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a b s t r a c t

The dynamics of evolution is intimately shaped by epistasis — interactions between genetic elements
which cause the fitness-effect of combinations of mutations to be non-additive. Analyzing evolutionary
dynamics that involves large numbers of epistatic mutations is intrinsically difficult. A crucial feature is
that the fitness landscape in the vicinity of the current genome depends on the evolutionary history.
A key step is thus developing models that enable study of the effects of past evolution on future
evolution. In this work, we introduce a broad class of high-dimensional random fitness landscapes
for which the correlations between fitnesses of genomes are a general function of genetic distance.
Their Gaussian character allows for tractable computational as well as analytic understanding. We
study the properties of these landscapes focusing on the simplest evolutionary process: random
adaptive (uphill) walks. Conventional measures of ‘‘ruggedness’’ are shown to not much affect such
adaptive walks. Instead, the long-distance statistics of epistasis cause all properties to be highly
conditional on past evolution, determining the statistics of the local landscape (the distribution of
fitness-effects of available mutations and combinations of these), as well as the global geometry of
evolutionary trajectories. In order to further explore the effects of conditioning on past evolution,
we model the effects of slowly changing environments. At long times, such fitness ‘‘seascapes’’
cause a statistical steady state with highly intermittent evolutionary dynamics: populations undergo
bursts of rapid adaptation, interspersed with periods in which adaptive mutations are rare and the
population waits for more new directions to be opened up by changes in the environment. Finally,
we discuss prospects for studying more complex evolutionary dynamics and on broader classes of
high-dimensional landscapes and seascapes.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Evolution, even in the short term for ‘‘simple’’ asexual micro-
bial populations with ‘‘simple’’ selective pressures, is a complex,
non-linear dynamical process. One of the many sources of com-
plexity is epistasis — the interactions between combinations of
mutations. Most simply, pairs of mutations can have no benefit
individually but benefits together, positive effects alone but dele-
terious ones together, and, once many mutations are involved,
a plethora of other behaviors. These epistatic effects lead to
correlations and anti-correlations in co-occurrence of mutations,
which can have a dramatic effect on evolutionary trajectories.
In trying to model epistasis, an important observation is that,
generally, whether a mutation is beneficial or deleterious, and
by how much, will depend on the both the environment and
the genomic background, and hence the evolutionary history:
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any mutation that is unconditionally beneficial would have al-
ready occurred and fixed. Thus the details of epistasis will de-
pend greatly on the context and one should hope for primarily
statistical understanding.

At a basic level, we lack a theoretical understanding of the
interplay between evolution and epistasis. There is a great deal of
population genetic theory in cases where mutations are indepen-
dent, and their contribution to the (log) fitness is additive (Desai
and Fisher, 2007; Fisher, 2013). But, except in simple cases in-
volving small numbers of mutations, little is understood generally
about evolutionary dynamics in the presence of epistatic interac-
tions. Many studies have focused on the statistical properties of
epistasis by constructing and attempting to understand models
of fitness landscapes — functions from genotype to fitness in a
fixed environment. These are often conceptualized like physical
landscapes with peaks and valleys (de Visser and Krug, 2014),
and theorists have endeavored to understand how properties
of these landscapes constrain or enable evolution (Nowak and
Krug, 2015; Neidhart et al., 2014; Park and Krug, 2016). Some
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approaches have focused on quantitative ‘‘local’’ properties, such
as using extreme value statistics to understand behaviors near
fitness peaks (Orr, 2003). Others have focused on quantifying the
geometry of fitness landscapes, including distributions of local
maxima and numbers of uphill paths between points (Jiménez
et al., 2013; Weinreich et al., 2006; de Visser et al., 2009). There
is often an emphasis placed on defining and quantifying measures
of ‘‘ruggedness’’, with the intuition that rugged landscapes con-
strain evolution by limiting the number of routes along which the
fitness can continue to increase, leading to getting stuck at local
maxima (de Visser and Krug, 2014). But ruggedness is not well
defined in general, and, as we shall see, local measures of it can
be misleading. Moreover, there is an intrinsic problem with fo-
cusing primarily on fitness landscapes themselves. The interplay
between epistasis and evolution is essential; one cannot try to
separately understand them as the properties of the landscape
in the vicinity of the current genome are highly conditioned by
the past evolution whether in a fixed or changing environment.
The properties of epistatic fitness landscapes conditioned on past
evolution will generally be very different than the properties of
‘‘typical’’ points or regions on such landscapes. Even if epistasis
is some sense ‘‘weak’’, over long times individuals will accumu-
late a large number of mutations (Barrick et al., 2009) and thus
conditioning on history will eventually become important.

A major conceptual difficulty is that fitness landscapes are
very high dimensional: there are many potentially beneficial
mutations and even more combinations of them. Yet intuition
about landscapes and evolution in them is usually based on low-
dimensional analogies. A large body of work in theoretical physics
and probability theory has shown that geometry and dynamics
in high-dimensional spaces, such as uphill paths on complex
landscapes, can be very different than in their low dimensional
analogues (Bray and Dean, 2007; Cugliandolo and Kurchan, 1993).

Various experiments have provided some information about
epistasis in natural systems. Extensive work has been done on
fitness effects of combinations of pairs of knockouts in vari-
ous microbes, in particular S. cerevisiae and E. coli (Deutscher
et al., 2006; Isalan et al., 2008; Typas et al., 2008). However
most knockouts are deleterious, and pairs of them at least as
much so. But evolution is largely driven by beneficial mutations,
thus it is not clear how much is learned from such experiments
about statistical properties of epistasis that would affect evolu-
tionary dynamics. High throughput studies of repeatedly mated
yeast populations (Bloom et al., 2015) have provided potentially
valuable information, but even with some good combinations of
genetic differences being produced, it is not clear what are useful
measures of the features of epistasis that affect evolution. Fur-
thermore, these measurements have thus far combined genomes
that differ by large numbers of mutations, thus they are not
directly relevant for the simpler problem of asexual evolution,
our focus here, for which the landscape is explored locally with
distant genomes having to be reached step by step.

In some relatively simple systems, a variety of empirical fitness
landscapes – functions from genotype to measured fitness – have
been analyzed and the consequences for evolution investigated
theoretically. However, by their nature, these are restricted to
exploring combinations of genomic changes on only a modest
number of sites — typically in a single protein or RNA sequence
(Wiser et al., 2013; Bloom et al., 2013; Weinreich et al., 2006;
Jiménez et al., 2013; Li et al., 2016). While these studies can yield
insights about specific evolutionary scenarios, such as antibi-
otic resistance caused by multiple mutations in a small number
of proteins under strong, focused selective pressure, drawing
general conclusions from these, especially about much higher
dimensional landscapes, is problematic.

Some experiments have explored the interplay between epis-
tasis and evolutionary dynamics by laboratory microbial evolu-
tion (Phillips, 2008; Wong, 2017; Weinreich et al., 2006). Much
has been learned about the fitness effects of individual bene-
ficial mutations (Kassen and Bataillon, 2006; Levy et al., 2015;
Venkataram et al., 2016), but thus far only limited amounts about
epistatic interactions between the mutations found, beyond a
general tendency towards ‘‘diminishing returns’’ epistasis: the net
effect of beneficial combinations of mutations being less than the
sum of their individual effects. However, this is not true of all
combinations and it may well be that such anomalous combi-
nations are particularly important for driving further evolution
(Jerison et al., 2017). Indeed, there is evidence that a common
motif in protein evolution is a beneficial but destabilizing muta-
tion followed by a stabilizing one — a type of positive epistasis
(Gong et al., 2013).

All experimental studies face a spectrum of intrinsic chal-
lenges. One is the combinatorial explosion of possible genotypes,
which is exponential in the number of sites being studied. This
combinatorial explosion is associated with another key feature of
epistasis: at large genetic distances, higher order interactions are
important. When many genotypes are involved it is not enough to
consider only pairwise interactions: correlations involving many
sites on the genome become important. Indeed, ‘‘expanding’’
around a particular genome – the ancestor – in additive, pairwise,
triplet interactions, and so on, is problematic. This is at best
a way to parameterize the fitness landscape in the vicinity of
a particular genome which is not essentially special: such an
expansion could be already substantially different around another
genome not far away.

Another layer of complexity comes from the dynamic nature
of environments in which organisms find – and have found –
themselves. The landscapes are really ‘‘seascapes’’, and typically
change on timescales relevant for even short term evolutionary
dynamics (Hairston and Dillon, 1990; Blazquez et al., 2000; Hall
et al., 2011). These changes can be driven by external physical
and chemical factors, as well as changes in direct interactions
between organisms or feedback on the environment by evolving
organisms that populate it. As the net effects of mutations can
be a delicate balance between positive and negative effects, even
small changes in environment can change which mutations are
beneficial and more generally the possible routes to adaptation
via multiple successive mutations. Recent experiments have pro-
vided hints at how strong the effects of environmental changes
caused by evolution are even in nominally ‘‘simple’’ conditions.
This is seen for the first mutations that occur in yeast in low
glucose (Li et al., 2018) as well as from cumulative effects from
many mutations in Lenski’s long-term E. coli evolutions (Good
et al., 2017). On long timescales in natural populations, dynam-
ical changes in the environment, whether produced by abiotic
changes or by the evolving populations themselves, are surely
major drivers of adaptation.

