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Performance tradeoffs are ubiquitous in both ecological and evo-
lutionary modeling, yet they are usually postulated and built
into fitness and ecological landscapes. However, tradeoffs depend
on genetic background and evolutionary history and can them-
selves evolve. We present a simple model capable of capturing the
key feedback loop: evolutionary history shapes tradeoff strength,
which, in turn, shapes evolutionary future. One consequence of
this feedback is that genomes with identical fitness can have
different evolutionary properties shaped by prior environmen-
tal exposure. Another is that, generically, the best adaptations
to one environment may evolve in another. Our simple frame-
work bridges the gap between the phenotypic Fisher’s Geometric
Model and the genotypic properties, such as modularity and
evolvability, and can serve as a rich playground for investigating
evolution in multiple or changing environments.
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Performance tradeoffs, caricatured by “you can’t be good at
everything,” are ubiquitous in both ecology and evolution.

Sometimes modeled explicitly (e.g., as a fixed total budget of
energy or proteome) and often implicitly (e.g., as fitness costs
associated with traits), tradeoffs are a staple of ecological and
evolutionary modeling (1–6).

The rigid tradeoffs assumed in many models implicitly derive
from the assumption that long-acting evolutionary pressures
drive organisms to approximate Pareto optimality (7–9) (i.e., to
a regime where performance at the relevant tasks cannot all be
improved simultaneously). However, even under this assumption
(10), the Pareto front should be high-dimensional (11, 12) so that
the tradeoff between any subset of traits is not, in fact, rigid.
Furthermore, tradeoffs will depend on evolutionary history and
themselves evolve (13–18). In laboratory experiments, adapting
bacteria to one task can both hinder and improve their perfor-
mance at another depending on the experimental protocol, the
studied strain, and the exact nature of the tasks as well as history
of prior exposure (19–21). Some phenomena seem nonintuitive
and surprising; for instance, even very weak levels of an antibiotic
can induce resistance to much higher levels (22, 23).

In some cases, the specific mechanisms responsible for trade-
offs and their plasticity are known and can be modeled mecha-
nistically (24, 25). This approach can be very informative about
a particular case of interest but leaves aside important broader
questions. Which of the observed behaviors depend on the
details of a given biological system, and which are more general?
Which experimental observations should be considered surpris-
ing, and which can be captured already by the simplest models?
What other behaviors might be expected? For instance, can less
frequent exposure to environment X result in better adaptation
to it? Can exposure to X result in better fitness in environment
Y than exposure to Y itself? More specifically, would a prior
exposure to a milder version of a stress facilitate adaptation to
its stronger form?

Elucidating which behaviors are surprising vs. general is a key
role of theory and simple models. Here, we propose a minimally
structured model capturing some key experimentally observed

behaviors: namely, the model exhibits performance tradeoffs,
but their strength evolves and depends on evolutionary history.
This minimal setting proves sufficient to observe nontrivial ways
in which tradeoff strength shaped by evolutionary past can pre-
dictably influence evolutionary future; in particular, we identify
a mechanism whereby achieving highest fitness in one set of
environments proceeds through exposure to a different set. Our
basic framework can serve as a rich null model for evolution in
multiple or changing environments.

Toolbox Model
A widely used framework shaping much of the theoretical intu-
ition about evolutionary adaptation is Fisher’s Geometric Model
(FGM) (26, 27). Separately, another influential branch of think-
ing about multienvironment evolution, particularly relevant to
the subject of tradeoffs, concerns the modularity of biological
function and its relation to the notion of “evolvability” (28, 29).
So far, the two approaches have remained largely independent:
the classic FGM focuses on the phenotype and cannot naturally
accommodate a notion of genome architecture being more or
less modular or evolvable. The simple framework that we pro-
pose bridges this gap. The presentation below is self-contained,
but in effect, we build on FGM by separating genotype from phe-
notype and incorporating a minimal notion of “regulation” (SI
Appendix, Fig. S1).

