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Abstract

In rapidly evolving populations, numerous beneficial and deleterious mutations can arise and segregate within a population at the same
time. In this regime, evolutionary dynamics cannot be analyzed using traditional population genetic approaches that assume that sites
evolve independently. Instead, the dynamics of many loci must be analyzed simultaneously. Recent work has made progress by first analyz-
ing the fitness variation within a population, and then studying how individual lineages interact with this traveling fitness wave. However,
these “traveling wave” models have previously been restricted to extreme cases where selection on individual mutations is either much
faster or much slower than the typical coalescent timescale Tc. In this work, we show how the traveling wave framework can be extended to
intermediate regimes in which the scaled fitness effects of mutations (Tcs) are neither large nor small compared to one. This enables us to
describe the dynamics of populations subject to a wide range of fitness effects, and in particular, in cases where it is not immediately clear
which mutations are most important in shaping the dynamics and statistics of genetic diversity. We use this approach to derive new expres-
sions for the fixation probabilities and site frequency spectra of mutations as a function of their scaled fitness effects, along with related
results for the coalescent timescale Tc and the rate of adaptation or Muller’s ratchet. We find that competition between linked mutations
can have a dramatic impact on the proportions of neutral and selected polymorphisms, which is not simply summarized by the scaled selec-
tion coefficient Tcs. We conclude by discussing the implications of these results for population genetic inferences.
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Introduction
Models of evolutionary dynamics and population genetics aim to
predict how observable properties of the distribution of genotypes

within a population are shaped by evolutionary forces such as

mutations, natural selection, and genetic drift. We focus here on

the simplest possible models of these three core evolutionary

forces, which consider a population consisting of N individuals,
with each individual subject to new mutations at rate U per gen-

eration, and with the fitness effect of each mutation drawn from

some distribution qðsÞ. More complicated models of evolutionary

dynamics can incorporate the effects of additional evolutionary
forces (e.g. spatial structure and migration, environmental fluc-

tuations in time or space, and ecological interactions). However,

the dynamics arising from even the simplest models—incorpo-

rating only the forces of mutation, selection, genetic drift—are al-
ready rather complex.

Within the context of these simple models, we wish to under-

stand how several types of observables depend on the key param-

eters. Specifically, we aim to predict the probability, pfixðsÞ, that a

mutation with fitness effect s will fix. From this quantity, we can

compute the rate at which mutations will accumulate (i.e. the
rate of genotypic divergence from an ancestor) and the rate, v, at
which the mean fitness of the population changes over time
(McCandlish and Stoltzfus 2014). In addition to these properties
of long-term divergence, we wish to predict expected patterns of
genetic diversity within the population at any given time. For ex-
ample, we aim to compute the coalescence timescale Tc (the typi-
cal time since individuals are related by common ancestry, which
determines the expected overall level of genetic diversity in the
population), as well as other readily observable quantities such
as the site frequency spectrum (the SFS, which describes the rela-
tive abundances of polymorphisms at different allele frequen-
cies). Obtaining predictions for patterns of genetic diversity is of
particular interest because of the potential to use these predic-
tions, in combination with measured levels of contemporary se-
quence diversity, to infer the strength of the various evolutionary
forces which have acted on a population.

Much classical work proceeds by assuming the different loci
in the genome evolve completely independently of one another
(i.e. by ignoring the physical linkage of mutations within the
same genomic segment). The dynamics are then relatively
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straightforward to analyze (Fisher 1931; Wright 1931). This as-
sumption is reasonable in sexually evolving populations where
recombination is sufficiently rapid compared to the timescales
on which mutation, selection, and genetic drift generate correla-
tions between loci (Falconer and Mackay 1996). In this case, a
given mutation is shuffled onto a large number of genetic back-
grounds over the course of its evolutionary trajectory, and any
correlations in the fates of mutations at different loci become
negligible.

In asexual populations, however, mutations are fully linked
and do not evolve independently of one another. Even in the
genomes of obligately sexual organisms, loci that are physically
close within a chromosome will be broken up by recombination
only over very long timescales, and cannot necessarily be treated
as independently evolving (Weissman and Barton 2012). A useful
opposite regime to consider is then the limit of a genomic region
that is small enough that recombination can be entirely
neglected. One can imagine that on sufficiently short genomic
distance scales (within so-called “linkage blocks”), evolution pro-
ceeds entirely asexually, while on larger genomic distance scales
evolution acts on some collection of recombining blocks. It is not
entirely clear how this division between asexual linkage blocks
and larger-scale regions consisting of multiple recombining
blocks is best modeled, though some recent work has begun to
address this question (Neher et al. 2013; Good et al. 2014;
Weissman and Hallatschek 2014). However, we focus in this pa-
per on an even simpler question: how to model the evolution
within a single nonrecombining linkage block. As we will see,
even within the context of the simple models described above,
evolutionary dynamics even within perfectly asexual linkage
blocks are surprisingly complex and remain incompletely under-
stood.

There is a long history of efforts to analyze the dynamics of
purely asexual evolution, and numerous approaches have been
proposed to analyze the dynamics in different limiting regimes of
the parameter space. Extensive work has focused on the neutral
limit, in which natural selection can be neglected entirely
(Kimura 1968). In this case, genealogical approaches such as coa-
lescent theory can provide a complete description of the expected
rates of divergence and patterns of diversity (Kingman 1982;
Wakeley 2005). However, the backwards-time nature of the coa-
lescent approach makes it difficult to incorporate the effects of
selection: genealogies cannot be considered independently of the
selected mutations which occur on their branches (Kaplan et al.
1988). Efforts to do so have largely been limited to simulation-
based or essentially numerical approaches (see e.g. Krone and
Neuhauser 1997), though analytical progress has been made in
certain cases, particularly in the presence of purifying selection
on deleterious mutations (Charlesworth 1994; Hudson and
Kaplan 1995).

To model the effects of selection on beneficial mutations,
much work has instead been done using forward-time
approaches. Broadly speaking, these approaches seek to charac-
terize the trajectories of mutant lineages in a probabilistic sense.
Provided selection is sufficiently strong and selected mutations
are sufficiently rare (more precisely, if Ns� 1 and NU log Ns < 1),
a beneficial mutation typically either sweeps to fixation or is
purged before another such mutation arises within the same
linkage block (Desai and Fisher 2007). Thus, within this strong-se-
lection weak-mutation (SSWM) regime, multiple selected mutations
are unlikely to segregate simultaneously within the block. In this
case, the dynamics of each selected mutation can be treated in-
dependently of one another (Gillespie 1983). However, recent

work has shown that in a wide range of microbial and viral popu-
lations, and potentially in many linked regions of the genomes of
obligately sexual organisms such as humans, multiple beneficial
mutations often segregate simultaneously (Miralles et al. 1999;
Strelkowa and Lässig, 2012; Lieberman et al. 2014;
Nourmohammad et al. 2019). In these rapidly adapting popula-
tions, clonal interference (i.e. competition between multiple dis-
tinct adaptive lineages) and genetic hitchhiking can be critical to
the dynamics, and analyzing the evolution of multiple linked loci
simultaneously is critical (Gerrish and Lenski, 1998; Kao and
Sherlock, 2008; Lang et al., 2013; Buskirk et al., 2017).

Over the past two decades, numerous authors have analyzed
the evolutionary dynamics of many linked loci in rapidly adapt-
ing populations (reviewed by Neher 2013). Similar ideas have also
been used to analyze the dynamics of populations rapidly declin-
ing in fitness due to Muller’s ratchet (Neher and Shraiman, 2012),
as well as those maintained in a dynamic steady-state balance
between beneficial and deleterious mutations (Goyal et al., 2012).
Collectively, we can think of this body of work as studying the
evolutionary dynamics of rapidly evolving populations—those
populations in which there are typically multiple linked muta-
tions, either beneficial or deleterious, in the population at once.
The central idea of this work is to first analyze how the collective
effects of many linked mutations generate variation in fitness
within the population. This leads to a time-dependent within-
population fitness distribution that can be described as a traveling
wave, and which maintains a constant steady-state shape f(x)
while its mean fitness changes at a constant rate v (potentially
with fluctuations) (Tsimring et al. 1996; Rouzine et al. 2003, 2008).
Extensive work has characterized how the velocity and steady-
state shape of the wave depends on the key parameters, which
can be used to compute observables related to long-term diver-
gence such as pfixðsÞ or the distribution qf ðsÞ of fixed fitness effects
(Good et al. 2012). More recent studies have then used this travel-
ing wave picture as the basis for tracing the genealogical history
of individual mutations (Desai et al. 2013; Neher and Hallatschek
2013) or tracking their trajectories forward in time (Kosheleva
and Desai 2013) to calculate diversity statistics such as the coa-
lescence timescale or the site frequency spectrum.

While this work has led to substantial progress, it has been fo-
cused primarily on two limiting cases. One body of work
(Tsimring et al. 1996; Cohen et al. 2005; Hallatschek 2011; Neher
and Hallatschek 2013) has analyzed the infinitesimal limit, in
which the selective effects of individual mutations are infinitesi-
mal, but selected mutations occur extremely frequently (more
precisely, in which s! 0 and U!1 with the product Uhs2i held
fixed). The corresponding infinitesimal approximation is often
thought to be valid when s� U, although a more accurate condi-
tion of its validity is that Tcs� 1 (Good et al. 2014; Good and Desai
2014); in both conditions, the relevant s can be taken as the root-
mean-squared effect

ffiffiffiffiffiffiffiffi
hs2i

p
. As a result, within the infinitesimal

regime, selection on individual mutations can be neglected: the
timescale 1=s on which selection can substantially alter the fate
of a mutation with effect size s is longer than the coalescent
timescale Tc on which common ancestry is determined (and
which we define more precisely in Analysis). At the same time,
the population as a whole maintains substantial variance in fit-
ness, r2, resembling in some ways infinitesimal models in quanti-
tative genetics (Barton et al. 2017); selection on haplotypes in the
infinitesimal regime can be strong. This work has led to analyti-
cal results for both divergence-related quantities and, more re-
cently, diversity-related quantities (Neher and Hallatschek 2013),
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valid for populations subject to beneficial mutations, to deleteri-
ous mutations, or to some combination of the two.

A second body of work has analyzed the opposite limit of
strong selection on individual mutations, such that Tc~s � 1. Here
~s denotes the typical effect size of mutations which fix; ~s is de-
fined more precisely in Analysis. A schematic depiction of ~s is pro-
vided in Fig. 1, which illustrates key qualitative differences
between regimes. When selection is strong on deleterious muta-
tions, Muller’s ratchet clicks slowly and beneficial mutations can
much more easily dominate the dynamics. While some work has
been done on the rate of Muller’s ratchet when Tc~s � 1 (Neher
and Shraiman 2012), the majority of this work has focused exclu-
sively on beneficial mutations (Desai and Fisher 2007; Good et al.
2012; Desai et al. 2013; Fisher 2013; Kosheleva and Desai 2013) or
on the case in which deleterious mutations can be considered a
perturbative correction (Good and Desai 2014). This work can be
further divided into two regimes: the “moderate-speeds” regime,
in which v� ~s2, as well as the “high-speeds” regime, in which
v� ~s2 (Fisher 2013). Qualitatively, the “moderate-speeds” and
“high-speeds” regimes can be distinguished based on the range of
background fitnesses Dxf which typically produces an eventual
common ancestor of the population (see Fig. 1 for a depiction of
Dxf ). In the “moderate-speeds” regime, Dxf � ~s, while in the
“high-speeds” regimes, Dxf � ~s. That is, within the “moderate-
speeds” regime, the individual which will eventually fix is likely
within one mutational effect ~s of the “nose” (the high-fitness
edge) of the fitness distribution; in the “high-speeds” regime,
individuals can catch up and fix from further behind by rapidly
acquiring multiple mutations. Analytical results for divergence-
related quantities have been obtained within both the
“moderate-speeds” and “high-speeds” regimes (Fisher 2013; Good

and Desai 2014); diversity-related quantities have also been stud-

ied within the “moderate-speeds” regime (Desai et al. 2013;

Kosheleva and Desai 2013).
Although the parameters N, U, and s are natural quantities to

use in specifying a model of the evolutionary dynamics, in many

applied settings, the combined quantities Tcs and TcU can be

probed more directly. While dynamical interpretations of Tcs and

TcU are less immediately clear, these can be considered indepen-

dent properties of the evolution that together can describe many

aspects of a population. Existing methods to infer Tcs from ob-

served levels of polymorphism and divergence among popula-

tions typically make the assumption that different loci evolve

independently of one another (Sawyer and Hartl 1992; Bustamante

et al. 2001). For example, a classic result shows that in a popula-

tion with a constant size N, the ratio between selected and neu-

tral site frequency spectra is given by

hsð�Þ
h0ð�Þ

¼ 1� e�2Tcsð1��Þ

ð1� �Þð1� e�2TcsÞ (1)

�
e�2Tc jsj� if s < 0; Tcjsj � 1
1 if Tcjsj � 1
1� e�2Tcsð1��Þ

1� � if s > 0; Tcs� 1
;

8>><
>>: (2)

where Tc ¼ N is the coalescent timescale (Sawyer and Hartl 1992).

Using this result, the magnitudes of the scaled selection coeffi-

cients (Tcs) can be identified from the transitions in the site fre-

quency spectra at low frequencies (�c � 1=Tcjsj) for deleterious

mutations, or at high frequencies (1� �c � 1=Tcs) for beneficial

mutations.

Fig. 1. Schematic depiction of different regimes. (Left) Schematic plots of the mutation fixation probability pfixðsÞ, an example DFEs qðsÞ, and its
corresponding distribution of fixed fitness effects qf ðsÞ, for regimes of the parameter space indicated by row labels. In the nearly neutral limit and in the
infinitesimal regime, selection acts weakly on single mutations, and qf ðsÞ closely matches qðsÞ. In the “moderate-speeds” and “high-speeds” regimes,
qf ðsÞ differs substantially from qðsÞ. Note that ~s in the bottom panel denotes the scale of a typical fixed mutational effect. (Right) Schematic plots of the
haplotype fixation probability w(x), the fitness distribution f(x), and the distribution of future common ancestor fitnesses Nf ðxÞwðxÞ. In the infinitesimal
regime as well as the “moderate-speeds” and “high-speeds” regimes, selection acts strongly on haplotypes, and the distribution Nf ðxÞwðxÞ is
concentrated within a narrow range of high background fitnesses. The width and average of the distribution Nf ðxÞwðxÞ are indicated by Dxf and hxf i,
respectively. Both the infinitesimal regime and the “high-speeds” regime, but not the “moderate-speeds” regime, are part of the MSSM regime; Dxf � ~s
in the infinitesimal regime and “high-speeds” regime, but Dxf � ~s in the “moderate-speeds” regime. In the MSSM regime, Dxf and hxf i will be seen to
correspond roughly to the quantities b and c, respectively, defined in Analysis.

M. J. Melissa et al. | 3

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/article/221/4/iyac053/6564664 by Stanford U

niversity Libraries user on 12 N
ovem

ber 2022



However, previous work has shown that these classical results
can lead to substantial errors in the inferred selection strengths
when natural selection is widespread (Messer and Petrov 2013).
This makes it difficult to identify the relevant values of Tcs in rap-
idly evolving populations. For deleterious mutations, the inter-
mediate regime where Tcs � 1 is particularly critical: it is
precisely mutations with effect sizes on the order of 1=Tc which
are expected to have the largest impact on patterns of genetic di-
versity within a population (Good et al. 2014). Thus when there is
a relatively broad distribution of effect sizes of new mutations
(including strong, intermediate, and weak-effect mutations), it
may often be the case that the intermediate-effect mutations
with Tcs � 1 have the largest impact on observed patterns of di-
versity. More generally, an understanding of the intermediate re-
gime in which Tcs � 1 is critical for understanding the transition
between strong selection and neutral-like behavior in site fre-
quency spectra. Our understanding of these effects is limited,
however, except for special cases—such as when a single strong
beneficial fitness effect is available (Kosheleva and Desai 2013)—
we lack analytical predictions for the diversity statistics of se-
lected mutations in rapidly evolving populations. In particular,
we lack predictions for how mutations with a distribution of ben-
eficial and/or deleterious selective effects contribute to the site
frequency spectrum, which has in turn limited our ability to ap-
ply commonly used inference methods (e.g. Sawyer and Hartl
1992; Hartl et al. 1994) to rapidly evolving populations.