With large numbers of sites involved in evolution, all one
can hope for, generally, is to understand statistical properties
of landscapes (and seascapes). New, more general theoretical
approaches are vitally needed, both to develop intuition, and to
guide future experiments and choose what statistical properties
would be most instructive to measure. It is imperative that the-
orists build and study models that include caricatures of these
key features: high-dimensional landscapes with some general
statistical forms of epistasis, and, in the same framework, gradual
time-dependence of the landscape (about which one can hope
more general can be said than about large sudden changes in
the environment). Models should have no ‘‘special genomes’’ –
such as ‘‘wild-type’’ – a priori, and instead one should carry out
evolution from a random point and then try to understand the
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effects of epistasis and further evolution conditioned on past evo-
lution. Some recent work has endeavored to analyze evolutionary
dynamics on some classes of landscapes with simple models of
epistasis, (Nowak and Krug, 2015; Park et al., 2016, 2015; Neid-
hart et al., 2014; Hwang et al., 2018); however these analyses are
computationally limited from exploring more general, or more
high-dimensional landscapes.

In this work, we will develop understanding of the feedback
between evolution and epistasis in a particular rich class of toy
models. Motivated by the basic observation that effects of genetic
changes are sums of many positive and negative contributions,
we study (following others Kauffman and Weinberger, 1989;
Neidhart et al., 2014; Hwang et al., 2018) random fitness land-
scapes properties are characterized statistically. We develop a
theoretical framework to understand a class of random fitness
landscapes with distance-dependent statistics where the correla-
tions between the fitnesses of genomes are some function of
the genetic distances between them. Our model class is flexible,
with desirable biologically inspired features, and encompasses
– while illuminating some problems with – many of the most
commonly studied models of epistasis. By working in the tree-like
limit of genotype space where there are many possible mutations
and reversions are rare (as in the infinite-sites approximation)
we develop a computational and analytical scheme which can
be used to analyze simple evolutionary dynamics on arbitrarily
high dimensional landscapes, as well as giving insights into key
geometric properties of the landscapes.

Our analysis shows that evolution drives populations to highly
atypical places on the fitness landscape — atypical far beyond
just having anomalously high fitness. The patterns of epista-
sis in the neighborhood of the current genome depend on the
whole evolutionary trajectory of the population, which itself de-
pends on long-genomic-distance (arbitrarily high order) patterns
of epistasis. This is in part due to the high dimensionality of
the fitness landscape, which allows rare events – although ones
that evolution finds readily – to dominate the dynamics. Using
our framework we compute how far evolution takes populations
before getting stuck at local maxima; we show that greedy evo-
lutionary dynamics can be detrimental in the long term, and that
the process of getting stuck depends sensitively on the tails of the
distribution of mutational effects. We then analyze slowly time-
dependent landscapes for which adaptive walks never get fully
stuck. We show that when the fitness landscape has a simple
time-dependence, the conditioning on the past is limited. Nev-
ertheless, the atypical nature of trajectories and local landscapes
remains. We expect the results to hold qualitatively for more
general time-dependence.

We conclude with potential directions for future theoretical
studies and potentially informative experiments, particularly in
light of our findings that intermediate-term evolution even with
simple models of effectively-random epistasis are set by long-
distance, global statistical properties of the landscape, rather than
short-distance, local information such as measures of ‘‘rugged-
ness’’.

2. Fitness landscapes with distance-dependent divergence

2.1. Random fitness landscapes

We begin with some general qualitative and quantitative as-
pects of fitness landscapes and epistasis. The main quantity of
interest is the fitness function F (g), which maps genotypes, g , to
fitness values. The genome is most simply modeled by strings
of 0’s and 1’s of length L-points on a hypercube. Recent work
suggests the number of potential states per site (four possible
DNA base pairs, or 20 possible amino acids in a protein chain)

might play a quantitative and qualitative role in the dynamics
of adaptation (Wu et al., 2016). However such complexity might
most affect the local rather than large-scale behavior, especially
with large L (our regime of interest), and is therefore beyond the
scope of our work.

A common convention is that all zeros correspond to some
ancestral/reference genotype, with 1’s then representing muta-
tions; we will not use that convention here as we will not want to
assign special characteristics to any ancestor. Distances between
genomes, defined as the number of sites at which they differ, will
be a fundamental property in our models: of course, for these, the
labeling of the reference genome is arbitrary.

The fitness function F (g) is often called the fitness landscape.
Evolution tends to drive the population ‘‘up’’ the landscape to
higher and higher fitness. A basic idea is that these upward
trajectories are impeded by ‘‘ruggedness’’ with local maxima and
other features that make some paths easier to traverse than
others. In this work, we will study random fitness landscapes:
ensembles of some classes of random functions over genotype
space (Kauffman and Weinberger, 1989; Neidhart et al., 2014;
Hwang et al., 2018). The use of a random model is motivated by
the fact that ‘‘fitness’’ is a very complex quantity. The net effect
of any mutation or combination of mutations in a relatively well-
adapted organism will be the sum of beneficial and deleterious
effects, all conditioned on the evolutionary history and dependent
on the particular environment. The hope is that a caricature of the
landscape as a random function will capture some of the essence
of the complex interplay between epistasis and evolution. Most
previous theoretical work on fitness landscapes falls into two
categories, focusing either on some classes of random landscape
models (Kauffman and Weinberger, 1989; Neidhart et al., 2014;
Frank, 2014; Good and Desai, 2015; Wiser et al., 2013) as do we,
or on models of specific simple situations like mutations in a
single protein (Weinreich et al., 2006) or aspects of the fitness
of particular viruses (Louie et al., 2018).

We would like to study broad classes of models that have
certain key properties motivated by the desire to caricature bi-
ologically plausible/relevant features, and, secondarily, by useful
analytical properties:

1. Good scaling properties for large genomes: We want
to have well-characterized behavior in the limit of large
genome sizes, but total distances between genomes much
less than L, in particular avoiding pathologies related to
the combinatorics of large genomes that are drawbacks of
some oft-studied forms of epistasis.

2. Evolutionary-conditioned statistics: We wish to under-
stand evolution conditioned on past evolution and thus
regions of the landscape that the population is led to by
evolution. We would like such historical conditioning to be
derived from the model as opposed to put in by hand. In
particular, we want to be careful not to assign any excep-
tional significance to a ‘‘reference’’ or ‘‘ancestral’’ genotype.

3. Flexibility: We want a modeling framework that encom-
passes models with a large variety of qualitative and quan-
titative structure in order to broadly understand the effects
of epistasis, including the effects of both small numbers
of mutations and genomes that are much further apart:
i.e., both short-distance and long-distance structure.

4. Tractable dynamics: We need to be able to develop theo-
retical and computational means to explore evolutionary
dynamics for long times and large genome sizes, with
methods that scale well with genome length. This requires
being able to efficiently generate and store pertinent infor-
mation about the landscape in simulations.
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We can satisfy the first three criteria by defining fitness land-
scapes using distance-dependent divergence functions (related to
the recently defined γ measure Ferretti et al., 2016). We thus
choose F from an ensemble of random functions whose statistics
depend only on the genetic distances between genotypes. A fun-
damental property of the ensemble is the statistical relationship
between genomes as a function of the distance between them.
We define the divergence function of fitness differences as

D(|g − g ′
|) ≡ E[(F (g) − F (g ′))2] (1)

for any pair of genomes g and g ′. This average is taken over the
ensemble of random models. Here D represents the relationship
between the genetic distance |g − g ′

| between two genomes and
their distance in fitness space F (g)− F (g ′). The choice to quantify
the model in terms of fitness differences is in fact natural as rel-
ative fitness drives evolution. Note that the correlations between
any pair of fitness differences can be expressed in terms of D(ℓ):

E[(F (g2) − F (g1))(F (g4) − F (g3))]

=
1
2
[D(|g3 − g2|) − D(|g3 − g1|) + D(|g4 − g1|) − D(|g4 − g2|)].

(2)

This means that studying models in terms of D is equivalent to
studying correlations between the effects of single mutations (as
is true for the γ -measure Ferretti et al., 2016).