The structure of our model is summarized in Fig. 1A. The envi-
ronment is represented by a target vector ~E in an L-dimensional
phenotype space. A genome G is a K -element basis in that space
(i.e., a set of K basis vectors {~gµ}). We posit that an organism
can adopt any phenotype realizable as a linear combination of
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Fig. 1. The toolbox model. (A) A genome, G, consists of an undercomplete
set of K basis vectors {~gµ} in phenotype space, defining a K-dimensional
subspace of accessible phenotypes: those that can be represented as linear
combinations of {~gµ}with positive coefficients (expression levels). The envi-
ronment is represented by the optimal phenotype ~E (blue dot). The fitness
of G in this environment is defined by the distance from the optimum to the
closest accessible phenotype (red dot). (B) For simplicity, we consider {~gµ}
to be binary vectors of length L and assume ~E to be of Euclidean norm 1,
with positive components.

its {~gµ} with positive coefficients (loosely “expression levels”).
An idealized organism with a very flexible physiology capable of
independently adjusting each trait as necessary would be able
to adopt any phenotype. However, an organism limited to only
K �L adjustable “knobs” is phenotypically constrained to a K -
dimensional subspace. Target phenotypes outside this subspace
can only be approximated, and we define fitness F (G, ~E) as the
(Euclidean) norm of the residual:

F (G, ~E) =− min
{aµ≥0}

∥∥∥∥∥~E −∑
µ

aµ~gµ

∥∥∥∥∥ .
In what follows, we will take vectors ~E to be of unit length so

that fitness is confined to −1≤F ≤ 0. The simplest interpreta-
tion of this model is as a caricature of metabolism, where ~E is the
target stoichiometry of a set of L metabolites, and the K knobs
[dimensions of internal representation (30)] are the activities of
synthesis pathways. Motivated by this example, we take all com-
ponents of ~E and {~gµ} to be positive, and the name “toolbox
model” is intended to highlight intriguing conceptual parallels
with ref. 31. However, we stress that our setup is not intended
as a realistic model of metabolic regulation or any other specific
context. Instead, our goal is to construct a minimally structured
model that allows the same genotype to be good (or not) in many
different environments at the same time. In the setup of Fig. 1A,
for any set of Nenv environments with Nenv≤K , there exists, in
principle, a genome G that is perfectly fit (F = 0) in all. Con-
versely, the same environment can be fit by many genomes. For
our purposes, we will take Nenv .K �L so that being fit in Nenv

environments is possible but difficult.
Mathematically, the key feature distinguishing our model from

FGM is that the expression levels aµ are adjusted to be as good as
possible in each environment separately. A genome encodes not
a single phenotype but a toolbox that allows the phenotype to be
environment dependent [phenotypic plasticity (32–35)]. In this
sense, our model incorporates a minimal (fast, costless) notion of
regulation (SI Appendix, Fig. S1). We will see that this has impor-
tant and nontrivial evolutionary consequences not captured by
the classic FGM, such as the evolution of modularity.

Modeling the Evolutionary Process
To study tradeoffs, we must consider more than one environ-
ment; we focus here on the simplest case: Nenv = 2. Thus, the

central object is an environment pair P ≡{~EA, ~EB}. For sim-
plicity, we consider binary genomes, where all L components of
the K vectors {~gµ} are either 0 or 1 (Fig. 1B) with mutations
implemented as bit flips 0 7→ 1 or 1 7→ 0. From each genome,
there are thus KL possible mutations. For simplicity, we analyze
the strong selection, weak mutation regime where evolution pro-
ceeds through a sequence of sweeps (no clonal interference) and
only beneficial mutations are relevant (36). This avoids the need
to explicitly simulate a population as we only need to track the
mutations accumulated by a single adapting lineage.

Given a starting genome G0 and an environment pair P =

{~EA, ~EB}, our evolutionary protocol proceeds as follows. One
of two environments is chosen equiprobably. The fitness in this
environment of all single mutants is evaluated (reoptimizing the
expression coefficients every time), and all beneficial mutations
are identified. Of these, one “lucky” mutation is drawn with
probability proportional to its fitness effect (i.e., to its fixation
probability). We refer to this as “one mutational step.” After a
mutation is accepted, either ~EA or ~EB is randomly selected for
the next exposure, and the process is repeated. This protocol,
adopted for computational simplicity, accepts one mutation per
exposure epoch; this approximation does not significantly change
our results (SI Appendix, Figs. S2 and S3).

The Toolbox Model Exhibits Tradeoffs
We begin by showing that the toolbox model exhibits perfor-
mance tradeoffs. To do so, we start with K = 3 and L= 6, small
enough that all 2KL genomes can be fully enumerated. Fig. 2A
shows fitness values FA, FB of all genomes in two particu-
lar random environments: vectors of length L= 6 generated by
independently drawing each component from an exponential
distribution (to ensure that all components are positive) and nor-
malized to unit length. The Pareto front (Fig. 2A, dashed line)
owes its existence to the zero/one binarization of genome com-
ponents, and therefore, its fine structure is sensitive to modeling
choices. In subsequent figures, we will focus on early time evolu-
tion before the Pareto front is reached, as judged by the mean
fitness continuing to increase—the regime where the insights
from a simple model are more likely to be generalizable.