To address this gap, in this work, we reexamine the approach
used by Fisher (2013) to study the “high-speeds” regime. We dem-
onstrate that the key ideas of that approach can be applied more
generally to the case in which Tc~s � 1 (as well as the intermedi-
ate regime in which Tc~s � 1). As a result, we argue that the infini-
tesimal regime and the “high-speeds” regime—previously studied
separately—can be unified into a single moderate selection, strong
mutation (MSSM) regime, which includes populations subject to a
distribution of beneficial mutations, deleterious mutations, or
some combination of the two. The key requirements for validity
of our MSSM approximation are that ~s � Dxf (which ensures that
selection is moderate, or weak, on single mutations) and that
TcDxf � 1 (which ensures that mutation is strong, and that selec-
tion on haplotypes is strong). Dynamically, these conditions im-
ply that mutational “leapfrogging” is important to the dynamics:
some individuals routinely catch up to the high-fitness “nose” de-
spite an initial fitness disadvantage, relative to the nose, of sev-
eral mutations. These requirements are satisfied in the limit
N!1 with UqðsÞ held fixed—as long as qðsÞ falls off faster than
exponentially with large positive s—as well as in other cases we
describe. In particular, we show that this approach can model
the dynamics of deleterious mutations with Tc~s � 1, to which pat-
terns of diversity and divergence are particularly sensitive.

Using this approach, we compute divergence-related statistics
such as the fixation probabilities pfixðsÞ of new mutations and the
average rate v of adaptation, or—if v< 0—of Muller’s ratchet. We
also compute diversity-related statistics such as the coalescence
timescale Tc and the site frequency spectrum. We show that at
high frequencies, the neutral site frequency spectrum corre-
sponds to that of the Bolthausen–Sznitman coalescent (BSC;
Bolthausen and Sznitman 1998), which has previously been
found to describe genealogies of populations in the infinitesimal
regime (Neher and Hallatschek 2013) and “moderate-speeds” re-
gime (Desai et al. 2013), as well as in evolving populations mod-
eled as Fisher-Kolmogorov-Petrovsky-Piscunov (FKPP) waves
(Brunet et al. 2007). We identify the frequency scale above which
this correspondence holds and analytically describe departures

from the BSC at lower frequencies. Importantly, we find that the
low-frequency portion of the neutral site frequency spectrum is
much more useful for distinguishing different parameter combi-
nations than the high-frequency portion, which depends on the
parameters N, U, and qðsÞ via a single overall scale factor. Over a
broad range of intermediate and high frequencies—extending be-
yond the frequency range at which a correspondence with the
BSC exists—we demonstrate that the neutral and selected site
frequency spectra are simply proportional to one another, with a
constant of proportionality equal to the ratio of fixation rates of
the two types of mutations. This proportionality reflects the fact
that, in the presence of widespread linkage, the fates of even
strongly selected mutations can be considered conditionally neutral
at long times t > Tc: at this point, their initial fitness effects have
been “forgotten,” and their lineage trajectories are indistinguish-
able from those of neutral mutations with the same age (and fre-
quency at age Tc). We discuss implications of our results for
inferring the strength and/or frequency of selection in natural pop-
ulations using observed levels of polymorphism and divergence.

Outline of this paper
The remainder of this work is organized as follows. In Model, we
describe the model of the population dynamics and briefly sum-
marize our simulation methods. In The Traveling-Wave Approach,
we review previous approaches to model evolutionary dynamics
using traveling wave theory. We begin Analysis by presenting our
MSSM approximation, which we use to obtain results for the
steady-state distribution of fitnesses, fixation probabilities, and
the rate of adaptation. We then provide and discuss conditions of
validity of the MSSM approximation, apply the MSSM approxima-
tion to several specific examples of distribution of fitness effects
(DFEs), and compare our analytical results to the results of simu-
lations. In Statistics of Genetic Diversity, we use our MSSM approxi-
mation to analyze statistics of genetic diversity, with particular
focus on the site frequency spectra of neutral mutations and of
selected (non-neutral) mutations. In Key Fitness Scales and
Timescales: Simple Heuristics, we provide heuristic interpretations
of several fitness scales and timescales that emerge in our analy-
sis and compare dynamical aspects of populations described by
the MSSM approximation to those of populations in other
regimes. In the Discussion, we consider implications of our results
for making inferences from population genetic data.

Model
We aim to understand the evolutionary dynamics of an asexual
population, given the simplest possible model incorporating the
effects of mutations, natural selection, and genetic drift. To this
end, we consider a population of a constant number N asexual
haploid individuals, within which new mutations arise at a rate U
per genome per generation. We assume that all mutations have
additive effects on (log) fitness, X (i.e. that the log-fitness of each
individual is the sum of the fitness effects of all the mutations it
or its ancestors have acquired). An individual’s offspring number
distribution is determined by its relative fitness x � X� X,
whereby X we denote the population-wide mean fitness. We
write down the particular stochastic birth/death process we carry
out in simulations in Simulation Methods; in our analytical treat-
ment, we assume a slightly different birth/death process, which
we write down in The Traveling-Wave Approach. We assume the fit-
ness effect of each new mutation is drawn at random from a
time-independent DFEs, qðsÞ. Our model thus assumes that while
epistasis may exist among individual mutations, there are no
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overall differences in the DFE among different genotypes, so we
can treat qðsÞ as a constant that remains the same as the popula-
tion evolves. Because most dependence on the parameters U and
qðsÞ will be mediated by the product lðsÞ, we define lðsÞ � UqðsÞ
as the mutational fitness spectrum. We assume neutral mutations
occur at rate Un (not included in U).

The actual DFEs relevant to natural populations may be broad
and complex, with mutations conferring a wide range of fitness
effects that occur at a variety of different rates, and these empiri-
cal distributions are difficult to measure precisely (Eyre-Walker
and Keightley 2007). Much of our analysis is conducted for an arbi-
trary DFE (provided it meets our conditions of validity). For con-
creteness, we also focus on a few simplified forms of lðsÞ in order
to gain intuition. For example, we consider the cases in which (1)
all mutations are beneficial, (2) all mutations are deleterious, and
(3) all mutations confer the same effect size. The analysis of these
simplified forms of lðsÞ can provide useful intuition about how
mutations of different types and effect sizes affect various aspects
of the evolutionary dynamics. Furthermore, we find that most of
our results are sensitive to the assumed lðsÞ only within a limited
region of s. That is, given values of the other parameters, the evo-
lutionary dynamics are often dominated by a subset of mutations
that have a narrow range of effect sizes, and hence can be pre-
dicted based on simplified forms of lðsÞ (Hegreness et al. 2006).

Simulation methods
To test our analytical predictions, we conduct individual-based
Wright–Fisher simulations. These simulations, which we describe
in more detail in Supplementary Appendix H, separately track all
of the individuals in the population, as well as the mutations
they have acquired. These simulations make it possible to mea-
sure divergence-related and diversity-related quantities in the
population, including the rate of change in the mean fitness, the
rate of mutation accumulation, the heterozygosity of neutral
mutations and of selected (i.e. non-neutral) mutations, and the
site frequency spectrum.

Simulations consist of a series of two steps repeated each gen-
eration. First, each individual acquires a Poisson-distributed
number of mutations (with mean number U, and with the fitness
effects of those mutations each drawn from qðsÞ). Mutations in-
crement an individual’s log-fitness X by an amount s. Second, in
the selection/reproduction step, individuals in the population are
resampled (with replacement) to form the population in the fol-
lowing generation. Each individual is sampled with probability
proportional to its (exponential) fitness eX.

Each simulated population is initialized clonally. We record
the number of generations until a mutation has fixed within the
population, which we define as the length of an epoch. At the con-
clusion of each subsequent epoch, we record the state of the pop-
ulation, including its mean fitness, site frequency spectrum, and
fixed mutations. Simulations are run for a prespecified number
of epochs, with results from the first 10 epochs discarded.

Simulated populations are subject to stretched exponential
DFEs of the form

qðsÞ ¼ 1

vCð1þ b�1Þ
e�ðs=vÞ

b

; (3)

or to mutations consisting of a single fitness effect (while our
analysis applies for more general qðsÞ). DFEs of the form in
Equation (3) have been considered in previous theoretical work
(Desai and Fisher 2007; Fogle et al. 2008; Good et al. 2012). Note
that if b > 1; qðsÞ in Equation (3) falls off faster than exponentially

with large s, while qðsÞ is an exponential distribution if b¼ 1. For
b < 1; qðsÞ in Equation (3) falls off more slowly than exponen-
tially with large s (though for reasons we describe below, we do
not consider this case extensively here).

The traveling-wave approach
In this section, we review the basic traveling-wave approach
which underlies our work, and which has been used to study the
dynamics of rapidly evolving populations in multiple regimes of
the parameter space. Readers familiar with the traveling-wave
literature may wish to skip directly to the Analysis section. We
emphasize that the details of the traveling-wave approach have
differed across studies—particularly in the treatment of fluctua-
tions—and that our review is not entirely comprehensive. Our
presentation, which largely follows the approach of Good and
Desai (2014), neglects some of the fluctuations which are dis-
cussed at length in Fisher (2013), but enables us to streamline
computations of average quantities such as v, pfixðsÞ, Tc, and the
site frequency spectrum.

A key quantity of interest is the distribution of fitnesses within
the population, f(X, t), which gives the fraction of the population
at absolute (log) fitness X. In our model, this fluctuating distribu-
tion evolves in time according to the nonlinear stochastic differ-
ential equation (Good and Desai 2013),

@f ðX; tÞ
@t

¼
�

X� XðtÞ
�

f ðX; tÞ

þ
ð

lðsÞ½f ðX� s; tÞ � f ðX; tÞ�ds

þ
ð

dX0½dðX0 � XÞ � f ðX; tÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ðX0; tÞ

N

r
gðX0; tÞ;

(4)

where XðtÞ �
Ð

Xf ðX; tÞdX, and gðX; tÞ is a Brownian noise term
(Supplementary Appendix A).

The last term in Equation (4), which captures birth/death
number fluctuations, is important. Without this term, even in the
simple case of a single beneficial fitness effect, the solution f(X, t)
would have a rate of fitness increase dX=dt that grows without
bound (Tsimring et al. 1996). In contrast, in stochastic simula-
tions, Tsimring et al. (1996), Rouzine et al. (2003), and others have
found that after an initial transient period, the distribution of fit-
nesses in a population attains a steady-state “traveling wave”
profile, f ðX� vtÞ which moves through fitness space at a roughly
constant rate v ¼ hdX=dti; the steady-state can be understood as
a type of “mutation-selection balance” in which fitness variation,
purged by selection, is repleted by new mutations (Desai and
Fisher 2007). In large populations, this average (or more precisely,
typical) profile f(x) can then be approximated using a “quasi-
deterministic” approach, in which

�v@xf ðxÞ ¼ xf ðxÞ

þ
ð

lðsÞ½f ðx� sÞ � f ðxÞ�ds;
(5)

for x less than some cutoff xcut, and f ðxÞ ¼ 0 for x > xcut (Tsimring
et al. 1996; Rouzine et al. 2003; Rouzine and Coffin 2005; Rouzine
et al. 2008; Neher et al. 2010; Good et al. 2012; Fisher 2013). This
defines a distribution that is normalized such that

ð
f ðxÞdx ¼ 1: (6)
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The solution to Equation (5) will depend on the unknown aver-
age rate of mean fitness change v. To determine this quantity, we
can express v in terms of the stochastic accumulation of new
mutations,

v ¼ N
ð

lðsÞspfixðsÞds; (7)

where pfixðsÞ describes the fixation probability of a mutation with
fitness effect s. In our traveling wave framework, it is useful to
express this fixation probability as

pfixðsÞ ¼
ð

f ðxÞwðxþ sÞdx; (8)

where w(x) denotes the fixation probability of a lineage founded
by a single individual with relative fitness x. In this way, Equation
(8) averages over all of the possible fitness backgrounds on which
a mutation can occur.

A key simplification is that w(x) can often be approximated by
modeling the population as a collection of independent branch-
ing processes, which compete with each other only through the
average rate of fitness change v (Neher et al. 2010; Good et al.
2012; Fisher 2013; Good and Desai 2014). Each of these lineages
founds its own stochastic fitness wave, g(x, t), whose dynamics
are described by a related differential equation,

�@t/ ¼ x/� /2 þ
ð

lðsÞ½/ðxþ sÞ � /ðxÞ� (9)

for the generating functional he�N
Ð

/ðx0 ;0Þgðx0 ;tÞdx0 i ¼ e�/ðx;tÞ

(Supplementary Appendix A). The fixation probability w(x) then
follows from

v@xwðxÞ � xwðxÞ

þ
ð

lðsÞ½wðxþ sÞ �wðxÞ�ds�w2ðxÞ:
(10)

Together, Equations (5) and (10) can be solved given a particular
lðsÞ and an assumed rate of adaptation v. Using these solutions f(x)
and w(x), Equation (7) can be enforced as a self-consistency relation
to determine v in terms of N and lðsÞ. In practice, it will be useful to
enforce a related self-consistency condition,

pfixð0Þ ¼
ð

f ðxÞwðxÞdx � 1=N; (11)

which ensures that neutral mutations fix with unbiased probability
1=N. Approximating the solutions to Equations (5) and (10), or simi-
lar equations, given the parameters N and lðsÞ, has thus been the
subject of extensive theoretical work (Neher et al. 2010; Hallatschek
2011; Good et al. 2012; Fisher 2013; Good and Desai 2014).

A central complication is that Equation (10) is nonlinear.
Furthermore, the nonlinear w2 term is the only term in Equation
(10), which reflects the stochasticity of births and deaths. As a re-
sult, dropping the w2 term in Equation (10) essentially amounts
to a deterministic approximation and leads to fundamentally
wrong predictions. However, a dominant balance approach can be
taken to treat this nonlinearity (Neher et al. 2010; Good et al. 2012;
Fisher 2013; Good and Desai 2014). The basic idea is that because
the fixation probability w must be an increasing function of x, at
very large relative fitness (i.e. large x), xw and w2 are the domi-
nant terms in Equation (10). Thus at large x, we have wðxÞ � x. In

contrast, for sufficiently small fitness, the nonlinear term must

be negligible compared to the other terms. Thus at these small x,

we can neglect the w2 term in Equation (10) and solve the linear

equation

v@xwðxÞ ¼ xwðxÞ

þ
ð

lðsÞ½wðxþ sÞ �wðxÞ�ds:
(12)

An approximation where the large-x and small-x solutions are

simply patched together is then widely valid (Good et al. 2012;

Fisher 2013; Good and Desai 2014). Specifically, a boundary xc is

identified such that the large-x result (w(x) ¼ x) is valid for x > xc

and the small-x result [the solution of Equation (12)] is valid for

x < xc, without any intervening shoulder region (or more pre-

cisely, with a shoulder region that is narrow on relevant scales).

A schematic of this patched solution w(x) is depicted in Fig. 1.

The details of how to determine the boundary xc can still be quite

complicated and case-dependent (Fisher 2013); however, in the

regime of interest to us, a simple heuristic—ensuring that both

w(x) and its derivative are continuous at the boundary xc—is ade-

quate (Good and Desai 2014). The boundary xc is often referred to

as the interference threshold, since individuals with relative fitness

x > xc fix with probabilities largely unaffected by interference (i.e.

with their establishment probabilities � x).
We note that solving Equation (5) leads to negative values for

f(x) at sufficiently large x (Tsimring et al. 1996; Rouzine et al. 2008;

Fisher 2013). This is an artifact of neglecting the fact that a finite

set of fitnesses are represented in a population at any given time.