With statistical properties defined in terms of genetic and
fitness differences, no genome is special with respect to the
ensemble as a whole. This is in contrast to defining models in
terms of the distribution of fitness effects (DFE) of potential
single mutations around a particular genome. For a general ran-
dom landscape, the DFE depends on the evolutionary history:
in particular, with increasing fitness the supply and magnitude
of potential adaptive mutations both decrease. This statistical
phenomenon is called diminishing-returns epistasis, and there
are many models which are defined by this structure (Frank, 2014;
Good and Desai, 2015; Wiser et al., 2013). In contrast, we would
like to understand the emergence of effects like diminishing-
returns epistasis in a more general framework, by studying how
well-adapted genomes are special due to the effects of past evo-
lution. Our models allow us to specify global features of the
epistasis, then let the entire history of the evolutionary dynamics
determine the current DFE and epistasis among combinations
of mutations around the current genome. This approach lets us
generate and study evolution-conditioned regions of the fitness
landscape (Neidhart et al., 2014; Nowak and Krug, 2015; Park
and Krug, 2016; Hwang et al., 2018), rather than putting in the
structure of the ‘‘special’’ nature of a well-adapted genome in by
hand.

While we will primarily be interested in fitness differences, in
some landscapes, the absolute fitness is well-defined and is hence
an (albeit unmeasurable) characteristic of the initial genome. The
absolute fitnesses scale as D(L)1/2. If D(L) = O(1) for large L then
the absolute fitnesses are well defined in the infinite L limit on
which we will primarily focus; if instead D(L) scales as some
increasing function of L, the absolute fitnesses diverge in the
infinite L limit. However, fitness differences (which determine
evolutionary dynamics) are always well defined.

To get numerically tractable models with large genomes, and
even more so to enable general analysis of the evolutionary
dynamics and effects of conditioning on past evolution, we must
make major simplifications. We will thus (for the most part)
assume that F (g) is a Gaussian random function, and therefore the
choice of D uniquely defines our models. The choice of Gaussian-
random landscapes is certainly not biologically motivated, but it
will enable us to begin to address general questions and develop

computational and analytical tools. Understanding evolution on
non-Gaussian landscapes is a major challenge: in the Discussion,
we make some remarks about how some analyses might begin.

To understand the relationship between formulations of F (g)
in terms of epistatic interactions and the divergence function D(ℓ)
of Gaussian random landscapes, it is instructive to first consider
the two simplest models. First, is the additive model for which
the effects of each mutation are statistically independent so that
the fitness can just be represented as the sum of terms for each
site with no epistasis. This corresponds to the choice D(ℓ) ∝ ℓ.
At the other extreme is the independent fitnesses model for which
the fitness F (g) of any genotype is independent of the fitness of
all other genotypes. This corresponds to the choice D(ℓ) = 0
for ℓ = 0 and D(ℓ) equal to some positive constant for ℓ > 0.
The independent fitnesses model can be considered a ‘‘maximally
epistatic’’ model.

It is informative to compute the correlation between the
fitness effect of mutations a distance ℓ apart along a trajec-
tory through the landscape: (e.g. the first and ℓ + 1th muta-
tions). This correlation is given by the discrete second derivative
1
2 [D(ℓ+ 1) − 2D(ℓ) + D(ℓ− 1)].1 In the additive model, the sec-
ond derivative vanishes corresponding to no correlation between
effects of mutations (no epistasis); by contrast, in the indepen-
dent fitnesses model, the effects of one mutation and the next
are highly anticorrelated, but future mutations are uncorrelated
with the first.

Another simple model is called the Rough Mount Fuji (RMF)
model; the fitness function is a linear combination of an additive
and an independent model (Neidhart et al., 2014). The RMF model
thus interpolates between the additive and independent model,
but as we will see (Section 4.1), in the large L limit for the
evolutionary dynamics, it will behave essentially like the additive
model.

Another class of models that also interpolates between addi-
tive and independent limits has correlations between fitnesses
that fall-off exponentially with distance:

D(ℓ) ∝ 1 − e−ℓ/ξ (3)

for some correlation length ξ . The effects of mutations are then
anticorrelated over the length-scale ξ , with correlations
∝ −

1
ξ2
e−ℓ/ξ . For ξ → 0 this becomes the independent-fitnesses

model, while for ξ → ∞ (and rescaling to keep the fitness-
differences of order unity), it becomes the additive model. More
generally, for evolution on scales ℓ ≪ ξ , the landscape is ap-
proximately additive while for ℓ ≫ ξ fitnesses are approximately
independent. We will show that the NK model (Kauffman and
Weinberger, 1989), composed of many blocks of interacting sites
(defined in the next section), becomes an exponentially correlated
Gaussian model in the limit of a large number of blocks (Hwang
et al., 2018).

A particularly interesting class of models we will analyze are
those with power law correlations:

D(ℓ) ∝ ℓα (4)

with 0 < α < 1. The limit α = 0 corresponds to indepen-
dent fitnesses, while α = 1 corresponds to the additive model.
But in contrast to exponentially-decaying-correlation models that
also interpolate between these simple limits, the power-law cor-
relation models do not have a characteristic genetic distance
scale.

Fig. 1 shows examples of linear cuts through landscapes for
a variety of α. For intermediate α, D is unbounded as in the

1 This is, up to an additive constant, the negative of the γ -measure
from Ferretti et al. (2016).
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Fig. 1. Examples of power-law-correlated fitness landscapes characterized by
divergence function D(ℓ) = ℓα with α = 0, 0.5, 1. Shown are typical fitnesses
along a random path on the landscape as a function of genomic distance: the
number of mutations.

additive case, but the effects of consecutive (and subsequent)
mutations are still anticorrelated. Large fitness differences exist
on the landscape and are potentially evolutionarily accessible,
but the anti-correlations are felt at long range. We will see that
this structure can lead to evolutionary dynamics for which the
effects of the diminishing-returns epistasis are weak enough to
allow avoidance of local maxima for long periods of time, but they
eventually slow down the rate of fitness gain.

2.2. Amplitude spectra and relationship to other models

A common way to characterize epistasis is to break down the
fitness into sums of contributions from k-wise interactions, with
a measure of the overall contribution from the of k-wise interac-
tions parameterized by the amplitude spectrum, Ak (Weinberger,
1991; Neher and Shraiman, 2011; Neidhart et al., 2013). We now
show how to convert from the amplitude spectrum to an equiv-
alent Gaussian model with distance-dependent divergence, and
derive the amplitude spectra of some of the models previously
defined.

The amplitude spectrum characterizes epistasis by measuring
the square magnitude of interactions at each order. It can conve-
niently be written in terms of the discrete Fourier transform over
the hypercube:

fK =
1
2L

∑
g

eiπK·gF (g) (5)

with K a vector with k ones and L − k zeros. Each Fourier
component fK represents the interactions between a particular
set of k sites: those with ones in the vector K. In the distance-
dependent model, the symmetry under permutation of the sites
in the genome implies that the statistical properties of fK should
only depend on the number, k, of interacting sites. Their distribu-
tion is fully characterized by the amplitude spectrum Ak defined
by

Ak ≡ ⟨f 2K ⟩ . (6)

As each Fourier coefficient only depends on k sites of the genome,
Ak is exactly the mean-square kth order global epistasis; A0 the
variance in average fitness (when this is finite), A1 the variance
of the single-site (additive) terms in the fitness, A2 the mean-
square magnitude of pairwise epistatic interactions, and so on

up to order L. The Fourier coefficients fK completely define the
covariance matrix, and there is a one-to-one correspondence
between the Ak and the distance-dependent divergence D(ℓ). For
Gaussian landscapes, this amounts to a complete definition of the
model.

Note that we define the epistasis without reference to any
particular genome, in contrast to expanding in orders of epis-
tasis about some ‘‘ancestral’’ background as F (g) = F (0) +∑

i aiσi +
∑

i,j bijσiσj +
∑

i,j,k cijkσiσjσk . . ., where σi = 1 if site i
is mutated and 0 otherwise. Our definition correctly captures the
magnitude of global epistasis. The differences between the two
approaches were discussed originally in Weinberger (1991), and
more recently in Poelwijk et al. (2016).

In the limit of large genomes (large L), there are problems
with the scaling of Ak. We would like to study behavior that, in
this limit, is independent of L as long as the distances between
genomes are much less than L. For example, if the fitness was a
sum of single-site terms and pairwise epistatic terms, then one
has to decide how the only non-zero coefficients, A1, and A2,
depend on L. If these do not scale with L, then the effect of a
single mutation would be pathological: the additive piece would
contribute O(1) while the pairwise terms would contribute O(

√
L).

