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It has recently become apparent that the diversity of microbial
life extends far below the species level to the finest scales of
genetic differences. Remarkably, extensive fine-scale diversity can
coexist spatially. How is this diversity stable on long timescales,
despite selective or ecological differences and other evolution-
ary processes? Most work has focused on stable coexistence or
assumed ecological neutrality. We present an alternative: exten-
sive diversity maintained by ecologically driven spatiotemporal
chaos, with no assumptions about niches or other specialist differ-
ences between strains. We study generalized Lotka–Volterra mod-
els with antisymmetric correlations in the interactions inspired by
multiple pathogen strains infecting multiple host strains. Gener-
ally, these exhibit chaos with increasingly wild population fluc-
tuations driving extinctions. But the simplest spatial structure,
many identical islands with migration between them, stabilizes
a diverse chaotic state. Some strains (subspecies) go globally
extinct, but many persist for times exponentially long in the num-
ber of islands. All persistent strains have episodic local blooms
to high abundance, crucial for their persistence as, for many,
their average population growth rate is negative. Snapshots of
the abundance distribution show a power law at intermediate
abundances that is essentially indistinguishable from the neutral
theory of ecology. But the dynamics of the large populations are
much faster than birth–death fluctuations. We argue that this
spatiotemporally chaotic “phase” should exist in a wide range
of models, and that even in rapidly mixed systems, longer-lived
spores could similarly stabilize a diverse chaotic phase.
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Enormous diversity of species is one of the remarkable fea-
tures of life on Earth. Once established by evolution, this

diversity is traditionally explained in terms of niches and geo-
graphical separation. But spatial coexistence of a wide variety
of species that seem to occupy similar niches is still a major
puzzle (1).

Recent studies have found that even within individual micro-
bial species [e.g., Vibrio (2) in the ocean, Synechococcus in hot
springs (3, 4), Staphylococcus epidermidis on human skin (5, 6),
Neisseria on the tongue (7), and Bacteroides vulgatus in guts (8)],
many strains differing genetically on a broad spectrum of scales
can coexist in nearby spatial locations. This fine-scale (or micro)
diversity is especially surprising when strains mix together and
are, hence, forced to compete. In some cases, the relevant mixing
times are known: for the most abundant phytoplankton species,
Prochlorococcus, which dominates tropical midoceans (9), a sin-
gle sample contains hundreds of strains which diverged over
timescales much longer than ocean-mixing times (10).

Why doesn’t survival of the fittest eliminate fine-scale diversity
on timescales that are long compared to generation or spa-
tial mixing times, but still short compared to the evolutionary
timescales over which the diversity must have evolved and been
maintained? To understand this, is it necessary to interpret the
strains, substrains, and sub-substrains as “ecotypes” (11) adapted
to microniches and differing phenotypically in essential ways? Or
might there be more general explanations? Any satisfying the-

ory should lead to understanding of how the statistical structure
of diversity—not just its existence—arises and is maintained by
evolution.

Microbial diversity is often characterized by abundance distri-
butions. Abundances typically range over many orders of mag-
nitude extending down to very rare species and are often fit by
power laws (12, 13). However, data on abundance distributions
of within-species fine-scale diversity are limited (3, 4, 7). Further-
more, dynamical data are crucial to distinguish scenarios—as we
shall discuss—but are much harder to come by due to the need
for deeply sequenced time-series data, as in, e.g., refs. 6 and 7.
Is local fine-scale diversity relatively stable? Or are blooms from
low to high abundance and back down—observed in a variety of
contexts (14, 15)—more the norm?

Theoretical ecologists have long endeavored to discover the
ingredients necessary for diversity to persist in complex ecosys-
tems. Most theoretical work has focused on “ecologically stable
diversity” (reviewed in ref. 16). Common approaches include
modeling interactions via competition for resources (17–21) and
approximating interspecies interactions as “random” (22–27). A
standard assumption is that species, or strains, compete with
themselves and, hence, suppress their own population growth,
more strongly than they interact with other strains: this is equiv-
alent to assuming that each strain has its own niche. Niches may
be a good starting point for modeling interactions among differ-
ent species. But for closely related strains, there is no obvious
reason why the interactions between “siblings” should be much
stronger than between distant “cousins.”
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The opposite extreme to niche-based approaches is the “neu-
tral theory of biodiversity” (28–30), which posits that broad
classes of species—such as all trees in some region—are eco-
logically equivalent. Species abundances fluctuate due to neutral
birth, death, and migration processes instead of being stabilized
by ecological interactions. The balance between these results in
a broad distribution of abundances with a simple power-law tail
(31) that compares well, at least semiquantitatively, to data on
a variety of systems, such as marine plankton (13), diatoms of
similar sizes (32), and trees in tropical forests (33).

But for microbial diversity, there is a major quantitative prob-
lem with neutral theory. The large sizes of microbial populations
mean that birth–death fluctuations are far too slow to dominate
population dynamics. And the short generation times mean that
even tiny selective differences will be greatly amplified on mod-
est timescales (34). To produce broad distributions from faster
dynamics, recent work has generalized effective neutrality by
considering species with different responses to a fluctuating envi-
ronment, but still neutral time-averaged fitnesses (35, 36). But
this does not solve the problem of fluctuating to extinction, or of
how the average neutrality might arise.

A different approach, which we take here, is to ask whether
ecological interactions and fitness differences can drive contin-
ually changing abundances in a state of “chaotic coexistence.”
As recognized early by May (37), a range of simple determin-
istic ecological models exhibit abundances that vary chaotically
(38). It has been proposed that chaotic coexistence is important
for plankton biodiversity (39, 40), and chaos has been demon-
strated in a long-term experiment of an isolated planktonic food
web (41). In nature, large changes in the relative abundances
of viral and microbial strains have been observed in controlled,
aquatic environments (42), and cycling between being abundant
and rare is commonly observed in oceanic bacterial taxa (43).
Might chaos be a generic feature of complex ecosystems (44,
45)? Can chaos promote or stabilize extensive diversity among
close relatives? General theoretical analyses have shown that
spatiotemporal environmental fluctuations can prevent extinc-
tions and lead to coexistence (46, 47). And particular studies
have found that chaos reduces extinctions in spatially extended
populations (48, 49), but the chaotic population dynamics were
put in by hand for a single species rather than arising from inter-
actions. It is unclear if these mechanisms can stabilize extensive
diversity.

It is often said that pathogens promote diversity (50).
Pathogens surely contribute to continual evolution: a ubiquitous
driving force is the advantage of evolving to “kill-the-winner”
via predation, pathogenicity, or evolutionary arms races with
relatives such as among Streptoomyces bacteria (51). Yet, it is
far from clear whether evolutionary kill-the-winner dynamics
enhances or decreases diversity.

Population dynamics driven by the advantages of doing well
against currently abundant strains also occurs on ecological
timescales; this will be our focus here. For pathogens, increasing
abundance of a host strain can result in increasing abundance of
particular pathogen strains: this limits the successful host popu-
lation, driving it down, thereby limiting those recently successful
pathogen strains as well. The original predator–prey Lotka–
Volterra (LV) model demonstrated that such dynamics can lead
to coexistence with periodic variations of the predator and prey
populations. What about host–pathogen dynamics with many
interacting populations? Models with specialist pathogens can
lead to stable static communities (52, 53), as indeed does slight
modification of the original LV model. Coupled predator–prey
cycles have also been studied (54, 55), but, generically, multiple
coupled cycles tend to lead to chaos.

