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A B S T R A C T   

Reliance on imported diesel fuel, with high transportation costs, has made power and water treatment expensive 
in remote diesel microgrids in the Arctic. Past attempts at implementing piped water in these areas have proven 
difficult due to the high cost of energy to pump, transport, and heat water with imported diesel fuel. A modular 
Water Reuse (WR) system has been developed to provide more affordable, distributed water service for an in
dividual home lacking running water. However, these WR systems still consume substantial electricity and can 
burden a household with high energy costs, if powered by the community diesel microgrid. Here we expand a 
mixed-integer linear optimization model — Food-Energy-Water Microgrid Optimization with Renewable Energy 
(FEWMORE) — to treat the effects of operating WR systems as dispatchable loads connected to a microgrid. We 
apply the model to a western Alaska community without piped water to analyze demand response (DR) of WR 
systems with solar and wind energy. Such an analysis has not yet been articulated by current energy optimi
zation, water treatment, and demand response models for modular water service in microgrids. Integrating a 
solar photovoltaics (PV) array to power a WR system, as opposed to operating solely off of diesel generation, 
results in a 3% decrease in total project costs (installing and maintaining solar PV, and electricity purchases from 
the diesel microgrid) over a 20-year lifetime. Optimally dispatching the water treatment processes results in 
more savings: a 13% decrease in total project costs and a 37% reduction in diesel use.   

1. Introduction 

In rural Alaska communities, electricity generation is expensive, up 
to $1/kWh, compared with the average U.S. rate of $0.13/kWh (Alaska 
Energy Authority, 2019; U.S. Energy Information Administration, 
2020). These communities are not connected to the state and continental 
electric grids and thus function as islanded microgrids, or self-sufficient, 
isolated electric delivery systems. They must each operate diesel 
generator powerhouses to supply electricity. However, about 200 
communities are not connected to the state road system, so diesel must 
be shipped in via barge or plane at high cost (Holdmann et al., 2019). 
Local renewable energy, which could include solar PV and wind tur
bines, may provide more cost-effective and resilient electricity genera
tion in these areas. 

Meanwhile, drinking water is also an insecure commodity in remote 

Alaska communities (Eichelberger, 2010). In rural Alaska, over 4000 
households across 30 communities do not have in-home piped drinking 
water or wastewater services due to high transportation, capital, 
installation, and maintenance costs of developing infrastructure (United 
States Arctic Research Commission Alaska Rural Water and Sanitation 
Working Group, 2015). Typical solutions, such as residential well and 
septic systems, are often infeasible due to risk of damage from perma
frost thaw and associated high costs (Hennessy and Bressler, 2016). In 
lieu of piping infrastructure, community members must use a central 
location, called a washeteria, to purchase and haul water, take showers, 
and do laundry (Penn et al., 2017). Washeterias use substantial energy 
for water pumping, treatment, and heating (Rashedin et al., 2020). Thus, 
the high cost and time investment of hauling water have resulted in low 
water usage rates by community members and increased risk of illnesses 
stemming from poor sanitation (Eichelberger, 2010; Hennessy et al., 
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2008). 
Analogous to distributed energy resources like solar PV, modular 

water recycling systems integrated with residences may provide more 
affordable, reliable, and secure methods of water delivery (Hickel et al., 
2018). Such a technology, the WR system, has been developed at the 
University of Alaska Anchorage (UAA) (Hickel et al., 2018). The WR 
system is unique in its ability to be easily integrated, compared to 
traditional piped water infrastructure, as a shipping container unit next 
to homes in remote arctic climates. However, operating these WR sys
tems can require substantial user cost for operation and maintenance, 
not including electrical or heating costs of each water fixture (Dotson, 
2017). The community’s desire for water services and acceptance of user 
rates are described in depth in Lucas et al. (2021). Integrating renew
ables to replace some diesel fuel to power these WR systems may reduce 
operating costs. 

Additionally, if the WR systems can operate at times of excess 
renewable electricity generation (beyond the electricity used for typical 
loads), they can essentially be powered for free. For example, if there are 
high winds, and existing wind turbines are generating excess electricity, 
then the WR systems could use the excess electricity to treat/heat water. 
When the wind is not blowing, the WR systems would function at lower 
power levels, by only distributing treated water and collecting waste
water. Thus, dependence on battery storage can hypothetically be 
reduced by effectively storing energy in the form of treated/heated 
water. The WR systems are unique compared to traditional water 
treatment plants in that their processes can, in theory, be more easily 
controlled to run on renewable energy, given their distributed nature. 

Optimally managing the operation of electric loads is termed 
demand-side management (DSM), which encompasses DR, or flexible 
load shaping (Pina et al., 2012; Jabir et al., 2018). There are numerous 
models for analyzing energy systems at a variety of scales (Quitoras 
et al., 2020; Quitoras, 2020; Khan et al., 2021; Zia et al., 2018) and many 
utilizing DSM (Rezaei and Kalantar, 2015; Moura and De Almeida, 2010; 
Aghajani et al., 2017); however, a common limitation is that specific 
load sectors and technologies are not considered (Jabir et al., 2018). 
Instead, many models assume a general percentage of load eligible for 
DSM without referencing its application and implementation. This study 
aims to apply DSM to the water sector, which is also well represented in 
the energy-water nexus literature, though mostly in larger-scale water 
systems (Pourmousavi et al., 2014; Kirchem et al., 2020; Soshinskaya 
et al., 2014; Zohrabian and Sanders, 2020). 

However, upon review of DSM models in the water sector, most 
either generalize the electric loads of treatment plants and aggregate 
their ability to provide DSM benefits to the electric grid (Moura and de 
Almeida, 2010; Kirchem et al., 2020; Neves et al., 2015) or analyze 
treatment processes with sophisticated detail, but without assessing how 
their DSM potential can improve grid stability (Kirchem et al., 2020). 
The former, termed energy system models, use common linear pro
gramming (LP) or mixed-integer linear programming (MILP) optimiza
tion techniques to analyze the impact of water treatment DSM on the 
grid. The latter, called process optimization and simulation models, 
simulate the inner processes of the water treatment plants in high detail 
using non-linear programming methods; however, the computational 
complexity of water process modeling limits their ability to analyze the 
impact of water treatment DSM potential on broader electric grid op
erations (Kirchem et al., 2020; Soshinskaya et al., 2014). 

According to a comprehensive review paper, Kirchem et al., 2020, on 
DSM within the energy-water nexus, “an integrated energy system 
should ideally incorporate both the relevant details of a process model 
and the power system to capture the potential for DR from a system 
perspective (Kirchem et al., 2020).” However, Kirchem et al. state that 
“this literature review has shown that there is not yet a model which 
combines these two important aspects to perform a meaningful analysis 
of the DR potential from industrial processes such as WWTPs (waste
water treatment plants) (Kirchem et al., 2020)." No studies have quan
tified DSM potential of small-scale water reuse systems and the 

subsequent effect of water treatment process DSM on renewable energy 
capacity planning and dispatch optimization in islanded microgrids 
(Kirchem et al., 2020). 