From this example, we can also see the issues with having
only a fixed number of non-zero Ak as L → ∞. This remains true
even if we rescale terms by factors of L. Returning to the pairwise
epistasis example, the second order terms could be scaled down
such that A2 =

1
L Ã2 with Ã2 = O(1), so their total magnitude

matches the magnitude of the first order terms — as in the con-
ventional Sherrington–Kirkpatrick spin-glass model (Sherrington
and Kirkpatrick, 1975). However, for changes of ℓ ≪ L sites, the
fraction of second order terms where both sites change is ℓ

L ≪

1. Therefore over distance scales ≪ L, this model is effectively
additive, with A′

1 = A1 + Ã2.
Another problem occurs if all orders of epistasis are compa-

rably large: i.e., all Ak of the same order. The number of terms
(vectors K) of order k is

(L
k

)
. If the Ak are all non-zero and do

not scale with L, then the middle terms with |k − L/2| = O(
√
L)

dominate for large L. We will see that this gives the independent
fitnesses model.

By construction, our distance-dependent ensembles avoid
these large L pathologies since D(ℓ) is independent of L. To relate
these models to the amplitude spectra and make the large L limit
well-behaved one needs to define a rescaled amplitude spectrum.
A convenient choice is to pull out the binomial factor for the
number of terms of each order and define z = k/L as the fraction
of sites involved, and the rescaled amplitude spectrum

ρA(z) = L
(

L
Lz

)
ALz, (7)

(where the factor of L comes from the change of variables). For
large L, ρA(z) can be defined continuously over the full range
z ∈ [0, 1]. The ρA(z) parameterize the magnitude of the total
epistasis at order zL. The Ak (and therefore ρA(z)) can be computed
directly from D(ℓ). Similarly, one can use ρA(z) to compute D(ℓ):
in Appendix A.2 we show that in the limit of large L

D(ℓ) ≈ 2
∫ 1

0
(1 − (1 − 2z)ℓ)ρA(z)dz (8)

Models with a well defined ρA in the limit of large L thus corre-
spond to well-behaved distance-dependent divergence functions
D(ℓ).

Most previously studied models correspond to simple forms
of ρA(z). The additive model has ρA(z) = δ(z) (with the limit
needing to be taken carefully) while the independent model is
ρA(z) = δ(z−1/2) since all Fourier modes in it have equal weight.
More generally, terms at different orders of epistasis contribute
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features of different length-scales to Dwith, small z – thus small k
– corresponding to large length-scale features (just as for Fourier
transforms). If a single z < 1

2 dominates, C(ℓ) falls off exponen-
tially with correlation length ξ = − log(1 − 2z)−1. Terms with
z > 1

2 cause oscillations in correlations and make the landscape
more ‘‘rugged’’; in the extreme limit, pure z = 1 corresponds to
the parity function where every step leads to a change in sign
of the fitness. The Random–Mount–Fuji (RMF) model is a sum of
additive and independent parts and thus corresponds simply to
the sum of delta functions in ρA at z = 0 and z = 1/2.

Kauffman’s NK model (Kauffman and Weinberger, 1989) of
random landscapes is equivalent, in a certain limit, to a simple
distance-dependent model, as first noted in Neidhart et al. (2013).
We rederive the result here to demonstrate the utility of the
rescaled amplitude function. The NK model splits the contribution
to the fitness function into N (potentially overlapping) blocks Bm,
each consisting of K interacting sites. For each block of interac-
tions there is an independent fitness model on the K sites in the
block, which assigns an i.i.d. random value, fBm (gBm ), to each of
the 2K configurations of the sub-genome gBm , of that block. The
total fitness is then F (g) =

∑N
m=1 fBm (gBm ). If the N blocks are

chosen at random, and L and N are large, a central-limit-theorem-
like argument shows that F limits to a Gaussian random function.
More precisely, one can show that for N ≫

(L
K

)
, when all blocks

are represented many times, all the moments of F converge to
that of a jointly Gaussian random function with Ak =

(K
k

)(L
k

)−1
.

The rescaled amplitude spectrum of the NK model is thus simply
ρA(z) ≈ δ(z − K/2L). This corresponds to a distance-dependent
divergence function with

D(ℓ) ∝ (1 − e−ℓ/ξ ) (9)

where ξ = − log
(
1 −

K
L

)−1
.

Typically the NK model is studied in a different limit where
N is O(L), so only a small subset of all possible blocks are repre-
sented (Nowak and Krug, 2015; Kauffman and Weinberger, 1989;
Neidhart et al., 2013). The Gaussian limit corresponds to the
mean field NK model introduced in Hwang et al. (2018), with an
exponential decay of correlations with the same ξ for K ≪ L.
The analysis of the Gaussian distance-dependent model should
still be useful beyond the Gaussian limit. As long as the within-
block fitnesses are not broadly distributed, the fitness difference
between two genomes at a genetic distance ℓ is approximately
Gaussian if N ≫

L
Kℓ , corresponding to many blocks having at least

one mutation. For K
L small (long correlation length), this corre-

sponds to roughly ℓ ≫
ξ

N . This suggests that the approximation
of the NK model as a distance-dependent model may hold over
a variety of scales, from x ≪ ξ , for which each block has at most
one mutation and the landscape is approximately additive, to
x ≫ ξ , for which most blocks have a mutation and the landscape
is approximately independent.

The power law model D(ℓ) ∝ ℓα has weight at all z but the
crucial large ℓ behavior is controlled by small z. For large ℓ, the
integrand in Eq. (8) is dominated by z of O(ℓ−1); the integrand
thus scales as zℓρA(z) which implies ρA(z) ∝ z−1−α for small z
(see detailed calculation in Appendix A.3). The larger α is, the
larger the magnitude of lower-order terms.

The amplitude spectrum can be used to define distance-
dependent models more generally. By defining non-Gaussian
but independent Fourier components whose second moments
match ρA(z), we can generate ensembles of functions which have
second order statistics defined by D(ℓ) but different higher order
statistics. We will discuss this approach further in Section 7.3
when we consider time-dependent landscapes. Until then we will
restrict consideration to Gaussian-random landscapes and hence

need only to work with the divergence function D(ℓ); this greatly
simplifies computations and understanding.

2.3. Local properties of landscapes

Many previous studies focus on ‘‘static’’ properties of land-
scapes, that is statistics near genomes not conditioned on prior
evolution. One of the most commonly studied static properties
is the distribution of local maxima (Nowak and Krug, 2015;
Neidhart et al., 2014). This metric is often taken as a measure
of ‘‘ruggedness’’, with the aim of getting intuition for how the
geometry of a landscape might shape evolution. However the no-
tion of ruggedness is rather ambiguous, and, more generally, the
dynamical consequences of such local properties of the geometry
are very different in high dimensional spaces than intuition built
on low dimensional ones might suggest.

In particular, local static properties depend entirely on short-
range correlations and are completely insensitive to longer-range
ones. Specifically, in Appendix C.1 we show that the probabil-
ity of a genome being a local maximum in a Gaussian random
landscape is given asymptotically by

Ploc−max ∼ L−(1−r)/r (10)

with r the correlation coefficient of the fitnesses of the neighbors
of a chosen point, which can be computed to be r = 1 −

1
2
D(2)
D(1)

(related to the γ -measure from Ferretti et al. (2016) by r = (1 −

γ )/2). This probability of being a local maximum is exponentially
sensitive to local correlations. For the additive model, r = 0 and
there is one maximum, for the independent model, r =

1
2 so

Ploc−max =
1
L , and for the parity function, where every mutation

changes the sign of F (g), r = 1 and Ploc−max =
1
2 .

Note that Ploc−max is independent of correlations in the land-
scape beyond distance 2: the structure of local maxima has no
information about the global statistics. Indeed, the RMF model, NK
model, and power-law models can each be tuned to have similar
numbers of local maxima, but have very different global structure.
An RMF model where the additive piece contributes a fraction p
to the variance has r = (1 − p)/2. An NK model with random
blocks in the Gaussian limit has r =

1
2
K
L , (Hwang et al., 2018). A

power law model with exponent α has r = 1 − 2α−1. Therefore
all three models can yield any r from 0 to 1

2 . Given any two of
these classes of models, one can always find pairs of models with
the same local maxima structure, as these only depend on the
parameters p, K

L and α respectively.
An interesting static property that depends on long-range cor-

relations is the maximum fitness difference, fmax(ball)(ℓ), between
a random point and all points in a ball of radius ℓ around that
point. We are interested in large ℓ, but ℓ ≪ L. For the RMF
model, fmax(ball)(ℓ) ∼ pℓ

√
log(L) since the maximum is achieved

by mutating the ℓ sites with the largest additive fitness gains,
with an uncertainty of only ±

√
ℓ from the independently random

piece. For the NK model, for N = 1 we have approximately K ℓ
independent fitnesses (as there are only K sites for which changes
lead to fitness differences). This gives us fmax(ball)(ℓ) ∼

√
ℓ log(K )

from the maximum of i.i.d. samples from a Gaussian.
For more general correlations, computing fmax(ball)(ℓ) is more

complicated; nonetheless, we can proceed in a general way by
realizing that most of the genomes in the ball are at the surface
(that is at distance ℓ from the center). We can then approximate
fmax(ball)(ℓ) as the maximum value of these Lℓ identically dis-
tributed Gaussian random variables which have mean 0, variance
D(ℓ), and covariance D(ℓ) −

1
2D(2ℓ) as the points on the surface

are typically distance 2ℓ apart. We thus have, generally,

fmax(ball)(ℓ) ≈

√
1
2
D(2ℓ)

√
log(Lℓ) ±

√
D(ℓ) −

1
2
D(2ℓ) (11)
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The second, stochastic, term is due to the fluctuations of the
average difference at genetic distance ℓ, while the dominant first
term is due to the maximization over all such differences. For
the particular case of power-law-correlated landscape, we have,
asymptotically

fmax(ball)(ℓ) ∼ 21−αℓ(1+α)/2
√
log(L) (12)

A crude estimate of the maximum fitness on the whole hypercube
is given by fmax(ball)(L); we expect this to be correct up to poly-
logs. Therefore the maximum absolute fitness F∗

∼ L(1+α)/2 for
power law landscapes — see Appendix C.2 for another heuristic
derivation.