A major drawback of most models of host–pathogen dynamics
is that they do not account for broadly nonspecialist pathogens.
Assuming all are specialists is equivalent to giving each strain

its own niche. This may be reasonable for multispecies commu-
nities, but it is not for understanding within-species fine-scale
diversity. Indeed, phages are often found to infect related, but
phenotypically distinct, bacterial strains (56, 57). A crucial need
for understanding fine-scale diversity is consideration of models
with many strains of a single host species and many strains of a
single pathogen species with broad, but varying, infectivity.

For microbial populations, evolutionary and ecological
timescales overlap, and diversity is always being produced.
However, there is an important question of principle—as
well as, quantitatively, in practice: Does evolution generally
lead to extensive spatially coexisting fine-scale diversity that
would persist—in the absence of further evolution—for much
longer than ecological timescales? A first step is to understand
whether and how—without special assumptions—such diversity
could persist. Can host–pathogen, or more general kill-the-
winner, ecological dynamics stabilize fine-scale diversity on long
timescales?

We analyze a general class of LV models and begin by investi-
gating the nature of a diverse chaotic state that exists in a special
case (58). However, in the generic case, chaos drives a cascade
of extinctions that destroys the diversity. We then add the sim-
plest form of spatial structure—identical islands with migration
between them—and show that this leads to a robustly stable spa-
tiotemporally chaotic “phase” that we argue should occur far
more generally.

Models of Complex Diverse Ecosystems
We focus on generalized LV models widely used to model eco-
logical interactions between species. For competing species, the
dynamics of the population size, ni , of species i is conventionally
written in terms of a basic population growth rate, ri , a carrying
capacity κi , and a matrix Wij of interactions between them:

dni

dt
=ni

ri (1− ni

κi

)
+
∑
j 6=i

Wijnj

. [1]

This implicitly assumes that each species has its own “niche”
and treats the interactions between species differently than
interactions within species.

For closely related substrains, our focus, there is no a priori
reason that interactions with the same strain are particularly dif-
ferent from with other strains. It is useful to separate out the
overall constraints from use of the same resources, which will
keep the total population of the K strains, N ≡

∑K
i=1 ni , approx-

imately constant, and focus on the differences between them. We
then write dynamics in terms of the fractional abundances (or
frequencies) νi ≡ni/N

dνi
dt

= νi

(
si +

K∑
j=1

Vijνj −Υ(t)

)
, [2]

where the stabilizing term Υ(t) =
∑

i νi(si +
∑K

j=1 Vijνj ) keeps
the total number fixed (

∑
i νi = 1). We have dropped the explicit

niche-like terms rini/κi and treat the self-interactions Vii—
a priori of similar magnitude to the other interactions—on
the same footing. The two models are equivalent if the gen-
eral interactions between strains due to limited resources—
parametrized by the average W = 1

K2

∑
ij Wij < 0—is much

larger than the differences Wij −W : this keeps fluctuations
in the total population small. The interactions can be writ-
ten in terms of the differences by Vij =N [Wij − 1

K

∑
j Wij −

1
K

∑
i Wij +W ]. Similarly, the selective differences—assumed

much smaller than the average growth rate, r̄—can be written as
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si = ri − r̄ + [ 1
K

∑
j Wij −W ]N , which includes a part repre-

senting how strain i does against the average of the others.
Competition for resources will result in positive correlations

between how strains interact with each other—e.g., between V12

and V21—while direct one-on-one competition will result in anti-
correlations: if strain 1 “beats” strain 2 so that V12 > 0, then 2
“loses” to 1 so that V21 < 0. Antisymmetric correlations of the
interactions also occur for systems of hosts and pathogens in
which a collection of strains of a pathogen infect a spectrum of
strains of a host—e.g., intraspecies diversity within one phage
and one bacterial species (56, 57). In terms of a population

vector,
(
νbacteria

νphage

)
, the interaction matrix has a block diagonal

structure V =

(
0 −F
G 0

)
. For closely related strains, F and G will

each consist of a constant part characteristic of the phage and
bacterial species, plus small, strain-specific variations. The strain-
specific parts of F and GT (the transpose) will be positively
correlated, since interactions that are better for the phage are
worse for the bacteria and vice versa. SI Appendix, section 4 dis-
cusses how the results derived here can be generalized to the
bacteria–phage model.

For simplicity, we focus on interactions between strains of a
single species. Being sums and differences between similar inter-
actions and similar growth rates, it is then natural to treat the
Vij and si as approximately random and characterize them by
their statistical properties. The magnitudes of the Vij set the
timescale of the ecological dynamics. For most of our analy-
ses, we will assume that the effects of overall fitness differences,
the {si}, are much smaller than the differences in the influ-
ences of the interactions. (This corresponds to the assumption
that generalists are hard to evolve.) We make the simplest
choice for the distribution of the interactions: the {Vij}, for
i 6= j , are Gaussian distributed with mean zero, identical vari-
ance, and all covariances zero except across the diagonal. The
ratio

γ≡ E [VijVji ]

E
[
V 2

ij

] for i 6= j , [3]

with −1≤ γ≤ 1, is the correlation coefficient between how the
two strains affect each other: γ=−1 corresponds to an anti-
symmetric matrix, γ= 0 to independent elements, and γ= 1 to
a symmetric matrix.

Niche-Like Interactions and Large Stable Communities. If, in spite
of the similarities between strains, competition with others of
the same strain are stronger—niche-like interactions—the diag-
onal terms would be negative on average, and we thus define

Q ≡E[−Vii ]/
√

E(V 2
ij ). An important point, however, is that for

Q to affect the dynamics, the niche-like interactions must be
much stronger than the interactions between different strains: as
the sum over the (random) effects of all of the other strains will
be proportional to

√
K , in order to substantially affect the eco-

logical dynamics, Q must be of order
√
K . Most theoretical work,

motivated particularly by competition for a mixture of resources
(17, 18, 39, 59), has focused on such large Q (24, 60) and positive
correlations between interactions, γ > 0 (20, 21, 25–27). In this
regime, for a large number of strains, there is a unique stable,
uninvadable community, corresponding to a stable fixed point of
the dynamics, with a substantial fraction (O(K )) of strains sur-
viving and the other strains unable to invade. This occurs, for any
γ, when Q ≥Qc(γ) =O(

√
K ). For smaller Q , the fixed point

destabilizes, and it appears that there is generally no large sta-
ble community [except for the special case of γ=−1 (58, 60)].
As we are interested in the interaction between large numbers

of similar strains, we will mostly neglect the effects of niche-like
interactions and set Q = 0.

What happens when there is no large stable community? Our
focus will primarily be on γ < 0, for which dynamical ecologies
are ubiquitous, as has been found in refs. 58 and 60. We first
analyze the special case γ=−1. (The original LV model is this
special case with Q = 0, γ=−1, and K = 2: it exhibits a family of
periodic orbits.) With multiple types, the dynamics is chaotic. As
we shall see, many aspects of the chaotic dynamics of this spe-
cial model well characterize the behavior for a much broader
range of parameters and models. Indeed the analysis of this
special case serves as a needed framework for understanding
chaotic dynamics more generally including, crucially, the effects
of spatial structure.

Chaotic Ecological Dynamics
Perfectly Antisymmetric LV. The idealized model of perfectly anti-
symmetric interactions (Vij =−Vji) has very special properties,
described in SI Appendix, section 3.A, which greatly facilitate its
analysis. We here summarize its key features—see Figs. 1 and 4.

The antisymmetric model (ASM) has a family of stable chaotic
states in which a fraction of the initial K strains—a unique set
we call the “persistent strains”—coexist in a chaotic steady state,
while the others have gone extinct and cannot reinvade. In steady
state, each strain is characterized by its invasion growth rate,
ξi—its bias for short—defined as its time-averaged growth rate
when it is at very low abundance. If ξi is negative, strain i will
go extinct. The behavior of the persistent strains, including their
time-averaged abundances, 〈νi〉, will be controlled by the magni-
tude of their particular positive ξi ’s. The scale of the ξi ’s, which
we denote as r̂ , is 1/

√
K times the typical (rms) magnitude of

the Vij ’s (roughly the sum of K terms, Vij 〈νj 〉, of random sign
with the 〈νj 〉 of order 1/K on average).

