). Since Sn

and Sg are arbitrary forcings, we can treat these coefficients as arbitrary quantities. Taking the derivatives of (148) and (147)
with respect to n and g, respectively, we obtain
@

@n
Sg

nh

� �
¼ @

@X
Sg

nh

� �
¼ b1 þ b3Y

@

@g
Sn

mh

� �
¼ @

@Y
Sn

mh

� �
¼ a2 þ a3X
We now multiply these by mn and evaluate the results at point B to obtain
mn
@

@n
Sg

nh

� �� �
B

¼ mBnB � b1 ð149Þ

mn
@

@g
Sn

mh

� �� �
B

¼ mBnB � a2 ð150Þ
where we have used the fact that X and Y evaluated at point B are zero. In (149) and (150), mB and nB are the inverse scale factors
evaluated at B. The RHSs of (149) and (150) are the values that the RHSs of (144) and (145) must converge to as we consider
progressively finer grids. To determine the conditions under which this requirement is satisfied, we must first express the RHSs

of (144) and (145) in terms of a0 through b2. For this purpose, we let ðnðuÞ�iþ1=2;j;g
ðuÞ�
iþ1=2;jÞ denote the location

where the forcing ½DsðuÞ�n ðSn=hÞ��iþ1=2;j in the discrete n direction momentum equation is evaluated, and we let ðnðvÞ�i;jþ1=2;g
ðvÞ�
i;jþ1=2Þ de-

note the location where the forcing ½DsðvÞ�g ðSg=hÞ��i;jþ1=2 in the discrete g direction momentum equation is evaluated. [Of course,

away from boundaries, ðnðuÞ�iþ1=2;j;g
ðuÞ�
iþ1=2;jÞ is exactly the location of a u-point, i.e. ðnðuÞ�iþ1=2;j;g

ðuÞ�
iþ1=2;jÞ ¼ ðniþ1=2;g

ðuÞ
iþ1=2;jÞ ¼ ðniþ1=2;gjÞ,

and ðnðvÞ�i;jþ1=2;g
ðvÞ�
i;jþ1=2Þ is exactly the location of a v-point, i.e. ðnðvÞ�i;jþ1=2;g

ðvÞ�
i;jþ1=2Þ ¼ ðn

ðvÞ
i;jþ1=2;gjþ1=2Þ ¼ ðni;gjþ1=2Þ.] Also, we let

XðuÞ�iþ1=2;j; Y ðuÞ�iþ1=2;j, XðvÞ�i;jþ1=2, and Y ðvÞ�i;jþ1=2 denote the X and Y values corresponding to nðuÞ�iþ1=2;j; gðuÞ�iþ1=2;j; nðvÞ�i;jþ1=2, and gðvÞ�i;jþ1=2, respectively, i.e.
XðuÞ�iþ1=2;j ¼ nðuÞ�iþ1=2;j � nB; Y ðuÞ�iþ1=2;j ¼ gðuÞ�iþ1=2;j � gB ð151Þ

XðvÞ�i;jþ1=2 ¼ nðvÞ�i;jþ1=2 � nB; Y ðvÞ�i;jþ1=2 ¼ gðvÞ�i;jþ1=2 � gB ð152Þ
Next, we evaluate (148) at ðnðvÞ�i;jþ1=2;g
ðvÞ�
i;jþ1=2Þ and ðnðvÞ�iþ1;jþ1=2;g

ðvÞ�
iþ1;jþ1=2Þ and substitute the results into (144) to obtain
1

AðfÞ
dn DsðvÞ�g

Sg

h

� ��
 �� �
iþ1=2;jþ1=2

¼ Dg
AðfÞiþ1=2;jþ1=2

b1 XðvÞ�iþ1;jþ1=2 � XðvÞ�i;jþ1=2

n o
þ b2 Y ðvÞ�iþ1;jþ1=2 � Y ðvÞ�i;jþ1=2

n oh

þb3 XðvÞ�iþ1;jþ1=2Y ðvÞ�iþ1;jþ1=2 � XðvÞ�i;jþ1=2Y ðvÞ�i;jþ1=2

n oi
ð153Þ
Similarly, we evaluate (147) at ðnðuÞ�iþ1=2;j;g
ðuÞ�
iþ1=2;jÞ and ðnðuÞ�iþ1=2;jþ1;g