We see that the behavior of fmax(ball)(ℓ) scales quite differently
for the various models — with ℓ and sometimes even with L.
The additive piece of the RMF model has the largest differ-
ences between maxima and minima; the NK model and other
short-range correlated models have the smallest differences as at
long-distances they are like independent models. If evolutionary
trajectories are able to travel significant distances, then long-
range features of the landscape, such as the maximum in a ball,
are bound to matter. We will show that it is the long-range struc-
ture of D(ℓ) that drives evolution, and determines how far uphill
evolution can proceed before reaching a local maximum. This
discussion should make clear that local structure, such as number
of local maxima, gives very incomplete – indeed misleading –
information.

3. Adaptive walks

‘‘Static’’ properties of landscapes that focus on behavior near to
typical points are misleading: one must take into account condi-
tioning on prior evolution. To do this, we focus on understanding
the properties of random adaptive walks. An adaptive walk cor-
responds to evolution in the strong selection weak mutation
(SSWM) regime — adaptive mutations are rare, and when they
establish they arise to fixation before the next adaptive mutation
occurs. By studying the step-by-step dynamics of adaptive walks,
particularly over a large number of steps, we will be able to un-
derstand directly the feedback between epistasis and evolution.
We can then study the properties of genomes and the statistics
of available mutations and epistasis among these, conditioned on
the evolutionary history. This gives a far better and richer picture
of the evolution on rugged landscapes than making qualitative
arguments based on local geometric properties.

Specifically, we analyze a clonal population which follows
some trajectory g(x) in genotype space, where x indexes the
number of mutational steps from the ancestor. At each step, the
population randomly samples the space of all possible mutations.
For each sampling, the mutation is either rapidly purged, or
rapidly fixes. The probability of fixation is some non-decreasing
function of the fitness difference sg→g ′ = F (g ′) − F (g) between
the mutant g ′ genotype g and the current population. Thus the
probability of a transition going from g to g ′ can be written as

P(g → g ′) = φ(sg→g ′ )/Z (13)

where φ, the fixation function, is the probability of fixation given
a mutation, and Z is a normalization factor. The dynamics of
each step depends only on the local fitness landscape a single
mutation away. If φ allows downhill steps, the dynamics will go
on indefinitely. We will focus on walks which must eventually
terminate at some local maximum.

There are various choices for φ that have been studied.

• Random: the next step is chosen uniformly at random from
all uphill directions.

• Greedy: The best possible step is chosen.

• Reluctant: The smallest possible uphill step is chosen.
• Natural: The choice is weighted by some function of the

fitness difference to reflect the chances of that mutation fix-
ing. The appropriate choice for moderate sized populations
in the strong-selection weak-mutation regime is φ ∝ s. In
large populations, there can be much stronger weighting to
large s (Weissman et al., 2009).

For the bulk of this paper we will focus, for simplicity, on the
random step model (i.e. with φ(s) the step function): all adaptive
mutations have the same probability of fixation, and deleterious
mutations are always purged. In Section 5 we will consider both
walks which are more greedy and more abstemious — tending
towards smaller steps.

3.1. Adaptive walks on landscapes generated ‘‘on the fly’’

The simplest way to study adaptive dynamics numerically
would be to first draw a particular example of the landscape from
the ensemble, and then perform adaptive walks on it. However
this would be computationally expensive: for landscapes with
non-trivial correlation structure as it would require 2L random
variables. Also, with only numerical work, drawing more gen-
eral conclusions beyond the particular models studied would be
fraught with difficulties.

There have been several recent numerical studies analyzing
adaptive walks in the simpler NK and RMF models (Nowak and
Krug, 2015; Park et al., 2016, 2015; Neidhart et al., 2014). These
works have primarily focused on the lengths of adaptive walks
before a local maximum is reached. A phase transition is found
in the length of adaptive walks as parameters are varied (Park
et al., 2015; Neidhart et al., 2014; Nowak and Krug, 2015). (We
will analytically compute the crossover scale for large, finite L
in Section 6.) However, the numerical approaches used do not
scale well to other parameter regimes, or to other models. The
NK model, which has complex epistasis, has been simulated only
with small blocks (K = 8) for which walks of length ∼103 have
been studied (Neidhart et al., 2014; Nowak and Krug, 2015). The
RMF models with large L are simple enough to run longer (up
to walks of length 106) (Park et al., 2015). This is because the
additive part of the RMF model only has L free parameters, and
for the independent fitnesses part, only XL random parameters
need to be drawn to simulate a walk of length X: these can be
drawn as the walk progresses.

Distance-dependent landscapes allow us to do something sim-
ilar for general patterns of epistasis. The Gaussian correlations
make computing the local landscape around a single evolutionary
trajectory a tractable task, both analytically and computationally.
The current distribution of fitness effects can be computed as
a conditional distribution based on the parts of the landscape
already explored. This enables simulations of dynamics for large
L, and has the big advantage of making explicit the role of past
evolution on the currently accessible fitness landscape. We de-
velop the dynamical approach in the remainder of this section
and explore its consequences in Section 4.

The first key observation is that the stochasticity can be di-
vided into two sources. First, the fitnesses of genotypes adjacent
to the current genotype g need to be generated. This is equivalent
to drawing the current distribution of possible single-mutation
fitness effects (DFE). The transition probabilities P(g → g ′) can
then be computed, and the next step chosen from the result-
ing distribution. This process is then repeated. Separating the
stochasticity in this way ensures that the dynamical step and the
DFE step remain statistically independent. The Gaussian distant-
dependent statistics will ensure that the conditional DFE only
depends on D(ℓ) and the already-explored parts of the landscape.
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Fig. 2. Schematic of adaptive walks on the hypercube. (a) In the high dimensional limit, a single site is mutated at most once, which causes the fitness landscape
to look like a tree, with genotypes as nodes, and edges corresponding to fitness differences. (b) At any point, the distribution of single-step fitness gains, s, is
parameterized by its mean µ (blue plane), which is typically negative, while individuals gains have some variance around µ (gray arrows). A particular uphill step
(orange) is chosen randomly from the possible uphill steps, and taken. (c) Adaptive walks with the right statistics can be found by computing µ and then taking a
random uphill step s from the distribution with mean µ; µ depends linearly on previously observed µ and the previous uphill steps s, plus a Gaussian random part.
Evolution tends to cause uphill steps to become rarer and rarer by driving typical µ to be more and more negative, although the stochastic variations can sometimes
make it less negative after a step. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

The second simplification is that in the high-dimensional limit,
a walk on a hypercube looks like a path on a tree (Fig. 2a),
with single mutational steps corresponding to edges. The tree-
like structure comes from the fact that the same site is not likely
to be mutated twice, which is generally true if L is much larger
than the total number, X , of mutations accumulated during the
evolution. (More precisely we need X2

≪ L, but as the number of
sites mutated twice is small as long as X ≪ L, we do not expect
substantial errors from the tree approximation.) With the statis-
tical symmetry of the landscape in the tree approximation, we
can choose to label the genomes, g , by the number of mutational
steps taken, x, with the distance |g(x) − g(x′)| = |x − x′

|. We will
henceforth label the genomes and other quantities by the step
number x.

A key property for the adaptive walk is the set of potential
single-step fitness gains away from the genome at step x: {si(x)},
with i labeling the mutated site. The probability distribution of
these, the DFE for the possible next steps, has empirical mean

µ(x) =
1
L

∑
i

si(x) (14)

the average available fitness gain. Both the potential fitness gains
and their empirical mean, µ(x), are covariate Gaussian. The value
of µ(x) is typically negative during evolution, indicating that
beneficial mutations are less common than deleterious ones. Note
that we will refer to empirical means within a landscape, such as
µ(x) around a particular genome, as ‘‘averages’’, while means over
the ensemble of landscapes we will refer to as ‘‘expectations’’. (In
statistical mechanics terminology, expectations over the random
landscape would be called ‘‘quenched averages’’.)