To avoid this pathology, a common approach is to implement a

“cutoff” by assuming that f(x) ¼ 0 for x > xcut (Tsimring et al. 1996;

Rouzine et al. 2008, 2003). The value xcut can then be interpreted

as a typical maximum relative fitness of the individuals in a pop-

ulation, or as the fitness advantage of the “nose” of the

population-wide fitness distribution. Consistent with Good and

Desai (2014), Fisher (2013), and others, we take xcut ¼ xc through-

out. At a heuristic level, this choice can motivated by the fact

that established lineages cannot typically exist above the inter-

ference threshold (if so, they would interfere); a more rigorous

justification is given by Fisher (2013). Imposing a cutoff in f(x) can

also be motivated using the tunable constraint framework intro-

duced in Hallatschek (2011). In that work, the underlying model

is changed in such a way to yield moment closure of the equa-

tions for the stochastic time-dependent fitness distribution; the

resulting analog of f(x) does not display the above-mentioned

pathological behavior, and instead exhibits an exponential decay

beyond a fitness scale related to xc (suggesting that imposing a

cutoff at xc is reasonable). We note further that the “tunable con-

straint” imposed by Hallatschek (2011) turns out to be equivalent

to the requirement pfixð0Þ ¼ 1=N that we enforce to ensure a self-

consistent rate of adaptation v (Good et al. 2012). Ultimately, our

results are relatively insensitive to whether a cutoff is taken in

f(x) or a tunable constraint model is assumed.
Analysis of the linearized Equations (5) and (12) is still not

straightforward, however, since both equations contain mutation

terms that are nonlocal. While exact solutions for suitably defined

Laplace transforms ~f ðzÞ and ~wðzÞ can be obtained (Fisher 2013),

the subsequent inversion of these transforms requires approxi-

mation. A related strategy has been to approximate Equations (5)

and (12) by a set of local differential equations, which can then be

solved straightforwardly. For example, in the infinitesimal
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regime, the relevant fitness effects s are assumed sufficiently
small to approximate

f ðx� sÞ � f ðxÞ � s@xf ðxÞ þ 1
2

s2@2
x f ðxÞ; (13)

and

wðxþ sÞ � wðxÞ þ s@xwðxÞ þ 1
2

s2@2
x wðxÞ; (14)

in Equations (5) and (12), respectively. The resulting f(x) and w(x)
can be obtained using the Airy equation (Tsimring et al. 1996;
Cohen et al. 2005; Hallatschek 2011). Rouzine et al. (2003) and
Rouzine et al. (2008) employ a similar approach, instead Taylor
approximating the logarithm of f ðx� sÞ.

Our focus in this article is on a related approach to approxi-
mate Equations (5) and (12) by a set of local equations, used by
Fisher (2013) to study the “high-speeds” regime. In Analysis, we
begin by reviewing this approximate calculation of f(x) and w(x).
We proceed to provide novel solutions to a number of questions
within an MSSM regime, within which this approximate calcula-
tion is valid, and which includes both the “high-speeds” regime
and the infinitesimal regime as special cases. We first solve for
divergence-related quantities including fixation probabilities
pfixðsÞ and the average rate of fitness change v, and discuss condi-
tions of validity of our approach that are obtained by ensuring
f(x) and w(x) are well-approximated in the region of x making a
dominant contribution to these quantities. We then consider sta-
tistics of genetic diversity within the MSSM regime, with a focus
on the site frequency spectra of selected mutations and of neu-
tral mutations. By calculating the neutral site frequency spec-
trum, we demonstrate a partial correspondence between
genealogies within the MSSM regime and those of the BSC, and
analytically describe departures from the BSC that are apparent
in the low-frequency portion of the site frequency spectrum.
Finally, we conclude Analysis by discussing the various fitness
and time scales that emerge in our analysis and provide a

heuristic description of the dynamics of lineages within the

MSSM regime.
We summarize some of our key notation used throughout in

Table 1.

Analysis
As noted above, our approach is based on a key approximation

employed by Fisher (2013) to study the “high-speeds” regime. The

key idea is that we can approximate f ðx� sÞ and wðxþ sÞ in

Equations (5) and (10), respectively, by first pulling out rapid ex-

ponential prefactors varying at the appropriate rate, and then

performing Taylor approximations of the remaining factors. To

do so, we define

f ðxÞ � e�TcxwðxÞ; (15)

and

wðxÞ � eTcxnðxÞ; (16)

with Tc defined by

v �
ð

lðsÞseTcsds: (17)

Note that Tc is not a parameter of our model; Equation (17)

uniquely defines a specific Tc given the model parameters N and

lðsÞ. If lðsÞ falls off slower than exponentially with s at large posi-

tive s, then Tc is not well-defined and our approach breaks down;

in the marginal case of an exponential DFE of beneficial muta-

tions (with mean effect sb), Equation (17) implies that Tcsb < 1.

We will later show in Statistics of Genetic Diversity that, within the

MSSM regime, the quantity Tc as defined in Equation (17) is ap-

proximately equal to hT2i=2—one-half the average time since

pairwise coalescence among individuals in a population—which

motivates our interpretation of Tc as a coalescence timescale.

Table 1. Notation used.

Symbol Quantity

Input parameters N Population size
U Mutation rate
qðsÞ DFEs
lðsÞ � UqðsÞ Mutational fitness spectrum

Traveling wave quantities x � X� X Relative fitness
f(x) Distribution of relative fitnesses
w(x) Haplotype fixation probability

v � dX=dt Rate of change of meanfitness
r2 Population-wide fitness variance
pfixðsÞ Mutational fixation probability

qf ðsÞ Distribution of fixed fitness effects
hsf i Average fixed fitness effect
Dsf Standard deviation in fixed fitness effects
hxf i Average fixed relative fitness
Dxf Standard deviation in fixed relative fitnesses

Diversity and divergence statistics F Fixation rate (of non-neutral mutations)
T2 (Random) time since pairwise coalescence
pneu Pairwise heterozygosity (of neutral mutations)
psel Pairwise heterozygosity (of selected mutations)
Hneuð�Þ Distribution of allele frequencies (of neutral mutations)
Hselð�Þ Distribution of allele frequencies (of selected mutations)
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However, we emphasize that Tc is a derived quantity, defined by
Equation (17), which we will relate to the underlying parameters
N and lðsÞ in The Relation Between Tc and N. [For example, for the
case of single beneficial fitness effect, lðsÞ ¼ Udðs� sbÞ, we will
have Tc � 1

sb
log sb

U log NU
� �

provided that Tcsb � 1.]
Plugging Equations (15) and (16) into Equations (5) and (10), we

find that for x < xc; wðxÞ and nðxÞ satisfy

�v@xwðxÞ ¼ ðx� TcvÞwðxÞ

þ
ð

lðsÞ½eTcswðx� sÞ � wðxÞ�ds;
(18)

and

v@xnðxÞ ¼ ðx� TcvÞnðxÞ

þ
ð

lðsÞ½eTcsnðxþ sÞ � nðxÞ�ds;
(19)

respectively. Taylor expanding wðx� sÞ in Equation (18) and keep-
ing the lowest two nonzero orders in s, we find

�v@xw ¼ x� Tcvþ
ð

lðsÞðeTcs � 1Þds
� �

w

�
ð

lðsÞseTcsds
� �

@xwþ
1
2

ð
lðsÞs2eTcsds

� �
@2

xw:

(20)

It will be useful to define the fitness scales b and c according to

b3 �
ð

lðsÞs2eTcs; (21)

and

c � Tcv�
ð

lðsÞds½eTcs � 1�; (22)

respectively, which enable us to rewrite Equation (20) in the com-
pact form

b3@2
xw ¼ ðc� xÞw: (23)

In Table 2, we list key defined quantities used throughout,
along with definitions and interpretations of those quantities.
[Note that we make a distinction between quantities defined
purely by the definitions in Table 2 (e.g. b and c) and the

phenomenological quantities to which they approximately corre-

spond (Dxf and hxf i, as we later show).]
Similar manipulations can be carried out to approximate nðxÞ

in Equation (19), with both equations solved by

wðxÞ / nðxÞ / Ai
c� x

b

	 

: (24)

This implies that for x < xc,

f ðxÞ / e�TcxAi
c� x

b

	 

; (25)

wðxÞ / eTcxAi
c� x

b

	 

: (26)

As discussed in The Traveling-Wave Approach, we will take

wðxÞ � x and f ðxÞ � 0 for x > xc. Provided that Tcb� 1, the transi-

tion between these solutions will occur over a narrow boundary

layer, such that xc can be determined by enforcing continuity of

w(x) and w0ðxÞ at x ¼ xc [as done by Good et al. (2014), for instance].

This calculation is presented in Supplementary Appendix B, with

the result

xc � cþ jz0jb� 1=Tc; (27)

where z0 � �2:34 is the least negative zero of AiðzÞ. We note that

xc is obtained by Fisher (2013) in the “high-speeds” regime using

an alternative “solvability condition” for w(x) which yields the

same result.

Relation to infinitesimal approximation
We note that in the limit Tcs! 0 for relevant fitness effects s

(with Tcb� 1 fixed), the solutions f(x) and w(x) in Equations (25)

and (26), as well as xc in Equation (27), reduce to the correspond-

ing quantities obtained using the infinitesimal approximation. In

this limit,

Tc ! r2=2D

b! D1=3

c! r4=4D;

(28)

where here, r2 � v�
Ð

lðsÞsds corresponds to the population-wide

fitness variance, and D � 1
2

Ð
lðsÞs2ds corresponds to a mutational

Table 2. Key definitions.

Quantity Definition Interpretation

Tc v �
Ð

lðsÞeTcssds Log-slope of f(x) near x¼ c. Corresponds with sweep timescale
and coalescence timescale hT2i=2.

b 2b3 �
Ð

lðsÞs2eTcsds Width in distribution of fixed relative fitnesses �Dxf .

c c �
Ð

lðsÞ½TcseTcs þ 1� eTcs�ds Average background fitness of fixed individuals �hxf i.
D 2D �

Ð
lðsÞs2ds Effective diffusion constant in infinitesimal regime.

hsf i hsf i �
Ð

qf ðsÞsds Average fixed fitness effect.

Dsf ðDsf Þ2 �
Ð

qf ðsÞðs� hsf iÞ2ds Standard deviation in fixed fitness effects.

~s ~s � hsf i þ 2Dsf Maximum typical fixed fitness effect.

s	 s	 � argmaxsqf ðsÞ Most likely fixed fitness effect; “predominant-s”.

wðxÞ f ðxÞ � e�TcxwðxÞ Scaled profile of f(x).

nðxÞ wðxÞ � eTcxnðxÞ Scaled profile of w(x).
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diffusion constant (an interpretation of which we provide in Key
Fitness Scales and Timescales: Simple Heuristics). The above approxi-
mation can be considered a generalized infinitesimal approxima-
tion; we further discuss the relation between our approximation
detailed above and the infinitesimal approximation in the follow-
ing subsections.

The relation between Tc and N
Our derivation above made use of the phenomenological quantities
Tc, b, c, and v, which are functions of the underlying parameters N
and lðsÞ. We now derive an additional equation relating these
quantities, which allows us to solve for Tc (and thus v, as well as b
and c) in terms of N and lðsÞ. To do so, we enforce the conditionÐ

f ðxÞwðxÞdx ¼ 1=N in Equation (11), using the approximate f(x) and
w(x) in Equations (25) and (26), respectively. We emphasize that the
expressions in Equations (25) and (26) are only local approxima-
tions, valid within some range of x. In the next subsection, we will
obtain and discuss conditions which ensure that Equations (25)
and (26) are approximately valid within the important region domi-
nating 1=N ¼

Ð
f ðxÞwðxÞdx. The quantity Nf ðxÞwðxÞ can be inter-

preted as a distribution of fitnesses of future common ancestors,
and given f(x) and w(x) in Equations (25) and (26), evaluates to

Nf ðxÞwðxÞ / Ai2
c� x

b

	 

: (29)

The integral
Ð

f ðxÞwðxÞdx thus receives a dominant contribu-
tion from the region jc� xj � OðbÞ. This motivates us to refer to
the region jc� xj � OðbÞ probed by our condition of validity as the
fixation class, since collectively, this region of fitness space produ-
ces a future common ancestor of the population with probability
Oð1Þ, despite comprising a small fraction of the total population.

To evaluate the integral in Equation (11), we need the overall
constants of proportionality of f(x) and w(x). Recall that the con-
stant of proportionality for w(x) was fixed by matching to the so-
lution wðxÞ � x at x ¼ xc. On the other hand, the overall constant
of proportionality of f(x) must be determined by the normaliza-
tion condition

Ð
f ðxÞdx ¼ 1. However, while our local approxima-

tion for f(x) in Equation (25) is valid near the nose, it is not

necessarily valid throughout the entire normalization integralÐ
f ðxÞdx, which is dominated by fitnesses near the mean. Instead,

we show in Supplementary Appendix C that an analogous local
approximation can be applied to the Laplace transform of f(x),
which allows us to obtain the relevant normalization,

f ðxÞ � exp
vTc

2

2
�
ð

lðsÞds
s

�
eTcs � Tcs� 1

�" #


 e�Tcx

b
Ai

c� x
b

	 

:

(30)

Using this expression, we can obtain a relation between Tc and
N, lðsÞ and xc,

Tcðxc � UÞ � vTc
2

2
þ
ð

lðsÞds
s
ðeTcs � 1Þ

� log ½NxcTcb�:
(31)

(Supplementary Appendix B). By combining Equations (27) and
(31), along with the definitions for Tc, b and c in Equations (17), (21),
and (22), it is possible to solve for Tc in terms of N and lðsÞ. We
therefore defined a simple numerical routine to solve Equations
(27) and (31) for a given choice of N and lðsÞ (Supplementary
Appendix I). Although we discuss analytical approximations to this
solution in Specific Example DFEs, we use this numerical solution for
comparison with simulations throughout the rest of this paper. We
note that Equation (31) can be rearranged to provide the relation-
ship between Tc=N and the combinations TcU and the distribution
of scaled effects Tcs. In this way, our approximation is well suited
to describing the dynamics corresponding to given values of the
quantities TcU and Tcs, parameter combinations more often in-
ferred in natural settings (albeit often problematically, as our anal-
yses show) than NU and Ns.

We illustrate the fact that Equation (30) is only a locally valid
approximation—and the importance of normalizing f(x) appropri-
ately—in Fig. 2. There, we compare our predicted f(x) with the
same quantity observed in simulations, for three example pa-
rameter choices. In the same figure, we also plot histograms of

(a) (b) (c)

Fig. 2. Averaged distributions of relative fitnesses, f(x), for simulated populations subject to beneficial mutations with an exponential DFE, with values
of Tc~s and ~s=b denoted above. A precise definition of ~s is given in Conditions of Validity: a “Moderate Selection, Strong Mutation Regime”. Note the logarithmic
scale of the vertical axis. Filled circles represent the simulated distribution of relative fitnesses, f(x), as obtained by averaging over measurements from
490 different epochs. Black ‘x’ markers represent the simulated distribution of future common ancestor relative fitnesses, Nf ðxÞwðxÞ. Blue and orange
lines denote theoretical predictions for f(x) obtained with the infinitesimal (IL) and MSSM approximations, respectively; green lines denote predictions
for f(x) obtained using the numerical saddle point approximation detailed in Supplementary Appendix C. In all cases f(x) is best-predicted by the numerical
saddle point approximation, but the MSSM approximation adequately predicts the behavior of f(x) within the region of x dominating

Ð
f ðxÞwðxÞdx. In panel

(a), the infinitesimal approximation adequately predicts f(x) for all x, which is expected since Tc~s < 1. Panels (b) and (c) correspond to larger values of Tc~s
for which the infinitesimal approximation begins to break down, particularly in the region of x dominating

Ð
f ðxÞwðxÞdx.
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future common ancestors fitnesses–that is, the empirically mea-
sured distribution Nf ðxÞwðxÞ—obtained from simulations. We can
see that the prediction for f(x) in Equation (30) matches simula-
tion results well in the region dominating

Ð
f ðxÞwðxÞdx. Outside,

this region, however, the prediction in Equation (30) breaks down
and would yield an incorrect constant of proportionality if nor-
malized “directly”—particularly in the region of the MSSM regime
that lies outside the infinitesimal regime. For comparison, we
also plot predictions for f(x) obtained using the infinitesimal ap-
proximation (for details, see Supplementary Appendix I), as well
as a numerical saddle point approximation we present in
Supplementary Appendix C. While our numerical saddle point
approximation does yield improved accuracy in predicting the
simulated f(x) throughout its “bulk,” it has a negligible impact on
global quantities of interest such as v and pfixðsÞ, which are domi-
nated by the behavior of f(x) and w(x) in the fixation class. We
therefore use only our analytical prediction for f(x) in Equation
(30) throughout the remainder of this article.