The effects of the interactions make the growth rates vary with
time, so the logarithms of the fractional abundances `i ≡ log(νi)
are the natural dynamical variables. In a chaotic steady state,
the log-abundances of the persistent strains fluctuate over a
range of width Θ, which depends on the initial conditions; this
quantity (which turns out to be analogous to a temperature)
parameterizes the family of chaotic steady states. The Θ = 0 state
corresponds to the unique fixed point of the persistent strains,
with the other strains having gone extinct. For reasons that will
become apparent later, we focus on large Θ, for which the fre-
quency of the persistent strains fluctuate wildly. Each persistent
strain occasionally “blooms” to high frequency. When it does so,
it will have a large effect on strains that do better in its presence.
But, as these other strains rise to high frequency themselves,
the negative effects that they have on the first strain—implied
by the antisymmetry of the interaction matrix—will cause its fre-
quency to peak and start decaying, as illustrated in Fig. 1B. This
“kill-the-winner” dynamics causes the peaks to typically last only
for a short time, τpeak∼ 1/(r̂

√
Θ). The typical growth rates of

strains is of order 1/τpeak, which is much larger, by ∼
√

Θ, than
the time-averaged growth rates.

The wildly fluctuating growth rates for large Θ cause the log-
abundances of the persistent strains to undergo superdiffusive
random walks, seen in Fig. 1A. The statistical properties of these
random walks turns out to be crucial and much more general
than the ASM. Eventually, on a long timescale—of order the
equilibration time of the chaotic state, τeq∝Θ/r̂—the positive
invasion rates of the persistent strains limit the range of their
log-fluctuations, preventing their extinction. Strains with smaller
positive ξi have log(νi) fluctuating over a wider range and bloom
less often, but the peaks of their blooms are statistically similar
to the other persistent strains.

The essential nature of the ASM is only revealed by its dynam-
ics, but a snapshot of the distribution of abundances of the

14574 | www.pnas.org/cgi/doi/10.1073/pnas.1915313117 Pearce et al.
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A B

Fig. 1. Chaotic kill-the-winner dynamics of the perfectly ASM with no spatial structure. (A) Population dynamics of the fractional abundance (frequency),
νi(t), of a single strain, out of a total of 301 persistent strains (of K = 600 initial strains). The range on the logarithmic scale is parametrized by the
“temperature,” Θ, which is determined by the initial conditions. Here, Θ = 40, chosen unrealistically large to emphasize the different timescales, log(νi)
exhibits superdiffusive random-walk-like behavior over a wide range of timescales. Note the multiple peaks that occur before νi fluctuates down to low
abundance, which typically takes a long time τeq∝Θ. (B) Short time dynamics focusing on a high-abundance peak of one strain i (black). Its rise is due to
the high abundance of several other strains, j (blue), with positive effects on strain i via Vijνj > 0. The high abundance of i then brings up populations of
some other strains, k (red). Because of the antisymmetry, the effects of red strains on the black strain, via Vikνk < 0, cause negative feedback that drives the
black population back down. Individual peaks typically last for short times τpeak∝ 1/

√
Θ.

persistent strains shows their spread over a logarithmically wide
range. As shown in SI Appendix, section 3.A, the full joint dis-
tribution of abundances can be found exactly. For large K ,
the abundances are essentially independent, and the probability
density of the abundance of strain i has the simple form:

ρi(νi)dνi ∝ ν−1+µi/Θ
i e−Kνi/Θdνi

∝ exp(`iµi/Θ−Kνi/Θ)d`i , [4]

with log-abundances `i ≡ log νi and the quantity µi ∝〈νi〉∝ ξi ,
depending on the strain. For large Θ, the population of each
strain is distributed roughly uniformly on a log scale up to a
soft “ceiling” ∼Θ/K , independent of i , while log(νi) is expo-
nentially suppressed at large negative values of order Θ/µi .
In a snapshot of all of the strains, the (almost) independent
sampling from the collection of the individual distributions is
reflected in a broad distribution of the log(νi), illustrated by
a “rank-frequency” plot (see Fig. 4, dotted ASM curve). An
important feature of this chaotic “phase” is that, in spite of the
broad distribution of the abundances, the time-averaged abun-
dances, 〈νi〉, are not broadly distributed: each is proportional
to the (small) fraction of the time that that strain is at high
frequency.

Intriguingly, the form of Eq. 4, as well as the joint distri-
bution of all of the {νi} with fixed total population size (for
which the exponential factors are replaced by δ(

∑
i νi − 1)), is

identical to the frequency distribution from neutral ecological
dynamics with genetic drift and random migration: specifically,
with strain-i immigrants arriving at a low rate proportional to
µi (61). However, the chaotic dynamics of the ASM is strikingly
different from the stochastic neutral dynamics. It is hugely faster
for large populations—for which the timescale of neutral dynam-
ics is proportional to the population size, N . And the temporal
correlations arising from the deterministic ecological dynamics
are qualitatively different from those from stochastic birth–death
fluctuations. We sketch derivations of these and other proper-
ties of the ASM in Dynamical Mean-Field Theory, with details
relegated to SI Appendix, section 3.

Diverging Fluctuations for Near-Antisymmetric Interactions. When
γ >−1, the stable high-diversity chaos of the perfectly anti-
symmetric model collapses. The roots of this instability can be
understood in terms of the behavior of the ASM. When strain
i rises to large frequency, some of the strains, j , that are driven
upward by positive Vji , will drive strain νi down via their typ-
ically negative Vij . The average strength of this kill-the-winner
effect is set by the negative correlations between Vij and Vji ,
parametrized by γ, as well as by how far the log-abundances of
the other strains need to rise by in order to drive strain i down.
For −γ < 1, the kill-the-winner effect is weaker; thus, the peaks

are higher and last longer. These larger peaks mean that the
instantaneous growth rates (which are set by the highly abundant
strains) change more slowly. This causes all strains to fluctuate
over a larger range of log-abundances, and it takes longer for
these strains to again bloom from low abundance to high. This
feedback loop, analyzed in SI Appendix, section 3.F, continues to
amplify the fluctuations, eventually driving extinctions, as shown
in SI Appendix, Fig. S3.

Our analyses have focused on γ substantially negative. But in
parallel work, Roy et al. (62) have studied the case γ= 0 and
niche interactions Q <Qc(γ); they also find diverging chaos driv-
ing extinctions. We conjecture that stable high-diversity chaos is
not possible anywhere in the Q − γ parameter space, except for
the special point γ=−1, Q = 0.

Chaotic Coexistence Stabilized by Migration. In a well-mixed pop-
ulation, ecological chaos for γ >−1 causes larger and larger
fluctuations to low abundance, quickly leading to a cascade of
extinctions. In order to prevent extinctions, an influx of new indi-
viduals of each strain is needed. The simplest model with this
property—widely used for island biogeography (63)—considers
a “mainland” with a pool of each strain from which there is a low
rate of migration to the “island” being studied. If the migration
is not too small and the populations are large, the dynamics are
approximately deterministic, and chaos on the island will be sta-
bilized. But this begs the question of how the mainland diversity
is stabilized: What prevents global extinctions?