ðuÞ�
iþ1=2;jþ1Þ and substitute the results into (145) to obtain
1

AðfÞ
dg DsðuÞ�n

Sn

h

� ��
 �� �
iþ1=2;jþ1=2

¼ Dn

AðfÞiþ1=2;jþ1=2

a1 XðuÞ�iþ1=2;jþ1 � XðuÞ�iþ1=2;j

n o
þ a2 Y ðuÞ�iþ1=2;jþ1 � Y ðuÞ�iþ1=2;j

n oh

þa3 XðuÞ�iþ1=2;jþ1Y ðuÞ�iþ1=2;jþ1 � XðuÞ�iþ1=2;jY
ðuÞ�
iþ1=2;j

n oi
ð154Þ
Note that in evaluating (147) at ðnðuÞ�iþ1=2;j;g
ðuÞ�
iþ1=2;jÞ and ðnðuÞ�iþ1=2;jþ1;g

ðuÞ�
iþ1=2;jþ1Þ and (148) at ðnðvÞ�i;jþ1=2;g

ðvÞ�
i;jþ1=2Þ and ðnðvÞ�iþ1;jþ1=2;g

ðvÞ�
iþ1;jþ1=2Þ, we

have assumed that these four locations approach point B as we consider progressively finer grids. This requirement arises
because (147) and (148) are valid only for small X and Y. Although we will not provide a mathematical proof that this
requirement is always satisfied, below we will demonstrate graphically that it is indeed satisfied for the annulus geometry
used in the GRSs with the PLS in Section 7.2.

Recall that the requirement for SðfÞiþ1=2;jþ1=2 to converge to the correct value is that the RHSs of (153) and (154) converge to
those of (149) and (150), respectively. Since b1, b2, and b3 are arbitrary, the RHS of (153) will converge to that of (149) only if
the coefficients of b1, b2, and b3 in (153) converge to those in (149), i.e.
Dg
AðfÞiþ1=2;jþ1=2

XðvÞ�iþ1;jþ1=2 � XðvÞ�i;jþ1=2

h i
! mBnB as we consider progressively finer grids ð155Þ

Dg
AðfÞiþ1=2;jþ1=2

Y ðvÞ�iþ1;jþ1=2 � Y ðvÞ�i;jþ1=2

h i
! 0 as we consider progressively finer grids ð156Þ

Dg
AðfÞiþ1=2;jþ1=2

XðvÞ�iþ1;jþ1=2Y ðvÞ�iþ1;jþ1=2 � XðvÞ�i;jþ1=2Y ðvÞ�i;jþ1=2

h i
! 0 as we consider progressively finer grids ð157Þ
First, consider (156). The simplest way to satisfy this is to require that
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Dg
AðfÞiþ1=2;jþ1=2

Y ðvÞ�iþ1;jþ1=2 � Y ðvÞ�i;jþ1=2

h i
¼ 0 ð158Þ
Using (152), we can rewrite this as
gðvÞ�iþ1;jþ1=2 ¼ gðvÞ�i;jþ1=2 ð159Þ
Since at fluid v-points away from boundaries gðvÞ�i;jþ1=2 ¼ gjþ1=2, (159) implies that
gðvÞ�i;jþ1=2 ¼ gjþ1=2 at all fluid v-points ð160Þ
Next, consider (155). To satisfy this, we require that
Dg
AðfÞiþ1=2;jþ1=2

XðvÞ�iþ1;jþ1=2 � XðvÞ�i;jþ1=2

h i
¼ 1

. 1
mn

� �ng

iþ1=2;jþ1=2
ð161Þ
The quantities (mn)i,j+1, (mn)i+1,j+1, (mn)i,j, and (mn)i+1,j on the RHS of this expression are values of the product mn evaluated at
grid box centers (regardless of whether the grid box is fluid, boundary, or land), i.e. at (ni,gj+1), (ni+1,gj+1), (ni,gj), and (ni+1,gj),
respectively. [Recall that m and n are known functions of space (Section 4.1), so we can evaluate them anywhere, i.e. within
fluid, within land, or on a boundary.] Satisfying (161) will also satisfy (155) because as the grid is refined, the quantity

1=ð1=mnÞngiþ1=2;jþ1=2 on the RHS converges to mBnB [because the f-point at (ni+1/2,gj+1/2) approaches point B, and

1=ð1=mnÞngiþ1=2;jþ1=2 is a consistent approximation to mn evaluated at (ni+1/2,gj+1/2)]. Finally, consider (157). We will now show
that once (155) and (156) are satisfied [via (160) and (161)], (157) will be automatically satisfied. Substituting (160) into the

expression for Y ðvÞ�i;jþ1=2 given in (152), we obtain
Y ðvÞ�i;jþ1=2 ¼ Y ðvÞ�iþ1;jþ1=2 ¼ gjþ1=2 � gB at all fluid v-points ð162Þ
We now substitute (161) and (162) into (157) to obtain the following requirement for the coefficient of b3 in (153) to con-
verge to that in (149):
ðgjþ1=2 � gBÞ
1

mn

� �ng

iþ1=2;jþ1=2

,
! 0 as we consider progressively finer grids ð163Þ
This is automatically satisfied because gj+1/2 approaches gB as we consider progressively finer grids. Thus, (157) is satisfied as
long as (160) and (161) hold (which they do by assumption).