Conditions of validity: a “moderate selection,
strong mutation regime”
The approximate solutions f(x) and w(x) given in Equations (25) and
(26) are valid only within a limited region of fitness space. Our pri-
mary motivation in solving for f(x) and w(x) is that these quantities
can be used to compute other dynamical quantities such as v and
qf ðsÞ. These computations involve integrals of the form

Ð
f ðxÞwðxþ

sÞdx (and our computations of genetic diversity statistics in
Statistics of Genetic Diversity involve similar integrals as well). We
can thus obtain conditions of validity of our approach by demand-
ing that both f(x) and w(x) are well-approximated in the region of
fitness space dominating these integrals. We will find that these
conditions are most readily expressed in terms of qðsÞ and the de-
rived quantities Tc and b, although these conditions can straightfor-
wardly be expressed in terms of the model parameters N and lðsÞ
using the relation between Tc and N given above.

In particular, as noted in the previous subsection,
Ð

f ðxÞwðxÞdx
is dominated by the region jc� xj � OðbÞ. The same region domi-
nates the integral used to compute qf ðsÞ,

ð
f ðxÞwðxþ sÞdx /

eTcs
ð

Ai
c� x

b

	 

Ai

c� x� s
b

	 

dx;

(32)

as long as s� b. For s� b,

pfixðsÞ �
eTcs

N
(33)

follows from Equation (32), and qf ðsÞ / eTcsqðsÞ (Supplementary
Appendix D). We therefore obtain a condition of validity of our
approximation by ensuring that f(x) and w(x) are well-
approximated within the region jc� xj � OðbÞ. We will see below
that this condition requires that s� b for typical fixed effects s
(i.e. for the region of s which dominates

Ð
s2qf ðsÞds), so that f(x)

and w(x) are also well-approximated within the region dominat-
ing

Ð
f ðxÞwðxþ sÞdx for relevant s.

We obtain this condition of validity in Supplementary
Appendix C. The basic idea is to ensure that the inverse Laplace
transforms of the linearized f(x) and w(x) reduce to the approxi-
mate expressions in Equations (25) and (26). For relevant x, this
will be true provided that a particular term can be neglected. By
ensuring, for jc� xj � OðbÞ, that this additional term yields small

corrections near saddle points of the inverse Laplace integral, we
obtain the condition

S0v �
Ð

lðsÞeTcs es=b � 1� ðs=bÞ � 1
2 ðs=bÞ2

� �
dsÐ

lðsÞeTcs ðs=bÞ
2

2 ds
� 1: (34)

Note that the condition Tcb� 1 is required to justify the domi-
nant balance approximation for w(x). These conditions can be ap-
plied to determine the suitability of the above approximations for
populations subject to beneficial mutations, deleterious muta-
tions, or some combination of the two.

As anticipated above, under relatively mild assumptions on
qðsÞ, the condition S0v � 1 is satisfied if

s� b (35)

for s dominating
Ð

qf ðsÞs2ds (i.e. if typical fixed fitness effects s are
much smaller than b in magnitude). For bookkeeping purposes, it
is useful to define a maximum typical fixed fitness effect,
~s � hsf i þ 2Dsf , where hsf i and Dsf are the average and standard de-
viation, respectively, of fixed mutation effects. From Equation (29),
we also note that Dxf � b (where Dx2

f denotes the fitness variance
of future common ancestors). Given these definitions, the condi-
tions S0v � 1 and Tcb� 1 can then be written more compactly as

~s � Dxf ; TcDxf � 1 (36)

These conditions have dynamical interpretations which we dis-
cuss in Key Fitness Scales and Timescales: Simple Heuristics. Notably, be-
cause Tc~s < 1 is not required by our conditions, selection on single
mutations need not be weak. Because 1=Tc < ~s � Dxf (or
~s < 1=Tc � Dxf ) is permitted, we refer to the regime of validity of
our approximation as an MSSM regime. [“Moderate selection”
refers to the requirement that ~s < Dxf , while “strong mutation”
refers to the requirement that clonal interference is strong.]

Specific example DFEs
We can gain more intuition about the MSSM regime by solving
for Tc (and therefore v) for a few concrete example DFEs. In doing
so, we can obtain expressions for the validity of the MSSM ap-
proximation in terms of the more experimentally accessible
parameters N, U, and qðsÞ, although in doing so we make further
assumptions on the specific DFE considered.

Single beneficial fitness effect
The simplest such scenario is that of a single beneficial fitness ef-
fect sb. We begin by noting that when Tcsb � 1, Equation (31)
reduces to the well-known results

Tc �
1
sb

2
sb

U

	 

log ðN3Us2

bÞ
� �1=3

; (37)

and

b �
Us2

b

2

	 
1=3

(38)

from the infinitesimal limit (Neher and Hallatschek 2013; Good
et al. 2014). We can see that Equation (37) is self-consistently valid
(i.e. Tcsb � 1; Tcb� 1 and sb � b) when

U
sb
� log ðN3Us2

bÞ � 1: (39)
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Note that this condition requires more than just U� sb; U=sb must
also be larger than the large parameter combination log ðN3Us2

bÞ.
In the opposite regime Tcsb � 1, Equation (31) reduces to

Tc �
1
sb

log
sb

U
log NU

� �
(40)

and

b � sb
log NU

log 2 sb
U log NU
� �

 !1=3

(41)

which coincides with the “high-speeds” regime considered by
Fisher (2013) (Supplementary Appendix B). This is self-
consistently valid when

log NU� log 2 sb

U
log NU

� �
� 1: (42)

By combining Equations (42) and (40), we can see that there is
a relatively smooth crossover between the infinitesimal and
“high-speeds” regimes when U=sb � log NU, where Tcsb � Oð1Þ.
For fixed U and sb, the infinitesimal limit always breaks down for
sufficiently large N, while the “high-speeds” regime is eventually
valid for any sb and U.

Distributions of beneficial fitness effects
More generally, as long as the DFE qðsÞ falls off faster than expo-
nentially with large positive s, convergence to the MSSM regime
is obtained in the limit N!1. In this limit, previous work has
shown that the relevant integrals over lðsÞeTcs become increas-
ingly sharply peaked around a characteristic value, such that

ð
skesTc lðsÞds � Uesk

e eseTc ; (43)

where se coincides with the predominant fitness effect s	 �
argmaxsqf ðsÞ (Fisher 2013). This shows that short-tailed DFEs can
be approximated by an effective DFE with lðsÞ ¼ Uedðs� seÞ
(Hegreness et al. 2006; Desai and Fisher 2007; Good et al. 2012; Fisher
2013). Moreover, under rather general conditions, one can show
that s	 becomes increasingly small compared to b as N (and there-
fore Tc) increases, so that the conditions of validity of the MSSM ap-
proximation will be satisfied (Supplementary Appendix G).

On the other hand, if qðsÞ falls off slower than exponentially
with large positive s, the integrals in Equation (43) no longer con-
verge, and the MSSM approximation cannot be applied. The case
of an exponential DFE (with mean effect size hsi) is a marginal
case, since convergence will depend on the relative values of Tc

and hsi, or equivalently, of Tc and hsf i. When Tchsf i � 1, the MSSM
approximation reduces to the infinitesimal approximation, as in
the case of a single beneficial effect. In the opposite case that
Tchsf i � 1, we find that

Tchsf i �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hsi log Nhsi

U

r
(44)

and

b
hsf i
� U
hsi

	 
1=3

: (45)

(Supplementary Appendix G). The conditions Tchsf i � 1; hsf i �
b and Tcb� 1 are then jointly satisfied, and the MSSM approxi-
mation is valid, when

log Nhsi � U
hsi � 1: (46)

Note that since Tchsf i � Tchsi=ð1� TchsiÞ for an exponential
DFE, ð1� TchsiÞ is a small and positive quantity in this case, such
that the relevant integrals converge. Note that the conditions in
Equation (46) differ from those for a single beneficial fitness ef-
fect in Equation (42) in that U� hsi is now explicitly required, no
matter how large the value of N. The opposite case, in which
hsi > U, cannot be described using the MSSM approximation, and
remains only partially understood; for a discussion of this case,
see Fisher (2013).

Deleterious mutations in adapting populations
The previous two examples have mostly recapitulated earlier
results for beneficial mutations in the infinitesimal (Tsimring
et al. 1996; Cohen et al. 2005; Hallatschek 2011; Neher and
Hallatschek 2013) and high-speed regimes (Fisher 2013). A key ad-
vantage of our MSSM approximation is that it can also be applied
to scenarios with large numbers of deleterious mutations, where
few analytical results are currently available.

As an example, we first consider a scenario where beneficial
and deleterious mutations have the same effect size s, and occur
at rates Ub and Ud, respectively. The infinitesimal approximation
will once again apply in the limit that Tcs� 1, but qualitatively
new behavior starts to emerge when Tcs� 1. In this case, a useful
simplification occurs in Equation (31): the contributions to the
left-hand side are exponentially suppressed for deleterious muta-
tions, with the exception of the Ud=s term. As a result, the overall
solution for Tc reduces to the purely beneficial case in Equation
(40), but with an effective population size

Ne � Ne�Ud=s: (47)

in place of N.
The right-hand side of Equation (47) is the classical prediction

for the number of mutation-free individuals that would exist at
mutation-selection balance (Haigh 1978), prominent in discus-
sions of background selection (Charlesworth et al. 1993). Our
results suggest that this simple approximation continues to apply
in certain nonequilibrium settings as well, even when the delete-
rious fitness costs are small compared to the typical fitness varia-
tion in the population. Although these strongly deleterious
mutations are unable to fix, they can still affect the evolutionary
dynamics through the size of the unloaded class, similar to the
“background selection” (Charlesworth 1994) or “ruby in the
rubbish” (Peck 1994) behavior that has been observed for single
beneficial mutations. We emphasize that this effective popula-
tion size approximation was a direct consequence of our mathe-
matical expressions in Equations (21) and (31). This provides a
more rigorous justification for previous ad hoc approaches that
assumed that strongly deleterious mutations can be treated in
this way (Söderberg and Berg 2007; Good et al. 2014). We empha-
size that the effective population size in Equation (47) does not de-
note a coalescence timescale, as is often implied in the literature.
Indeed, the asymptotic expressions in Equations (40) and (37)
show that Tc will typically be much less than Ne in the MSSM re-
gime.
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Together with Equation (47), the conditions of validity in
Equation (42) imply that the MSSM approximation will be valid
for sufficiently large N for any choice of Ub, Ud, and s. Note that
while we have assumed that sd ¼ sb ¼ s for simplicity above, this
same argument can be generalized to unequal selection
strengths as long as Tcsd � 1. For example, if Tcsb � 1, then Tc

will instead be described by the infinitesimal approximation in
Equation (37), with Ne ¼ Ne�Ud=sd .

Background selection
Finally, we can also apply our framework to the case of purely
deleterious mutations (often referred to as “background
selection”). For simplicity, we will focus on the well-studied case
where deleterious mutations have a single fitness cost sd. As
noted in previous studies (Neher et al. 2013; Neher and
Hallatschek 2013; Good et al. 2014), this scenario is well-described
by the infinitesimal limit when Tcsd � 1, with sd replacing sb in
Equation (37). In the opposite case where Tcsd � 1, our MSSM
approximations yield an alternative solution, in which

Tc �
1
sd

log
U=sd

log 1
NUe�U=sd

� �
2
4

3
5 (48)

and

b � sd
1
2

log
1

NUe�U=sd

	 
� �1=3

: (49)

This solution is self-consistently valid (Tcsd � 1; sd � b and
Tcb� 1) when

1� log
1

NUe�U=sd

	 

� U

sd
: (50)

For fixed values of U and sd, this condition will always be vio-
lated for sufficiently large population sizes (NUe�U=sd � 1). This
breakdown is consistent with previous theory (Charlesworth
1994; Good et al. 2014; Cvijovi�c et al. 2018), which predicts that the
large-N limit of the background selection model approaches a
nearly neutral regime, with a coalescent timescale,

Tc ¼ Ne�U=sd : (51)

Interestingly, Equation (50) shows that the MSSM approxima-
tion can remain valid even for arbitrarily large values of Tcsd, as
long as the corresponding values of U=sd are also sufficiently large.
Thus, even for purely deleterious mutations, the MSSM approxima-
tion does not necessarily require that all mutations have weak
effects (i.e. that Tcsd � 1). In principle, strong clonal interference
can occur even for large-scaled fitness effects (Tcsd � 1), but only in
an increasingly narrow region of the underlying parameter space.

This last point suggests an alternative way of looking at the re-
lation between Tc and N in Equation (31). In addition to solving
for Tc as a function of the bare parameters N, U, and sd, it is also
possible to directly solve for NU as a function of the phenomeno-
logical variables Tcsd and TcU:

log NU � U
sd

1� ðTcsdÞ2e�Tcsd

2

	 

: (52)

This expression gives the underlying value of NU that would
be required for the MSSM regime to apply for a given value of Tcsd

and TcU. This alternative view of the parameter space, in which
Tcsd and TcU are the “independent” parameters, is often more nat-
ural in applied settings, where the phenomenological parameters
are usually estimated from contemporary patterns of genetic di-
versity. This perspective will be useful for our discussion of non-
synonymous site frequency spectra below.

Simulation results
To complement our analytical predictions, we simulated popula-
tions subject either to only beneficial mutations (adapting popu-
lations) or only deleterious mutations (ratcheting populations).
Simulated parameters N and lðsÞ are chosen to correspond with
a grid with linearly spaced Tcb values, and with logarithmically
spaced Tchsf i values (for adapting populations) or Tchsi values (for
ratcheting populations), subject to the constraints Tcb > 1; 1 <

NU < 105; 1 < Nhsi < 103:5 and U=hsi � 104. For ratcheting pop-
ulations, we add a further constraint that U=hsi > 1. Simulated
populations have size 103 < N < 1:2
 105. These constraints are
chosen both to limit attention to the MSSM regime (and the re-
gion of parameter space where it begins to break down) and to
ensure feasibility of our individual-based simulations. For each
point on these constrained grids, we (separately) simulated popu-
lations subject to an exponential DFE, and to a stretched-
exponential DFE with steepness parameter b¼ 2. Details of the
numerical implementation of these simulations and choice of
parameters are given in Supplementary Appendix H; in
Supplementary Fig. 1, we plot our constrained grid of simulation
parameters in the space of NU vs Nhsi, colored by values of Tcb.

In Fig. 3, we plot our constrained grid in the space of Tcb vs ~s=b,
with the color of each point denoting the accuracy of either the
MSSM approximation or infinitesimal approximation in predict-
ing the rate of change v in the mean fitness. For clarity, we in-
clude only populations subject to an exponential DFE in Fig. 3.
Plotting our simulation grid in the space of Tcb vs ~s=b enables us
to verify that predictions of the MSSM approximation are accu-
rate when our conditions of validity are met (roughly speaking,
when Tcb� 1 and ~s � b). From Fig. 3, we can see that our predic-
tions for v are reasonably accurate even for ~s=b � Oð1Þ, as long as
Tcb > 1. Moreover, we can see that the infinitesimal approxima-
tion breaks down even for small ~s=b when Tc~s is large. In
Supplementary Fig. 2, we plot the same grid of simulated popula-
tions in the space of NU vs Nhsi, colored by vsim=vtheory.

To visualize the quantitative agreement between simulations
and our predictions more directly, we plot the ratio vsim=vtheory as
a function of the single quantity ~s=b in Fig. 4, with points colored
according to their values of Tcb. We include, in Fig. 4, simulated
populations subject to a b¼ 2 stretched-exponential DFE, as well
as simulated populations subject to an exponential DFE. In the
same figure, we compare theoretical predictions of the fixation
rate of new mutations, given by

F ¼ N
ð

lðsÞpfixðsÞds �
ð

lðsÞeTcsds; (53)

as well as the average fixed effect hsf i and standard deviation Dsf

in fixed effects, to measurements of these quantities in simula-
tions. Predictions for the quantities hsf i and Dsf are obtained us-
ing the simulated qðsÞ and pfixðsÞ in Equation (33). For each of
these quantities, we observe highly quantitative agreement
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between simulations and theory for small and moderate values

of ~s=b.