Instead of a mainland, we consider the simplest spatial model:
a large set of I islands (or “demes”) with migration between all
of them. For each strain, this presents a large pool of potential
immigrants, but allows for global extinction of its whole pool.
The islands are identical (strains interact via the same matrix
V on each), and there is no additional spatial structure: migra-
tion rates between any pair of islands are all of the same with
rate m per individual out of each island. The dynamics of the
abundance, νi,α(t), on island α follows Eq. 2, with an additional
term for the net migration of individuals, m (ν̄i − νi,α), where
ν̄i(t)≡ 1

I

∑I
α=1 νi,α(t) is the average over all of the islands of

the abundance of strain i . The local stabilizing term, Υα(t),
keeps the total population on each island, separately, equal to
N (i.e., for each α,

∑
i νi,α = 1).

Local extinctions occur when the population of a strain on
an island decreases below one individual, i.e., when its frac-
tional abundance νi,α falls below an extinction threshold of
1/N . But even with small migration rates, m� r̂ , the inflow
of migrants can compensate for a negative local growth rate to
keep the local abundance on an island above or near a mini-
mum size, νmig

i ∼m ν̄i/r̂ , which we call the “migration floor.” We
consider migration rates such that the migration floor for typi-
cal persistent types is well above the extinction threshold. (Note
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A

B

C

Fig. 2. Abundance trajectories of a single strain across I = 10 islands. (K =

75 initial strains, γ=−0.8, N = 1012, m/r̂ = 2 · 10−8.) Black lines show the
migration floor at which the local populations are stabilized by migration
from other islands, and the dashed line is the boundary for extinctions, ν=

1/N (i.e., one individual). (A) For this strain, a global extinction results from
a cascade of local extinctions due a shortage of large blooms on enough
islands. (B) A persistent strain in steady state. Local extinctions can occur
when the migration floor, and hence some local populations, drops below
ν= 1/N. But migration prevents local extinctions from becoming a global
extinction, as long as a bloom to high abundance is occurring on at least one
island. (C) An invasion can start from a small local population on one island
which, if lucky, initiates a bloom from which migrants establish populations
on other islands and leads to long-term persistence.

that this is the opposite limit usually studied in neutral island
bio-geography.) Since birth–death fluctuations are negligible
except when ν

mig
i is anomalously small, one can treat the pop-

ulation dynamics as essentially deterministic, including during
extinctions when νmig

i (t) falls below 1/N , and during reestablish-
ments when migration and a positive growth rate bring νmig

i (t)
back above 1/N .

Even with migration, some strains go extinct globally, as shown
in Fig. 2A. But for a wide range of m , a majority of strains per-
sist for long times in spite of some local extinctions; Fig. 3. The
dynamics of the abundances of a single persistent strain across
all of the islands is shown in Fig. 2B. While much of the time, the
population on an island is near the migration floor, as indicated,
on each island there are local blooms up to high abundance
which produce enough emigrants to other islands to avoid local
extinctions and enable later blooms on the other islands. Indeed,
even a small initial population on a single island can bloom and
seed other islands, leading to long term persistence, as shown
in Fig. 2C. Global extinctions only occur when such blooms are
too rare.

A crucial feature that enables global persistence is that the
chaos on different islands is desynchronized. This occurs if the
migration rate is less than the largest Lyapunov exponent on

a single island (64): m� r̂ is sufficient. The desynchronization
leads to a spatiotemporally chaotic steady state in which the
island average ν̄i(t) of a persistent strain undergoes only small
fluctuations. In steady state, the time-average abundance of a
persistent strain, i , will be the same on each island: 〈νi,α〉= ν̄i
for each α. Which strains persist, and their average abundance if
they do, is determined (as for the ASM) by their bias, ξi—their
average single-island invasion growth rate.

The key feature that makes coexistence of a majority of the
strains possible is that even strains with negative ξi—which would
go rapidly extinct in a well-mixed population—can nevertheless
persist because of their occasional blooms. Although on each
island, the growth rate of such strains will be negative for long
periods of time, blooms to high abundance on some (not-too-
tiny) fraction of the other islands can keep the island average
ν̄i large enough at all times to rescue local populations from
extinction.

A snapshot of the abundances of all of the strains on a sin-
gle island, Fig. 4, shows the broad spread of the log-abundances
log(νi,α). Much of the time, the abundances of strains with
negative ξi hover around the migration floor. This leads to a con-
centration at the low-abundance end (in contrast to the ASM;
shown dashed for comparison). At intermediate and high abun-
dances, the distributions for different γ are similar, with log(νi)
distributed approximately uniformly (as in the ASM distribu-
tion of Eq. 4), but here over a range log(νpeak/νmig)≈M ≡
log(r̂/m). Indeed, to distinguish the distributions for different
γ, or from the ASM, a very low-abundance detection threshold
is needed: from a snapshot it is hard to estimate the total per-
sistent diversity. However, averaging abundances over islands, or
over very long times, reveals many more persistent strains with
their average abundances, {ν̄i}, relatively narrowly distributed
(Fig. 4, Inset).

Much of our theoretical understanding of the spatiotempo-
ral chaos is obtained from the limit of many strains and many
islands, for which the dynamical mean-field analysis developed

Fig. 3. Persistent fraction of strains vs. migration rate. Out of K = 100
strains, the fraction that are persistent is greatest for intermediate migra-
tion rates. For m/r̂ = 10−1, islands become synchronized, leading to a large
loss of diversity, while for m/r̂ = 10−7 = K/N (dashed line), the migration
floor for a typical strain drops below one individual. Results are aver-
aged over 20 instantiations of Vij with population per island, N = 109,
and γ=−0.8. To extrapolate to the limit of many islands, simulations
were run for I = 30 islands without an extinction threshold, and the per-
sistent strains were defined as those with a migration floor, mν̄i/r̂, greater
than 1/N.
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Fig. 4. Rank-frequency plots for island model (I = 24 islands, migration rate
m = 2 · 10−9, and various γ). “Snapshots” of the fractional abundances, νi ,
on a single island are broadly distributed on a logarithmic scale. The initial
number of strains, K, is chosen so that the number of strains in the distri-
bution at large and intermediate abundances—the most readily observable
part—is similar for each γ. The constant slope for this part of the distribution
implies that log νi is uniformly distributed over that range, as also found
in neutral models. Stabilization via migration from other islands results in
clustering at low abundances around the migration floor νmig≈m/

√
K, of

order 10−10 for the γ=−0.9 and −0.8 curves. Time-averaged abundances
〈νi〉 show much narrower distributions (Inset; on linear scale), similar for
all γ when adjusted for different K. The γ=−0.99 curve is close to the
single-island ASM (γ=−1; dotted line) with the same K and with the “tem-
perature” scale Θ chosen, for comparison, equal to M≡ log(1/m

√
K). But

with migration between islands, additional strains persist, even for γ very
close to −1 (blue).

in the next section is asymptotically exact. But understanding
the statistical dynamics of the blooms in this limit is the key to
understanding how and for how long strains with negative ξi can
persist with a finite number of islands. With finite I , persistent
strains will have periods of bad luck when no blooms occur on
any island for an extended period: this can cause the island aver-
age, ν̄i(t), to fluctuate down enough to cause global extinction.
Since each island’s dynamics is roughly independent, the prob-
ability of a strain having no blooms across all I islands for an
extended period is exponentially small in I , as analyzed in Global
Extinctions. Strains can thus persist for exponentially long times,
as shown in Fig. 5. Quantitatively,

Tpersist
i ∼ exp(I /IX (ξi)), [5]

with the function IX (ξi) parametrizing the degree of stability of
strain i : this is as a function of the strain’s invasion growth rate,
ξi ; Eq. 14.