For convenience, we now use (152) to rewrite (161) as
nðvÞ�iþ1;jþ1=2 � nðvÞ�i;jþ1=2 ¼ Dn
AðfÞ

AðfÞ;tot

 !
iþ1=2;jþ1=2

ð164Þ
where we have defined AðfÞ;tot
iþ1=2;jþ1=2 as
AðfÞ;tot
iþ1=2;jþ1=2 ¼

DnDg
mn

� �ng

iþ1=2;jþ1=2
ð165Þ
AðfÞ;tot
iþ1=2;jþ1=2 is the total (i.e. fluid plus land) area associated with the f-point at (ni+1/2,gj+1/2). It is defined at all three types of f-

points (fluid, boundary, and land). Also, using a procedure analogous to the one above, we can show that the RHS of (154)
will converge to that of (150) as we consider progressively finer grids if
nðuÞ�iþ1=2;j ¼ niþ1=2 at all fluid u-points ð166Þ
and if
gðuÞ�iþ1=2;jþ1 � gðuÞ�iþ1=2;j ¼ Dg
AðfÞ

AðfÞ;tot

 !
iþ1=2;jþ1=2

ð167Þ
Eqs. (160) and (166) show that the coordinates of the locations where ½DsðuÞ�n ðSn=hÞ��iþ1=2;j and ½DsðvÞ�g ðSg=hÞ��i;jþ1=2 in (18) and
(19) must be evaluated (in order for SðfÞiþ1=2;jþ1=2 at near-boundary f-points to converge) are, respectively, ðniþ1=2;g

ðuÞ�
iþ1=2;jÞ and

ðnðvÞ�i;jþ1=2;gjþ1=2Þ, where nðvÞ�i;jþ1=2 and gðuÞ�iþ1=2;j can be obtained using the recurrence relations (164) and (167). For most boundary
configurations, these relations can be initialized by recalling that away from boundaries (i.e. at non-near-boundary u- and v-
points), nðvÞ�i;jþ1=2 ¼ ni and gðuÞ�iþ1=2;j ¼ gj. For example, consider a configuration in which a fluid–land boundary intersects the grid
line g = gj+1/2, and land is to the west of the point of intersection and fluid is to the east. To obtain the shifted n coordinates
nðvÞ�i;jþ1=2 along this grid line, we first successively consider each fluid v-point to the east of the point of intersection until we find
the first one that is not a near-boundary v-point (i.e. the first one that is far enough from the boundary to be surrounded by



Fig. 12. u-points, v;-points, and the corresponding shifted locations ðniþ1=2;g
ðuÞ�
iþ1=2;jÞ and ðnðvÞ�i;jþ1=2;gjþ1=2Þwhere the momentum forcings ½DsðuÞ�n ðSn=hÞ��iþ1=2;j and

½DsðvÞ�g ðSg=hÞ��i;jþ1=2, respectively, are evaluated near a portion of the inner boundary of the northeastern quarter of the annulus used in TCs 7–10 in
Section 7.2. The shaded regions are land and the clear regions are fluid. The horizontal arrows denote u-points, the vertical arrows denote v-points, the right
pointing triangles denote the locations ðniþ1=2;g

ðuÞ�
iþ1=2;jÞ, and the upward pointing triangles denote the locations ðnðvÞ�i;jþ1=2;gjþ1=2Þ. These points and locations are