Statistics of genetic diversity
We now consider statistics of genetic diversity within the MSSM

regime. Our central quantity of interest will be the frequency

spectrum hsð�Þ for a single site with fitness effect s, which is de-

fined such that

Hselð�Þd� �
ð

hsð�ÞqðsÞds � d� (54)

gives the expected number of selected (non-neutral, including

both beneficial and deleterious) mutations per site with

frequencies between � and � þ d�. We will also consider an analo-
gous aggregate quantity

Hneuð�Þ � h0ð�Þ (55)

defined for a subset of putatively neutral sites (e.g. synonymous
sites, short introns, etc.). These site frequency spectra are impor-
tant statistics that are often used to make inferences regarding
the evolutionary forces acting within a population (Nielsen 2005).
Several empirical studies have drawn inferences on the presence
and strength of selection acting in a population based on differ-
ences in the site frequency spectrum among synonymous (i.e.
mostly neutral) and nonsynonymous (i.e. more selected) muta-
tions (Eyre-Walker et al. 2006). The key idea underlying these
approaches is simple: because synonymous and nonsynonymous

(a) (b)

(c) (d)

Fig. 3. Comparison of theoretical predictions for the rate of change in mean fitness, v, to the corresponding rates observed in simulations, for
populations subject to an exponential DFE of beneficial mutations or deleterious mutations. The color of each point denotes the ratio of simulated to
predicted v for a set of parameters (with red and blue indicating that theory underestimates or overestimates v, respectively, according to the scale at
right). In panels (a) and (b), predictions are obtained using the MSSM approximation, while in panels (c) and (d), predictions are obtained using the
infinitesimal (IL) approximation. The location of a point along the vertical axis denotes the value of Tcb for its corresponding set of parameters (with Tc

and b computed using the MSSM approximation in all panels), and the horizontal axis denotes the value of ~s=b for that set of parameters (with
~s � hsf i þ 2Dsf ); curves of constant Tc~s are denoted in gray. Panels (a) and (c) involve simulations of populations subject only to beneficial mutations
(adapting populations), and panels (b) and (d) involve simulations of populations subject only to deleterious mutations (ratcheting populations).
Simulated parameters are those lying on the constrained grid described below, and depicted in the space of NU vs Nhsi in Supplementary Fig. 1. The “x”
markers in D denote populations for which the infinitesimal approximation predicts a rate of fitness change of the incorrect sign.
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sites (which are interdigitated throughout the genome) share the
same demographic history, differences in their patterns of diver-

sity can be attributed to (positive or negative) selection on nonsy-
nonymous mutations (McDonald and Kreitman 1991). The ability
to make inferences using this line of thinking requires predictions
for hsð�Þ (Sawyer and Hartl 1992; Hartl et al. 1994), which are lack-

ing for rapidly evolving populations.
In the following subsections, we develop analytical predictions

for these neutral and selected site frequency spectra in the MSSM
regime, noting important departures from the classical intuition

in Equation (1). We demonstrate that hsð�Þ and h0ð�Þ are simply

related by a constant factor above a characteristic frequency
�c � 1, which is not simply summarized by the scaled selection
coefficient Tcs. Building on previous work (Desai et al. 2013; Fisher
2013; Neher and Hallatschek 2013), we also demonstrate a partial
correspondence between the genealogies in our model and the
BSC, and we analytically describe the departures from the BSC
SFS that can be observed at low frequencies. Compared to the
BSC SFS, we find that the functional form of these departures
provides substantially greater power to distinguish different pa-
rameter combinations. Finally, we compute the pairwise hetero-
zygosity for selected and neutral mutations and demonstrate a

(a)

(b)

(c)

(d)

Fig. 4. Comparison between simulated and predicted rate v of fitness change (a), rate F of mutation accumulation (b), average fixed effect hsf i (c), and
standard deviation Dsf in fixed effects (d). Populations in the left column are subject to only beneficial mutations; populations in the right column are
subject to only deleterious mutations. Predictions are obtained using the MSSM approximation; quantitative agreement between simulations and
predictions is obtained as long as ~s=b �Oð1Þ. Simulated sets of parameters lie on the same (constrained) grid considered in Fig. 3, although here we
include, for each point on that grid, both an exponential DFE (circles) and b¼ 2 stretched-exponential DFE (diamonds).
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correspondence between the pairwise coalescence time hT2i and
the quantity Tc defined in Equation (17). In the Discussion, we con-
sider implications of our results in the context of the population
genetic inference methods described above.

The site frequency spectrum: basic formalism
To calculate hsð�Þ, it will be useful to first consider the discrete
version,

PsðkjmÞ �
ð

m
k

	 

�kð1� �Þm�khsð�Þd�; (56)

which gives the normalized probability of observing a mutation
in exactly k individuals in a random sample of size m. The contin-
uous version can be recovered by taking the limit of large sample
sizes:

hsð�Þ � lim
m!1

mPsð�mjmÞ: (57)

One advantage of switching to PsðkjmÞ is that it can be rewritten
as an average over lineages defined at different times in the past:

PsðkjmÞ ¼ l
ð1

0

m
k

	 

Ks

m;kðtÞdt; (58)

where l is the per-site mutation rate and

Ks
m;kðtÞ ¼ N

*
nsðtÞ

nsðtÞþ
PN�1

i¼1
niðtÞ

	 
k



PN�1

i¼1
niðtÞ

nsðtÞþ
PN�1

i¼1
niðtÞ

 !m�k+
:

(59)

In this equation, nsðtÞ denotes the present-day size of a lineage
founded by a mutation with effect size s that occurred t genera-
tions ago, while the fniðtÞgN�1

i¼1 represent the lineages founded by
the remaining N—1 individuals that were alive at that time.
Equation (58) can be interpreted as integrating over the possible
times a mutation last occurred at a given site. This mutation
could have occurred on any of the N possible genetic back-
grounds in the population. Given that it did occur, it will be ob-
served in k individuals in the present with probability

m
k

	 

Ks

m;kðtÞ=N.

We note that in the special case of a neutral site (s¼ 0), the
quantity K0

m;kðtÞ can be interpreted as a merger probability within a
corresponding coalescent model. That is, K0

m;kðtÞ gives the probabil-
ity that in a sample of size m, a particular set of k individuals share
a common ancestor at t generations into the past, and the remain-
ing m—k individuals do not trace back to that same ancestor.
Related merger probabilities (defined slightly differently) are con-
sidered by Neher and Hallatschek (2013) to show a correspondence
between genealogies in the infinitesimal regime and those of the
BSC. Below, we follow a similar approach to simplify the quantities
Ks

m;kðtÞ used in our calculation of the selected site frequency spec-
trum. In Supplementary Appendix E, we use our calculated K0

m;kðtÞ
to explicitly demonstrate a (partial) correspondence with the BSC
in the MSSM regime, and highlight key ways in which our results
differ from those of Neher and Hallatschek (2013).

To simplify Equation (59), we make the key approximation
that each of niðtÞ and nsðtÞ evolve as a collection of independent
branching processes described by Equation (9) (Desai et al.

2013; Fisher 2013; Neher and Hallatschek 2013). That is, we
assume the fates of lineages are coupled only through the
average rate of adaptation, which is shaped by interference as
calculated in Analysis. The identity CðmÞC�m ¼

Ð1
0 dzzm�1e�zC then

yields

K0
m;kðtÞ � ð�1Þm N

CðmÞ



ð1

0
dzzm�1@k

z

D
e�znðtÞ

E
@m�k

z

D
e�znðtÞ

EN�1
;

(60)

where, since the fniðtÞgN�1
i¼1 are identically distributed, we have

dropped the subscripts i in writing n(t). As we discuss in
Supplementary Appendix A,

he�znðtÞi � e�U0ðz;tÞ; (61)

where U0ðz; tÞ �
Ð

f ðxÞ/zðx; tÞdx, and where /zðx; tÞ satisfies

@t/zðx; tÞ ¼ �v@x/zðx; tÞ þ x/zðx; tÞ

þ
ð

lðsÞ½/zðxþ s; tÞ � /zðx; tÞ�ds� /2
zðx; tÞ;

(62)

with initial condition /zðx; 0Þ ¼ z > 0; more generally,

he�znsðtÞi � e�Usðz;tÞ; (63)

with Usðz; tÞ �
Ð

f ðx� sÞ/zðx; tÞdx.

A detailed analysis of Equation (62) is conducted by Fisher
(2013), which we review and extend in Supplementary Appendix
A. The key results we use here are that

U0ðz; tÞ / ze1�t=Tc
; (64)

for bðt� TcÞ � 1, over the region of z that will turn out to domi-
nate the integral in Equation (199), and that for t < Tc �
Oð1=bÞ; U0ðz; tÞ is approximately linear in z. In Supplementary
Appendix E, we show, using the properties of /zðx; tÞ discussed in
Supplementary Appendix A along with our result for f(x) in
Equation (25), that

Ks
m;kðtÞ

K0
m;kðtÞ

� Usðz; tÞ
U0ðz; tÞ

� f est t < Tc

esTc t > Tc
; (65)

provided that jsj � b. The relevant site frequency spectra then
can then be obtained by substituting these expressions into
Equation (58) and integrating over time.

The ratio between the selected and neutral SFSs
The simple behavior of Equation (65) suggests that the ratios of
neutral and selected site frequency spectra may take on a partic-
ularly simple form in certain regimes. For example, if we consider
frequencies � ¼ k=m that are sufficiently large that the integrals
in Equation (58) are dominated by times greater than Tc (we dis-
cuss the minimum frequencies required for this assumption be-
low), then the time-independent behavior of Equation (65)
immediately implies that

hsð�Þ
h0ð�Þ

¼ lim
m!1

Psð�mjmÞ
P0ð�mjmÞ � eTcs; (66)
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when jsj � b. Since pfixðsÞ � 1
N eTcs, we can also write this as

hsð�Þ
h0ð�Þ

� pfixðsÞ
pfixð0Þ

: (67)

In this range of frequencies, Equation (67) predicts that neutral
and selected site frequency spectra are simply proportional to
one another, and that the constant of proportionality is equal to
the ratio of their fixation probabilities.

By summing over sites, we can obtain an analogous result for
the aggregate site frequency spectra,

Hselð�Þ
Hneuð�Þ

� F
U
; (68)

where F � N
Ð

lðsÞpfixðsÞds is the total fixation rate of the selected
mutations defined in Equation (53). Recall that we have defined
these aggregate quantities so that a (rough) analogy can be drawn
between Hneuð�Þ and the distribution of synoynmous site frequen-
cies, and between Hselð�Þ and the distribution of nonsynonymous
site frequencies. Under this analogy, the right-hand side of
Equation (68) corresponds to dN/dS—the ratio of nonsynonymous
to synonymous divergence rates (adjusted, as usual, for differen-
ces in mutation rates among the two types of mutations) (Yang
and Bielawski 2000).

In Fig. 5, we plot the ratio between Hselð�Þ and Hneuð�Þ as mea-
sured in simulations for a subset of the populations considered in
Supplementary Fig. 3. In all cases, the ratio Hselð�Þ=Hneuð�Þ
approaches F/U as � ! 1. This can be understood as a

consequence of the fact that mutations already present at the
very highest frequencies will drift neutrally to (or away from) fix-
ation. In contrast, as � ! 0; Hselð�Þ=Hneuð�Þ ! 1 for all cases
depicted in Fig. 3 [and thus Equation (67) breaks down]. This is
also to be expected: mutations observed at sufficiently low fre-
quencies will have occurred at short enough times into the past
that their fates have not yet been substantially impacted by se-
lection.

The behavior we see in these extreme limits is also observed
in the independent sites model in Equation (1) (Sawyer and Hartl
1992; Hartl et al. 1994). However, these classical results predict
that the high-frequency limit only applies for extremely large fre-
quencies (1� � � 1=jTcsj � 1). In contrast, Fig. 5 shows that
Hselð�Þ=Hneuð�Þ � F=U over a much broader range of intermediate
frequencies in the MSSM regime. This has important consequen-
ces for the interpretation of population-genetic data, and in par-
ticular for application of the “asymptotic alpha” approach
introduced by Messer and Petrov (2013); we comment on this fur-
ther in the Discussion. Similarly, the independent sites model in
Equation (1) predicts that the deleterious site frequency spectrum
will start to differ from its neutral counterpart when �� 1=Tcjsj.
In contrast, Fig. 5 shows that the frequency scale at which Hselð�Þ
and Hneuð�Þ start to differ is not given by 1=Tcjsj in the MSSM re-
gime; we discuss related implications for estimates of Tcs in the
Discussion.

Importantly, from Fig. 5, it is clear that the shapes of SFS ratio
curves—and in particular, the frequency scale on which they
transition from 1 to F/U—do not depend simply on Tchsi (or,
equivalently, on Tchsf i); a given value of Tchsi is compatible with

(a)

(b)

Fig. 5. Ratio between selected and neutral SFSs, scaled by the ratio between selected and neutral mutation rates, for adapting populations (a) and
ratcheting populations (b) subject to a single-effect DFE with Tcs values denoted in each panel. Ratio curves are plotted on a log scale and are scaled
such that tick marks correspond to the values of

ffiffiffiffiffiffiffiffiffi
F=U

p
and F/U averaged over simulation runs, for each curve (with F the fixation rate of selected

mutations, either beneficial or deleterious). Each curve corresponds to a simulated population with parameters lying on the constrained grid depicted
in Supplementary Fig. 3; for each panel, the represented Tcb values are linearly spaced.
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SFS ratio curves which differ substantially, and the parameter Tcb
is equally if not more important in determining the crossover fre-
quency scale. Empirically, we can see that variation of SFS ratio
curves (and the crossover frequency scale) is largely mediated by
the quantity Nr, another population-level quantity; note that
r2 ¼ v� Uhsi denotes the population-wide fitness variance. To
see this across a broad range of parameters, for each observed
SFS ratio curve we identified, using spline interpolation, the fre-
quency �c at which Hselð�Þ=Hneuð�Þ reaches

ffiffiffiffiffiffiffiffiffi
F=U

p
(the half-

maximum of Hselð�Þ=Hneuð�Þ in log-space). In Fig. 6, we plot these
crossover frequencies �c a function of our MSSM approximation
predictions for Nr, with points colored by Tchsf i values (for adapt-
ing populations) or Tchsi values (for ratcheting populations). We
can see a simple power law dependence of �c on Nr; parameter
combinations with similar Nr values have similar �c values, even
if their values of Tchsi differ substantially. This echoes findings of
Good et al. (2014) in the infinitesimal regime; in that work, a simi-
lar collapse is found for the dependence of the neutral heterozy-
gosity. In Supplementary Fig. 4, we plot the full SFS ratio curves
for the same set of parameter combinations, colored by Nr val-
ues; there we can see that variation in full SFS ratio curves (in ad-
dition to the crossover frequency �c) is largely mediated by
variation in Nr.

Together, these results suggest that efforts to infer the distribu-
tion of scaled effects Tcs using existing approaches (e.g.
Bustamante et al. 2001; Eyre-Walker et al. 2006) which “fit” the neu-
tral and selected SFSs may fail when applied to rapidly evolving
populations such as those considered here. In particular, these

classical results cannot explain the marked dependence of SFS ra-

tio curves on Tcb and/or Nr observed above for fixed values of Tchsi.

The neutral and selected site frequency spectra
We now proceed to compute the neutral and selected SFSs di-

rectly. In Supplementary Appendix E, we use the merger proba-

bilities K0
m;kðtÞ calculated using Equations (60) and (64) to simplify

Equation (58), with the result

P0ðkjmÞ � Tcl
m

k

0
@

1
A



ð1

0

sin py
py

Bðk� y;m� kþ yÞdy;

(69)

where B(x, y) is the Beta function satisfying Bðx; yÞ ¼ CðxÞCðyÞ=
Cðxþ yÞ. Up to an overall scale factor, P0ðkjmÞ in Equation (69)

matches the SFS corresponding to the BSC, recently calculated by

Kersting et al. (2019) directly from the BSC partition structure.

