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100% clean, renewable energy studies provide scientific solution that policymakers can rely on

Robert Procter writes in The Electricity Journal that our recent 100%
clean, renewable energy roadmaps for the 50 United States (Jacobson
et al., 2015a) and 139 countries (Jacobson et al., 2017a) are useful for
high-level analysis but “have limited relevance for carbon policy.”
Much of his criticism centers on his claims that these studies are not
near-term utility planning documents and don’t evaluate costs asso-
ciated with sub-hourly fluctuations between load and generation, var-
iations in capacity factor, curtailment, and storage. As explained next,
we believe both of these criticisms are misplaced and that our analyses
are indeed relevant to energy and climate-change policymaking.

First, we suggest that Procter has the relationship between energy/
climate policymaking and utility planning backwards: the former guide
the latter, not the other way around. Thus, while it is certainly useful to
expand upon our work with more detailed technical and economic
studies of power-system planning and operation, such more detailed
studies will be done in the context of energy and climate policies that
are informed by work such as ours.

Second, and more important, Procter apparently is not aware of
related work that we have done that directly addresses his claims that
we have not adequately accounted for variation between load and
generation, capacity factors, and so on. Whereas, the two papers Procter
evaluated provide information about supplying 100% wind, water, and
solar power for all purposes primarily to meet annual average load, we
have two separate studies (Jacobson et al., 2015b, 2017b), which
Procter doesn’t mention, that simulate matching demand with supply
and storage down to 30s resolution for multiple years. Although the
second of these two papers (Jacobson et al., 2017b) was not available
when Proctor wrote his article, he still should have read the first paper,
from 2015. If he had, he would have discovered that we do treat sub-
hourly fluctuations, curtailment, and extreme variations in intermittent
renewable supply, and find low-cost, stable grid solutions that include
thermal, electricity, and hydrogen storage.

Moreover, at least 28 other peer-reviewed papers have found, as we
did, that demand can match supply with 100% or near-100% renewable
energy systems of different sizes (Lund and Mathiesen, 2009; Mason
et al., 2010; Hart and Jacobson, 2011, 2012; Connolly et al., 2011,
2014, 2016; Mathiesen et al., 2011, 2012, 2015; Elliston et al., 2012,
2013, 2014; Rasmussen et al., 2012; Budischak et al., 2013; Steinke
et al., 2013; Connolly and Mathiesen, 2014; Becker et al., 2014;
Bogdanov and Breyer, 2016; Child and Breyer, 2016; Lund et al., 2016;
Aghahosseini et al., 2016; Blakers et al., 2017; Barbosa et al., 2017; Lu
et al., 2017; Gulagi et al., 2017a, 2017b, 2017c). Yet another paper,
Brown et al. (Brown et al., 2017), provides a comprehensive review and
analysis of the feasibility of 100% renewable electricity systems and
decisively rebuts the claims of Heard et al., whom Procter cites several
times in an effort to criticize our work.
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In sum, Procter’s main criticism — that our work fails to address costs
associated with matching supply and demand at short time scales,
curtailment, etc. — is invalid because it ignores relevant work by us and
dozens of other experts. Along these lines, we note that while Procter
cites other critiques of our studies, he fails to cite our extensive re-
sponses to several of these critiques (Delucchi and Jacobson, 2012;
Jacobson and Delucchi, 2013; Jacobson et al., 2016) and thus mis-
represents the state of the discussion in the scientific community and
forces us to re-iterate arguments and corrections that we already have
published.

Below are responses to some of Procter’s more specific criticisms.

1. Procter claims we do not discuss externalities associated with
wind, water, and solar (WWS) resource extraction, fabrication, ship-
ping, construction, operation, and decommissioning. This statement is
not true. Section S10.1 of Ref. (Jacobson et al., 2017a) states,

During the transition, conventional fuels and existing WWS tech-
nologies are needed to produce the remaining WWS infrastructure.
However, much of the conventional energy would be used in any
case to produce conventional power plants and automobiles if the
plans proposed here were not implemented. Further, as the fraction
of WWS energy increases, conventional energy generation will de-
crease, ultimately to zero, at which point all new WWS devices will
be produced with existing WWS. In sum, the creation of WWS in-
frastructure may result in a temporary increase in emissions before
they are ultimately reduced to zero.