Dynamical Mean-Field Theory. The dynamics of the multistrain
models are intractable, even for the special single-island ASM.
However, we can take advantage of the large number of strains
and the random nature of the interactions among them and
use an approach developed for other random systems: dynam-
ical mean-field theory (DMFT) (65). This is valid when Vij is
a very large random matrix—in our case with elements inde-
pendent and identically distributed except for the cross-diagonal
covariance parameterized by γ (Eq. 3). The DMFT approach
approximates the population dynamics of a strain of interest, i ,
which is deterministically driven by its interaction with many oth-
ers, by an effective stochastic integro-differential equation for
that strain alone on a single island:

dνi
dt

= νi

(
si + ζi(t) + γ

∫ t

0

R(t , t ′)νi(t
′)dt ′−Υ(t)

)
+m(ν̄i(t)− νi),

[6]

with ν̄i(t) the average over the other islands. (Without spatial
structure, the last term is absent.) For most analyses, we will
not include the effects of the selective differences, si : these are
addressed in the Discussion and SI Appendix, section 3.B.

The crucial features are the effects on strain i of interac-
tions with the other strains: these have two contributions. The
first, and intuitive, part, is an effectively random time-dependent
drive—i.e., instantaneous growth rate—ζi(t), from the cumula-
tive effects of all of the other strains,

∑
j 6=i Vijνj , when strain i

is absent, νi(t) = 0. The dynamics of strain i when invading (or
at low abundances for an extended time) are set exclusively by
ζi(t). Due to the K weakly correlated contributions with random
coefficients, the drive, ζi(t), will be essentially Gaussian with
mean (across strains) zero and temporal correlations reflecting
the dynamics of the other strains:〈

ζi(t)ζi(t
′)
〉

=
∑
j ,k

Vijνj (t)Vikνk (t ′)

≈
∑
j

νj (t)νj (t
′)≡C (t , t ′), [7]

(using E[VijVik ] = δjk ) and defining the correlation function,
C (t ′t ′). For large K , the correlations between the drives on
different strains are essentially independent, and DMFT is
asymptotically exact.

The second effect of interactions occurs when νi rises to high
abundance and affects the other strains. For large K , its effect
will be a small perturbation, hj (t) =Vjiνi(t), to the growth rate
of strain j , which is smaller by a factor of

√
K compared to the

total drive on strain j . The linear response of strain j , δnj (t), to
hj (t

′) at earlier times t ′—proportional to the functional deriva-
tive δνj (t)/δhj (t ′)—will give a small, but systematic, additional
contribution, Vij δνj (t), to the growth-rate strain i . The net effect

Fig. 5. Extinct fraction vs. time: after rapid, essentially deterministic, initial
extinctions, the remaining strains persist for long periods of time. (Inset)
With an increasing number of islands, I, more strains survive for long peri-
ods, and the typical time taken before a fixed fraction of strains have gone
extinct (horizontal lines for fractions 0.4 and 0.7) increases exponentially
with I. Data are from long simulations of 10 replicates with K = 100 starting
strains, m/r̂ = 2 · 10−8 (M = 18), N = 1013, and γ=−0.8.
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back on νi(t) from its effects on others at earlier times is, since
E[VijVji ] = γ, determined by

∑
j

Vij
δνj (t)

δhj (t ′)
Vji ≈ γ

∑
j

δνj (t)

δhj (t ′)
≡ γR(t , t ′), [8]

with R(t , t ′) the “response function,” which, together with
C (t , t ′), must be determined self-consistently. Unfortunately, in
contrast to many studied problems, there are no closed equations
for the response and correlation functions, so we must analyze
the stochastic single-strain dynamics directly.

DMFT for Antisymmetric Single-Island Model. The mathematical
analysis of SI Appendix, sections 3.D and 3.E reveals the full
quantitative properties of the self-consistent solution of the
DMFT for the single-island ASM. But the key features of the
strongly chaotic steady state for large Θ are relatively intuitive
once one knows it exists: this relies on the special properties
elucidated in SI Appendix, section 3.A.

Each persistent strain has a—distinct—nonzero average abun-
dance, 〈νi〉. In steady state, the correlation function, C (t − t ′),
depends only on time differences and at long times decays to
C (t − t ′→∞) =

∑
i 〈νi〉

2. Thus, the “drive” on each strain can
be decomposed as ζi(t) = 〈ζi〉+ ηi(t) into a dynamic part ηi(t)
having zero time average and the same covariance for each
strain, E[η(t)η(t ′)] =C (t − t ′)−C (∞), and a static part 〈ζi〉
which varies from strain to strain. For the ASM, the invasion
growth rate, or bias, ξi = si + 〈ζi〉− 〈Υ〉 is simply 〈ζi〉 since the
stabilizing term is identically zero, Υ = 0, and we are, for now,
not including the selective differences si .

Only strains with positive bias persist. Thus, since the {ξi}
are Gaussian distributed with mean zero, half the strains will go
extinct. Time-averaging d log(νi)/dt in Eq. 6 shows that the aver-
age abundance of the persistent strains is simply proportional to
their bias

〈νi〉= ξi/χ, [9]

with the static response χ≡
∫ t

−∞ R(t − t ′)dt ′. The self-
consistency conditions on the static response χ and C (∞) =∑

i 〈νi〉
2 fix the values of χ∼ 1/

√
K and the variance of

ξi , of order 1/K . The more general case including selective
differences, si , is analyzed in SI Appendix, section 3.B.

Kill-the-winner feedback is represented by (for γ=−1) the
−
∫
Rνi term of Eq. 6, which prevents each νi from getting too

large and determines the shape of the resulting peaks: these
typically reach an abundance νi ∼Θ/K and last a time τpeak∼√

K/Θ (SI Appendix, section 3.E). Far away from its own peaks,
when νi(t) has been small for a long time, the effects of the
feedback are negligible, and log(νi(t)) undergoes a random walk
driven by its ηi(t), typically of order

√
Θ/K , plus a smaller (by

1/
√

Θ) upward bias ξi .
Since abundances are distributed broadly on a log scale, the

sums over strains determining C (t , t ′) and R(t , t ′) are domi-
nated by the roughly K/Θ strains that are peaking at any time.
(Validity of the DMFT therefore requires that K �Θ, so that
many strains contribute to the sums.) The correlation function
is proportional to the probability that a strain is peaking at
both t and t ′. If `i(t) behaved like a normal random walk,
from a peak at t ′, it would return to near zero—and, hence,
a peak—with probability decaying as 1/

√
t − t ′, but that would

make C (t − t ′), and thus the correlations of the dynamical noise,
ηi(t), long-range in time. Thus, the ansatz of a normal random
walk is inconsistent. In SI Appendix, section 3.D, we show that
the self-consistency condition for C (t − t ′) makes the temporal-
clustering statistics of the peaks cause a power-law decay of the
correlations, C (t − t ′)∼ |t − t ′|−2/3, for a wide range of times.

The random walk of log(ν(t)) is therefore superdiffusive: in a
time interval t , log(ν) typically changes by

∆`(t)∼ (Θ/K )1/3t2/3. [10]

On longer timescales, τeq∼Θ
√
K , the effects of the bias are

felt, and the fluctuations of log(νi(t)) are gradually cut off at
very low log abundances, reflected in the snapshot abundance
distributions (Eq. 4).

With γ >−1 on a single island, the chaos is no longer sta-
ble. A quantitative analysis can be carried out when γ=−1 + ε
with ε small (SI Appendix, section 3.F) using the DMFT solution
for the ASM to describe how the temperature scale Θ gradually
increases with time (SI Appendix, Fig. S3).