Fig. 2A shows that a random genome evolving under pressure
from one environment becomes mediocre in the other, consistent
with the notion of a tradeoff. To define tradeoff strength quan-
titatively, consider the “mutant cloud” around a given genome
(Fig. 2B). The scatter plots show the fitness effects δFA, δFB

of all KL= 18 single mutations of several sample genomes eval-
uated in the two environments. Mutations deleterious in both
environments are irrelevant for the evolutionary process and
can be ignored. The remaining mutations (beneficial in at least
one environment) can be used to define mutational tradeoff
strength χ:

χ≡−
∑

i∈ben δFAi δFBi√(∑
i∈ben δF

2
Ai

)(∑
i∈ben δF

2
Bi

),
where the index i runs over all mutations beneficial in at least
one environment. (Other ways of quantifying tradeoffs are dis-
cussed in the SI Appendix, Quantifying Tradeoffs.) We stress
that χ is defined in reference to a particular environment
pair {~EA, ~EB}. This definition ensures that χ ranges from −1
(no tradeoff in identical environments: δFA = δFB ) to +1, the
strongest possible tradeoff for which δFA =−δFB . A case that
will become important shortly is that of a “mutationally mod-
ular” genome defined by the property that mutations improv-
ing performance in one environment do not affect the other
(SI Appendix, Two Definitions of Modularity). Conveniently, by
our definition of χ, modular genomes have mutational tradeoff
of zero (Fig. 2B).
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Fig. 2. Quantifying tradeoffs. (A) The global fitness landscape computed
for K = 3 and L = 6 (small enough that all genomes can be fully enumer-
ated) in two randomly chosen environments ~EA and ~EB. The density scatter
plot (gray shading) shows the logarithm of the number of genomes per
fitness bin; the dashed line roughly traces the Pareto front. A random ini-
tial genome G0 evolving under pressure from one environment becomes
mediocre in the other (light blue evolving in A or light green evolving in
B) and runs out of beneficial mutations after ∼ L mutation steps. When
the same genome evolves in randomly switching environments, the tra-
jectory does not terminate; steps in dark blue and dark green correspond
to mutations accepted while exposed to ~EA and ~EB, respectively; the first
35 steps are shown (some loci flip multiple times). Additional examples
are in SI Appendix, Fig. S4. (B) Examples illustrating our definition of
the mutational tradeoff χ. Panels show the relative fitness of all single-
step mutants from four example genomes. In red are mutations beneficial
in at least one environment. The doubly deleterious mutants (gray) can-
not fix and are irrelevant for the adaptive evolutionary process studied
herein. The examples show a strong mutational tradeoff (Top), the oppo-
site of a tradeoff (Bottom), no tradeoff (Middle Left), and a mutationally
modular genome (Middle Right) where mutations beneficial in one envi-
ronment have little effect on fitness in the other (additional examples in
SI Appendix, Fig. S5).

Mutational Tradeoff Itself Evolves
What are our expectations for the behavior of the mutational
tradeoff χ? First, any notion of tradeoff strength is expected to
depend on the difference between environments, which we will
quantify by the Euclidean norm ∆E = ‖~EA− ~EB‖ (~EA,B are unit
vectors with positive coefficients, and therefore, 0≤∆E ≤

√
2; in

Fig. 2, ∆E = 1). Second, one might expect the χ of an evolving
genome to increase with time, as highly evolved genomes should
become depleted for jointly beneficial mutations.

To test these expectations, we investigate the dynamics of
mutational tradeoff strength for random initial genomes evolv-
ing in random environment pairs with various ∆E . As described
above, the relevant parameter regime of the toolbox model is
Nenv .K �L. Since our focus is on environment pairs (Nenv =
2), from now on we will use K = 4 and L= 100. Our starting
genomes will be random binary matrices with each entry set to 1
with probability p = 0.25 (so that initially, on average, each trait
is affected by one regulator: pK = 1). For each trial, the compo-
nents of both environment vectors are independently drawn from
an exponential distribution as before (using a Gaussian distribu-
tion does not qualitatively change the results); the vectors are
then normalized and rotated toward or away from each other to
achieve a desired ∆E (SI Appendix, Parameterizing Environment
Pairs). The results are presented in Fig. 3A.