shown on the Dx = Dy = 500 m Cartesian grid in (a), on the 250 m grid in (b), and on the 125 m grid in (c). Point B represents an arbitrary location on the
boundary.
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two fluid h-points). For such a v-point, nðvÞ�i;jþ1=2 ¼ nðvÞi;jþ1=2 ¼ ni. Substituting this value into (164) (with the i index reduced by
one) and rearranging terms, we obtain nðvÞ�i�1;jþ1=2. Next, we use (164) again (with the i index now reduced by two) to find
nðvÞ�i�2;jþ1=2. We repeat this procedure until we have found nðvÞ�i;jþ1=2 corresponding to each near-boundary v-point along the grid
line between the point of intersection with the boundary and the first non-near-boundary v-point to the east. If the locations
of land and fluid are reversed (i.e. if there is fluid to the west of the point of intersection and land to the east), we start at the
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Fig. 13. v-points (denoted by vertical arrows) and the corresponding shifted locations ðnðvÞ�i;jþ1=2;gjþ1=2Þ (denoted by upward pointing triangles) along the last
east–west grid line that intersects the southern portion of the outer boundary of the annulus on the Dx = Dy = 500 m grid used in TCs 7–10 in Section 7.2.
The shaded region is land and the clear region is fluid. The grid line of interest is along y = y1+1/2 = 24.5 km. The near-boundary f-point along this grid line
that has the largest area AðfÞiþ1=2;jþ1=2 is denoted by an ‘‘�’’. For clarity, v-points and their corresponding shifted locations are shown only along the east–west
grid line of interest while u-points and their corresponding shifted locations along north–south grid lines are not shown.
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first non-near-boundary v-point to the west of the point of intersection (where we know that nðvÞ�i;jþ1=2 ¼ nðvÞi;jþ1=2 ¼ ni) and use
(164) to successively calculate nðvÞ�i;jþ1=2 at near-boundary v-points further east. We use an analogous procedure to obtain gðuÞ�iþ1=2;j
at each near-boundary u-point. As an example, we show in Fig. 12 the locations of u- and v-points and the shifted locations
where the momentum forcings are evaluated near a portion of the inner boundary of the northeastern quarter of the annulus
on the Dx = Dy = 500 m, 250 m, and 125 m grids used in test cases (TCs) 7–10 in Section 7.2. Point B in these figures repre-
sents an arbitrary location on the boundary. Note that, as required in the derivation above, the shifted locations correspond-
ing to the faces of the boundary box that encompasses point B approach B as the grid is refined.

The procedure described above for finding nðvÞ�i;jþ1=2 and gðuÞ�iþ1=2;j does not work for near-boundary u- and v-points that are
located along the last grid line that intersects a concave boundary (e.g. a bay). This is because in such cases, we do not
encounter any non-near-boundary u- or v-points as we move away from the boundary and into fluid along the grid line;
we encounter only near-boundary u- or v-points before finally reaching another boundary. For example, such a situation oc-
curs along the first east–west grid line (i.e. grid line along which g is constant) north of the southern edge of the domain
containing the annulus in TCs 7–10 in Section 7.2. This grid line defined by y = �25 km + Dy (with the southern edge of
the domain lying along y = �25 km). Fig. 13 shows this grid line on the Dx = Dy = 500 m grid (so that in the figure, the grid
line of interest is along y = �24.5 km). Note that all the fluid v-points along this grid line are near-boundary v-points because
the row of grid boxes to the south of them are all boundary boxes. In such cases, we must somehow choose one near-bound-

ary u- or v-point at which to set nðvÞ�i;jþ1=2 or gðuÞ�iþ1=2;j. We can then use the recursion relation (164) or (167) to find nðvÞ�i;jþ1=2 or gðuÞ�iþ1=2;j

at the remaining near-boundary u- or v-points along the grid line. In the PLS, the procedure we follow is to set nðvÞ�i;jþ1=2 or gðuÞ�iþ1=2;j

symmetrically around the near-boundary f-point that has the largest area AðfÞiþ1=2;jþ1=2 [given by (26)] out of all the near-

boundary f-points along the grid line. As an example, assume that this near-boundary f-point has coordinates (ni+1/2,gj+1/

2) and that as in Fig. 13, we are considering an east–west grid line (as opposed to a north–south one). In that figure, the

near-boundary f-point having the largest AðfÞiþ1=2;jþ1=2 is denoted by an ‘‘�’’. Then setting nðvÞ�i;jþ1=2 and nðvÞ�iþ1;jþ1=2 symmetrically

about (ni+1/2,gj+1/2) requires that the difference between ni+1/2 and nðvÞ�i;jþ1=2 be equal to the difference between nðvÞ�iþ1;jþ1=2 and
ni+1/2, i.e.
niþ1=2 � nðvÞ�i;jþ1=2 ¼ nðvÞ�iþ1;jþ1=2 � niþ1=2 ð168Þ
Rearranging this, we get
nðvÞ�iþ1;jþ1=2 ¼ 2niþ1=2 � nðvÞ�i;jþ1=2 ð169Þ
Substituting this into (164) and solving for nðvÞ�i;jþ1=2, we obtain
nðvÞ�i;jþ1=2 ¼ niþ1=2 �
1
2

Dn
AðfÞ

AðfÞ;tot

 !
iþ1=2;jþ1=2

ð170Þ
With nðvÞ�i;jþ1=2 now set, we can use (164) to calculate nðvÞ�i�1;jþ1=2; nðvÞ�i�2;jþ1=2, etc. for all the near-boundary v-points west of the one at
(i, j + 1/2) and to calculate nðvÞ�iþ1;jþ1=2; nðvÞ�iþ2;jþ1=2, etc. for all the near-boundary v-points east of it. In Fig. 13, the shifted locations
obtained using this procedure are denoted by upward pointing triangles. The shifted g coordinates gðuÞ�iþ1=2;j along the last
north–south grid line that intersects a concave boundary are obtained using an analogous procedure.