Analysis of Spatiotemporal Chaos
We now analyze the spatiotemporally chaotic behavior that
occurs in the island model for γ >−1, focusing on the steady
state. The effects of migration on the dynamics of strain i on
island α are readily included in the DMFT analyses. There is
an additional self-consistency condition that ν̄i(t) indeed equals
the average abundance of strain i over the I islands. Since the
out-of-sync chaos on each island has similar properties, in steady
state, the island average is equal to the time average on each
island: 〈νi〉= ν̄i . A strain’s invasion growth rate—its bias—is also
the same on each island. The bias, ξi = 〈ζi〉− 〈Υ〉 (with si = 0),
incorporates the effect of the stabilizing term, Υ(t). This is essen-
tially constant for very large K and must be positive to counteract
the weaker response feedback for γ >−1, described in Diverging
Fluctuations for Near-Antisymmetric Interactions. Since the distri-
bution of the average drives, 〈ζi〉, across the strains is Gaussian
with zero mean, less than half the strains have positive ξi , but,
nevertheless, a large majority of them persist.

Strains with large positive biases have dynamics that are
minimally affected by the small rates of migration and are quan-
titatively similar to the ASM. In particular, the statistics of the
peaks will be similar and produce correlation, C (t − t ′), and
response, R(t − t ′), functions with the same form as for the
single-island ASM. The power-law decay in correlations, C (t −
t ′)∼ |t − t ′|−2/3, again results in a superdiffusive random walk
of log νi(t) when away from the peaks.

The magnitude of the chaos on each island can, as for the
ASM, be characterized by a logarithmic scale, Θ. However,
in contrast to the ASM, Θ, has a unique value in the spa-
tiotemporally chaotic state. This can be estimated from marginal
strains with biases near zero. With no bias, their log abun-
dances will spread out roughly uniformly on a logarithmic scale
from the peaks down to the migration floor: thus, over a range
log(νpeak/νmig)≈M ≡ log(1/m

√
K ). This suggests that peaks

occur a fraction 1/M of the time and that they reach a peak
abundance ν∼M /K so that the average abundances of the
marginal strains are ν̄∼ 1/K , as expected. Thus, many of the
properties are similar to the ASM state with a particular tem-
perature Θ∼M . In particular, the peak and equilibration times
are τpeak∼

√
K/M and τeq∼M

√
K . Much of our analysis is

for 1�M �K , for which the DMFT is valid and abundances
are distributed over a large log range. (In our simulations, how-
ever, even for quite large K , only a few strains may be abundant
at each time, but averaging over the duration of blooms, dur-
ing which many strains will peak, is roughly consistent with the
DMFT results.)

Persistence and Averages with Many Islands. In the limit of
infinitely many islands, in steady state, the island average ν̄i
is constant and equals the single-island time average 〈νi,α〉.
By assuming a value for ν̄i and solving for 〈νi,α〉 using the
local DMFT equations, one can find the self-consistent solution

14578 | www.pnas.org/cgi/doi/10.1073/pnas.1915313117 Pearce et al.
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ν̄i = 〈νi,α〉. There are two possibilities: globally extinct strains
with ν̄i = 0 and persistent strains with ν̄i > 0.

The dependence of the island average on the bias ξi is
most readily understood quantitatively for strains with either
much larger than typical biases, ξi� r̂ , or large negative biases,
(−ξi)� r̂ . For large positive biases, the effects of migration
are small, and the island average is ν̄i ≈ ξi/(−γ)χ+O(m),
obtained by time-averaging d log(νi)/dt , as for the single-
island ASM. For positive biases, this compares well to ν̄(ξ),
shown in Fig. 6. From the numerical simulations, the average
drive 〈ζi〉, and thus the biases, are inferred from the time-
averaged interactions,

∑
j Vij 〈νj 〉, which are equal to 〈ζi〉+

γχ 〈νi〉 in DMFT. Thus, the static response χ can be inferred
numerically from the expectation that the median (over i) of
the inferred 〈ζi〉 is zero, as expected with the extinct strains
included.

For strains with large negative biases, abundances typically
hover around the migration floor at νmig

i =m ν̄i/r̂ . The island
average is determined by the probability of rare blooms from ν

mig
i

to large abundance. The self-consistency condition can be stated
in terms of the probability density, ρbloom(∆`|ξi , ν̄i), for a bloom
that increases the log abundance by an amount ∆`:

〈νi〉=
m ν̄i
r̂

∫
e∆`ρbloom(∆`|ξi , ν̄i) d∆`. [11]

The structure of large blooms is complex, as they will consist of
a number of peaks, all of which can contribute substantially. But
the dominant small factor determining ρbloom for large ∆` can
be estimated from a large deviation analysis, carried out in SI
Appendix, section 5.A. The power-law correlations of the drive
ηi(t) results in

ρbloom(∆` | ξi , ν̄i)∼
1

M
exp

[
−c
(

∆`

M

)2/3(−ξi
r̂

)4/3
]

, [12]

with c (here and henceforth) an order unity coefficient. We have
dropped multiplicative powers of −ξi/r̂ , but have included 1/M
for normalization.

It would appear that the integral in Eq. 11 diverges at large
∆`, since ρbloom decays subexponentially with ∆`, while the
abundance reached grows exponentially with ∆`. However, the

Fig. 6. Island-average abundances vs. bias. Mean-field analysis predicts the
relationship between abundances of strains (shown on log scale) and their
biases ξi , their average growth rate at low abundance on a single island.
(Inset) Same plot on linear scale. Theoretical predictions for ξi substantially
positive (dotted line) and substantially negative (solid line) agree reason-
ably well with the numerics. Data are shown for the long-term persistent
strains for γ=−0.8, K = 100, m/r̂ = 2 · 10−8 (M = 18), and I = 24 islands.
The dependence of ν̄ on ξ is largely independent of I, although fewer strains
survive for smaller I.

blooms are limited to νi ∼M /K by the response from the other
strains and, thus, have ∆`max

i ≈M + log(M /K ν̄i). This intro-
duces a nonlinearity in 〈νi〉 as a function of ν̄i that yields a
solution to the self-consistent equality of these. The maximal
blooms dominate the time averages, and hence the island aver-
ages. For small migration rates and nearly all strains, the log(M )
term is negligible, and ∆`max

i ≈M : the self-consistent island
average is thus

ν̄i ∼
1

K
exp[−c(−ξi/r̂)4/3]. [13]

Plots of ν̄(ξ) in Fig. 6 show this roughly exponential dependence
for negative ξ.

The negative biases are typically of order r̂ , so most strains
have substantial average abundances. This is the result of a bal-
ance that occurs on the timescale τeq∼M /r̂ , over which blooms
last. Over a time τeq, the contributions to the change of log νi
due to the power-law-correlated random drive ηi(t) and due to
the bias ξi are both of order M . So the probability of blooms
with ∆`=M is not very small unless the bias is anomalously
negative. An important point is that M drops out of the statis-
tics of the blooms: thus, much of the behavior is only very weakly
dependent on the migration rate—especially as M itself depends
only logarithmically on m . In particular, the fraction of persis-
tent strains, shown in Fig. 3, attains a similar, large value over
a broad range of migration rates, even with only modest total
population per island N = 109. But at high migration rates, the
persistent fraction plummets as the chaos becomes synchronized
across islands.

An analysis of very negative biases in SI Appendix, section 5.A
shows that for M large, in principle, only a very small fraction
of order exp(−cM 2) of strains go globally extinct when both N
and I are infinite (numerically, less than 1% go extinct for γ=
−0.8 and m/r̂ = 10−4, near the maximum seen in Fig. 6). But,
in practice, the least abundant persistent strains will easily be
driven extinct by either finite-population-size, or finite-number-
of-islands, fluctuations. Most simply, when the migration rate is
very low, the migration floor of many strains drops below the
extinction threshold, and the persistent fraction drops (even in
the large I limit), as seen in Fig. 3.

We next analyze the collective fluctuations that can lead to
global extinctions when the number of islands is finite.