Plotting these data as a function of ∆E (Fig. 3B) appears to
confirm much of our intuition. First, for random genomes (time-
point 0), mutational tradeoff χ is strongest when ∆E is largest:
as expected, being good at two tasks is harder when they dif-
fer more (SI Appendix, Fig. S6). Second, genomes evolved for
250 mutation steps do indeed exhibit a larger mutational trade-

off. For a sense of scale, recall that our genomes have KL= 400
loci, and therefore, 250 steps are sufficient for over half of the
bits to flip.

Curiously, however, Fig. 3A also shows that, after∼ 100 muta-
tion steps, genomes evolving at a large ∆E consistently exhibit a
counterintuitive decline in χ. This behavior is not a peculiarity of
our definition of mutational tradeoff; other measures of tradeoff
strength exhibit the same phenomenon (SI Appendix, Fig. S7).
Examining the evolved genomes in more detail reveals that this
decline in χ is associated with genomes becoming more modu-
lar as reflected in the “plus”-like shape of the example mutant
cloud shown in Fig. 3C (compare with Fig. 2B). Quantitatively,
we can define mutational modularity M (again, in reference to a
particular environment pair):

M = 1−
∑

i ρi | sin 2φi |∑
i ρi

,

where (ρi ,φi) are the mutation effects transformed to polar
coordinates: ρ=

√
δF 2

A + δF 2
B , φ= arctan δFB

δFA
, and i runs over

all KL mutations, including deleterious ones. At M = 1 (perfect
modularity), each mutation only affects fitness in one environ-
ment (polar angle φ= 0, ±π

2
, or π) (SI Appendix, Fig. S8). Using

this definition, Fig. 3D shows the same evolutionary trajectories
in the “mutational tradeoff vs. mutational modularity” plane.
We observe that evolution quickly drives the tradeoff strength
to its maximum before slowly increasing modularity, and the
modularity increase is more pronounced at larger values of ∆E
as summarized in Fig. 3E.* Reassuringly, what holds for the
entire cloud also applies to the top mutants (most relevant for
evolution). Denote by δFbest

A , δFbest
B the effect on FA of the

best mutation in environment B and vice versa (Fig. 3C). For
a mutationally modular genome, one expects both to be close
to 0: δFbest

A,B ≈ 0. Fig. 3F compares earlier- and later-timepoint
histograms of δFbest

A,B over 100 independent replicates (random
starting points, random environment pairs with ∆E = 0.9; the
histogram does not distinguish δFbest

A and δFbest
B because of the

symmetry swapping labels A and B). The later timepoint shows a
clear enrichment of modular genomes (the peak at δFbest

A,B ≈ 0).
One explanation for this enrichment might be that high-fitness

genomes are generally more modular. However, we will now
demonstrate that evolution at a large ∆E specifically promotes
tradeoff weakening: even conditioned on having the same high
fitness, the χ of evolved genomes remains atypical (37). Specif-
ically, we will show that 1) high-fitness genomes can exhibit a
whole range of mutational tradeoff values, 2) prior evolutionary
history predictably pushes genomes into different regions of this
high-fitness space, and 3) the resulting genomes, although shar-
ing the same fitness, can differ dramatically in their properties
(for instance, in their ability to evolve further).

Evolutionary History Shapes Mutational Tradeoff
Fig. 3B demonstrated that mutational tradeoff strength of
evolved genomes is not typical of all genomes (the red curve
is clearly distinct from the blue curve). Establishing whether
evolution specifically promotes mutational tradeoff weakening
requires a stronger statement, namely that the χ arising through

*Note, however, that both χ and M are explicitly properties of both the genome and
the environment pair, and one should be cautious not to overinterpret a direct compar-
ison of these metrics across different values of ∆E. For instance, the trajectories shown
in Fig. 3F all start from similar (random) genomes, but the initial χ and M are different
because each trajectory is being evaluated in a different environment pair. The effect of
evolution at large ∆E on promoting modularity in our model is a hypothesis suggested
by Fig. 3F but verified in Fig. 4, where all genomes are evaluated in the same environ-
ment, and direct comparisons of their fitness, mutational tradeoff, and/or mutational
modularity become meaningful.
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Fig. 3. Evolved tradeoffs are not typical. (A) Mutational tradeoff (compare with Fig. 2B) as a function of the number of mutation steps (a proxy for time)
for evolution in random environment pairs differing by a given amount quantified by ∆E. Each curve shows mean ± 1 SD over 100 independent trials
(shaded); for each trial, a new random initial genome was evolved in a new random environment pair (K = 4, L = 100). Initially, more different tasks are
associated with stronger mutational tradeoff, and tradeoff strength generally increases with time, with a notable exception at large ∆E. (B) Tradeoffs after
250 mutational steps vs. environment difference ∆E. For ∆E = 0 (two identical environments), the mutational tradeoff is necessarily −1. However, when
the environments differ, evolution drives tradeoff strength to strongly atypical values. Shown is mean ± 1 SD over 100 independent trials for each ∆E. (C)
The mutant cloud around an example genome evolved for 250 steps in two very different environments (∆E = 0.9) exhibits mutational modularity: the best
mutant in one environment has only a weak effect (denoted δFbest