Thus, similar to previous work (Desai et al. 2013; Kosheleva and

Desai 2013; Neher and Hallatschek 2013), Equation (69) implies a

correspondence between genealogies in the MSSM regime and

those of the BSC—at least for aspects of genealogies which deter-

mine the average SFS at the moderate to high frequencies for

which Equation (69) is valid. We will refer to the large-m limit of

mP0ð�mjmÞ with P0ðkjmÞ given by Equation (69) as hBSC
neuð�Þ and pro-

vide an expression for hBSC
neuð�Þ in terms of special functions in

Supplementary Appendix E.

(a)

(b)

Fig. 6. Dependence of the crossover frequency �c on Nr. Simulated populations in (a) are subject to an exponential DFE, while simulated populations in
(b) are subject to a single-effect DFE. For adapting populations (left) points are colored by their values of Tchsf i, while for ratcheting populations (right)
points are colored according to their values of Tchsi. Values of Nr are computed using the MSSM approximation with r2 ¼ v� Uhsi. For the exponential
DFE case, parameters correspond to those on the constrained grid described above and depicted in Supplementary Fig. 1. For the single-effect DFE case,
parameters correspond to the points on a similar constrained grid in the space of Tcb vs Tcs, depicted in the space of NU vs Ns in Supplementary Fig. 3.
For clarity, we have displayed only points corresponding to simulated populations with hsf i < 3b (such that the MSSM approximation does not break
down) and Tchsf i > 1=4 (such that the neutral and selected SFSs differ substantially at high frequencies).
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The quantity hBSC
neuð�Þ well approximates the actual SFS Hneuð�Þ

only for � such that typical observed mutations have ages t satis-
fying bðt� TcÞ � 1. The time integral yielding Equation (69) is
dominated by times bðt� TcÞ � 1 only when logð1=�Þ � Tcb. At
lower frequencies such that logð1=�Þ � Tcb, mutations with ages
bðt� TcÞ ¼ Oð1Þ make a dominant contribution to the SFS.
Fortunately, at these lower frequencies, fluctuations in the size
of a focal lineage make a small contribution to the denominator
of Equation (59). As a result, the SFS can be calculated by consid-
ering the marginal distribution of a single lineage, which is
encoded by the generating function he�znðtjxÞi � e�/zðx;tÞ. In
Supplementary Appendix A, we carry out an analysis of /zðx; tÞ
on fitness scales OðbÞ and time scales Oð1=bÞ, extending the pre-
vious analysis of /zðx; tÞ conducted by Fisher (2013). In
Supplementary Appendix E, we show how this generating func-
tion can be inverted to obtain an approximation for hneuð�Þ,

hAiry
neu ð�Þ � �

Tcl

�2ðTcbÞ2


½log Ai�00 �jz0j þ
1

Tcb
log

1
�

	 

:

(70)

In the limit 1
Tcb

log 1
� � 1,

hAiry
neu ð�Þ !

Tcl
�2 log 2ð1=�Þ ; (71)

which is precisely the asymptotic behavior of hBSC
neuð�Þ as � ! 0;

thus the two functions hAiry
neu ð�Þ and hBSC

neuð�Þ have a smooth cross-

over at 1
Tcb

logð1=�Þ � 1. In principle, our predictions hAiry
neu ð�Þ and

hBSC
neuð�Þ could be connected by asymptotic matching. Notably,

hBSC
neuð�Þ depends on the parameters N and lðsÞ only via the overall

scale factor Tcl, which reflects the overall fixation rate of neutral
mutations over the timescale Tc of coalescence. In contrast,

hAiry
neu ð�Þ depends separately on the quantities Tcl (which again

sets an overall scale factor) and Tcb. This suggests that for the
purposes of distinguishing between (and potentially inferring)
evolutionary parameters, an understanding of the low-frequency
portion of the SFS is particularly important.

Both hAiry
neu ð�Þ and hBSC

neuð�Þ, however, neglect the contribution of
mutations with ages t such that bðt� TcÞ is large and negative. To
capture the contribution of mutations with ages t < Tc, a determin-
istic approximation is useful. Under such an approximation, the fre-
quency of an observed mutation—and its age—precisely determine
the relative fitness of the ancestral background on which the muta-
tion must have arisen. The contribution to the SFS from ages t < Tc

can then be obtained by integrating over the times at which a muta-
tion may have occurred, weighted by the corresponding probabili-
ties with which the mutation arose on a background with the
respective requisite fitness. A particularly simple approximation, in-
troduced by Neher and Shraiman (2011), can be made by assuming
that mutations arise within the “bulk” of the fitness distribution

(which is well-described as a Gaussian f ðxÞ / e�x2=2r2
, with variance

r2 ¼ v� Uhsi) and by approximating nðtjxÞ—the deterministic line-
age size at time t, given a founding background fitness x—as

n0ext�r2t2=2 (where n0 denotes the size of a lineage upon establishing,
at which point its lineage begins to grow deterministically, under
this approximation). This yields a resulting SFS approximated by

hGaussian
neu ð�Þ � l

r�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log Nr�

p : (72)

In Supplementary Appendix E, we generalize the above argu-
ment to the regime in which mutations arise outside the “bulk” of
the fitness distribution, or at times such that the approximation
nðtjxÞ � n0ext�r2t2=2 breaks down by the time the mutation is ob-
served. A key simplification arises because of a relation between
the deterministic lineage sizes nðtjxÞ and the Laplace transform
~f ðzÞ of f(x). We find that more generally, the deterministic contri-
bution to the SFS is given by

hDeterministic
neu ð�Þ / 1

�2

d log �peak

dtpeak
j�peak¼� (73)

where �peakðtpeakÞ is the frequency at which a lineage peaks in size,
given its peak size occurs at time tpeak (which in turn can be
expressed as a function of the lineage’s initial relative fitness x); the
derivative in Equation (73) is evaluated at tpeak such that �peak ¼ �.
The applicability of Equation (73) reflects the fact that the contribu-
tion of any particular lineage to the time-averaged SFS is typically
dominated by the time the lineage spends near its peak in size; this
intuition has been used to calculate the SFS in the presence of purify-
ing selection, for example (Cvijovi�c et al. 2018). As we show in
Supplementary Appendix E, Equation (73) can easily be approxi-
mated when stpeak � 1 for relevant s in lðsÞ, or when
bðtpeak � TcÞ � 1, and can be evaluated more generally by numeri-
cally solving a simple equation for tpeak in terms of �peak. In the limit
stpeak � 1 (which occurs for sufficiently low �), we find that
hDeterministic

neu ð�Þ tends to hGaussian
neu ð�Þ given in Equation (72), as expected.

Finally, at the very lowest (and highest) frequencies, the SFS is
dominated by completely neutral genetic drift. A well-known re-

sult is that hð�Þ ¼ 2Nel
� for a neutrally evolving population with ef-

fective population size Ne (Crow and Kimura 1970); at sufficiently
low frequencies, mutations contribute in the same way to the
SFS, since selection has not yet had sufficient time to alter their

fates substantially (Cvijovi�c et al. 2018). As a rough heuristic, we
might expect this result to hold with Ne=N equated to

1ffiffiffiffiffiffiffiffi
2pr2
p

Ð 1=ðN�Þ
�1=ðN�Þ e

�x2=2r2
dx ¼ erf

�
1ffiffi

2
p

Nr�

�
, the fraction of individuals in

the “bulk” of the fitness distribution which will typically reach a
frequency � in the population before establishing (i.e. reach a fre-
quency � primarily by genetic drift as opposed to by deterministic
forces, contingent on reaching a frequency �). We thus define

hDrift
neu ð�Þ �

2Nl
�

erf
1ffiffiffi

2
p

Nr�

	 

; (74)

which has a relatively smooth crossover to hGaussian
neu ð�Þ at

� � 2=ðNrÞ, roughly the threshold frequency which most muta-
tions founded in the “bulk” of the fitness distribution will not
reach before establishing. A similar argument suggests that
hneuð�Þ ! 2Nl as � ! 1, although we have not worked out a heu-
ristic for the dependence on � in this limit.

The transitions between these frequency regimes are
smoothly varying crossovers. To obtain concrete predictions, it is
useful to consider a piecewise approximation,

HPW
neuð�Þ �

hDrift
neu ð�Þ � < 2=ðNrÞ

hAiry
neu ð�Þ þ hGaussian

neu ð�Þ 2=ðNrÞ < � < e�Tcb

hBSC
neuð�Þ þ hGaussian

neu ð�Þ e�Tcb < � < 1=2

min hBSC
neuð�Þ þ hGaussian

neu ð�Þ; 2Nl
h i

� > 1=2

;

8>>>>>>>><
>>>>>>>>:

(75)
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where hBSC
neuð�Þ; hAiry

neu ð�Þ; hGaussian
neu ð�Þ; hDrift

neu ð�Þ are given above. Note

that mutations with ages t < Tc (accounted for by hGaussian
neu ð�Þ) and

with ages t > Tc or bðt� TcÞ ¼ Oð1Þ (accounted for by hBSC
neuð�Þ and

hAiry
neu ð�Þ, respectively) contribute additively to the SFS, which moti-

vates the inclusion of the sums in Equation (75). hGaussian
neu ð�Þ is im-

portant primarily for � < e�Tcb—and over a broad range of log �,

both hGaussian
neu ð�Þ and hAiry

neu ð�Þ are important—but is retained for � >

e�Tcb to ensure a smooth piecewise curve. In Fig. 7, we compare the
predicted SFSs given by Equation (75) to neutral SFSs observed in
simulations. In the same figure, we compare simulated selected
SFSs to predicted selected SFSs obtained using a piecewise-defined

function HPW
sel ð�Þ. This function is defined completely analogously

to HPW
neuð�Þ in Equation (75), with analogous contributions

hDrift
sel ð�Þ; hGaussian

sel ð�Þ; hAiry
sel ð�Þ, and hBSC

sel ð�Þ from selected mutations.

The only differences are that l is replaced by lF=U in

hAiry
sel ð�Þ; hBSC

sel ð�Þ, and in the upper limit to hPW
sel ð�Þ imposed by 2Nl.

These replacements are justified because the contributions to

hAiry
sel ð�Þ and hBSC

sel ð�Þ from a mutation with fitness effect s both in-

volve overall factors of eTcs (which, integrated over qðsÞ, yield a fac-

tor F/U). We provide further comparison of HPW
neuð�Þ and HPW

sel ð�Þ
with simulated site frequency spectra in Supplementary Figs. 5–8.

Based on these considerations, �c should lie at a frequency

such that hGaussian
sel ð�cÞ is of comparable magnitude to hAiry

sel ð�cÞ, and

should obey the approximate bound

Tcb � log
1
�c

	 

� log Nr: (76)

In Supplementary Fig. 9, we verify that Equation (76) is satis-

fied for the populations shown in Fig. 6 for large Nr. We leave a

more complete analytical description of the crossover frequency

�c, as well as the precise frequency-dependence of hselð�Þ=hneuð�Þ

at the lowest frequencies O 1
Nr

� �
, for future work.

(a) (b)

(c) (d)

Fig. 7. Site frequency spectrum of neutral mutations (a and b) and of selected mutations (c and d). Colored lines denote SFSs observed in simulations,
averaged over at least 800 epochs and smoothed using a moving average box kernel smoother. Solid black lines denote the corresponding theory
predictions of the piecewise-defined function in Equation (75) or its generalization to the selected SFS; for each theory curve, the “x” marker denotes the
point at which � ¼ e�Tcb, and the circle marker denotes the point at which � ¼ 2=ðNrÞ. Dashed black lines denote the BSC prediction hBSCð�Þ for the
parameter combination with the largest value of Tcb in each panel (with BSC predictions for other parameter combinations simply shifted by a constant
factor). All SFSs and theory curves are normalized by our theoretical prediction for hð1=NÞ, which is 2N2U for selected mutations and 2N2Un for neutral
mutations. In all cases, populations are driven by an exponential DFE. Simulated parameters are chosen with Tchsf i ¼ 1 for adapting populations, and
with Tchsi ¼ 1 for ratcheting populations; in both cases, Tcb values are linearly spaced and denoted by the color of each curve. Note that each simulated
SFS terminates at the frequencies � ¼ 1=N and � ¼ 1� 1=N at which we denote simulated SFS values by square markers.
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Pairwise heterozygosity and coalescence times
A special case of the neutral site frequency spectrum is the pair-
wise neutral heterozygosity pneu � P0ð1j2Þ. More generally, we can
consider the pairwise heterozygosity Psð1j2Þ for a single selected
site as well as the aggregate heterozygosity psel �

Ð
Psð1j2ÞqðsÞds.

With these definitions, pneu and psel can both be computed using
Equation (69) and the SFS ratio given in Equation (67). These
expressions, however, are obtained under the assumption that
typical contributing mutations have ages t > Tc. In reality, pneu

(as well as, rather generally, psel) receives a substantial contribu-
tion both from mutations with ages t > Tc and from mutations
with ages t < Tc. In Supplementary Appendix E, we show, using
the approximate behavior of Usðz; tÞ for t > Tc and for t < Tc, that

Psð1j2Þds � 2Tcl eTcs þ eTcs � 1
Tcs

	 

; (77)

where the second term in Equation (77) can be considered the
contribution to Psð1j2Þ from mutations with ages t < Tc. This
term, which can alternatively be written as 2l

Ð Tc

0 estdt, can be
interpreted as follows: mutations with ages t� Tc are present at
expected frequency est=N, with a negligible fraction of mutations
shared among sampled individuals. We note that the s! 0 case
of Equation (77) reduces to

pneu ¼ 4Tcl (78)

Since pneu is related to the mean time hT2i to pairwise coales-
cence according to pneu ¼ 2UnhT2i, Equation (78) then implies that

hT2i � 2Tc: (79)

That is, the defined quantity Tc corresponds with (one-half)
the average time hT2i to pairwise coalescence, motivating our in-
terpretation of Tc as a coalescence timescale. In Supplementary

Appendix E, we obtain the same result by considering the time-
dependent pairwise merger probability Q2ðtÞ ¼ K2;2ðtÞ. Our calcu-
lation in Supplementary Appendix E also yields the distribution of
times to pairwise coalescence (and relatedly, the distribution of
the pairwise neutral heterozygosity); we find the same exponen-
tial distribution of pairwise coalescence times, following an initial
delay period of time Tc during which coalescence events are negli-
gible, observed by Neher and Hallatschek (2013) in the infinitesi-
mal regime (with a different overall timescale).

In Fig. 8, we compare our predictions in Equation (77) for pneu

and psel to averages of these quantities measured in simulations.
We find good agreement between simulations and our prediction,
provided the MSSM approximation conditions of validity are met,
though agreement appears to require larger values of Tcb than for
the quantities considered in Fig. 4. We note also that a separate
prediction for p can be obtained from the piecewise approxima-
tion to the site frequency spectrum in Equation (75), using the re-
lation p ¼ 2

Ð
hð�Þ�ð1� �Þd�. We compare this prediction to the

observed values of pneu and psel in Supplementary Fig. 10; a simi-
lar level of agreement is obtained.

Key fitness scales and timescales: simple
heuristics
We now turn to summarize the different interpretations that can
be given to the quantities Tc, b, and c defined above, and provide a
heuristic description of the dynamics within the MSSM regime.
We begin by noting that the distribution Nf ðxÞwðxÞ of future com-
mon ancestors fitnesses is peaked with width Dxf � OðbÞ around
x	f � cþ b � c. This is our motivation for defining the region x ¼
cþOðbÞ as the fixation class, since collectively, this region (of
width approximately jz0jb) fixes with probability Oð1Þ, despite its
small size relative to the total population. In Supplementary
Appendix C, we show how our approximate solutions f(x) and
w(x) in Equations (25) and (26) can be considered local

(a) (b)

(c) (d)

Fig. 8. Comparison between simulated and predicted heterozygosity p of neutral mutations (a and b), and between simulated and predicted
heterozygosity p of selected mutations (c and d), for adapting populations (a and c) and ratcheting populations (b and d). Parameters are identical to
those simulated in Fig. 4.
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approximations, valid precisely around x¼ c; we obtain a condi-
tion of validity for the MSSM regime by ensuring the region of va-
lidity of this local approximation encompasses the entire fixation
class.