The contribution of this paper is the development and application of 
a tool, FEWMORE, that can model both the DSM potential of water 
treatment processes in a novel WR system, and its impact on energy 
optimization within an islanded renewable microgrid. FEWMORE op
timizes the capacity and operations of solar PV and battery storage, and 
dispatch of excess generation from existing wind capacity, in order to 
power optimally-controlled water treatment/heating processes in a WR 
system. FEWMORE has previously been applied to a containerized 
growing system to optimize dispatch of ventilation, dehumidification, 
and lighting with renewable energy in a microgrid (Sambor et al., 2020). 
In this paper, the WR system is introduced, methods for modeling 
renewable integration and DSM of the WR system are described, and 
results are discussed. The goal of the paper is to inform energy and 
water-insecure communities how to optimally integrate WR systems 
with renewable energy in their microgrids to provide lowest-cost water 
treatment, while ensuring treatment processes still provide satisfactory 
sanitation services. 

2. Methods 

2.1. Water reuse system overview 

The WR system, developed at UAA and described previously (Hickel 
et al., 2018; Lucas et al., 2021), addresses aforementioned challenges in 
rural water delivery. The WR system is housed in a shipping container 
(see Appendix A), connected to a single home via water supply and re
turn lines. It can be divided into two different subsystems: the 
wash-water system (Fig. 1), which treats and recycles greywater from 
household fixtures via water treatment processes and other supporting 
technologies; and the heating system, which heats water and the 
container. The wash-water system consists of pre-treatment with car
tridge filtration (CF), nano-filtration (NF), and reverse osmosis (RO), as 
well as ultraviolet (UV) lamps and ozone for disinfection. In this study, 
greywater is composed of four sources: shower, bathroom sink, kitchen 
sink, and laundry. 

First, greywater enters the WR system and passes through a screen. It 
is then pre-treated by a series of cartridge filters (sizes 1 μm, 0.45 μm, 
and 0.2 μm). Next, water is treated sequentially by NF and RO operating 
in batch concentration mode (Hickel et al., 2018). Computer-controlled, 
actuated valves allow the piping to be interconnected so the primary 
pump (1.5 HP rotary vane) feeds each process. After these filtration 
steps, the water is disinfected using two UV contact lamps, each 
providing at least 5.5-log removal for viruses (Michaelson, 2017). The 
final treated water is sent to the wash-water tank, which stores clean 
water for domestic use. Post-treatment disinfection is performed by an 
ozone-generating UV light periodically in the wash-water tank to 
maintain water quality and avoid use of a chemical disinfectant (see 
Appendix E). The effects of backwashing of filters, varying greywater 
pollution load, and system flushing with additional make-up water are 
also part of system operation, but are not modeled. 

2.2. Water use demand 

In a rural Alaska community practicing self-haul, residents use on 
average 9 L of water per person per day (Eichelberger et al., 2020) for 
drinking, cooking, washing, cleaning, and waste processing. This is 
lower than the World Health Organization’s recommended 50 L/per
son/day, and significantly lower than the United States average of 310 
L/person/day (Dieter et al., 2018). The WR system is designed to pro
vide 227 L/day (60 gal/day) for a household of four people. 

Water use data were collected from a WR system prototype over a 
two-year period in Anchorage, AK (July 2016–June 2018), using water 
use guidelines as well as greywater and operational conditions provided 
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by NSF 350 (NSF International, 2019). Two weeks of hourly data (April 
18 - May 2, 2017) were selected, processed, and extrapolated to form a 
full year; this provided a consistent profile independent of prototype 
maintenance shutdowns. All challenge tests, outliers, and incomplete 
data were excluded. Regular loading periods were isolated to determine 
periods of “regular use” where influent quality varied and membrane 
operating pressure reflected average pumping pressure requirements 
over its lifetime. Data were selected so as not to favor best-case scenario 
conditions, such as relatively new membranes operating at high flux. 

A selected day of domestic water use by application is shown in 
Fig. 2. Showering consumes approximately 79.5 L/day; the kitchen sink 
uses 37.9 L/day; the bathroom sink uses 53 L/day; and 1 load of laundry 
(57 L/load) is performed per day (Lucas et al., 2021). There are two 
diurnal peaks of water use, a morning peak and evening peak—typical of 
municipal water treatment facilities (Michaelson, 2017; Emami et al., 
2018). Changes in water use or operation of domestic water fixtures, 
different than the given domestic water use profile, are not considered. 

2.3. WR system power use 

Existing power data of the WR system were processed similar to 
water use data. Energy use data can be categorized by the wash-water 
treatment processes (CF, NF, and RO) and supporting processes. 
Power and energy use are shown in Table 1. Power requirements result 

in the following treatment rates: CF treats 265 L/h, NF provides 246 L/h, 
and RO processes 159 L/h. This translates to an energy ratio of 0.37 
kWh/m3 for CF; 1.3 kWh/m3 for NF; 2.9 kWh/m3 for RO, including UV; 
and a total of 4.62 kWh/m3. This is high compared with 0.5–2 kWh/m3 

for municipal wastewater treatment and recovery in the literature 
(Gude, 2015), which is dominated by pumping loads (Kirchem et al., 
2020). In terms of power use over time, most processes exhibit constant 
power use except for RO, which has parabolic power use per cycle. RO 
power decreases as the water is warmed by the pump and then increases 
as concentration increases or the membrane fouls; the model has been 
weighted appropriately (see Appendix D). 

Additional treatment processes (called “supporting processes” here) 
include UV, post-treatment (ozone), and valves, with power and energy 
use also shown in Table 1. There are also supplementary processes (with 
relatively small power use) including a compressor to collect greywater 
from the house; a battery to supply power to DC pumping loads for 
treated water distribution; and fans. When treatment processes are 
modeled as dispatchable loads (see Sec. 3.2), an additional 10 W is 
added to account for sensing. The entire wash-water system, within the 
WR system, uses 2.4 kWh/day, which is relatively consistent throughout 
prototype operation. A time series of energy use by component over a 

Fig. 1. Wash-water system process flow including greywater collection, three treatment processes, and return of treated water back to the house for domestic use.  

Fig. 2. Water use profile based on a representative day (April 20, 2017) of 
prototype testing. 

Table 1 
All electrical loads of the Water Reuse (WR) system, including a wash-water 
system for treating water, and a heating system for heating water and the 
container.  

Category Component Power 
(kW) 

Annual 
Energy 
(kWh/yr) 

Daily Energy 
(kWh/day) 

Wash Water: Main 
Processes 

CF 0.36 422 1.16 
NF 0.34 
RO 0.42 

Wash Water: 
Supporting 
Processes 

UV 0.07 469 1.28 
Post- 
treatment 

0.06 

Valves/Misc 0.06 
Wash Water: 

Supplementary 
Compressor 0.02 264 0.71 
Battery 0.01 55 0.15 
Fans/Misc 0.005 23 0.06 

Heating Space Heater 1 846 2.3 
Hot Water 
Heater 

1.5 930 2.5  
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typical day is shown in Fig. 3. 
The WR system also must heat water for domestic hot water use. Data 

were not collected on thermal energy use during prototype operation; 
thus, heating processes have been modeled (see Sec. 2.4.2). In the pro
totype there are four small hot water tanks: two 15-L (4-gal) tanks and 
two 9.5-L (2.5-gal) tanks. For modeling simplicity, these are aggregated 
into a larger 50-L capacity hot water tank. Hot water demand is assumed 
to be 15 L per shower and per laundry load, and one-third of all water 
use in the bathroom and kitchen sinks. 