A , δFbest
B ) in the other. (D) Evolutionary trajectories of A replotted against the modularity

score M (in the text). Arrows trace the mean over 100 random initial genomes, each evolving in a random environment pair with the specified ∆E; points
show the individual genomes (every 25 mutation steps). A perfectly modular genome (M = 1) necessarily has χ= 0; conversely, χ=±1 entails M = 0. As
a result, the datapoints fill out a triangular allowed zone. The two squares on the ∆E = 0.9 trajectory mark the same timepoints as in A. (E) Change in
modularity score M relative to the initial timepoint for the trajectories of A (compare with D). Shown is mean ± 1 SD; colors are the same as in A. The plot
confirms that evolution at large ∆E is associated with an increase in modularity. (F) Histograms of δFbest

A,B over 100 trajectories evolved at ∆E = 0.9 at the

two timepoints highlighted in A and D. The later timepoint (red) shows a clear enrichment of modular genomes (the peak at δFbest
A,B ≈ 0) compared with the

earlier timepoint (black).

evolution is not even typical of high-fitness genomes. To show
this, the most direct approach would be to compare the evolved
χ with the typical values observed when sampling high-fitness
genomes in an unbiased way. Unfortunately, we have no pro-
cedure for such an unbiased sampling other than a complete
enumeration, which is only viable for extremely small K and L
(compare with Fig. 2). Instead, we will reach the same conclu-
sion by showing that different ways of evolving high fitness lead
to genomes with different mutational tradeoff strength.

Consider the following computational experiment. Generate
one random environment pair P*≡{~E∗A, ~E∗B}; we used a pair
with ∆E = 0.9. Define fitness in the environment pair as the
average over fitness in ~E∗A and ~E∗B :

F (G,P*)≡
F
(
G, ~E∗A

)
+F

(
G, ~E∗B

)
2

.

Throughout the experiment, we will only be concerned with
fitness and mutational tradeoff as measured in this pair P*.
Under our protocol, the success of any mutation depends only
on its fitness effect in the one environment to which the genome
is exposed at the time. However, as exposures alternate, the
average fitness in the pair will typically also increase.

What other evolutionary protocols could lead to increased fit-
ness inP* = {~E∗A, ~E∗B}? One cannot expect that evolving in some
random other pair will increase the mean fitness in P*, but one
can consider evolving a genome in similar environments or the
average of ~E∗A and ~E∗B . In our model, for any {~E∗A, ~E∗B}, one
can create similar pairs of environments by rotating the vectors
toward or away from each other (in log space to preserve posi-
tivity of components) (SI Appendix). This yields a one-parameter
family of environment pairs P(∆E) indexed by their difference
∆E (Fig. 4A). For a concrete analogy, if ~EA and ~EB represent
hot and cold seasons, then P(∆E) is a family of environment

pairs where the intensity of seasonal variation is more mild or
more severe (quantified by ∆E ). If we preevolve the same 20
random starting genomes in these conditions, with ∆E exagger-
ated or softened as described, what effect will this have on the
fitness and mutational tradeoff strength as measured in the pair
of interest, P*?

The results are presented in Fig. 4B, showing the mutational
tradeoff vs. average fitness, both measured in P*. The black
solid line in Fig. 4B corresponds to the simplest scenario, where
the 20 initial genomes are evolved directly in P*. The evolu-
tionary time runs left to right, reflected in increasing fitness. If
our hypothesis is correct, evolving the same initial genomes at a
larger ∆E (red in Fig. 4 B and C) should promote a more mod-
ular genome architecture and a weaker tradeoff; this is indeed
what we observe (Fig. 4 B and C and SI Appendix, Fig. S9). Con-
versely, if instead of exaggerating the differences, we soften them
to ∆E = 0 (i.e., replace the environment pair P* with a single
environment, their mean), we obtain the trajectory in blue in
Fig. 4 B and C. (Note that the mutational tradeoff evaluated in an
environment “pair” with ∆E = 0 is always −1, but Fig. 4 B and
C shows the mutational tradeoff evaluated in the original pair of
interest P*.)