Finally, note that if a boundary profile appears jagged on a given grid (e.g. it alternates between being concave and convex
from one grid box to the next), it is likely not worthwhile to find nðvÞ�i;jþ1=2 and gðuÞ�iþ1=2;j for that boundary because evaluating the
forcing terms at nðvÞ�i;jþ1=2 and gðuÞ�iþ1=2;j is helpful only if the boundary is resolved enough to have a smooth profile. Thus, in such
poorly resolved cases, it is sufficient to simply evaluate the momentum forcings at near-boundary u- and v-points exactly
where u and v are defined (as is done in the UNPLS).
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Appendix C. Error norms

Given an approximate scalar field /(n,g) and its exact counterpart /(e)(n,g), we define the error D/ in / as follows:
D/ ¼ /� /ðeÞ ð171Þ
The L1, L2, and L1 norms of D/ are given by
kD/k1 ¼
1
Af

Z
Xf

jD/jdsn dsg ¼
1
Af

Z
Xf

jD/jdA ð172Þ

kD/k2 ¼
1
Af

Z
Xf

jD/j2dsn dsg

" #1=2

¼ 1
Af

Z
Xf

jD/j2dA

" #1=2

ð173Þ

kD/k1 ¼ max
ðn;gÞ2Xf

jD/j ð174Þ
Recall from Section 2 that Xf is the flow domain in the ng plane (not including land bodies), and dsn = dn/m and dsg = dg/n are
incremental physical distances along curves of constant g and n, respectively. In (172) and (173), Af denotes the physical area
of Xf, and dA = dsndsg is an infinitesimal portion of Af. Thus, Af is given by
Af ¼
Z

Xf

dA ¼
Z

Xf

dsn dsg ¼
Z

Xf

dn
m

dg
n

ð175Þ
We discretize (172)–(174) over fluid and boundary grid boxes as follows:
kD/k1 ¼
1
Af
�

X
fld: & bdy:

h-points

jðD/Þi;jjA
ðhÞ;geom
i;j ð176Þ

kD/k2 ¼
1
Af
�

X
fld: & bdy:

h-points

jðD/Þi;jj
2AðhÞ;geom

i;j

2
664

3
775

1=2

ð177Þ

kD/k1 ¼ max
fld: & bdy:

h-points

jðD/Þi;jj ð178Þ
The total fluid area Af appearing in (176) and (177) is obtained using the following discrete counterpart of (175):
Af ¼
X

fld: & bdy:
h-points

AðhÞ;geom
i;j ð179Þ
In these expressions, AðhÞ;geom
i;j is the geometric area of the fluid or boundary box at (i, j) [as opposed to the area AðhÞi;j associated

with the box in the PLS given by (30)]. [Note that we could use AðhÞi;j instead of AðhÞ;geom
i;j in (176), (177) and (179). We have

tried both and have found that this choice does not have any discernible effect on the accuracy results obtained in Section 7.]
(D/)i,j in (176)–(178) is the error in / evaluated at the fluid or boundary h-point at (i, j). The way (D/)i,j is calculated depends
on the quantity that / represents. Here, we are interested in the case of / representing h, u, v, f, or q. We calculate the errors
in these quantities as follows:
ðDhÞi;j ¼ hi;j � ðhðeÞÞi;j ð180Þ
ðDuÞi;j ¼ ûi;j � ðuðeÞÞi;j ð181Þ
ðDvÞi;j ¼ v̂i;j � ðvðeÞÞi;j ð182Þ
ðDfÞi;j ¼ f̂i;j � ðfðeÞÞi;j ð183Þ
ðDqÞi;j ¼ q̂i;j � ðqðeÞÞi;j ð184Þ
In these, ûi;j; v̂i;j; f̂i;j, and q̂i;j denote the values of u, v, f, and q at the fluid or boundary h-point at (i, j) obtained from neigh-
boring u-, v-, and f-points, and (h(e))i,j, (u(e))i,j, (v(e))i,j, (f(e))i,j, and (q(e))i,j denote the exact values of h, u, v, f, and q at (i, j). In the
STS, we obtain ûi;j at all fluid h-points by arithmetic averaging, i.e. ûi;j ¼ un