A heating system is included in the shipping container for periods of 
cold weather. An electric resistance space heater is used and set to 10 ◦C 
(50 ◦F). Internal gains from pumping equipment, warm water returning 
from the home, and standby heat loss from water tanks provide addi
tional heat. 

An experimental diagram of all sub-systems of the WR system is 
shown in Fig. 4. Typically in studies analyzing DSM, a control case with 
no DSM (referred to here as Base Case) is compared with using DSM 
(Dispatchability Case) to analyze the effect of controlling, or dispatch
ing, loads (Pina et al., 2012). In the case of the WR system, the three 
treatment processes (CF, NF, and RO) and the two heating processes (hot 
water and space heating) are considered dispatchable. The DSM strategy 
of load shifting is utilized for the purposes of intermittent renewable 
energy integration. For example, the WR system has to treat and heat a 
specific amount of water over a diurnal period; as long as system con
straints are met (tank capacities, water temperatures, and minimum 
treatment processing time; see Sec. 2.4.1), water treatment and heating 
schedules can be shifted according to renewable resource availability. 

The three main treatment processes and heating systems are chosen 
for dispatchability given their flexibility does not compromise the entire 
WR system’s operation. The treatment processes can be dispatched 
asynchronously, because each has a preceding feed tank for storing 
water for treatment. Granted, some sub-processes within treatment and 
distribution may not shut down completely, and a small battery is 
already included within the container to accommodate. Water treatment 
processes and heating systems are also the sub-systems with the highest 
proportion of system electricity use. 

2.4. FEWMORE model 

The FEWMORE model is an MILP energy optimization model 
developed in Julia/JUMP (Version 1.1.0) (Dunning et al., 2017) at an 
hourly temporal resolution. The model inputs hourly annual profiles of 
WR system electric demand, domestic water demand, solar resource, 
wind generation, and temperature, assuming perfect forecast (see Ap
pendix A). 

The model optimizes three groups of decision variables (up to 13 
total variables): 1) capacity of solar PV and battery system (lithium-ion 
battery and battery inverter) infrastructure to install; 2) hourly dispatch 

of energy generation (solar energy to curtail, wind energy to absorb from 
existing array, and diesel generation to purchase from microgrid), and 
battery storage (charging and discharging, with associated state-of- 
charge); and 3) hourly dispatch of water treatment processes (amount 
of water to treat per CF, NF, and RO cycle, with associated feed tank 
levels), and heating processes (amount of heat to hot water tank and 
container, with associated thermostat settings). 

The model objective is to minimize total lifetime cost associated with 
powering a WR system over its 20-year project lifetime, in present 
dollars (Equation (1)). Costs can be grouped into three categories: 1) 
capital and installation cost of solar PV and battery; 2) annual operation 
and maintenance cost of solar PV and battery; and 3) annual cost of 
purchasing electricity from the diesel microgrid in each hourly time 
step, t. The costs are extrapolated to the total lifetime via a discounted 
cash flow analysis, with a real discount rate of 3% and grid escalation 
rate of 3%. Costs of operating and maintaining the existing diesel 
generator and wind array are beyond the scope.  

min Σt Cg*Gt+ S*Cs+ CE*E + CI*I                                                   (1) 

All costs, C, can be divided by component, where g is grid electricity, 
s is solar PV array capacity, E is the battery energy storage capacity, and I 
is the inverter capacity. 

In addition to constraints on the wash-water system (Sec. 2.4.1) and 
heating system (2.4.2), all energy conversion among generation (diesel 
generator G, solar PV supplied S or curtailed R, storage (battery E), and 
demand technologies (l) must be balanced in each time step (Equation 
(2)).  

Gt+ St+ Wt+ Eout,t = lt+ Ein,t+ Rt                                                     (2) 

Battery storage charging (Ein) and discharging (Eout) must be con
strained with regard to available storage energy and power constraints, 
by tracking battery storage (SE) (Equation (3)).  

SEt+1= SD*[c*Ein,t – (1/d)*+Eout,t]                                                    (3) 

The charging (c) and discharging (d) efficiencies result in a round- 
trip efficiency of 90% and the self-discharge rate (SD) is 0.01%/hr. 

Solar PV and battery capacity can be installed on or proximate to the 
WR container connected to the home, similar to a typical residential 
grid-connected solar PV array (see Appendix F). Solar PV, battery stor
age, and battery inverter capital and installation costs are assumed to be 
$4500/kW, $1000/kWh, and $1000/kW, respectively (see Sec. 3.2.7 
and Appendix A). 

In order to mitigate potential complications of renewable integra
tion, excess solar generation (beyond WR system demand or exceeding 
battery capacity) is curtailed. Thus, remaining system demand is met by 
diesel or wind from the community microgrid. Diesel generation can 
balance and ramp to compensate for renewable intermittency to ensure 
grid stability. Wind generation above the community electric demand is 
deemed excess and available to be used by the WR system (Her et al., 
2021). 

Given computational limitations, optimization is performed for a 
subset of a year using a procedure developed here to determine repre
sentative time periods. Annual renewable resource data were analyzed 
using k-means algorithms to develop three clusters of weekly patterns 
per season. The week that best matched the cluster centroid—using root- 
mean-square error (RMSE) as the metric—was selected. Thus, instead of 
modeling a full year (8760 h), which exceeded available computation 
time, the model can optimize over three representative weeks per season 
(2016 h). The computation time is subsequently reduced to approxi
mately 5 min for the Base Case and several days for the Dispatchability 
Case. The results are then extrapolated to the 20-year project lifetime. 

The FEWMORE model is applied to a remote community in south
western Alaska without central water infrastructure. The case study 
community has an existing wind turbine array (~500 kW) with sub
stantial excess generation. The community has interest in solar PV and 

Fig. 3. Power use of wash-water system components for a representative day of 
prototype testing (April 20, 2017). 
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new technologies to improve energy and water security. Households 
currently pay a subsidized electricity rate of $0.45/kWh (Alaska Energy 
Authority, 2019). 

2.4.1. Wash-water system modeling 
The CF, NF, and RO processes are considered to be dispatchable, 

subject to constraints on system operation time and tank capacity. 
Supporting and miscellaneous processes are not dispatchable, and thus 
operate as baseload. FEWMORE optimizes how much water CF, NF, and 
RO should treat per hour, which cannot operate simultaneously. If 
turned on, a process must treat at least 76 L, excluding rinsing water 
after shutdown. The greywater and wash-water tanks start with 246 L, 
and the NF and RO feed tanks begin with 57 L, for a total initial water 
input of ~600 L. Each tank has a capacity of 341 L (90 gal). 

2.4.2. Heating system modeling 
An electric 50-L water heater provides hot water for household fix

tures. In the Base Case, the thermostat of the tank is set to 52 ◦C (125 ◦F). 
In the Dispatchability Case, the tank thermostat can be controlled within 
a range of 43–66 ◦C (110-150 ◦F). For example, if there is excess 
renewable energy, the heating element can be dispatched to increase the 
water temperature. During times of low renewable energy output, water 
temperature can decline with no heat input until the minimum set point, 
at which diesel generation would be used. If hot water is demanded, it 
must be provided at 52 ◦C. 