Fig. 4 B and C directly demonstrates that, within our model,
manipulating evolutionary history predictably pushes evolving
genomes toward stronger or weaker modularity and mutational
tradeoff. In particular, if we pick similarly performing genomes
from the right-hand side of this plot, we will find that they all
attain the same mean performance in different ways, with a
wide range of tradeoff values. We can now ask: how does this
difference affect their near-term evolutionary future?

Tradeoff Strength Shapes Evolution
To address how the evolutionary history and current tradeoff
strength affect future evolution, we used the protocol of Fig. 4B
(computationally preevolving the same 20 initial genomes in
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Fig. 4. Evolutionary history shapes tradeoff structure and vice versa. (A) For a randomly chosen pair of environments ~E*
A, ~E*

B, the difference between them
can be softened or exaggerated by rotating the vectors toward or away from each other (in the log space to preserve positivity) (SI Appendix). This family of
pairs is denoted P(∆E), with P* the original pair that we chose to have ∆E = 0.9. (B) The same 20 random initial genomes (K = 4, L = 100) were evolved for
250 mutational steps: either directly in P* (solid black line) or in another environment pair from the P(∆E) family, with ∆E = 0 (the average environment)
or ∆E = 1.3 (exaggerated differences). The mutational tradeoff measured in the original environment pairP* is plotted against the mean fitness inP* (i.e.,
genomes are evolved in different environment pairs but are all evaluated in the same pair). Data points show the individual genomes every 25 mutational
steps; each line is the average over the 20 trajectories evolved in the same environment pair. We observe that different evolutionary histories consistently
drive genomes to different tradeoff strengths, even when compared at the same fitness. (C) Trajectories of B shown on the tradeoff vs. modularity plane;
colors are the same as in B. Evolution at a low ∆E yields high-tradeoff, low-modularity genomes, while an exaggerated ∆E leads to modularity increase
(SI Appendix, Fig. S9). (D) Mutational tradeoff shapes the near-term evolutionary future. Here, sets of 20 genomes, prepared by preevolving for varying
lengths of time at different ∆E as in B, were “transferred” to continue evolution in the pair P*. For each set, an arrow shows the average change of
fitness and mutational tradeoff in P* over the next 20 mutation steps. Trajectories from B are shown for reference. The contrast in outcomes is particularly
striking for the highest-fitness genomes (colored circles; see also E). (E) Evolvability of genomes with different mutational tradeoff. The 20 genomes of
B were each evolved under 15 different values of ∆E until reaching fitness −0.5± 0.001 when evaluated in P*. This yielded a set of 300 genomes with
the same fitness in P* but different mutational tradeoff χ. Each was then evolved in P* for 20 steps; the mean fitness gain (over the two environments
in the pair P*) is plotted against the initial value of mutational tradeoff χ. The genomes with the weakest χ evolve fastest, whereas genomes with the
highest χ actually decline in mean fitness (compare with D). (F) The most evolvable genomes are also the least “versatile.” The same 300 genomes as
in E are evaluated in random “intermediate” environments ~Eint between ~E*

A and ~E*
B (in the text). Plotted is mean fitness 〈F(~Eint)〉 over 100 intermediate

environments ± 1 SD.

15 different environment pairs for a varying length of time) to
obtain a collection of genomes evenly populating a region of the
fitness vs. mutational tradeoff plane. Each was then evolved for
20 further mutational steps in our pair of interest P*. The result
is presented in Fig. 4D, where each arrow describes the change in
the mean fitness and tradeoff strength in P* observed over these
20 mutation steps (averaged over the 20 genomes in the set).

First, notice that arrows in Fig. 4D in the vicinity of the black
trajectory are tangent to it. This, of course, is exactly what we
expect, since the black trajectory (copied from Fig. 4B) traces the
evolution in this same pair P*. However, arrows starting else-
where in Fig. 4D on this plane (preevolved at a different ∆E ,
then transferred into P*) show different behaviors. It is espe-
cially interesting to compare the arrows on the far right side of
the plot (colored circles in Fig. 4D). As a reminder, under our
protocol, all genome sets were obtained from the same 20 initial
genomes and differ only by evolutionary history. Yet, evolv-
ing them in the same environment P* for the same amount
of time (20 mutation steps) leads to very different outcomes.
The low-tradeoff genomes obtained by preevolving at an exag-
gerated ∆E (red circle in Fig. 4D) exhibit a dramatically faster
speed of subsequent evolution in P* compared with similar fit-
ness genomes that never left this environment pair (black circle
in Fig. 4D). In contrast, attempting to further evolve the highest-
tradeoff genomes (blue circle in Fig. 4D) actually leads to a
decrease in mean fitness. For these genomes, mutations benefi-
cial in one environment of the pair are so strongly deleterious in
the other that the mean fitness declines. To summarize, genomes
with different evolutionary history have predictably different
evolutionary future.