i;j. In the PLS and UNPLS, we also set ûi;j ¼ un
i;j at fluid

h-points, but at boundary h-points we obtain ûi;j by performing bilinear interpolation using u values from the four u-points
closest to the h-point in consideration. We follow an analogous procedure to obtain v̂i;j. Finally, in all three boundary
schemes, we calculate f̂i;j and q̂i;j at all non-land h-points using area-weighted averaging, i.e.
f̂i;j ¼
ðAðfÞfÞ

ng

i;j

ðAðfÞÞ
ng

i;j

and q̂i;j ¼
ðAðfÞqÞ

ng

i;j

ðAðfÞÞ
ng

i;j

ð185Þ



2790 G.S. Ketefian, M.Z. Jacobson / Journal of Computational Physics 230 (2011) 2751–2793
Away from boundaries and in unstretched Cartesian coordinates (which is what we use in all the GRSs in Section 7), f̂i;j and
q̂i;j are equivalent to fng

i;j and �qng
i;j . Note that (185) weighs fi+1/2,j+1/2 and qi+1/2,j+1/2 values at boundary f-points less than those at

fluid f-points because AðfÞiþ1=2;jþ1=2 at boundary f-points is smaller than at fluid f-points. In particular, in the PLS and UNPLS, if a
boundary f-point has a very small area (i.e. if it is almost but not quite a land f-point), fi+1/2,j+1/2 and qi+1/2,j+1/2 at that bound-
ary f-point will not contribute much to the values of f̂i;j and q̂i;j at neighboring boundary h-points. Note that we also use
ûi;j; v̂i;j; f̂i;j, and q̂i;j to generate the velocity, vorticity, and potential vorticity fields in the various figures in this paper.

We obtain the exact values (h(e))i,j through (q(e))i,j in (180)–(184) as follows. In the channel flow test cases (TCs) (TCs 1–6 in
Section 7, all of which have analytic solutions), we simply evaluate the analytic solutions at the Cartesian coordinates of the
fluid or boundary h-point at (i, j), i.e. ðxðhÞi;j ; y

ðhÞ
i;j Þ, to obtain (h(e))i,j through (q(e))i,j. In the annulus flow TCs (TCs 7–10 in Section 7,

none of which have analytic solutions), we first use ðxðhÞi;j ; y
ðhÞ
i;j Þ to calculate the corresponding cylindrical coordinates of the

fluid or boundary h-point. We then use bilinear interpolation in the rh plane on the results of the ‘‘exact’’ simulation in cylin-
drical coordinates to obtain ðhðeÞÞi;j; ðu

ðeÞ
r Þi;j; ðu

ðeÞ
h Þi;j; ðf

ðeÞÞi;j, and (q(e))i,j at these cylindrical coordinates. Here, ðuðeÞr Þi;j and ðuðeÞh Þi;j
are the exact values of the cylindrical components of the velocity. To obtain the Cartesian components (u(e))i,j and (v(e))i,j from
ðuðeÞr Þi;j and ðuðeÞh Þi;j, we use expressions (82) and (83).

In TCs 7–10, extrapolation is necessary near the boundaries of the annulus because some boundary h-points on the Carte-
sian grids lie between the boundary and the first h-point or uh-point within the flow on the cylindrical grid. At such locations,
(h(e))i,j and ðuðeÞh Þi;j cannot be obtained by interpolation because they are defined at locations that are offset by half a grid box
from the boundary (in the radial direction). To be able to use bilinear interpolation again in this situation, we first use qua-
dratic extrapolation in the radial direction on the results of the ‘‘exact’’ simulation in cylindrical coordinates to obtain values
of h and uh within land half a grid box beyond the boundaries of the annulus. For example, if the inner boundary is at n1/2 = r1/

2 = 5 km, we use h1,j, h2,j, and h3,j (which are defined at r1 = 5 km + Dr/2, r2 = r1 + Dr, and r3 = r2 + Dr, respectively, where Dr is
the radial grid size of the cylindrical grid) to extrapolate out to r0 = 5 km � Dr/2 (which is a location within land) and obtain a
value for h0,j. We perform such extrapolations for all j on the cylindrical grid and at both the inner and outer boundaries of
the annulus. We perform similar extrapolations with uh. We then use these extrapolated values along with the first set of h
and uh values inside the flow to perform bilinear interpolation and obtain (h(e))i,j and ðuðeÞh Þi;j at those boundary h-points on the
Cartesian grids that lie between the boundary and the first h-point or uh-point within the flow on the cylindrical grid.

Appendix D. Time step and stability

In this appendix, we discuss the stability of the STS, PLS, and UNPLS with respect to the time step Dt and the procedure we
use to determine Dt for a given simulation.