Power use for water heating results from event-based heat loss and 
stand-by heat loss. For example, an event occurs when the shower is 
used, the tank level drops, and water must be replaced and reheated. The 
heat loss of replacing hot water is dictated by the household demand 
(Vlost,n, volume lost in time step n), the volumetric capacitance of water 
lost (c), and the temperature difference of the hot water leaving (Tset) 
and replacement water (Tin), assumed to be the container temperature 
(see Appendix A). Standby heat loss is determined by the thermal 
resistance (UA) of the tank and the temperature difference between the 
stored water (Tn, tank temperature in time step n) and the container 
interior (Tin). Dispatch of electricity to heat is optimally controlled, 
subject to a finite-difference temperature constraint (Equation (4)).  

Tn+1 = Tn + (t/C)*[η*Qheat – UA*(Tn – Tin) – c*Vlost,n*(Tset – Tin)]        (4) 

In addition to the standby heat loss and the amount of heat lost in 

replacement water, the temperature of the water tank in the future time 
step (t = 1 h) is determined by its temperature in the prior time step, the 
thermal capacitance of the total water volume (C), and the amount of 
electric heating dispatched (Qheat, with efficiency η = 100%). 

Modeling space heating requirements of the container is similar to 
water heating. However, there is no capacitance effect of replacement 
water, and stand-by heat loss depends on the temperature difference 
between the interior and ambient. Heating can be a substantial energy 
demand and seasonal weather conditions may vary considerably in 
western Alaska (see Appendix C). No cooling is necessary given mild 
summers. 

2.5. Model simulations 

Several model simulations are performed to analyze the effect of 
dispatching water treatment processes (Dispatchability Case) compared 
with the control case (Base Case), shown in Table 2. In both the Base and 

Fig. 4. Experimental set-up of loads and water flows, including the wash-water system technologies and heating system technologies.  

Table 2 
FEWMORE model simulations performed for the control case of no dispatch
ability (Base Case) and for dispatchable load optimization (Dispatchability 
Case). Simulations are performed using the wash-water system only as the load 
and then for the entire WR system load, including water and space heating.  

Base Case Dispatchability 
Case 

Model Notes 

Baseline – Status quo of running all loads on grid energy 
(nothing is optimized). 

Solar PV Solar PV Amount of solar capacity is optimized. In the 
Dispatchability Case, the amount of water 
treated per time step is also optimized. 

Solar PV & 
Battery 

Solar PV & Battery Same as above, except battery storage is also 
allowed to be optimized. 

Wind Wind Absorption of excess wind energy from the 
existing community array can be optimized, 
in addition to solar PV. 

– Water Heating The water heating system can be dispatched 
by allowing thermostat settings to be 
controlled based on solar resource. 

– Water & Space 
Heating 

The water heating and space heating systems 
can be dispatched by allowing thermostat 
settings to be controlled, based on both solar 
and wind resource.  

D.J. Sambor et al.                                                                                                                                                                                                                              



Journal of Cleaner Production 346 (2022) 131110

6

Dispatchability Cases, renewable capacity and dispatch are optimized. 
The baseline, solar PV, solar PV & battery, and wind simulations are 
performed twice, first using only the wash-water system as the load and 
second with the entire WR system demand (wash-water system plus 
water heating and space heating), in order to compare the DSM potential 
between water treatment and heating loads. Finally, the water heating 
and water & space heating simulations are performed for the entire WR 
system, allowing for dispatchable thermostat settings of heating water 
and the container. 

3. Results and discussion 

3.1. Base Case 

The Base Case serves as a control analysis in which load dispatch is 
not optimized and all electric demand is fixed according to the collected 
load profile. However, solar PV plus battery capacity and dispatch, or 
excess wind dispatch, can still be optimized. This aims to inform the 
community how much renewable infrastructure should be added cost- 
effectively to reduce diesel use for powering the WR system, even if its 
loads cannot be controlled. 

3.1.1. Baseline simulation 
First, in the baseline simulation, only the community diesel micro

grid (henceforth termed “grid”) can power the WR system. This calcu
lates the cost of operating the WR system in the status quo if no 
renewable energy or load control are added. For the wash-water system 
demand only (no space or water heating), 3.4 kWh/day are used, 
translating to a monthly electricity cost of $46/month (see Table 3 for 
additional results). The total 20-year lifetime cost (or model objective 
value) of operating the WR system is $11,149. Given this is a relatively 
substantial cost burden on a household, subsequent simulations deter
mine how adding renewable energy and battery storage may lower 
costs. 

3.1.2. Solar PV simulation 
In the solar PV simulation, only solar PV capacity (no battery stor

age) is optimized. The model determines that a 0.19 kW system (one 
small panel) is optimal to power the wash-water components of the WR 
system. In the western Alaska climate, this small solar PV array gener
ates 184 kWh annually. Of the solar generation, 18 kWh are curtailed, 
given there is no battery storage and the load profile cannot be dis
patched. Thus, 166 kWh of diesel generation is displaced, which results 
in a 13% reduction in grid costs compared to the baseline simulation. 
The lifetime project cost is reduced by 4%, which is lower than the grid 
cost reduction because purchasing and installing the solar PV array are 
included in the lifetime cost. 

Overall, adding solar PV to the WR system can be justified for a 
residence to reduce the cost of water treatment. To be sure, the solar PV 
array generates unsubstantial amounts of electricity during an arctic 
winter, and primarily diesel generation is used then. However, solar 
resource is relatively substantial in the shoulder seasons (late spring and 
early fall), when snow cover increases ground albedo, and in the sum
mer, when the sun barely sets. Over the course of a year, solar can meet 
13% of load. Temporal alignment of generation and load is discussed in 

Sec. 3.2. 

3.1.3. Solar PV and battery simulation 
Next, the model can optimize for a battery in addition to solar PV. 

However, the model determines that battery storage is not cost-effective. 
Batteries are still quite expensive to purchase, transport, and install in 
remote arctic regions, especially for small residential systems. Larger, 
centralized utility-scale installations powering a fleet of WR systems in a 
community may provide economies of scale; however, the scope of this 
analysis focuses on a single WR system. 

3.1.4. Wind simulation 
In the wind simulation, the WR system can use excess wind gener

ation from the existing community wind turbine array. If there is excess 
wind generation in an hourly period, it is assumed that the WR system 
can use up to 1 kW of that power, and the model can optimize how much 
to absorb. The model can still add solar PV capacity, but given that the 
wind turbine array is existing (no associated capital or operation and 
maintenance costs), solar PV is not cost-effective if excess wind energy 
can be used essentially for free. 

Wind energy can replace up to 61% of the energy purchased from the 
grid, compared with the baseline simulation. There is sufficient excess 
wind energy to power the WR system for 84% of the hours in a year. 
Thus, there is substantial generation from the community wind array 
that would otherwise be wasted. This assumes proper controls and fre
quency regulation of integrating wind with WR systems can be achieved. 
In reality, there may be additional system integration cost; thus, this 
simulation models a best-case scenario. Given the scope of this paper is 
an hourly energy planning tool, optimizing power quality at higher 
temporal resolution is left to future work. 