This observation is further illustrated in Fig. 4E, where the
mean fitness gain over 20 generations is shown for 300 individ-

ual genomes, all with the same initial mean fitness −0.5± 0.001,
plotted against their initial mutational tradeoff strength. The
plot directly confirms that weak-tradeoff genomes evolve fast,
whereas for the strongest-tradeoff genomes, the fitness gain dips
into the negative.

The relation observed in Fig. 4E is consistent with the previ-
ously proposed idea that modular architecture is more “evolv-
able” (28, 38, 39). Intriguingly, however, our framework allows
the benefits of modularity to be nuanced. For example, rather
than continuing evolution in the pair P* = {~E∗A, ~E∗B}, consider
instead generating a large number of intermediate environments
~E , where each component is independently and uniformly drawn
to be between the respective component of ~E∗A and ~E∗B . Fig. 4F
shows the average fitness of the exact same 300 genomes in
the intermediate environments. The trend is now reversed: the
“best” genomes as judged by Fig. 4E perform worst in this test.
Intuitively, while a modular architecture (for a given environ-
ment pair) facilitates continuing adaptation to that same pair
(Fig. 4E), it also suffers from a form of “overfitting”: the non-
modular architectures may be more versatile when evaluated
across a range of similar environments (Fig. 4F).

In summary, Fig. 4 demonstrates that evolution shapes
mutational tradeoff and conversely, that mutational tradeoff
shapes evolution. We will conclude by exhibiting a nontrivial
phenomenon arising as a consequence of this feedback loop.

Best Adaptation for One Environment Pair Evolves in Another
Consider the problem in which a pair P* is given, and we would
like to evolve a random starting genome G0 toward a high mean
fitness in this particular pair of environments. The most natu-
ral approach, of course, would be to evolve G0 directly in P*.
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Fig. 5. Best adaptation for one environment evolves in another. (A) The
same 20 random initial genomes (K = 4, L = 100) are evolved at different
∆E and evaluated at ∆E = 0.9 (in P*). Shown is mean fitness ± 1 SD over
the 20 trajectories. Remarkably, the genomes evolving directly in the envi-
ronment pair of interest (black) are typically less fit than those evolved
from the same initial genomes and for the same number of mutation steps
but in one of the other environment pairs with softened (blue) or exag-
gerated (red) differences. (B) Same as A replotted vs. ∆E. The same initial
genome is evolved in different environment pairs; contour lines spaced by
10 mutation steps show the mean fitness evaluated in the environment pair
of interest (P* with ∆E = 0.9). Plot is averaged over 20 random instances
of the initial genome. The three arrows correspond to the three trajectories
shown in A. We see that, generically, the genomes with the highest fitness
in P* were evolved in other environment pairs: after 100 mutation steps,
the genomes performing best at ∆E = 0.9 are those evolved at ∆E = 0,
while at 250 mutation steps, the best were evolved at ∆E = 1.1. See text for
explanation.

However, the results of Fig. 4 suggest that evolving instead in
a different environment pair, with differences exaggerated or
softened, might offer a more efficient path toward P*-fitness
increase. Fig. 5A confirms this by replotting the trajectories from
Fig. 4A, showing fitness in the environment pair of interest P*
(with ∆E = 0.9) as a function of time for genomes evolving
under three different values of ∆E . Importantly, in this example,
genomes evolving directly in P* are typically less fit than those
evolved from the same initial genomes and for the same number
of mutation steps but in a different environment pair (blue or red
in Fig. 5A).

A more detailed visualization of this phenomenon is presented
in Fig. 5B. In the hot and cold season analogy, think of the ∆E
axis in Fig. 5B as a transect through a continent, running from
a region with no seasonal variation (∆E = 0) through regions
where it is increasingly more severe; we are focusing on a par-
ticular temperate region P* with moderate seasonal variation
(∆E∗= 0.9). Imagine populating this continent with an initially
clonal population (the initial genome G0). Initially neglecting
migration, we let these genomes independently evolve in their
respective environments. However, every 10 mutation steps, we
consider potential immigrants to the temperate region of inter-
est: namely, we evaluate the performance of all of the lineages in
the pair P* and plot it on the y axis.