The set of single-step fitness increments, si(x), around any
point x have variance D(1) and identical pairwise correlations
D(1) −

1
2D(2). We can thus decompose them into a sum of

independent Gaussians Z+zi, where Z is the ‘‘shared’’ randomness
with variance D(1) −

1
2D(2) and zi is the ‘‘private’’ randomness

with variance 1
2D(2). In the limit of large L, the average available

fitness gain is µ(x) ≈ Z (with corrections of order 1/
√
L), and

the conditional gains {si(x)|µ(x)} are essentially independent with

conditional variance

σ 2
≡ Var[si(x)|µ(x)] ≈ Var[si(x) − µ(x)] =

1
2
D(2) (15)

independent of x. Therefore, knowing µ(x) completely determines
the DFE around the current genome — the DFE is a Gaussian with
mean µ(x) and variance σ 2 (Fig. 2b).

The value of µ(x), conditioned on previously observed fit-
nesses, is itself a Gaussian random variable whose statistics can
be computed using standard methods which we will review here.
Suppose we have a jointly Gaussian collection of vector valued
random variables Z and W, with covariance matrix

Σ =

(
Σ ZZ Σ ZW
ΣWZ ΣWW

)
=

(
cov(Z, Z) cov(Z,W)
cov(W, Z) cov(W,W)

)
(16)

The conditional expectation E[Z|W] is a linear function of the val-
ues of W. It can be computed as KZW, where the linear response
kernel KZ is defined by

KZ = Σ ZWΣ−1
WW (17)

The conditional covariance can be written as

Σ Z |W = Σ ZZ − KZΣWZ (18)

In our case, the Z is merely µ(x), and the W is the set of all
µ(y) and s(y) for y < x, where s(y) are the fitness gains of the
single steps actually taken during the evolution (dropping the site
subscript i as we are in the tree-like limit). Therefore, we can
write the conditional expectation as

E[µ(x)|W] =

x−1∑
y=0

K (x, y)µ(y) + J(x, y)s(y) (19)

where for ease of later computation we write the response ker-
nels K (x, y) and J(x, y) separately. The variance can be computed
as:

Vη(x) ≡ Var[µ(x)|W] = Var[µ(x)]

−

x−1∑
y=0

K (x, y)E[µ(x)µ(y)] + J(x, y)E[µ(x)s(y)] (20)
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In other words, we can write:

µ(x) =

x−1∑
y=0

K (x, y)µ(y) + J(x, y)s(y) + η(x) (21)

where η(x), the random part of the average available gain, is
Gaussian distributed with variance Vη(x).

We again emphasize that this randomness is over the en-
semble, conditioned on the structure W; η(x) represents the
uncertainty over the distribution of landscapes consistent with
the observations W, not the stochasticity of the dynamics. Also
note that the statistics of µ(x) depend only on fitness differences
and not the absolute values F (x); therefore they are determined
by D(ℓ) and are well-defined independent of L, as desired.

The structure outlined above implies that, in the large L limit,
we can simulate the dynamics by computing the statistics of the
DFE, choosing a beneficial mutation, and repeating (Fig. 2c). More
precisely, we use the following dynamical procedure:

1. Generate the conditional expectation of µ(x) given the pre-
viously observed {µ(y)} and {s(y)} and the kernels, J(x, y)
and K (x, y).

2. Choose a value of µ(x) drawn from Gaussian distribution
with its conditional expectation and known variance, Vη(x).

3. Generate a step s(x) from the fixation function φ applied to
a Gaussian with mean µ(x) and known variance, σ 2.

4. Repeat.

Code which implements this procedure (used for all simulations
in this paper) is freely available at: https://github.com/distance-
dependent-landscapes/hypercube-walks.

The joint Gaussianity makes computation highly efficient, as
the distribution of µ(x), and hence the distribution of the s(x), can
be computed using simple linear algebra. Computing the response
kernel at step x, requires a 2x × 2x matrix inversion. This can
be performed iteratively from the covariances computed at the
previous step with cost O(x2). Computing µ(x) using the response
kernels costs only O(x). The total computation time for x ranging
from 0 to some X thus grows as X3.

As an explicit example, consider a walk of 2 steps started at
a random point (labeled 0). Because of the need to condition the
distributions of later steps on the neighborhood of 0, we need
to know the mean of the possible first steps, µ(0), which has
variance Vη(0) = D(1) −

1
2D(2). The first step, s(0), then takes its

value from a Gaussian with this mean, µ(0), and variance σ 2
=

1
2D(2) (as per Eq. (18)). After a step has been taken, the mean of
the next available steps, µ(1), is the first quantity with non-trivial
correlations. It is drawn from a Gaussian with variance Vη(1) and
mean J(1, 0)s(0) + K (1, 0)µ(0). Direct calculation using Eqs. (17)
and (18) shows that J(1, 0) = −(b + c)/(D(1) − c), K (1, 0) =

(b+c2)/c(D(1)−c) and Vη(1) = [c2(1−2b−2c)−b2]/c(D(1)−c),
where b = −D(3)/2+D(2)−D(1)/2 and c = D(1) = D(2)/2 (both
non-negative). Thus J(1, 0) < 0 and K (1, 0) > 0 which means that
µ(1) is correlated with, but on average more negative than, µ(0).
The process of computing further µ(x) and s(x) then continues as
described above.

For all the simulated dynamics in this work, we chose, for
simplicity, to approximate the response kernel at all steps by
the kernels µ(X, y) and s(X, y) at the final step X . Likewise, we
used Vη(X) to approximate Vη(x) throughout the walk. This gives
us the same computational complexity as the iterative inversion
method. Numerical results show that Vη(x) saturates quickly to
the long time value Vη(∞) (as expected) and the analytical results
in Section 3.2 suggest that the key parts of the response kernels
converge as well. This approximation gives largest errors at the
start of the walk, but, as we will see in Section 3.3, the long-term
dynamics depends only weakly on early times.

The response kernels depend only on the geometry of the path.
If the walk geometry is known in advance (as it is for a pop-
ulation in the strong selection weak mutation regime on which
we focus), the response kernels can be computed once and then
used for multiple simulations on independent but statistically
identical landscapes. Therefore T simulations of length X can be
achieved in O(X3

+ TX2) time in the large L limit. The generation
of the landscape ‘‘on the fly’’ has removed any dependence of
the computational complexity on the dimension of the genotype
space.

The form of Eq. (21) assumes a walk along a single path, with
the geometry of a straight line. However, the framework extends
to trajectories with more complicated topologies as well. In par-
ticular, there is a computationally straightforward extension to
the case of multiply branching paths on a single landscape. The
response kernels are computed via Eq. (17) to obtain µ(x) at the
end of any branch, and the potential single-step fitness gains si(x)
are once again independent when conditioned on µ(x).

3.2. Single-path response kernels

In addition to enabling efficient computation, the response
kernels can be used to gain a qualitative and quantitative un-
derstanding of how the dynamics of adaptive walks depend on
the past. We will take advantage of this structure to analytically
approximate the statistics of fitness trajectories for a variety of
landscapes, and obtain exact results for some simple cases.

The response kernels encode exactly the effect that the past
evolution has on evolution in the near future. Because this de-
pends on the trajectories of µ(x) and s(x), and not simply their
most recent or average values, the detailed dynamics of evolution
determines the current DFE. The Gaussian nature of the landscape
means that the present depends linearly on the past; however the
evolutionary dynamics causes non-linear feedback via the selec-
tion of the uphill step from the DFE. This interplay between past
and present is what gives rise to the complexities of evolutionary
dynamics even in these Gaussian-distributed landscapes.

As we shall show explicitly, the response of µ(x) to s(y) for
y < x (via the kernel J(x, y)), tends to be negative; the current
possible steps are anticorrelated with previous ones taken. This
negative feedback makes it harder and harder to find uphill steps
as the evolution continues. The response of µ(x) to µ(y) (via the
kernel K (x, y)) is somewhat subtle, but its net effect is to make
µ(x) correlated with earlier µ(y).

3.2.1. Exponentially-correlated landscapes
We begin by analyzing the case of exponential correlations:

D(ℓ) =
1
b
(1 − e−ℓ/ξ ) (22)

where b = (1−e−1/ξ ) normalizes the family so that random single
mutants have identical statistics (D(1) = 1) for any ξ .