3.2. Dispatchability Case 

In the Dispatchability Case, the CF, NF, and RO processes of the 
wash-water system can be controlled. The model optimizes when to 
operate each process and how much water to treat in each hourly time 
step, subject to the constraints. These results are compared with the Base 
Case, in order to determine the effect of DSM. Results are presented first 
considering only the wash-water system demand of the WR system (no 
heating). Then heating demand is considered, with the hot water tank 
and electric resistance heater in the container considered as dis
patchable loads. 

3.2.1. Solar PV simulation 
The model determines a 0.45 kW solar PV array (~2 panels) is 

optimal to power the wash-water system alone. Water treatment DSM 
reduces grid purchases by 21% and the total lifetime cost by 6%, 
compared with installing solar PV but no load control (Base Case: solar 
PV simulation). Thus, optimizing water treatment loads to run on re
newables can save over a fifth of diesel use. Dispatching loads also in
creases solar generation utilization from 13% of load to 27% of load with 
DSM. Overall, solar PV is a cost-effective investment, including capital, 
installation, and maintenance costs. Altogether, the effect of installing 
solar PV and dispatching water treatment loads decreases grid costs by 
32%, compared to the status quo (Base Case: baseline simulation). This 

Table 3 
Optimization results considering the wash-water system demand (no heating) for minimizing total lifetime cost of operating a WR system, in present dollars.  

Case Base Dispatchability 

Simulation Name Baseline Solar PV Battery Wind Solar PV Battery Wind 

Total Lifetime Cost (k$) 11.1 10.7 10.7 4.4 10.1 10.1 3.5 
Grid Cost ($/yr) 557 483 483 219 378 378 177 
Grid Electricity (MWh/yr) 1.24 1.08 1.08 0.49 0.84 0.84 0.40 
Solar PV (kW) – 0.19 0.19 0 0.45 0.45 0 
Renewable Percentage – 13 13 61 27 27 71  
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results in a 9% decrease in the total project cost. 

3.2.2. Solar PV & battery simulation 
When solar PV and battery can be optimized with dispatchable loads, 

no amount of battery storage is cost-effective. This confirms the hy
pothesis that battery storage can be reduced or eliminated for the WR 
system; thus, it is cheaper to store energy as “potential energy” of treated 
water or thermal energy of heated water, as opposed to electrochemical 
energy in batteries. For example, treating water requires 4.6 kWh/m3 

and heating water by 1 ◦C demands 1.2 kWh/m3. If the initial water 
input (600 L) is treated according to renewable energy availability for 
absorbing excess energy, then 2.8 kWh can be “stored” in treated water. 
Analogously, DSM of container space heating can store 7 kWh 
(increasing the container temperature and thermal mass of water from 
10 to 20 ◦C, given a specific heat of water of 4.2 kJ/kg-oC). Raising the 
temperature of the hot water tank within its range (43–66 ◦C), can store 
1.3 kWh. Thus, in theory, 11.1 kWh of renewable generation can be 
stored rather inexpensively with the setup of DSM sensors and controls. 
This same amount of battery storage capacity would require at least 
$22,000 of investment. 

3.2.3. Wind simulation 
Control of treatment processes and using excess wind energy reduces 

grid costs by 19%, compared with using excess wind but no load control 
(Base Case: wind simulation). Total project cost also decreases by 19%, 
given the existing wind array has no associated capital or maintenance 
costs. Dispatching loads in coordination with either solar or wind energy 
both lead to similar proportional cost declines, though wind can meet a 
larger overall share of the load. Wind can provide up to 71% of wash- 
water system load compared with 27% for solar PV. Given the high 
wind resource in western Alaska, dispatching water treatment with wind 
energy is the most cost-effective choice, assuming proper system 
integration. 

All simulation results for optimizing renewable energy capacity and 
generation (Base Case) in addition to optimizing renewable energy ca
pacity, generation, and DSM (Dispatchability Case) are presented in 
Table 3. Thus far, only wash-water system demand has been considered, 
to allow comparison to other water treatment plants. All other climates 
are warmer than the Arctic and thus have lower proportional heating 
demand. Other studies on larger-scale plants in similarly windy, slightly 
more sunny climates, like northern Europe, have demonstrated similar 
results; a majority of renewable energy generation is recommended to 
come from wind, complemented by a smaller amount of solar PV, and 
batteries are generally not cost-effective (Soshinskaya et al., 2014). No 
studies have been performed on DSM of small-scale water reuse systems 
and thus no energy optimization metrics can be compared. 

The following analysis includes heating demand, first using fixed 
thermostat set points for hot water heating and space heating. The prior 
simulations are rerun using both heating and wash-water system de
mand (see Table 4). Heating comprises approximately two-thirds of total 
energy use of the WR system. When heating is included, the optimal 
solar PV array to meet the demand is approximately doubled, given the 
higher load. 

The energy generation and load profiles for a WR system, powered by 
an optimal 0.8 kW solar PV array, during a high-resource day in July are 

shown in Fig. 5. Electricity generation is shown for solar generation 
meeting baseload power demand (non-dispatchable loads like post- 
treatment), dispatchable demand of the wash-water (WW) processes, 
and total demand including heating. Thermostat settings for heating are 
fixed (no DSM). Any remaining electricity demand not met by solar PV 
must be provided by the community grid. Any solar generation in excess 
of total demand is curtailed. 

Feed tank levels are displayed in the top half of Fig. 5 to represent the 
controlled operation of water treatment processes, which are dispatched 
according to renewable resource availability. In reality, some treatment 
processes, like RO, may not shut down completely in order to preserve 
membrane lifetimes, with potentially higher baseload power in practice. 

As shown in Fig. 5, water treatment processes are dispatched during 
daytime periods when solar energy is available. Thus, solar energy can 
be “stored” by treating water, effectively eliminating the need for a 
battery. The model dispatches wash-water processes such that pre- 
treatment raises the NF feed tank level, then NF operates as the NF 
feed tank decreases and the RO feed tank increases. Finally, RO provides 
treated water to be stored in the wash-water (WW) tank. The amount of 
treated water in the WW tank increases throughout the day and then 
peaks in the late afternoon, then evening household demand reduces this 
stored water. 

Enough treated water is stored to meet the household demand 
through the next morning, until solar energy is sufficient to begin water 
treatment. In fact, in the summer, enough energy is provided by the 0.8 
kW solar PV array such that the wash-water tank reaches capacity, and 
some energy must be curtailed. 

In Fig. 5, there are two spikes in demand due to heating system 
operation. The thermostats are set to fixed temperature (no DSM) and 
thus turn on during the coldest periods late at night and early in the 
morning. In the following simulations, the heating systems are allowed 
to be dispatched optimally, using solar PV in Sec. 3.2.4-3.2.5 and wind 
in Sec. 3.2.6, to determine if the hot water tank and container can 
instead be heated primarily during times of renewable generation. 