The foregoing applies to the main external costs of energy use —
costs of air, soil and water pollution and climate change. Although it is
true that minor external costs result from the use of some WWS tech-
nologies — for example, mining for raw materials can cause water pol-
lution — these costs are one-time and very small compared with the
costs of air, soil and water pollution and climate change, that are
continuous forever with a fossil fuel system.

We are therefore confident in our assessment that the lifecycle ex-
ternal costs of WWS technology are vastly smaller than those of a
conventional energy system.

2. Procter questions whether hydrogen is technically and econom-
ically feasible. In Ref. (Jacobson et al., 2017a), we propose hydrogen
fuel cells (HFCs) for transportation only, and HFC road vehicles already
are commercially available. Long-distance aircraft will ultimately need
to be HFC-electric hybrids, yet short-distance, small HFC aircraft and
pure electric aircraft already exist. We propose long-distance HFC air-
craft to be available in the 2035-2040 timeframe, which is not im-
plausible. Although the long-term cost of fully commercialized hy-
drogen transport systems is not perfectly known, there is little doubt
that in the applications we propose the social cost of hydrogen transport
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will be less than the social cost of conventional (petroleum-based)
transport.

3. Procter questions why our residential load in Ref. (Jacobson
et al., 2017a) decreases by 26% with 100% WWS. The reduction is due
to (a) eliminating energy to mine, transport, and refine fossil fuels used
in residences, (b) the higher work out to energy in ratio of electricity
over combustion, and (c) end-use energy efficiency improvements and
reduction of energy use beyond the business-as-usual (BAU) case.

4. Procter claims Ref. (Jacobson et al., 2017a) assumes annual re-
ductions in energy intensity much greater than the historic average.
This is because he is confusing efficiency improvements alone in the
historic data with (a) electrification in the WWS case, which itself re-
duces demand 23% worldwide due to the higher work out to energy in
ratio of electricity over combustion, and (b) reducing demand another
12.6% in the WWS case by eliminating energy needed to mine, trans-
port, and refine fossil fuels.

5. Procter claims there will be a stranded assets problem under our
roadmaps. We addressed this issue in Section S10.1 of Ref. (Jacobson
et al., 2017a) stating,

Whereas, much new WWS infrastructure can be installed upon
natural retirement of BAU infrastructure, new policies (e.g., Section
S11) are needed to force remaining existing infrastructure to retire
early to allow the complete conversion to WWS. Because the fuel,
operating, and external costs of continuing to use existing BAU
fossil-fuel capacity are in total much greater than the full annualized
capital- plus-operating costs of building new WWS plants (indeed,
the climate and air-pollution costs alone — 28.5 (11.2-72) ¢/kWh-
BAU-all-energy — exceed the full cost of new WWS), and because
substitution of WWS for BAU energy systems increase total jobs, it is
beneficial to society to immediately stop operating existing BAU
fossil-fuel plants and replace them with new WWS plants

6. Procter claims there is a cost associated with having to “learn how
to operate a power system in the throes of being transformed.” He
further lists other costs that he claims we are missing, and implies
—-without any evidence or analysis — that these costs are large enough to
change the results of our analysis and render our conclusions suspect.

Not only are Proctor’s assertions unsubstantiated, they are in fact
contradicted by available evidence and analysis. For example, lowa’s
share of electricity from wind increased from 17% in 2010 to 37% in
2017, yet the cost of electricity in Iowa declined from 9.2 cents/kWh
during January-July 2010 to 8.9 cents/kWh during January-July 2017
while U.S.-averaged electricity stayed constant at 10.5 cents/kWh be-
tween the same periods (US Energy Information Administration, 2017).
Further, a recent comprehensive analysis and review of the literature
confirms that there are no technical barriers or large costs associated
with adapting the power grid to accommodate extremely high levels of
variable generation (Brown et al., 2017).

In general, 100% WWS can result in not only a low-cost system, but
also one in which there is zero fuel cost so more stable electricity prices.

In sum, Procter ignores much of the pertinent published literature
and fails to focus on the 100% WWS papers of relevance. He also
compares apples with oranges by comparing a future system where all
energy sectors have been electrified with the current system, where
they are not. He further opines about costs while neither consulting the
relevant literature nor analyzing costs on the ground for clean, re-
newable energy systems. His paper thus has no impact on our conclu-
sions and no impact on the policy relevance of our conclusions.
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