Global Extinctions. With a finite number of islands, the island
average, ν̄i(t), fluctuates in time. With enough islands, the bloom
probability is well sampled, and the fluctuations around the infi-
nite island average, ν̄∞i , are small. Even with infinite population
size on each island, a strain must usually be blooming on at
least one island to prevent ν̄i(t) from exponentially decreasing
to global extinction. There is a critical bias, ξcrit < 0, needed for
persistence: ξcrit depends on the number of islands. The exis-
tence of a critical bias can already be seen in a simple toy model
of two islands, as analyzed in SI Appendix, section 5.B and dis-
cussed in parallel work (62). In simulations, for 10 islands, ξcrit is
sufficiently negative that a majority of strains persist over a wide
range of m and γ.

When the population size on each island is finite, the migration
floor, νmig

i (t) =m ν̄i(t)/r̂ , of strains that would otherwise persist
indefinitely can, by chance, fluctuate down to 1/N , leading to a
series of local, and possibly global, extinctions. A general down-
ward drift of log(ν

mig
i ) is interspersed with recoveries by blooms.

Extinction requires an extended period during which blooms fail
to reach log-abundance changes of ∆`&M which are needed to
increase νmig

i .
The extinction probability for a strain can be estimated heuris-

tically from its bloom probability. An unlucky fluctuation of the
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migration floor from νmig∼m/Kr̂ down to 1/N takes a time
∆text∼ log(Nm/Kr̂)/r̂ . (The nature of the least unlikely such
fluctuation is analyzed in SI Appendix, section 5.C.) Blooms
of sufficient size for recovery (∆`&M ) occur at a rate ∼
ρbloom(M |ξi)/τeq, with τeq∼M /r̂ and the bloom probability (for
negative ξi) given by Eq. 12. Given that blooms on different
islands, or at well-separated times, are roughly independent, the
probability of extinction happening when no large blooms occur
for a time ∆text is

log [pext(ξi)]∼−Iρbloom(M |ξi)
log(Nm/Kr̂)

M
≡−I /IX (ξi),

[14]
up to unknown powers of (−ξ/r̂). Thus, how long a strain
persists before global extinction depends strongly on its ξi :
Tpersist

i ∼ exp(I /IX (ξi)). With many islands, most persistent
strains will survive for exponentially long times, with some
marginal strains going extinct much more quickly. Plotting the
fraction of initial strains that have gone extinct vs. time (Fig. 5)
shows that, even with a modest number of islands, many strains
survive for very long periods of time. The exponential depen-
dence on I can be seen explicitly by plotting the k th extinction
time as a function of I (Fig. 5, Inset).

Discussion
We have shown that antisymmetric correlations in the LV inter-
action matrix, together with simple spatial structure, are suffi-
cient to stabilize extensive diversity of an assembled community.
No niche-like assumptions or special properties are needed. This
spatiotemporally chaotic “phase” is very robust; the key ingre-
dient is the negative feedback induced by the antisymmetric
correlations and sufficient—albeit very small—migration. While
some fraction of the strains go deterministically extinct, a major-
ity persist for very long times. This includes—crucially—strains
with substantially negative average growth rate, which, in a well-
mixed population, would guarantee their extinction. The key to
their persistence with spatial structure is that each strain occa-
sionally has a local bloom to high abundance which provides
migrants to the other islands. As these blooms are nearly inde-
pendent from island to island, global extinctions occur only if
blooms do not happen on any of the islands for a sufficiently
long period. This makes the spatiotemporally chaotic phase very
stable, even for modest numbers of islands.

Much of our analysis has focused on the asymptotic, but unre-
alistic, regime when logarithmic functions of the population size
and the migration rate are large. This has enabled us to obtain
many results in a general framework based on DMFT. Yet our
simulations show that the predicted behaviors are correct, even
semiquantitatively, for modest sizes of parameters. A crucial
prediction is the exponential scaling of survival times with the
number of islands, illustrated in Fig. 5, for realistic parameters:
total population per island, N ≈ 1013—of order the number of
human gut bacteria (66)—and K = 100 strains.

Generalizations. The diverse spatiotemporally chaotic phase
should exist far beyond the models we have analyzed. In SI
Appendix, section 6, we discuss the behavior of the general ran-
dom LV model with niche-like interactions (parameterized by
Q =−Vii) and argue that the spatiotemporally chaotic phase
exists over much of the γ−Q phase diagram. With selective dif-
ferences si , the bias, ξi , for each strain includes both this and the
effects of interactions, although its behavior only depends on the
sum of the two parts. However, the statistical properties of the
spatiotemporal state—including the distribution across strains of
the contribution of the interactions to ξi—depends on the distri-
bution of the si . This causes the number of persistent strains to
decrease substantially when Var[si ]≥O(1/K ), as analyzed in SI
Appendix, section 3.B. But the qualitative behavior is unchanged.

More generally, the spatiotemporally chaotic phase should
exist with sparse interactions, broad distributions of interaction
strengths, correlations due to phylogenetic relatedness of strains,
or with some variations between islands. Indeed, even overall
antisymmetric correlations of the interactions are not essential.
The key is the absence of strains that always outcompete most
other strains, and that, for each strain, there are some ecolog-
ical interactions that provide negative feedback, preventing it
from persisting at high abundance. We showed how this occurs
for antisymmetrically correlated interactions, but this can also
occur with moderately strong niche-like competition with its own
strain (Q =O(

√
K )) combined with sufficiently random interac-

tions with many other strains. Indeed, in parallel work, Roy et
al. (62, 67) have found, for γ= 0 (independent Vij ), a chaotic
phase stabilized by migration with behavior consistent with our
predictions.
Extrinsically driven chaos. Dynamics with large swings of local
abundances are crucial for stabilizing the spatiotemporally
chaotic phase. But these need not be driven primarily by complex
ecology. Extrinsic spatiotemporal environmental fluctuations, to
which different strains respond differently, can cause blooms
on different islands roughly independently. Blooms will be lim-
ited by the overall carrying capacity on each island, but no
strain-specific interactions are needed. Migration can then sta-
bilize the coexistence of diverse strains, even if they do badly on
average, i.e., with time-averaged fitness, analogous to their ξi ,
negative. This is a recognized mechanism for promoting species
coexistence, known as the “spatial storage effect” (47). The
behavior is in striking contrast to that of a well-mixed popula-
tion in a fluctuating environment whose time-averaged fitness
must be positive to avoid extinctions. With spatiotemporal varia-
tions in fitness together with migration, a strain is characterized
by its global-invasion eigenvalue (as analyzed for two islands
in SI Appendix, section 5.B). When its global-invasion eigen-
value is positive, a strain can invade from low abundance and
persist (47).

Although much of the behavior is similar, there is a crucial dis-
tinction between chaotic dynamics driven by intrinsic ecological
interactions between multiple strains and that driven by extrin-
sic spatiotemporal variations. For ecologically driven chaos, the
magnitude of the dynamical variations in growth rates relative to
their averages “self-tunes” the statistics of blooms to yield stable
coexistence. Such a balance will generally not occur for extrin-
sically driven spatiotemporal chaos: extensive coexistence will
depend sensitively on parameters and is by no means assured.
[Indeed, it has been shown that the storage effect’s contribution
to the global invasion eigenvalue decreases with the number of
strains (47).]