By construction, initially all genomes are the same, and their
performance in P* is also the same. However, 100 mutation
steps later (purple in Fig. 5B), the highest fitness in P* is exhib-
ited by genomes that evolved at ∆E = 0. These genomes were
evolved under selection pressure from a single averaged envi-
ronment and cannot, of course, develop any hot- or cold-specific
adaptations, but at the early stages, evolution proceeds very
efficiently as there are no conflicting pressures from the two
environments.

As evolution proceeds further, the behavior inverts. After 250
mutation steps (orange in Fig. 5B), the highest fitness in P* is
exhibited by genomes that evolved at ∆E ≈ 1.1. Initially, the
increase in mean fitness under such harsh seasonal variations was
very slow, with beneficial mutations in one environment undoing

the gain made in the other. However, eventually, the lineages
evolving under this large ∆E develop a weakened mutational
tradeoff (compare with Fig. 4): this enables them to gain fitness
more efficiently, overtaking the lineages evolving in P*. In this
model, modularity is thus good for evolvability, but it takes time
and the right conditions to itself evolve.

It is worth noting that this effect can persist even in the
long run (shown in yellow in in Fig. 5B for 1,000 steps; addi-
tional discussion is in SI Appendix, Fig. S10). One implica-
tion of this in our spatial/seasonal metaphor is that, in the
presence of migration, the phenomenon described will lead
to a qualitative change in the expected genealogy structure
of the long-term surviving lineages. In particular, the envi-
ronment pairs with large variations turn into sources of evo-
lutionary innovation, promoting the development of ~EA- and
~EB -specific adaptations capable of invading other environments
and outcompeting the resident lineages. Importantly, in our
model, this is true even though we have explicitly excluded the
effects of diversity that would in general be created in each
environment.

Discussion
Understanding evolution in multiple or changing environments
requires developing an understanding of which phenomena
observed in the laboratory (or the wild) depend on specific
details, which are more general, which experimental outcomes
are truly surprising, and which can be found in a very sim-
ple model. We presented a toy model able to capture the
key feedback loop of evolutionary tradeoff plasticity, whereby
organisms evolving in different environments are constrained
by performance tradeoffs, but such tradeoffs themselves depend
on the evolutionary history. By defining fitness through a reg-
ulatory or physiological optimization problem, our approach
is reminiscent of asking evolutionary questions from within
the framework of flux balance analysis (40–46). However,
our “toolbox” model abstracts away any specifically metabolic
(or other) detail, retaining only the flexibility of regulation
(i.e., the fact that genome-encoded tools can be used in
an environment-dependent manner). Remarkably, this simple
model already exhibits qualitatively rich phenomena, including
effects that change sign during the course of evolution.

One of the effects that we studied by example shows how
the best adaptation for one environment may be expected to
first emerge in another. Examples of this phenomenon are
known experimentally: for instance, the fastest way to evolve
resistance to a high dose of antibiotic is through a series of expo-
sures to increasing doses rather than direct pressure from the
environment of interest (19, 23). Our results suggest that, for
evolution considered across multiple environments, this scenario
may well be generic. If true, this is likely to impose a strong
constraint on the predictive power of single-environment evolu-
tionary models: successful lineages coming from elsewhere are
beyond their scope, yet successful invaders can have a profound
impact, including on genealogical structures, a key observable
used for inferences from data. This highlights the need for sim-
ple illustrative models able to incorporate explicit dependence
on environment to help develop null model phenomenolog-
ical expectations, against which experimental results can be
compared (21).

The phenomena reported here did not require fine tuning
of model parameters; they arise because the space of high-
fitness genomes is naturally large and diverse so that different
evolutionary histories generically bias evolved genomes toward
different corners of the high-fitness space. In our model, this
property is ensured by choosing the number of tools that can
be independently regulated to be larger than the number of
environments probed (K >Nenv), but the observation that there
are many ways to be fit should surely not be model specific.
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Establishing the generality of our observations, extending them
to multiple environments (rather than just pairs), and relating
the predictions of our framework to experiments all constitute
productive directions for future work. Furthermore, our simple
model assumed that organisms sense their environment per-
fectly and regulate their physiology optimally. Relaxing these
assumptions offers natural directions in which our model could
be extended.

Materials and Methods
All simulations were performed in MATLAB (Mathworks, Inc.). The asso-
ciated code and scripts reproducing all of the figures in the paper are
available at Mendeley Data, https://doi.org/10.17632/ykypdppy9n.2 (47).
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