3.2.4. Dispatching water heating with solar PV 
In the water heating simulation, the temperature set point of the hot 

water tank can be optimized (the container thermostat for space heating 
remains fixed). An optimal 1 kW solar PV array with water treatment 
and water heating dispatch deceases grid costs by 10%, and total life
time cost by 6%, compared with solar PV and water treatment dispatch 
without water heating control. Thus, controlling the water heater saves 
money compared to a fixed temperature set point. The high thermal 
capacitance of water acts as a good storage medium for storing solar 
energy until hot water is demanded by the household (demonstrated 
analogously in Fig. 6). 

3.2.5. Dispatching water and space heating with solar PV 
Finally, space heating is dispatched, in addition to water heating, by 

controlling the container thermostat set point. The solar PV array in
creases to 1.5 kW, 50% higher than the prior water heating simulation. 
Dispatching the space heater decreases grid costs by 15%, compared 
with just water heater control. Therefore, dispatching space heating is 
more effective at reducing grid energy use than water heating alone. The 
container includes significant thermal mass: in addition to the volume of 

Table 4 
Optimization results for the entire WR system, including wash-water system and heating demand.  

Case Base Dispatchability 

Simulation Name Baseline Solar PV Wind Solar PV Wind Water Heating Space Heating Wind Heating 

Total Cost (k$) 32.7 32.0 14.2 31.2 12.5 29.4 28.6 7.7 
Grid Cost (k$) 1.64 1.48 0.71 1.34 0.62 1.20 1.03 0.39 
Grid Energy (MWh/yr) 3.65 3.31 1.59 2.99 1.39 2.68 2.29 0.86 
Solar PV (kW) – 0.41 0 0.82 0 1.0 1.46 0 
Renewable Percentage – 10 70 20 73 31 41 81  
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the hot water tank (50 L), the water treatment feed tanks in the 
container contribute significant volume (~600 L) of thermal capaci
tance for modulating the indoor temperature. 

Altogether, dispatching heating systems results in substantial savings 
and increased utilization of renewable energy, compared with fixed 
thermostat settings. Dispatching both water heating and space heating 
reduces grid costs by 23%, and total project costs by 9%. Optimizing 
controls for heating water and the container allows the percent load met 

by solar PV to increase from 20% to 41%. Thus, when heating is 
controlled, it can operate more often during periods of solar resource 
availability; excess solar energy can be used for heating in the late af
ternoon and stored by increasing the container temperature and asso
ciated thermal mass. Then the container temperature can slowly decline 
through the night until excess renewable energy is available in the 
morning (see Fig. 6). 

FEWMORE aims to inform communities and assist them in making 

Fig. 5. Feed tank levels (top), demonstrating optimal dispatch of wash-water (WW) processes (CF, NF, and RO), aligned with energy generation and demand profiles 
(bottom), for a typical summer day. Base Load includes supporting and supplementary processes, while Total Load also includes fixed-thermostat heating systems. 
Electricity is generated from solar PV or the diesel grid, with excess solar generation curtailed. 

Fig. 6. Change in temperature (top) in the container and the hot water tank, in response to excess wind generation, and WR system electric demand (bottom) over an 
eight-day period in January. Total Load consists of baseload, dispatchable water treatment, and heating processes. 
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decisions along the food-energy-water (FEW) nexus to allocate or apply 
for funding. By adding solar PV, dispatching water treatment, water 
heating, and space heating, annual diesel use can be reduced by 37% and 
the total lifetime cost of operating the WR system can be reduced by 13% 
compared to the status quo. Incorporating the above design decisions 
would reduce a household’s monthly utility payment to power the WR 
system from $136/month to $85/month with solar PV and load control. 
The solar PV array could be financed with a shared-savings agreement or 
grant funded by several programs available for renewable investment in 
indigenous Alaska communities. 

3.2.6. Dispatching water and space heating with wind 
Finally, the water and space heating systems can be dispatched to 

operate on excess wind generation, with diesel generation as needed for 
grid balancing. Dispatching heating with wind reduces grid costs by 38% 
compared with just water treatment dispatch. Given the excellent wind 
resource in western Alaska, the shipping container can be heated during 
times of high wind generation, with less or no heat needed during pe
riods of low wind. A large acceptable thermostat range and substantial 
thermal mass allows the temperature to decline slowly if no wind is 
available. Water thus provides a dual mode of energy storage by 
modulating changes in temperature, given its high specific heat, and 
buffering changes in domestic water demand, through ample treated 
water storage. The effect of using water as thermal mass to moderate 
changes in temperature is demonstrated in Fig. 6. 

As shown in Fig. 6, dispatching heat during times of high excess wind 
generation can maintain container temperatures above the minimum set 
point for up to 24 h, without demanding additional heat. For example, 
the temperature can coast down from mid-afternoon on January 2nd, 
when the wind stops, to the next period of wind generation. The 
container temperature can fluctuate over a wide range to accommodate 
changes in wind energy, given there is no regular human occupation of 
the container and the main constraint is not freezing pipes. Warmer 
temperatures in the container also help to improve water treatment 
operations. 

Dispatching water heating in the hot water tank offers less energy 
storage for load shifting than dispatching space heating in the container. 
The hot water tank has less than 10% of the thermal mass of the entire 
shipping container; thus, it declines in temperature more rapidly when 
wind energy is not available. In practice, it is easier to install and control 
space heating systems than hot water systems. Modular electric resis
tance heaters often include programmable thermostats for space heating 
settings, whereas hot water tanks typically do not offer quantitative 
water temperature control. 

Overall, dispatching all heating optimally allows utilization of wind 
energy to increase from 73% to 81%. The results of all simulations, 
considering wash-water and heating demand, are shown in Table 4. 

As shown in Table 4, adding solar PV alone without any dispatch
ability (Base Case: solar PV simulation) reduces total lifetime costs by 
3% from the status quo (Base: baseline). Allowing water treatment to be 
dispatchable (Dispatch: solar PV) yields an additional 5% cost savings; 
dispatching water heating by another 6%; and dispatching space heating 
by an additional 10%. Using excess wind generation without dispatch
ability (Base: wind) reduces total costs by 57% from the status quo. 
Using excess wind energy while dispatching water treatment (Dispatch: 
wind) results in 12% more savings, and dispatching heating systems 
provides 38% additional cost savings. Thus, heating can be a better 
dispatchable load than water treatment for integrating renewables, 
especially with wind. 

3.2.7. Discussion of sensitivities and limitations 
There are several model assumptions on project economics that may 

impact optimization results. The four most significant model parameters 
that determine the total lifetime cost of operating the WR system are: the 
price of grid electricity from the diesel microgrid; the real discount rate 
associated with the 20-year cash flow analysis of solar PV investment 

and annual grid purchases; the annual escalation rate of the grid price; 
and the cost of installing solar PV capacity. The key results of the model 
are the total lifetime cost to operate the WR system, the optimal amount 
of solar PV capacity to install, and the amount of energy purchased from 
the grid (diesel fuel that must be imported). 

The price of grid electricity has the most significant impact on model 
results, as shown in Fig. 7. Among model results, the optimal solar PV 
capacity varies most with changes in project economics. However, the 
solar PV array is relatively small (0.4–1.5 kW); thus, the cost of solar PV 
capacity has an unsubstantial effect on the total lifetime cost. Financing 
terms of the project are worth careful consideration in order to power 
the WR system cost effectively over time. 