Using a combined analytic and numerical approach, we have found [see Section 3.15 and Appendix H of [27]] that with an
explicit time integration method, the maximum time step for stability of the original AL81 scheme (i.e. in the absence of land
bodies) imposed by the Courant–Friedrichs–Lewy (CFL) stability condition is given by [from Eq. (3.335) of [27]]
Dtmax ¼ CFLmax max
i;j

aþ b
b

aþ b

� �0:4
" #

i;j

,
ð186Þ
where
ai;j ¼ 4c2
g

1
Ds2

n

þ 1
Ds2

g

 !
þ f 2

" #1=2

i;j

; bi;j ¼
junj
Dsn
þ jv

gj
Dsg

� �
i;j

; ð187Þ
(cg)i,j = (ghi,j)1/2, (Dsn)i,j = Dn/mi,j, (Dsg)i,j = Dg/ni,j, mi,j and ni,j are the inverse scale factors m and n evaluated at grid box centers
(ni,gj), and CFLmax is a constant that depends on the choice of time integration method. For fourth-order Runge–Kutta (RK4)
time integration, CFLmax ¼ 2

ffiffiffi
2
p

. Expression (186) predicts a value for Dtmax that is within a few percent of the actual value
obtained by numerical testing. When land bodies are present, we find that (186) is still valid as long as the STS is used to
approximate the boundaries. However, with the PLS, the presence of small boundary boxes imposes a more stringent CFL
restriction on Dt. We attempted to obtain an expression analogous to (186) for the PLS (which would also apply to the
UNPLS) but were not successful. In the absence of such an expression, we used trial-and-error to find Dtmax for the simula-
tions with the PLS and UNPLS. We then multiplied Dtmax by a safety factor between 0.15 and 0.90 to obtain Dt, and we used
this Dt not only for the PLS and UNPLS on a given Cartesian grid but also for the STS on that grid even though a larger Dt [as
specified by (186)] could have been used for the STS. We did this so that a simulation with the STS on a given grid has the
same temporal truncation error as the simulations with the PLS and UNPLS on that grid (although in practice, we have found
that, at least with RK4, the truncation errors arising from the temporal discretization are much smaller than those from the
spatial discretization, so the choice of Dt does not matter much as long as the integration is stable). Finally, note that (186) is
valid for the simulations in cylindrical coordinates used to obtain the ‘‘exact’’ solutions in test cases (TCs) 7–10 because there
are no boundary boxes in these simulations; there are only fluid and land boxes. Thus, for the cylindrical simulations, we first
estimated Dtmax using (186) and then multiplied it by a safety factor of 0.40 for TCs 7–9 and 0.75 for TC 10 to obtain Dt.

Since with an explicit time integration method the CFL limit on Dt can be quite restrictive (specially for the PLS and
UNPLS), we intend to implement an unconditionally stable implicit time integration method in our SWE model. Since the
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model equations are nonlinear, this requires the use of an iterative sparse matrix solver. This in itself is an involved task, and
it is further complicated by the fact that the boundaries can have arbitrary shapes and that the solution procedure is different
at boundaries than within the fluid (i.e. a vorticity equation must be solved at boundary f-points, not a continuity and/or
momentum equation). For this reason, we have left this task for a future publication.

Appendix E. Analytic solutions for one dimensional channel flows

Consider a channel of width wchan aligned with the X axis of a Cartesian coordinate system (n,g) = (X,Y) with Y = 0 denot-
ing the centerline of the channel (so that the bottom wall is at Y = �wchan/2 and the top wall is at Y = wchan/2). This geometry
is shown in Fig. 6. We will let U and V denote the velocity components in the X and Y directions, respectively. In order to be
able to obtain analytic solutions for this geometry, we consider only one dimensional flows parallel to the channel walls, i.e.
flows in which
@

@X
ð. . .Þ ¼ 0 ð188Þ

V ¼ 0 ð189Þ
SY ¼ 0 ð190Þ
Here, SY is the forcing in the Y direction. Also, for now, we assume that f = 0. The f – 0 case is considered later below. Then the
SWEs (1)–(3) reduce to
@h
@t
¼ 0 ð191Þ