For this model, the response structure is easy to compute
in terms of the absolute fitness values F (x). A direct calculation
(detailed in Appendix B.3) shows that we have

E[µ(x)| past] = −bF (x) (23)

The dynamics is ‘‘memoryless’’ (Markovian) with regard to the fit-
nesses — only the last observed fitness matters. This relationship
is in fact exact; that is, we can write

µ(x) = −bF (x) (24)

without the conditional expectations. This is a very special prop-
erty of the exponential landscape (and indeed, completely char-
acterizes it for b ∈ [0, 1]). The relationship is most clear in the

https://github.com/distance-dependent-landscapes/hypercube-walks
https://github.com/distance-dependent-landscapes/hypercube-walks
https://github.com/distance-dependent-landscapes/hypercube-walks
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independent limit where b = 1. Here in the large L limit we have

µ(x) ≡
1
L

∑
x′

F (x′) − F (x) = −F (x) + O(L−1/2) (25)

where the x′ are genomes one mutation away from x, whose
average is zero due to the mutual independence of all fitnesses

Eq. (24), along with the definition of the step taken, s(x) =

F (x+1)−F (x), implies that the joint covariance matrix of the µ(x)
and s(x) is singular. The response kernel is degenerate to degree
x. We can take advantage of the freedom of choice to make the
response kernels take simple forms; two possible choices are

E[µ(x)| past] = −b
x−1∑
y=0

s(y) + µ(0) (26)

or

E[µ(x)| past] = −bs(x − 1) + µ(x − 1) (27)

The negative correlation with the previous fitness will drive the
typical µ(x) to be more and more negative during evolution. Since
the variance of µ(x) is constant, this leads to the typical DFE
having fewer and fewer beneficial mutations, slowing down the
rate of fitness gain, as expected. In Section 3.3, we will compute
the dynamics for exponential correlations explicitly.

From Eq. (15) the variance of the available s(x) given µ(x) is

σ 2
=

1
2
D(2) =

1
2
(1 + e−1/ξ ) (28)

which ranges from 1
2 (independent model) to 1 (additive model)

for increasing ξ .

3.2.2. Power-law-correlated landscapes and integral approximation
To understand the behavior of long walks – in which we are

primarily interested – it is instructive to approximate the discrete
response equation by the integral equation:

µ(x) ≈

∫ x

0
dy [K (x, y)µ(y) + J(x, y)s(y)] + η(x) (29)

where we abuse notation and use J and K for the continuous ana-
logues of the discrete response kernels. Now η(x) is the random
part of µ(x), a Gaussian random variable with autocorrelation

E[η(x)η(y)] = Vηδ(x − y) (30)

As we are interested in the long-walk behavior, we use the
asymptotic value, Vη ≡ lim

x→∞
Vη(x), at which the conditional

variance saturates.
In general, the kernels will depend on both x and y. But

for x − y ≪ x, we anticipate that they will approximately be
functions of just the distance, x − y. In this limit, the integrals
become convolutions and Fourier transforms can be used. For the
case of power law divergence functions, Wiener–Hopf analysis
(Appendix B) can be used in this x − y ≪ x regime, to obtain
J(x, y) ≈ −cJ (x−y)−(1−ν) and K (x, y) ≈ δ(x−y)+ cKP(x−y)−(1+ν)

with the exponent ν = (1 − α)/2 and P denoting the principal
part (so that integrals over K have no contribution from the
divergence at x− y → 0). Here cJ and cK are positive coefficients
that can be written in terms of Beta functions and combinations
of Vη and σ 2.

Armed with their scaling forms, and the structure of the sin-
gular integral equations that have to be solved, one can guess and
check the exact kernels (valid when x, y and x − y are all large):

J(x, y) ≈ −cJ Θ(x − y)
(y
x

)ν 1
(x − y)1−ν

(31)

and

K (x, y) ≈ δ(x − y) + cK Θ(x − y)
(
x
y

)ν
P
(

1
(x − y)1+ν

)
. (32)

where Θ(z > 0) = 1 and Θ(z < 0) = 0.
The responses are of opposite signs, and the J drops off less

sharply than the K . However, the sign of K is misleading due to
the principal part. If the convolution with the past is done by
parts, then we get∫ x

0
dyK (x, y)µ(y) = µ(x) −

cq
xν
µ(x) −

∫ x

0
dyQ (x, y)

dµ
dy

(33)

with positive coefficient cq and the kernel of dµ
dy defined by

Q (x, y) ≡

∫ y

0
dz[K (x, z) − δ(x − z)] (34)

This form of the response shows that µ(x) is anticorrelated with
both s(y) and dµ

dy of the past.
The analytically predicted asymptotic scaling forms of the

response kernels, agree well with the numerically computed ker-
nels. In Fig. 3, we plot the numerically computed −J and K for a
variety of walk lengths x. The predicted scaling forms are plotted
as dashed lines. We choose the coefficients cJ and cK to match the
forms at x−y = 1 in lieu of computing these numerically. We see
that for large x, the response kernels drop off with the predicted
power law form until x − y is large (y small). The predicted
asymptotic forms also capture the behavior at small y, where the
response kernel is non-monotonic due to the dependence on x/y.
The J response kernel is closest to its asymptotic form for α = 1
and the K is closest for α = 0 (detailed in Appendix B.2); these
are expected, as the corrections to the asymptotic forms go as
1/xα and 1/x1−α respectively.

From the form of the response kernel, we can already see a
qualitative difference between the power-law and exponential
cases; the conditional probabilities in general depend on the
whole fitness-trajectory of the past evolution, not just the most
recent fitness. This dependence on the long-ago past is crucial for
shaping the long-term dynamics of random adaptive walks.

3.3. Typical fitness trajectories of adaptive walks

Given an analytical form for the long-distance response kernel,
we can obtain analytical understanding of the typical fitness tra-
jectories of random adaptive walks. The response kernels give an
integral equation for the conditional expectation (across adaptive
walks over the whole ensemble of landscapes) of µ(x) in terms
of past µ(y) and s(y), and then the value of µ(x) determines the
distribution of s(x). Since the evolution-conditioned E[µ(x)|past]
is linear in past values, we can use the response kernels to get a
self-consistent set of equations for the typical trajectories of µ(x)
and s(x).

We define the fitness gain of a trajectory as a function of the
number of steps, x, along it as

f (x) ≡ F (x) − F (0). (35)

Due to the distance-dependent statistics, f (x) should, for walks
with x ≪ L, be independent of L. We start with simple examples
where the answers are known from simple methods, and work
up to the more complicated cases.

3.3.1. Simple landscapes
The simplest case is the additive model: the fitness steps are

uncorrelated, so both K and J are 0. Therefore µ(x) is always
0 on average, and uphill steps are taken from the same distri-
bution. The total fitness gain, f (x), typically grows linearly in x,
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Fig. 3. Log–log plots of −J and K against x − y for various x, α = 0.5. response kernels explicitly encode dependence of evolution on the past. Intermediate power
law scaling regime makes long range of evolutionary history important. Theoretical form (dashed lines) rescaled to match numerical form at x − y = 1. Theory
captures intermediate power law scaling regime, as well as non-monotonic behavior for small y.

with variance around the average fitness trajectory, ⟨δf 2⟩, also
growing linearly. The ⟨·⟩ notation indicates randomness due to
stochasticity of the dynamics, rather than (possibly conditional)
averages E[·] over the ensemble.

The other simple case is the independent model. Since the
fitnesses are all independent, there is a simple relationship be-
tween the average available fitness gain and the (absolute) fit-
ness: µ(x) = −F (x) for any x in the large L limit, with no
additional variation (i.e. Vη = 0). The difficulty of finding uphill
steps is directly related to the current fitness. (Note that the
absolute fitnesses are well defined in the independent model
since D(ℓ) is bounded, as per the discussion in Section 2.1).

To proceed, we need to understand the typical uphill steps
actually taken, given µ(x). The distribution of possible steps is just
determined by µ(x) and D(2) for any D(ℓ) (with D(1) = 1). For
large negative µ(x) (−µ(x) ≫ σ ), the distribution of uphill steps
is distributed approximately exponentially with average value

⟨s(x)|s(x) > 0, µ(x)⟩ ≈
σ 2

−µ(x)
(36)

where, as before, σ =
√
D(2)/2 is the – history independent –

standard deviation of the potential single-step fitness gains {si(x)}
given µ(x). Using the above expression, we have, for the indepen-
dent fitnesses model, an approximate differential equation for F :

dF
dx

≈
σ 2

F
(37)

which integrates to F (x) ∼ x1/2 for large x. The fitness in the
independent model thus increases sublinearly, but still as a power
law in the number of steps. For x ≫ 1, the effects of the initial
fitness, F (0), are negligible (yielding corrections to F (x) of order
1/

√
x). Thus whether or not we condition over the initial fitness,

the long-distance behavior is essentially the same.
For landscapes with exponentially decaying correlations, we

can proceed similarly, since far-apart regions of the landscape
are approximately independent. Normalizing D(1) = 1 as before,
Eq. (24) gives
dF
dx

= ⟨Z |Z > 0⟩ (38)

where Z is normally distributed with expectation −F (x)/b and
variance σ 2

=
1
2 (1 + e−1/ξ ) as calculated previously.