Given constraints on computational time, several assumptions were 
made that can be studied in future work. Modeling was performed for 
representative time periods at an hourly resolution, whereas modeling 
minute resolution may provide a more thorough temporal analysis, 
albeit with tradeoffs in modeling complexity of water treatment 
processes. 

Additional testing and sensitivity analyses can also be performed, 
such as varying the initial feed tank water levels, the minimum amount 
of water required for each process to treat in an operation cycle, and the 
minimum or maximum time duration between treatment cycles. These 
experiments can be performed on the prototype to analyze effects on 
water quality. Wastewater dumps, rinsewater, and backwash processes 
can also be considered in future modeling. 

As with many DSM strategies, sensor and controller integration may 
be a challenge to dispatching WR system operations. Any additional or 
existing renewable energy infrastructure would need to have a sensor 
system that can manage controls of specific water treatment loads, such 
as reducing water treatment demand when renewable supply is low. 
Consequently, each feed tank would require a sensor to override controls 
in case the system is approaching constraints on water quality or tank 
capacity. 

There are many design alternatives that can be addressed in future 
versions of the WR system. In fact, a new prototype using an aeration 
process and no protein skimmer is currently in development. The 
FEWMORE model can also assist in designing optimal capacities of feed 
tanks in future versions. Different heating systems can be considered as 
opposed to electric resistance, such as heat pumps or thermal storage 
with electrothermal stoves, as well is in other areas of the Arctic. Inte
grating controls with renewable energy systems should be tested and 
power quality should be studied in future work. 

4. Conclusion 

An energy optimization model (FEWMORE) utilizing DSM is pre
sented for analyzing a novel WR system as a dispatchable load. The WR 
system has been designed and constructed to improve energy-water 
security in a remote Alaska community. Adding 1.5 kW of solar PV 
and optimally controlling the water treatment and heating processes of 
the WR system can reduce the lifetime cost—capital, maintenance, and 
grid costs—by over 13%, and utility bills from the diesel microgrid alone 
by up to 37%. Another alternative is to power the WR system with excess 
wind energy from the community wind turbine array, which can 
decrease total project costs by 68% compared with the status quo. Thus, 
integrating renewables with the WR system can provide an affordable 
means of water treatment while also helping to improve energy security 
and balance energy distribution within the microgrid. 

This study is conducted as part of a larger project (MicroFEWs) 
analyzing the effect of renewable energy on FEW security in remote 
Alaska communities (Whitney et al., 2019; Chamberlin et al., 2021). The 
WR system could be delivered and installed in a remote community with 
solar PV on the roof and grid-tied to the community microgrid or 
islanded as its own microgrid (See Appendix F). Ongoing implementa
tion of this work is being studied at the Arctic Institute of North Amer
ica’s Kluane Lake Research Station (KLRS) and the University of Calgary, 
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Fig. 7. Sensitivity analysis with regard to price of grid electricity purchased from the diesel microgrid (“grid”), real discount rate of 20-year cash flow analysis, annual grid escalation rate, and solar PV capacity cost.  
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which are affiliated with this project to test the modeling results in a real 
microgrid. Experimenting with a WR system integrated with the sta
tion’s renewable energy system would provide additional insight on the 
effect that dispatching treatment processes and fluctuating water tem
peratures have on water quality, membrane lifetimes, and overall en
ergy use. 

Over the past year at KLRS, sensor and data collection systems have 
been deployed for the microgrid as a prerequisite to DSM strategies. A 
cabin has been selected for water system installations and DSM testing, 
given it houses scientists who are amenable to experimentation of its 
water services. A modular sewage treatment system has also recently 
been installed to test similar water treatment operations on the micro
grid before the WR system prototype is available for installation. Man
aging the procurement, transportation, and installation of a new WR 
system will require sophisticated project management, though recent 
experience of installing the sewage treatment system has shown that 
such a project would be feasible at KLRS. 

Human-based trials of the WR system are currently in the first of a 
two-phase process prior to consideration of field implementation. A UAA 
dormitory has been retrofitted to have this system installed (with tech
nological modifications not previously shown) and will begin testing 
shortly. This testing will target assessment of system efficacy with 
human-generated greywater quality and flow patterns, as well as sub
sequent assessment of aesthetic reused water quality and user-based 
system maintenance. Through this testing and ongoing discussions 
with the State of Alaska, subsequent phases will be developed to include 
development of management tools, such as potential a state-wide 
maintenance cooperative. 

The issues of energy and water security in off-grid communities are 
not only applicable in Alaska and the Arctic; similar conditions exist 
throughout the developing world. The FEWMORE model can be applied 
to study the integration of other regionally-appropriate water treatment 
and renewable energy systems, based on local preferences along the 

energy-water nexus. 
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Appendix A. Model Inputs 

A.1. Time Series Inputs  

⋅ Electric load profile of WR system (lt) [kW average in each hour: kWh]  
⋅ Domestic water demand profile [L]  
⋅ Excess wind energy profile [kWh]  
⋅ Ambient temperature profile (Tamb,t) [oC]  
⋅ Solar yield profile (st) [kWAC in each hour per kWpDC installed, includes losses] 

A.2. Hot Water Heating  

⋅ Tank diameter = 0.46 m  
⋅ Tank height = 0.61 m  
⋅ Tank R-value = 9.1 m2-oC/W (16 hr-ft2-oF/Btu)  
⋅ Tank volume = 50 L  
⋅ Volumetric capacitance of water: c = 0.36 Wh/L-oC (62.4 Btu/ft3-oF) 

A.3. Economic Inputs  

⋅ Grid price (unsubsidized): CG = $0.45/kWh  
⋅ Project lifetime: y = 20 years (lifetime of all equipment, except for 10-yr battery lifetime)  
⋅ Real discount rate = 3%  
⋅ Real grid escalation rate = 3%  
⋅ Solar PV capacity cost (installed): CS = $4500/kW  
⋅ Solar PV operation & maintenance (O&M) cost: OS = $50/kW/yr  
⋅ Capacity cost of battery inverter (installed): CI = $1000/kW  
⋅ Capacity cost of battery storage (installed): CE = $1000/kWh  
⋅ Battery variable O&M cost: $0.005/kWhthroughput  
⋅ Battery fixed O&M cost: $30/kW/yr 
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A.4. Technology Inputs  

⋅ Battery round-trip efficiency: 90%  
⋅ Battery depth-of-discharge: DOD = 80%  
⋅ Battery self-discharge rate: SD = 0.01%/hr  
⋅ Container dimensions: 2.4 m × 2.6 m x 3 m (8 ft × 8.5 ft x 10 ft)  
⋅ Container R-value = 10.3 m2-oC/W (18 hr-ft2-oF/Btu)  
⋅ Electric resistance heating efficiency = 100% 

A.5. Model Outputs  

⋅ Capacity planning:  
⋅ Capacity of solar PV array [kW]  
⋅ Capacity of battery storage [kWh]  
⋅ Capacity of battery inverter [kW]  
⋅ Dispatch scheduling:  
⋅ Time series of solar output [kWh]  
⋅ Time series of solar curtailment [kWh]  
⋅ Time series of excess wind absorption [kWh]  
⋅ Time series of grid purchases [kWh]  
⋅ Time series of battery charging/discharging [kWh]  
⋅ Time series of dispatchable load demand [kWh]  
⋅ Total energy output:  
⋅ Amount of grid electricity consumed [kWh/yr]  
⋅ Amount of solar electricity generated and curtailed [kWh/yr]  
⋅ Total project costs (objective value):  
⋅ Total cost of installing and maintaining solar PV system  
⋅ Total cost of installing, maintaining, and replacing battery storage system  
⋅ Total cost of grid electricity purchased 