@U
@t
¼ SX

h
ð192Þ

@h
@Y
¼ 0 ð193Þ
where SX is the forcing in the X direction. In obtaining (191)–(193), we have also used the fact that m = n = 1 for a Cartesian
coordinate system. From (191) and (193), we see that h has a constant, uniform value, i.e.
h ¼ ho ð194Þ
We now assume that SX/h is given by
SX

h
ðY ; tÞ ¼ ðSX=hÞctr þ ðSX=hÞtop � ðSX=hÞbot

n o Y
wchan

þ 2 ðSX=hÞtop � 2ðSX=hÞctr þ ðSX=hÞbot

n o Y
wchan

� �2
" #

� TðtÞ ð195Þ
Note that this is a quadratic function of Y. Here, (SX/h)bot, (SX/h)ctr, and (SX/h)top are the values of SX/h at the bottom wall, chan-
nel centerline, and top wall, and T(t) is the time-dependent part of the forcing. We choose the latter as
TðtÞ ¼ 1
2

erf
t � t1

t0

� �
� erf

t � t2

t0

� �� �
ð196Þ
where erf(. . .) is the error function, t0 = 1000 s, t1 = 5000 s, and t2 = 10,000 s. This choice for T(t) corresponds to the presence
of forcing between about 5000 s and 10,000 s. Substituting (195) and (196) into (192) and integrating the result from t = 0 to
some generic time t, we obtain
UðY ; tÞ ¼ UoðYÞ þ ðSX=hÞctr þ ðSX=hÞtop � ðSX=hÞbot

n o Y
wchan

þ 2 ðSX=hÞtop � 2ðSX=hÞctr þ ðSX=hÞbot

n o Y
wchan

� �2
" #

� IðtÞ ð197Þ
where Uo(Y) is the initial velocity profile and I(t) is the time integral of T(t). The latter is given by
IðtÞ ¼ 1
2

t0 �
t � t1

t0
erf

t � t1

t0

� �
þ 1ffiffiffiffi

p
p exp � t � t1

t0

� �2
( )

� t1

t0
erf

t1

t0

� �
� 1ffiffiffiffi

p
p exp � t1

t0

� �2
( )"

� t � t2

t0
erf

t � t2

t0

� �
� 1ffiffiffiffi

p
p exp � t � t2

t0

� �2
( )

þ t2

t0
erf

t2

t0

� �
þ 1ffiffiffiffi

p
p exp � t2

t0

� �2
( )#

ð198Þ
We now choose Uo(Y) to be a quadratic function of Y, i.e.
UoðYÞ ¼ Uctr þ ðUtop � UbotÞ
Y

wchan
þ 2ðUtop � 2Uctr þ UbotÞ

Y
wchan

� �2

ð199Þ
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where Ubot, Uctr, and Utop are the values of Uo at the bottom wall, channel centerline, and top wall. Substituting this into (197)
gives
UðY ; tÞ ¼ Uctr þ ðUtop � UbotÞ
Y

wchan
þ 2ðUtop � 2Uctr þ UbotÞ

Y
wchan

� �2
" #

þ ðSX=hÞctr þ ðSX=hÞtop � ðSX=hÞbot

n o Y
wchan

þ 2 ðSX=hÞtop � 2ðSX=hÞctr þ ðSX=hÞbot

n o Y
wchan

� �2
" #

� IðtÞ ð200Þ
Once wchan, ho, Ubot, Uctr, Utop, (SX/h)bot, (SX/h)ctr, and (SX/h)top are specified, Eqs. (189), (194), (198) and (200) completely
determine the solution for the case without rotation.

Next, we consider the case with rotation, i.e. f – 0. We will assume here that f is a (nonzero) constant. In this case, we can
obtain an analytic solution only if there is no forcing. Thus, we now assume that SX = 0 [in addition to assuming that @(. . .)/
@X = 0, V = 0, and SY = 0]. Then Eqs. (1)–(3) reduce to
@h
@t
¼ 0 ð201Þ

@U
@t
¼ 0 ð202Þ

@h
@Y
¼ � f

g
U ð203Þ
From (201), (202) and (189) and the assumption that @(. . .)/@X = 0, we see that h and U are not functions of t; they are only
functions of Y. We now assume that the initial velocity profile Uo(Y) is again given by (199). Then U must be given for all time
by
UðYÞ ¼ Uctr þ ðUtop � UbotÞ
Y

wchan
þ 2ðUtop � 2Uctr þ UbotÞ

Y
wchan

� �2

ð204Þ
Substituting this into (203) and integrating the result from the bottom wall of the channel up to some generic Y, we obtain
the following time-independent solution for h(Y):
hðYÞ ¼ hbot �
f
g

wchan

� Uctr

2
2

Y
wchan

� �
þ 1


 �
þ Utop � Ubot

8
4

Y
wchan

� �2

� 1

( )
þ Utop � 2Uctr þ Ubot

12
8

Y
wchan

� �3

þ 1

( )" #
ð205Þ
Here, hbot is the value of h at the bottom wall. Once wchan, f, hbot, Ubot, Uctr, and Utop are specified, (189), (204) and (205) com-
pletely determine the (time-independent) solution for the case with rotation.
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