Competition among the fixation class, and the
fates of “doomed” lineages
Our condition of validity for the MSSM regime, expressed in
Equation (34), essentially requires that s� Dxf throughout the re-
gion dominating

Ð
s2qf ðsÞds. In this sense, mutational effects can

be considered “infinitesimal” in the MSSM regime: the typical
fixed fitness effect ~s must be much smaller in magnitude than
the range of fitness space which typically produces a future com-
mon ancestor (i.e. the width of the fixation class). Dynamically,
this means that individuals routinely fix despite having fitness
disadvantages, compared to the most-fit individuals in the popu-
lation, of several times (up to Dxf =~s times) the typical fixed fitness
effect ~s. These individuals catch up and fix not by acquiring a sin-
gle large-effect beneficial mutation, but rather by rapidly acquir-
ing several mutations (and/or by avoiding deleterious mutations)
so as to “leapfrog” above their more-fit competitors. Less-fit indi-
viduals are exponentially less likely to fix—with 1=Tc the fitness
scale on which fixation probabilities vary—but there are also ex-
ponentially more of such individuals; over the fitness scale
Dxf � b, the two exponential factors cancel, leaving a relatively
broad range of background fitnesses which routinely supply a fu-
ture common ancestor. Intuitively, it makes sense that this be-
havior is obtained for high mutation rates (relative to the size of
selective effects), but as we have shown, this behavior also arises
for sufficiently large population sizes (as long as qðsÞ falls off
faster than exponentially with large, positive s). The infinitesimal
regime constitutes a special case of the MSSM regime in which
mutations are “infinitesimal” in a more narrow sense: in the in-
finitesimal regime, selection acts in a negligible way on any indi-
vidual mutation.

In contrast, in the “moderate-speeds” regime, Dxf � ~s: nearly
all future common ancestors come from within one
“predominant” effect ~s of the nose (Fisher 2013; Good and Desai
2014). The lineages of individuals lying more than one multiple of
~s below the nose are essentially “doomed” to eventually go ex-
tinct, and the chance with which these individuals leapfrog above
their more-fit competitors can be ignored. As a result, in analyz-
ing the “moderate-speeds” regime several simplifications can be
made. For instance, in treating a population as a set of discrete
fitness classes (separated by predominant-effect mutations),
mutations are only important only via their potential to establish
a new “lead” fitness class (Desai and Fisher 2007), and can thus
be ignored in fitness classes below the current lead class. Once a
new lead class is established, the frequencies of lineages, within
the previous lead class, can be treated as “frozen.” Each prior lead
class will grow in size—while losing relative fitness at rate v—and
will eventually comprise a large fraction of the total population,
and at that point, the frequencies of individual lineages within
the class will have changed negligibly. This approximation has
been used to simplify calculations of genetic diversity statistics
and sojourn/fixation times of mutations (Desai et al. 2013;
Kosheleva and Desai 2013).

In the MSSM regime, it is less useful to model a population as
a set of discrete fitness classes, since lineage frequencies are at
no point “frozen” within fitness classes. Instead, lineages con-
tinue to acquire mutations and spread out in relative fitness as
they fall behind the nose. To connect the dynamics of the fixation

class with the dynamics of the bulk—which we have done by en-
suring f(x) is appropriately normalized, in enforcing the condition
1=N ¼

Ð
f ðxÞwðxÞdx—accounting for this spread is important.

Using a deterministic approximation (carried out in
Supplementary Appendix F), we can gain further intuition on the
dynamics of lineages as they fall behind the nose. In the special
case of the infinitesimal regime, we review how lineage-wide rel-
ative-fitness distributions evolve according to a reaction-diffusion
equation with diffusion constant D � 1

2 Uhs2i, advection rate �r2,
and local growth rate x. The infinitesimal regime has thus long
been recognized as a limit of “mutational diffusion” (Tsimring
et al. 1996); along the line of descent, fitness follows a biased ran-
dom walk with diffusion constant D (Neher et al. 2014). A sche-
matic depiction of how fit lineages spread out in relative fitness
over time is provided by Neher and Hallatschek (2013). More gen-
erally in the MSSM regime, we can see that a diffusion approxi-
mation may not be adequate in describing the trajectories of
lineages. In particular, if Tc~s > 1 then at later times, further
mutations acquired by the lineage will have begun to shape its
fitness distribution in a nondiffusive way (i.e. its fitness variance
will grow faster than linearly with time).

Interpretations of the timescale Tc

A key result of Statistics of Genetic Diversity is that Tc � hT2i=2. This
motivates our interpretation of Tc [as defined in Equation (17)] as
a coalescence timescale. The timescale Tc can also be interpreted in
a few different ways. In Supplementary Appendix F, we show
that under a deterministic approximation, the descendants of
the fixation class—initially consisting of N

Ð xc

c f ðxÞdx individuals—
will collectively sweep through and comprise an Oð1Þ fraction of
the population at Tc generations. This motivates us to interpret Tc

as a sweep timescale. In the “high-speeds regime,” a related inter-
pretation has been given to Tc as the time required for fluctua-
tions near the high-fitness nose of the fitness distribution to
substantially affect its bulk dynamics (Fisher 2013).

Since the (linearized) operators governing the forward-time
and backward-time dynamics are adjoints of one another, it is
not particularly surprising that the timescale Tc can also be inter-
preted as a delay timescale of coalescence: looking backwards in
time, a given pair of individuals is unlikely to coalesce until Tc

generations have elapsed. We can understand this correspon-
dence heuristically by viewing the fixation class as an exponen-
tially expanding subpopulation, among the total population,
within which all coalescence events must occur (since the fixa-
tion class is destined to eventually fix). It is well-known that in
rapidly expanding populations, coalescence events occur primarily
at the very beginning of exponential growth (i.e. when the popu-
lation was small in size) and that genealogical trees are starlike,
with long terminal branches (Slatkin and Hudson 1991); thus,
looking backward in time, we expect few coalescence events to
occur until near the end of the sweep timescale.

We can also gain intuition on the delay timescale Tc by consid-
ering, for a randomly chosen individual, the distribution A(x, t) of
its ancestor’s relative fitness x as the time t recedes into the past.
As we describe in Supplementary Appendix A,

Aðx; tÞ / f ðxÞ/1=Nðx; tÞ; (80)

with limt!1 Aðx; tÞ ¼ Nf ðxÞwðxÞ corresponding to the distribution
of fitnesses of eventual common ancestors described above.
Importantly, we can see that at Tc generations into the past, the
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distribution Aðx;TcÞ � Ai c�x
b

� �
comes to resemble (and, subse-

quently, rapidly converges to on a timescale Oð1=bÞ) the eventual

distribution of ancestor fitnesses Nf ðxÞwðxÞ / Ai2 c�x
b

� �
. Thus, the

ancestors of typical individuals (which start out near “bulk” of
the fitness distribution) migrate upward in relative fitness and
reach the fixation class on the timescale Tc. After this point, the
ancestors of a typical sample of individuals begin to coalesce
within the fixation class. This matches the interpretation given by
Neher and Hallatschek (2013) for the delay timescale in the infini-
tesimal regime, using a heuristic argument: in that case, ances-

tors migrate upwards in fitness at initial rate r2, slowing down at

later times to reach a fitness r4=4D at the delay timescale r2=2D.
It is not entirely clear why the delay timescale should match

the coalescence timescale of the ensuing BSC process—that is,
why coalescence within the fixation class requires approximately
the same amount of time as that required to reach the fixation
class. The correspondence between these two timescales appears
to be a relatively universal feature of rapidly evolving popula-
tions, observed in the moderate-speeds regime (Desai et al. 2013;
Kosheleva and Desai 2013) and the infinitesimal regime (Neher
and Hallatschek 2013). However, this is not generically the case:
for instance, in the adapting populations modeled by Brunet et al.
(2007) as FKPP waves, the delay timescale is much shorter than
the coalescence timescale, even though the genealogies of those
populations are described by the BSC. The key difference is that
in the model considered by Brunet et al. (2007), the growth rate of
a lineage does not depend linearly on its fitness advantage x.
Instead, all individuals lying above minimum fitness cutoff sur-
vive until the next generation, and individuals therefore have a
reduced benefit of being much fitter than average.

Conditional neutrality at long times
The simple exponential dependence pfixðsÞ / eTcs suggests that in
the MSSM regime, selection acts in a substantial way to amplify
the frequency of a mutation only over the timescale Tc. This in
turn suggests a picture of conditional neutrality in the fates of
mutations at times t > Tc. This conditional neutrality can also be
seen through our result for the SFS of selected mutations. As we
have seen, the SFS of selected mutations with effects between s
and s þ ds (and ages t > Tc) is simply scaled by an overall factor
eTcs, relative to the neutral SFS (as well as a scaling factor reflect-
ing the difference in the mutation rates). Thus, we can think of
selection acting to amplify the probability with which a mutation
is observed only over timescale Tc. At least up to the information
contained in the SFS, frequency trajectories of selected mutations
at times t > Tc are indistinguishable from those of neutral muta-
tions with the same frequency at time Tc. We note that a stronger
picture of conditional neutrality is seen in the infinitesimal re-
gime. In the infinitesimal regime, Tc � 1=s for relevant s, so
pfixðsÞ � eTcs=N reduces to 1=N (plus small corrections). Even dur-
ing the initial period t < Tc, the fate of a typical mutation (or
even of a typical fixed mutation) is influenced by its selective ef-
fect in a negligible way. In the MSSM regime, the selective effect
of a mutation can influence its fate in a substantial way, but only
during the first Tc generations of the mutation’s lifetime.

At a heuristic level, it makes sense that Tc is the relevant time-
scale on which selection acts. To see this, we note that looking
backward in time, a given pair of individuals which happen to be
sampled from the fixation class will coalesce at average time Tc

(because they are sampled from the fixation class, they skip the

initial delay period). Looking forward in time, then, some individ-
ual will have grown to comprise a macroscopic fraction of the fix-
ation class on the same timescale Tc. Note that individuals do not
fix within the fixation class over the timescale Tc—fixation
requires a time Oðlog log NÞ multiples of Tc, given the distribu-
tions of times to coalescence of a large sample under the BSC
(Berestycki 2009; Desai et al. 2013). At the timescale Tc, however,
lineages originally founded in the fixation class (or more pre-
cisely, the portions of these lineages still in the fixation class)
have spread out enough in fitness so that initial fitness differen-
ces of size s� b have been “forgotten”; selection thus no longer
acts to amplify the frequency of a mutation which occurred in
that region. Because the fixation class will eventually take over
the population, this implies conditional neutrality in the full pop-
ulation on the same timescale.

A similar period of conditional neutrality—after an initial de-
lay—is noted by Kosheleva and Desai (2013) in the “moderate-
speeds” regime. In that case, Kosheleva and Desai (2013) note
that a mutation observed at a macroscopic frequency x0—large
enough to essentially guarantee the mutation occurred in the
“nose” class—will go on to fix with the same probability x0. This is
explained by the fact that lineage frequencies are “frozen” within
fitness classes in that case, so that a mutation currently at mac-
roscopic frequency x0 in the population was once present in the
“nose” class at the same frequency x0, a delay time Td ago. The
fraction of the nose class occupied by any given lineage evolves
neutrally as a Markov process (in that the future fraction of the
nose class occupied by any given lineage depends only on the
fraction of the nose class it currently occupies) and so a period of
conditional neutrality emerges after the delay timescale Td.

In the MSSM regime, the same argument does not quite apply,
even upon replacing the “nose” class with the fixation class. The
key difference is that the fraction of the fixation class occupied
by a given lineage does not evolve as a Markov process: fitness
differences among individuals in the fixation class are important
in predicting their eventual fates (since Tcb� 1). However, the
same argument does hold if we instead consider the effective lead
frequency �L of a lineage, defined as

�LðtÞ � N
ð

gðx; tÞwðxÞdx; (81)

where g(x, t) is the relative fitness distribution of the lineage (nor-
malized such that its total size at time t equals N

Ð
gðx; tÞdx). The

generating function he�h�LðtÞi is considered by Fisher (2013)—
though in that work, g(x, t) in Equation (81) is primarily taken as a
fitness distribution of an entire population whose total size can
fluctuate. In Supplementary Appendix E, we briefly review key
features of he�h�LðtÞi discussed by Fisher (2013). An implication of
these results is that the frequency nðtÞ=N of a lineage in a popula-
tion closely mirrors its effective lead frequency �Lðt� TcÞ a time Tc

into the past (provided the lineage was founded in the fixation
class). Furthermore, the effective lead frequency �LðtÞ evolves as
a neutral Markov process, in that he�h�LðtÞi can be obtained from �L

at any earlier time [i.e. the distribution of �L at later times is me-
diated by its current value, and does not explicitly depend on the
full lineage-wide distribution g(x, t)]. Together these results give
rise to a type of conditional neutrality at long times similar to
that observed by Kosheleva and Desai (2013).

Using the generating function he�h�LðtÞi, we can obtain the tran-
sition density Gtð�LðtÞj�Lð0ÞÞ—the probability a lineage has effective
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lead frequency �LðtÞ at time t, given its effective lead frequency
�Lð0Þ at time 0—with the result

Gtð�LðtÞ;�Lð0ÞÞ�
sin½paðtÞ��Lð0Þ

�
1��Lð0Þ

�
p�LðtÞ

�
1��LðtÞ

�

 1�

1��Lð0Þ
�2

�LðtÞ
1��LðtÞ

� �aðtÞ
þ�Lð0Þ2 1��LðtÞ

�LðtÞ

� �aðtÞ
þ2�Lð0Þð1��Lð0ÞÞcos

�
paðtÞ

�� �;
(82)

where aðtÞ�e�t=Tc . We carry out this calculation in Supplementary
Appendix E. Up to a change in timescale, Gtð�LðtÞ;�Lð0ÞÞ in
Equation (82) is the same as the transition density for the actual
lead frequency (i.e. the frequency in the “nose” class) found in the
“moderate-speeds” regime (Desai et al. 2013; Kosheleva and Desai
2013). The distributions of sojourn times found by Kosheleva and
Desai (2013) using the transition density thus carry over to the
MSSM regime as well, after making an overall change in the time-
scale, and replacing the actual lead frequency with the effective
lead frequency. Interestingly, the same transition density is
obtained by Hallatschek (2018) in a purely neutral model of a
population with an 1=n2 offspring number distribution from one
generation to the next (and which can be considered a forward-
time dual to the BSC). As discussed by Hallatschek (2018), this
transition density manifests as an apparent frequency-dependent
selection—a typical bias favoring majority alleles is balanced by
rare compensating jumps of low-frequency alleles to maintain
overall neutrality. We thus expect to see a similar apparent
frequency-dependence among mutational trajectories in the
MSSM regime at long times.

Upon incorporating selection into the model described above,
Hallatschek (2018) finds the same exponential dependence
pfixðsÞ / eTcs that we have shown is obtained in the MSSM regime.
In the model considered by Hallatschek (2018), a mutation with
effect s is shown to effectively increment the logit frequency
log ½�=ð1� �Þ� of a lineage by an amount s (i.e. a lineage which just
acquired a mutation with effect s behaves identically to a neutral
lineage whose logit frequency is larger by an amount s). In our
case, a mutation of effect s increments log �L by an amount Tcs,
provided it occurs within the fixation class (and has effect s� b).
Thus, the model considered by Hallatschek (2018) replicates quite
well the long-time dynamics of the MSSM regime, coarse-grained
on a timescale of Tc generations. A key difference, however, is
that in our model, the timescale Tc—the length of an effective
generation—is shaped by selection in a complicated way; in the
model considered by Hallatschek (2018), Tc is a fixed input pa-
rameter, independent of the action of selection.