Appendix B. Model Condensed Mathematical Form 

B.1. Decision Variables  

⋅ Amount of solar PV capacity to install (S) [kW]  
⋅ Amount of battery storage capacity to install (E) [kWh]  
⋅ Amount of battery inverter capacity to install (I) [kW]  
⋅ Amount of excess wind energy to absorb (W) [kWh]  
⋅ Dispatch time series of battery storage (charge and discharge) (Et, in/out) [kWh]  
⋅ Dispatch time series of solar electricity curtailment (Rt) [kWh]  
⋅ Dispatch time series of grid electricity purchases (Gt) [kWh]  
⋅ Dispatch time series of space heating system (Qt,heat) [kWh]  
⋅ Dispatch time series of water heating system (Qt,water) [kWh] 

B.2. Objective 

⋅ Minimize total project costs of water reuse energy operations over lifetime:  

min Σt Cg*Gt+ S*Cs+ CE*E + CI*I                                                                                                                                                                  (B1) 
where the summation is over all hourly time steps, t, of the representative time period, which is extrapolated over the 20-year lifetime as part of a 
discounted cash flow. C is the cost of each component (including initial capital cost plus total lifetime operating cost), where g is grid electricity, s is 
solar PV array capacity, E is the battery energy storage capacity, and I is the inverter capacity. 

B.3. Defined variables 

⋅ Current amount of energy stored in battery storage:  

SEt+1= SD*[c*Ein,t – (1/d)*+Eout,t]                                                                                                                                                                   (B2) 

Where c and d are the charging and discharging efficiencies, respectively, together resulting in a round-trip efficiency of 90%, and SD is the self- 
discharge rate. 

⋅ Temperature of hot water tank:  

Tt+1 = Tt + (1/C)*[η*Qheat – UA*(Tt - Tin) – c*Vlost,t*(Tset - Tin)]                                                                                                                          (B3) 

Where C is the thermal capacitance (Wh/oC) of the water stored in the tank when full, defined as the product of the volumetric capacitance of 
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water, c, and the tank volume. The efficiency (η) of electric resistance heating is assumed to be 100%. The stand-by heat loss from the container is 
defined by its thermal resistance (UA, product of U-value—inverse of R-value—and tank surface area) multiplied by the temperature difference 
between the water in the tank and the interior temperature of the container (Tin, which is set at a minimum of 10 ◦C). Finally, the effect of reducing the 
temperature of the tank by removing an amount of hot water demanded by the house (Vlost in time step t) at the desired temperature (Tset = 52 ◦C) is 
calculated based on the volumetric capacitance of water and the temperature difference compared to incoming water (assumed to be at the container 
interior temperature). 

⋅ Temperature of the container interior:  

Tt+1 = Tt + (1/C)*[η*Qheat – UA*(Tt – Tamb)]                                                                                                                                                    (B3) 

Where C is the thermal capacitance (Wh/oC) of the container, assumed to be dominated by the thermal capacitance of the water stored in all 
treatment process feed tanks inside the container (~600 L). The stand-by heat loss is determined by the heat loss coefficient of the container envelope 
(UA) and the temperature difference between the interior and the ambient. 

B.4. Constraints 

⋅ Overall electricity flows must be balanced in each time step:  

Gt+ St+ Wt+ Eout,t = lt+ Ein,t+ Rt                                                                                                                                                                    (B3) 
where the electric load demand (lt) is composed of both baseload demand and total dispatchable load demand from the wash-water system and heating 
system. 

⋅ Battery storage state of charge must lie within limits [kWh], given an initial state of charge of 0%:  

0 < SEt< DOD*E                                                                                                                                                                                          (B4) 

⋅ Battery charging/discharging cannot exceed power requirements of inverter [kW]:  

0 < Ein/out,t < I                                                                                                                                                                                              (B5) 

Sensible thermal energy must be balanced across container envelope at all times:  

Qheat,t = Qcond,t                                                                                                                                                                                              (B6) 
where Qcond,t is the heat loss due to conduction through the container envelope, given its thermal resistance (See Appendix C). 

⋅ Water stored in each feed tank must be less than its capacity of 341 L (90 gal). 
⋅ Each water treatment process can recycle 76 L (20 gal) per cycle. 
⋅ Only one treatment process can operate at a time. 
⋅ Greywater and wash-water feed tanks are initialized at 246 L. 
⋅ NF and RO feed tanks are initialized at 57 L. 

Appendix C. Container Energy Modeling 

Heat is transferred via conduction between the interior of the container, through its envelope, and the ambient environment. Given the Arctic 
climate, heat is transferred from the container interior (Tint,t) to the cold outdoors (Tamb,t) during the vast majority of the year. The subsequent heat lost 
from the container is defined as:  

Qcond,t = U A (Tint,t – Tamb,t).                                                                                                                                                                            (C1) 

The units of heat flows, Q, are in watts of thermal power (W) and, given that the thermal power is an average value over the 1-h time step, it is 
equivalent to the amount of thermal energy in each hour (Wh). No cooling is assumed to be required in the summer, given the cold climate, and thus no 
maximum temperature in the container is preset. 

Appendix D. Water Reuse System Energy Modeling 

Within an hourly temporal resolution there are fluctuations in the energy use of the water treatment processes. Most processes have constant power 
draw, except for RO, which decreases initially as the water warms up, then plateaus, and finally increases as concentration increases. The mean power 
is 0.41 kW. The initial period is weighted by a factor of 2 and the final period by a factor of 3, which yields an average power of 0.42 kW. The power 
draw is shown in Figure D1. 
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Fig. D1. Power draw of a reverse osmosis cycle by minute over an approximately 1.5-h treatment time period.  

Appendix E. Water Reuse System Components 

The specifications of the components of the wash-water system within the Water Reuse system are shown in Table E1.  

Table E1 
Details of select wash-water system components of the WR system.  

Part Size Model Flow Rate (L/hr) Power (W) 

Protein skimmer 250 mm Skimz Monzter SM253 DC 1200–2400 40 
Greywater Tank 341 L – – – 
Membrane Pump – Procon 113B015F31 B 2725 200–400 
Cartridge Filter 1 μm – 1135 – 
Cartridge Filter 0.45 μm – 1135 – 
Cartridge Filter 0.2 μm – 1135 – 
NF Feed Tank 341 L – – – 
NF 7.6 m2 DOW Filmtec NF 270 2725 – 
RO Feed Tank 341 L – – – 
RO 8.7 m2 DOW Filmtec LE LC 4040 2725 – 
UV 1590 L/h Viqua VH200 170 35 
Ozone – Viqua S2Q-OZ UV – 22  

Appendix F. Solar PV Integration

Fig. F1. Schematic of Solar PV integration of Water Reuse system and community microgrid (left), and islanded as its own microgrid (right).  
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