In general, environmental variations will occur alongside com-
plex ecological interactions. And the resulting behavior can be
complicated; see, for example, ref. 68. But the analytical meth-
ods developed in this paper for treating the dynamics of multiple
strains should be useful for developing more general under-
standing of the complex interplay of predation, competition, and
environmental fluctuations.
Abundance distributions. A key quantitative characteristic of
the spatiotemporal chaos is a general consequence of the dra-
matic fluctuations of local populations. “Snapshots” of the local
abundances will be broadly distributed on a logarithmic scale
(Fig. 4). How universal are such abundance distributions? At
low abundance, they will be affected by details of migration,
while at high abundance, different mechanisms for limiting
blooms (SI Appendix, section 6), such as strong niche-like inter-
actions, or some strains doing atypically well on average (SI
Appendix, section 3.B), will change the abundance distribution.
But the wide intermediate range of abundances will be far
more universal—with dynamics like the seemingly special per-
fectly antisymmetric model! The lack of universality at both
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high and low abundance means that summary statistics like the
“Shannon diversity” (entropy of the distribution) or “species
richness” (total number of strains observed) are poor character-
izations of the abundance distributions: the former is dominated
by high-abundance strains and the latter by very-low-abundance
strains.

The more universal intermediate part of the abundance dis-
tribution will be approximately a power law with exponent one.
This is the same as from the neutral theory of ecology (31).
In fact, a neutral model with immigration from a mainland at
strain-dependent rates µi = K

ΘN
ν̄i has an identical joint distri-

bution of abundances as the ASM with “temperature” Θ and
mean fractional abundances, ν̄i . But the underlying dynamics
are very different, qualitatively and quantitatively, especially for
large microbial populations, for which birth–death fluctuations
are usually negligible. Many ecosystems exhibit broad abundance
distributions which are used to argue for or against different eco-
logical scenarios (13). But our work surely implies that sampling
at one location and time is far from sufficient: spatiotempo-
ral data—by time series from deep sequencing—are needed to
distinguish between scenarios (69).
Bacteria-phage strain-level diversity. The most natural context
for antisymmetric correlations in the interactions between multi-
ple types is diverse strains of both a host species and a generalist
pathogen species, especially bacteria and phage. Models of such
systems with perfectly antisymmetric (γ=−1) interactions have
been studied, but with only tens of strains (70–72). Dynamical
mean-field analysis in SI Appendix, section 4 enables understand-
ing of large numbers of strains with broad, randomly varying
infectivity. The primary additional parameter is the ratio of
timescales over which the differences between strains result in
substantial abundance changes for the bacterial strains vs. that
for the phage strains. If these ecological timescales are identical,
the mean-field dynamics of both the bacterial and phage strains
is identical to the ASM. If the timescales differ substantially, we
expect quantitative, but not qualitative, differences. Spatial struc-
ture obviates the need for perfect antisymmetry—unrealistic
in any case—and our scenario and analysis of a spatiotempo-
rally chaotic phase should hold for generalist bacteria-phage
models.

Dynamical diversity from bacteria–phage interactions has
recently been studied by other approaches. For example, some
explicit kill-the-winner models treat phage predation as stochas-
tic events leading to bacterial population collapse (73). While
these exhibit persistent diversity, it is unclear whether there is
a reasonable underlying population dynamics that could give rise
to the caricature used. The advantage of models with explicit
population dynamics for bacteria and phage is that avoidance
of extinctions cannot be put in “by hand.” Furthermore, mod-
els of the strain interactions as we have studied naturally allow
for nonspecific interactions, instead of the one-bacteria-one-
phage scenario of the original kill-the-winner models (52, 53,
74), which is destabilized by demographic stochasticity. Indeed,
nonspecific interactions may well be needed to stabilize a chaotic
phase (75).

Extensions. Our conceptual and analytical frameworks should
enable biologically relevant extensions in various directions.
Realistic spatial structure. The effects of real spatial structure
surely merit exploration. With conditions being the same every-
where, but transport either by local diffusion or occasional
long-distance dispersal by wind, ocean currents, or hitchhiking
on animals (76), the process of recovering from local extinc-
tions is more complex, as it must involve spatial propagation
of repopulation “fronts.” With a small number of strains hav-
ing cyclic “rock–paper–scissors” interactions, spatiotemporally
chaotic coexistence has been shown with repopulation fronts tak-
ing the form of spiral waves. With many similar strains, can a

substantial fraction survive globally in a chaotic state, even in a
system of infinite spatial extent?
Microbial spores or “seedbanks.” When faced with unfavorable
environmental conditions, many microbes enter a reversible
state of dormancy by forming spores or other resting structures
(77). The formation of long-lived—but not immortal—spores
is another mechanism that can stabilize a diverse ecologically
chaotic phase—indeed, even in a well-mixed system with no spa-
tial structure. If some fraction of each strain forms spores that die
off slowly, but occasionally germinate to produce actively divid-
ing cells, the spore population effectively averages the chaotic
dynamics of the active cell populations over time. This is analo-
gous to averaging over a set of islands. For populations with large
fluctuations driven by extrinsic environmental variations, this is
the temporal “storage effect” (46). The product of the average
spore lifetime, τsp , and the typical invasion growth rates, r̂ , of
the active cell populations is roughly equivalent to the number
of islands. With deterministic dynamics and statistics of inter-
actions similar to those we have studied, a substantial fraction
of the strains will survive forever. Even with spore extinctions,
the survival times will be exponentially long in the spore life-
time, including for strains whose bias—average growth rate of
the germinated population, ξi—is negative. Individual strains
will persist for time Tpersist∼ exp[A(ξ)r̂τsp ] with A(ξ), depend-
ing also on the population size of the spores, the germination
rate, and other factors. Thus, even spores with moderate life-
times can yield a diverse chaotic ecology, with many strains
having negative average growth rate, but surviving for extremely
long times.
Phenotype models. An unsatisfactory feature of LV models of
many interacting strains is that the organisms do not interact via
their phenotypic properties: their phenotype is defined by their
interactions with others. There is a long history of more explicit
phenotype modeling for species interacting via consumption of
common resources—MacArthur consumer resource models and
generalizations (18–21, 78). More generally, one can consider
interactions via many chemicals in the environment, with the
dynamics of the populations set by the chemical concentrations
and the dynamics of the chemical concentrations set by the
population sizes of the various strains. Our analysis should be
readily extendable to at least simple versions of such models,
most simply when they reduce to LV models, with interactions
determined by the effect of one strain on the environment and
the response of the other strain to this. Under what condi-
tions will a spatiotemporally chaotic phase exist in ecological
models with interactions only via modifications of the environ-
ment? And how much diversity can be stabilized by the interplay
between chaos and migration? This is a productive avenue for
future research. A more general question is how systems will
behave with direct interaction between pairs of individuals—and
thus, again, LV structure—but with the interactions determined
by phenotypic properties of the two organisms (rather than an
abstract Vij ).
Evolution and ecology. We have studied how a large number of
closely related strains can coexist when assembled together, but
can such communities of strains be evolved in the first place?
Although for microbial populations, there is usually no clear
separation between ecological and evolutionary timescales, coex-
isting strains are found to have a wide spectrum of genetic
differences and, hence, times to their common ancestors. The
most basic case—and the hardest scenario for extensive diversity
to exist—is when evolution is the slowest process. In simple mod-
els of assembled communities, mutations to new strains can lead
to collapse (78) or to buildup of diversity (79, 80), depending on
how the new mutants’ interactions are modeled. Eco–evo models
should characterize the strains by phenotypic properties, which
are what evolves, and the interactions be determined by these,
without strict tradeoffs [which are often assumed (20, 81)]. In an
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already-evolved population, there are likely few generalist muta-
tions (higher si) available, but many more potential mutations
that take advantage of the particular combination of strains in
the system at the time and location at which they arise.

Can a highly diverse chaotic community evolve in general
phenotype-based models? If so, will the system undergo contin-
ual Red Queen evolution with no systematic “improvement”?
Or will the evolution tend to get slower and slower? The sta-
tistical properties conditioned on evolution will likely be quite
different from those in an assembled community, described in
ref. 26. What general features might emerge? And how might
different scenarios—and different possible “phases” of the eco–

evo dynamics—potentially be distinguished by data from real
microbial populations?
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