The above results emphasize that while the effective fre-
quency of a mutation in the fixation class evolves as a neutral
Markov process, it does not evolve as a neutral Wright–Fisher dif-
fusion process. Thus, even during the conditionally neutral pe-
riod, we do not expect mutational trajectories to resemble those
of a purely neutral Wright–Fisher population—we only expect
that lineages have “forgotten” their initial fitness effect. This can
be contrasted with a type of quasi-neutrality discussed by
Cvijovi�c et al. (2018) in a model of strong purifying selection
(jTcsj � 1). In that model, the fitness advantage of individuals in
the “lead” class is balanced, on average, by the rate of mutations
out of the “lead” class. As a result, fluctuations in lineage frequen-
cies within the “lead” class closely resemble those in a purely
neutral Wright–Fisher population. The same fluctuations,
smoothed on a certain timescale, are then mirrored by the

fluctuations in overall mutational frequencies, after a delay pe-
riod. Relatedly, the SFS for this model has a “quasi-neutral” re-
gion scaling as 1=� for moderate frequencies � and differs from
the SFS of the BSC in important ways (Cvijovi�c et al., 2018); in con-
trast, in the MSSM regime deviations from the SFS of the BSC are
only observed at very low frequencies with logð1=�Þ > Tcb (and to
some extent, at the very highest frequencies). This difference
highlights the fact that the presence of multiple selected muta-
tions in a population at once—which is the case for the model
considered by Cvijovi�c et al. (2018)—is not sufficient to give rise to
the seemingly universal correspondence to the BSC we have de-
scribed above. Rather, the struggle among fit lineages to increase
fitness through new mutations, and the jackpot dynamics this
gives rise to, appear to be important features in giving rise to this
correspondence.

Discussion
As we have seen, evolutionary dynamics within asexual genomes
can be complex, even within the simplest models that include
only the effects of mutations, natural selection, and genetic drift.
The central difficulty is that when the mutation rate is suffi-
ciently high and the population size is sufficiently large, multiple
selected mutations often segregate simultaneously and their dy-
namics are not independent. We refer to this scenario as rapid
evolution, because evolution is not primarily limited by the wait-
ing time for new mutations to arise. Instead, numerous muta-
tions arise in a variety of linked combinations, and selection can
only act on these combinations as a whole. The resulting com-
plex dynamics of clonal interference and hitchhiking can limit
the efficiency of natural selection, and dramatically alter evolu-
tionary dynamics and population genetics.

We note that rapid evolution does not necessarily have to in-
volve adaptation. The key components of rapid evolution are
simply that numerous selected mutations segregate simulta-
neously within a linkage block—such that the population main-
tains substantial variation in fitness—and that the population
moves through fitness space over time as selected mutations
arise and fix. It can therefore involve both beneficial and deleteri-
ous mutations, and in particular can result when the accumula-
tion of beneficial and deleterious mutations balances so that
v¼ 0, and the population on average neither increases or
decreases in fitness (Goyal et al. 2012). It can even occur in sce-
narios where only deleterious mutations are possible (and hence
the rate of change in mean fitness, v, will be negative), as long as
deleterious mutations routinely fix (Neher and Hallatschek 2013).

In the past two decades, many authors have analyzed evolu-
tionary dynamics in rapidly evolving populations using traveling
wave models. However, previous work on these models has
largely been focused on two limiting cases: the case in which se-
lection is strong on single mutations (the “moderate-speeds” re-
gime and the “high-speeds” regime), and the case in which
selection is weak on single mutations (the infinitesimal limit).
These two limits correspond to the cases where Tc~s � 1 and
Tc~s � 1 respectively, where Tc is the coalescence timescale and ~s
is the typical fitness effect of a fixed mutation. In other words,
this previous work has assumed a strong separation of scales be-
tween the timescale Tc on which common ancestry is deter-
mined, and the timescale 1=~s on which selection can act on a
typical fixed mutational effect ~s.

In reality, however, any population is likely to experience
mutations with a wide range of selective effects, including many
in the intermediate regime between these two extremes. Our lack
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of understanding of the dynamics of those mutations for which
Tcs � 1 thus represents an important gap. This is particularly
problematic because it is natural to expect that “nearly neutral”
mutations with effects on the order of the inverse coalescence time-
scale (i.e. for which Tcs � 1) may have the largest impact on pat-
terns of genetic diversity (they are strong enough that their effects
are felt, but not so strong that they immediately sweep or are
purged; Ohta 1973; Akashi et al. 2012). Furthermore, recent theoreti-
cal work has found, in a model coupling both interference and local
epistasis, that the prevalence of mutations with Tcs � 1 may be an
emergent property of the evolutionary process (Held et al. 2019).

The expectation that mutations confer selective effects on a
wide range of scales is broadly consistent with numerous empiri-
cal studies that have attempted to infer distributions of selection
coefficients in natural populations based on population genetic
data (Eyre-Walker and Keightley 2007). These studies typically do
not infer selection strengths directly, but rather the product Tcs
(Sawyer and Hartl 1992; Sawyer et al. 2003; this is often referred
to as Nes under the assumption that Tc corresponds to an effec-
tive population size, but we have avoided this terminology since
the dynamics differ in many important ways from those of a neu-
tral population with an appropriately sized effective population
size; Neher 2013). Many of these studies find mutations with
Tcs � 1 are quite prevalent and comprise a large proportion of
fixed mutations. This includes mutations involved in viral and
mitochondrial DNA (Nielsen and Yang 2003), amino-acid substi-
tutions in Drosophila (Sawyer et al. 2007), synonymous mutations
affecting codon usage in Escherichia coli (Hartl et al. 1994) and
Drosophila (Akashi 1995; Zeng and Charlesworth 2009; Machado
et al. 2020), as well as among mutations occurring within animal
mitochondria (Nachman 1998).

It has remained unclear whether these results actually imply
that typical selective coefficients are of order 1=Tc, or whether
emergent aspects of the evolutionary dynamics tend to generate
patterns of variation that are most sensitive to the subset of
mutations in this regime. In addition, because these inference
approaches typically assume free recombination (Sawyer and
Hartl 1992; Bustamante et al. 2001; Sawyer et al. 2003), it is unclear
whether interference may confound these results (see e.g.
McVean and Charlesworth 2000).

These considerations highlight the importance of understand-
ing the evolutionary dynamics and population genetics of rapidly
evolving populations in cases where a relatively broad range of
selective effects is relevant, including effects s with Tcs � 1. In
this work, we make progress in this direction by extending

existing methods to apply within a broader regime of the
population-genetic parameter space, which we refer to as an
MSSM regime. In the MSSM regime, no assumption is made about
the magnitude of Tc~s; instead, we require that TcDxf � 1 and
~s � Dxf , where Dxf is the standard variation of fitness advantages
among individuals which eventually take over the population.
The first of these conditions is also required within the infinitesi-
mal regime and implies that selection is strong among haplotypes
competing for fixation. The second of these conditions differs
from the condition Tc~s � 1 required within the infinitesimal re-
gime. Instead of requiring that typical fixed mutational effects
are weak (and fix essentially neutrally), within the MSSM regime,
we require only that typical fixed mutational effects are weak
compared to the scale of fitness variation among potential future
common ancestors. Qualitative features of the MSSM and other
regimes are summarized in Table 3.

In Fig. 9, we provide a phase diagram depicting the MSSM and
other regimes, where for concreteness we assume the special
case of a single beneficial effect, parameterized by the dimen-
sionless quantities NUb and Ub=sb. In Table 4, we provide the (ap-
proximate) minimum N required for validity of the MSSM
approximation, for four representative sets of parameters (muta-
tion rate Ub and single beneficial effect sbÞ. This helps illustrate
examples of relevant populations for which the MSSM regime
may be of particular importance. For example, while validity of
the MSSM approximation for wild-type yeast with strong selec-
tion may require an unreasonably large population size, this re-
gime is more plausible for RNA viruses, mutator bacteria or
yeast, or wild-type yeast with weaker selection. In general, how-
ever, our knowledge of the effect size distributions in specific em-
pirical systems remains rather limited. We also note that the
quantities Tc; Dxf and ~s—which determine validity of the MSSM
regime as well as qualitative aspects of the dynamics—can at
least in principle by probed experimentally. For example, Tc could
be estimated using the typical fixation time of a new mutation as
measured from mutational frequency trajectories, ~s could be
measured by assaying the fitness effects of fixed mutations, and
Dxf could obtained by conducting relative fitness assays on the
individuals which eventually fix.

Our results are not a complete solution to the problem, since
our analysis does make other assumptions, and in particular it
does not apply to populations in the “moderate-speeds” regime.
However, in combination with earlier work, our analysis helps to
provide a more complete picture of how mutations with effects
on a wide range of scales shape the evolutionary dynamics of

Table 3. Qualitative properties of different regimes.

MSSM regime “Moderate
speeds” regime

SSWM regime Nearly neutral limit

Broad steady-state distribution
of fitnesses (r� s)

Yes Yes No No; Broad distribution
of mutational classes possible.

Strong selection on single
mutations (Tcs� 1)

Possible, but not required.
Not possible in the
infinitesimal regime;
required in the “high
speeds” regime.

Yes Yes No

Strong selection on
haplotypes (Tcr� 1)

Yes Yes N/A; Transient
strong selection
on established
lineages.

No

Substantial mutational
leapfrogging (Dxf � s)

Yes No No No; Leapfrogging across
mutational classes possible.
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rapidly evolving populations. By explicitly demonstrating an ap-
proximate correspondence between genealogies in the MSSM re-
gime and those of the BSC, our analysis further supports previous
claims that certain aspects of the evolutionary dynamics of rap-
idly evolving populations are relatively universal (Neher and
Hallatschek 2013). Given this apparent universality, we expect
that many of our qualitative conclusions (e.g. for selected and
neutral site frequency spectra) may apply in rapidly evolving
populations more generally. With this in mind, the MSSM regime
is a particularly useful regime of the parameter space to study: as
in the infinitesimal regime, the evolutionary dynamics are rela-
tively tractable, even for full DFEs, but unlike in the infinitesimal
regime, the dynamics of neutral mutations and of selected muta-
tions differ in a substantial way.

In particular, in this work, we have computed the selected and
neutral site frequency spectra in the MSSM regime, from which
predictions for dN/dS, pN=pS and related statistics can readily be
obtained. While these quantities are used extensively to infer the
strength and presence of selection in natural populations, our an-
alytical understanding of these quantities has previously
remained limited when linked selection is widespread. These
quantities are considered by Kosheleva and Desai (2013) in the
“moderate-speeds” regime, although that analysis is limited to
the case in which mutations each confer a single strongly benefi-
cial effect sb (with Tcsb � 1). Our present results allow us to

calculate these polymorphism and divergence statistics for full
distributions of beneficial or deleterious fitness effects, including
those with mutations near Tcs � Oð1Þ. This revealed that the
MSSM regime can produce dramatic departures from existing in-
tuition based on independently evolving sites.

At sufficiently low frequencies, the ratio between nonsynony-
mous and synonymous site frequency spectra, hNð�Þ=hSð�Þ,
approaches the ratio of the underlying mutation rates, as
expected under neutrality. For deleterious mutations, the fre-
quency scale at which the shape of hNð�Þ starts to deviate from
hSð�Þ is often used as a rough estimate of 1=jTcsj. Here, we have
found that in the MSSM regime, this transition does not occur for
frequencies � � 1=jTcsj, but instead depends strongly on
population-level quantities such as TcDxf or Nr. This suggests
that naive estimates of Tcs based on deviations of synonymous
from nonsynonymous site frequency spectra may severely over-
estimate the underlying selection strengths.

We have also shown that over a broad range of higher fre-
quencies, nonsynonymous and synonymous frequency spectra
are again related by a constant factor, equal to the ratio of the fix-
ation rates of the two types of mutations (FN and FS). As a conse-
quence, the frequency-resolved McDonald–Kreitman statistic,

að�Þ � 1� FS

FN

hNð�Þ
hSð�Þ

; (83)

Fig. 9. Phase diagram for the case of a single beneficial effect sb, in the space of dimensionless parameters Ub=sb and NUb. The blue line illustrates the
Nsb ¼ 1 boundary which separates the neutral regime (blue region) from the SSWM regime (red region). The red line illustrates the NUb logðNsbÞ ¼ 1
boundary which separates the SSWM regime from the “moderate speeds” regime (green region). The green line illustrates the other boundary of the
“moderate speeds” regime, at which log 2ðsb=UbÞ ¼ logðNsbÞ (Fisher 2013; Good and Desai 2014). The orange line denotes the boundary of the MSSM
regime at which sb ¼ b (the portion of orange line below the dotted line, where sb < b is the limiting condition of validity of the MSSM regime) or Tcb ¼ 1
(the portion of orange line above the dotted line, where Tcb > 1 is the limiting condition). The black dotted line shows where Tcsb ¼ 1, with the
infinitesimal regime the region shaded darker orange and the rest of the MSSM regime (including the “high speeds” regime) the region shaded lighter
orange.

Table 4. Example parameters.

Mutation rate Ub (per genome,
per generation)

Fitness effect sb Minimum N required Possible representative system

10�3 10�2 106 RNA viruses
10�4 10�3 107 Mutator bacteria or yeast
10�5 10�4 108 Wild-type yeast (weak selection)
10�5 10�3 1015 Wild-type yeast (stronger selection)
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approaches 0 for moderate to large frequencies �, even for large

jTcsj, and regardless of the rate of adaptation v. This quantity has

previously been used to estimate the fraction of fixed mutations

which were strongly beneficial, based on the value to which að�Þ
asymptotes at large frequencies (Messer and Petrov 2013). Our

present results suggest that in the MSSM regime, this “asymptotic

alpha” approach may severely underestimate the actual fraction

of adaptive substitutions, and might even give the impression

that a population is evolving nearly neutrally.
Throughout our analysis, we have assumed that the DFE lðsÞ

does not change as the population evolves. This will be true pro-

vided that there is no microscopic epistasis between individual

mutations, such that the fitness effect of one mutation depends

on the presence or absence of the other. However, our analysis

can also apply even in the presence of extensive microscopic

epistasis between individual mutations, provided that the overall

DFE lðsÞ does not vary across genotypes—that is, provided there

is no macroscopic epistasis (Good and Desai 2015).
Recent experimental work suggests that both microscopic and

macroscopic epistasis are widespread, at least in the evolution of

laboratory microbial populations (Jerison and Desai 2015). For ex-

ample, several recent studies have found general patterns of

diminishing returns epistasis, where fitness effects of beneficial

mutations systematically decline in more-fit genetic back-

grounds (Kryazhimskiy et al. 2014). Recent work has also shown

an analogous pattern where the fitness costs of deleterious muta-

tions become more severe in more-fit genetic backgrounds

(Johnson et al. 2019). These patterns of macroscopic epistasis sug-

gest that lðsÞ—and particularly qðsÞ—may change substantially

and systematically as a population evolves.
Our analysis, like most previous work on traveling wave mod-

els, does not directly address these effects of changing lðsÞ.
However, provided that lðsÞ changes slowly compared to time-

scale Tc on which mutations sweep through the population, we

expect our analysis to provide an accurate description of the evo-

lutionary dynamics at any given moment (given the appropriate

lðsÞ at that moment). Thus we can potentially model the effects

of diminishing returns and increasing cost epistasis (or any other

systematic variation in lðsÞ), provided only that these changes in

lðsÞ are sufficiently slow. Analogously, our approach does not

explicitly consider situations where changes in environmental

condition lead to temporal fluctuations in the DFE (e.g. a time-

varying fitness seascape; Agarwala and Fisher 2019; Schiffels et al.

2011). However, provided that these temporal fluctuations in lðsÞ
are sufficiently slow, our approach will appropriately describe

the evolutionary dynamics at any given moment. Of course, if

lðsÞ changes rapidly, either due to dramatic epistatic effects or

environmental shifts, a transient period may occur where the

traveling wave has not reached its steady-state shape. These

transient dynamics are understood only coarsely at a theoretical

level (Fisher 2013), and we have not analyzed their effects here. If

these shifts are sufficiently common that the transients play a

significant role in the overall evolutionary dynamics, the

traveling-wave approach will break down.

Data availability
The authors state that all data necessary for confirming the con-

clusions presented in this article are represented fully within the

article.
Supplemental material is available at GENETICS online.
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