As long as F (x)/b ≪ σ (equivalent to F ≪ ξσ for large ξ ),
the dynamics is like the additive model with F (x) ≈

√
2
π
σx.

The correlations are too weak to influence the dynamics and F
increases roughly linearly until F ∼ ξσ , where the correlations
start to matter. For F ≫ ξσ , the large µ approximation holds
and we have
dF (x)
dx

≈
σ 2ξ

F (x)
(39)

which gives us the approximate trajectory

F (x) ∼ [2ξx]1/2 (40)

at long times for large ξ . The long-distance behavior is thus like
the independent-fitness model as could have been anticipated
since fitnesses that are much more than ξ apart look roughly
independent.

3.3.2. Power-law correlated landscapes
Analyzing adaptive paths on power law landscapes is more

complicated, because past evolution matters at all stages due to
the power laws in the response kernels. Fig. 4 shows a typical ex-
ample of the evolutionary dynamics. The uphill steps get smaller
and smaller as the average, µ(x), of the DFE decreases.

Regardless, we can use the power law forms of the response
kernels to self-consistently solve for the dynamics. For power-law
correlated landscapes, we must deal with fitness differences only
since F (0) depends on L (D(ℓ) is unbounded). We will solve for the
dynamics of the fitness gain f (x) by making a power-law ansatz
for the typical behavior

f (x) =

x−1∑
y=0

s(y) ∼ xβ (41)

and by solving for the scaling forms of µ(x) and s(x). We conjec-
ture that

µ(x) ∼ −xγ , while s(x) ∼ xβ−1. (42)

Evaluating the convolutions in Eq. (29) (with short-hand notation
∗ for the integrals over the past) using Eq. (33) and neglecting
the noise term (justified a posteriori), we have Q ∗

dµ
dy ∼ xγ−ν and

J ∗ s ∼ −xν+β−1, where ν = (1 − α)/2 < 1. The neglected terms
in Eq. (33) are much smaller than Q ∗

dµ
dy for large x; therefore

the Q term must nearly cancel the J ∗ s term. Thus both those
pieces must scale the same way with x, so we conclude that
1 − β + γ = 2ν = 1 − α.

To get a second equation relating the exponents, we consider
the dynamics. Once −µ becomes large – which taking random
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Fig. 4. Properties of typical random adaptive walk on a power-law-correlated
landscape, with α = 0.5. Fitness gains s decrease, on average, as a power of the
number of steps, while the average available fitness gain, µ, is negative with
|µ| increasing as a power of the number of steps.

beneficial mutations it will be after only a few steps – then s must
be selected from the tail of the Gaussian distribution. Eq. (36)
then typically holds and s(x) ∼ σ 2/[−µ(x)]. Combining with the
Ansatzes in Eq. (42), we have 1 − β = γ .

Combining with the first equation for the exponents, we can
now solve for β and γ and conclude that

µ(x) ∼ −xγ with γ = (1 − α)/2 (43)

and

f (x) ≈

∫ x

0
s(y)dy ∼ xβ with β = (α + 1)/2 . (44)

The exponents interpolate linearly between the extreme cases of
the additive (α = 1) and independent fitnesses (α = 0) models.

These analytic predictions for power-law correlated landscapes
are supported by the numerics. Fig. 5 shows the mean and stan-
dard deviation of the trajectories of 300 simulations of adaptive
walks on different instantiations of the fitness landscape for α =

0.5 (left column). As expected, −µ is constantly increasing, while
s decreases accordingly. In the right column, we show log–log
plots of µ(x), s(x), and f (x) for various α. Since −µ(x) increases
more slowly for larger α, f (x) grows more quickly as α increases.
Fig. 6 shows the scalings of the log derivatives of the mean and
variance of each set of trajectories (computed numerically after
100 steps, with Gaussian smoothing of width 5). The estimated
power law exponent, γ , of µ deviates from theory as α goes to 1;
however, this is also where the response kernel K has corrections
of relative order 1/x1−α (as well as 1/xα), and µ is only slowly
increasing. In all, the scalings from the numerics appear to agree
well with the analytic predictions.

The simulations also illustrate the scalings of the variations
about the mean of the various quantities. The variance of µ
goes to a constant while |µ(x)| increases. The variance of s is
proportional to ⟨s⟩2, as one should expect for an exponentially
distributed random variable; this is roughly correct even though
the variations in µ make the distribution of s across realizations
is not simply exponential, the standard deviation is still pro-
portional to the expectation. The variance of the fitness scales
as ⟨δf (x)2⟩ ∼

∑x
y=0⟨δs(y)

2
⟩, as would occur if the uphill steps

were uncorrelated. (These statistics are for the dynamics across
different landscapes; in Section 4.3, we discuss variability due to

dynamics on a single landscape.) The relative variances of both
f (x) and µ(x) go to 0 for large x, and therefore the ‘‘typical’’
trajectory is well described by the average trajectory.

The key feature of the dynamics is that the ‘‘global’’ epistatic
information – the long-distance correlations in fitness – deter-
mine the rate and predictability of evolution, as opposed to local,
short-range statistics (which are the ones responsible for things
like the number of local maxima). The evolutionary trajectories
of different landscapes look similar if their statistics are similar.
We will discuss the relationship of fitness trajectories within the
same landscape in more detail in Section 4.3.

4. Properties of adaptive walks

The analytical framework introduced in the previous section
allows us to understand many features of the evolutionary dy-
namics quantitatively. The explicit dependence on past evolution
means that the long-range statistical structure of the landscape
is important for understanding evolutionary trajectories. In par-
ticular, evolution drives populations to highly non-generic places
on the fitness landscape. We highlight some of the important
properties of the dynamics and the evolution-conditioned fitness
landscape here.

4.1. Finite L and reaching a local maximum

The results discussed thus far are for the limit of infinite L: we
have assumed that there are enough beneficial mutations at any
step that the distribution of fitness effects is essentially determin-
istic given µ(x), and many uphill steps are always available, even
when these constitute a very small fraction of the total of L poten-
tial mutations. A crucial consequence of finite L is the tendency to
eventually run out of beneficial mutations: this will occur when
the fraction of mutations that are beneficial decreases to O(1/L).
We can predict the magnitude of the total fitness gained, fmax,
before a local maximum is reached. This can be calculated directly
for the independent fitnesses and independent steps (additive
model) cases. For power-law correlated landscapes, we can use
our large-distance-scale approximations to find how fmax scales
with genome size, L.

For the additive model, each site contributes independently
to the fitness. Thus the global maximum can be reached and
fmax ∝ L. For the independent fitnesses model, at every step,
we are presented with L independent choices of new fitnesses,
F . A large fitness is unlikely to be found when the probability of
any individual neighboring fitness being greater than the current
fitness is < O(1/L). This implies that the absolute fitness Fmax
will scale as Fmax ∼

√
log(L), and since a typical starting point

has F (0) ∼ O(1), fmax ∼
√
log(L) as well. Note that this fmax is a

consequence of the Gaussian tail of the fitness distribution: with
longer-tailed distributions, as we discuss in Section 6, the fitness
can increase further.

The maximum fitness reached can be estimated more gener-
ally, similarly to the independent fitnesses model: simply follow
the deterministic dynamics until a value is reached such that
there are only O(1) available uphill steps. This occurs after a num-
ber of mutations X where P(s(X) > 0|µ(X)) ∼ O(L−1). With our
Gaussian random landscapes, this condition is exp(−µ(X)2/2σ 2)
= O(L−1), i.e. when −µ(X) ≈ σ

√
2 log(L). Until then, with high

probability there are available uphill steps. Once the form of µ(x)
is known, we can solve for X , and estimate fmax ∼ f (X).

In Section 3.3, we found the scaling forms of µ(x) and f (x)
for exponentially correlated landscapes and power-law correlated
landscapes, allowing us to solve for fmax for each. For exponen-
tial landscapes the cumulative fitness gain saturates at fmax ∼

σ (1 − e−1/ξ )−1/2
[log(L)]1/2. For ξ ≫ 1, this is approximately
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Fig. 5. Mean and standard deviation of µ(x), s(x), and f (x) for adaptive walks with α = 0.5 averaged over 300 trajectories (left column). Log–log of averaged
trajectories for various α (right column). µ(x) is negative and decreases more slowly for larger α. This slower decrease leads to larger s(x), and therefore to larger
f (x). Relative variability of µ(x) and f (x) decreases with x, while that of s(x) does not.

σξ 1/2[log(L)]1/2, the same scaling with L as the independent case.
(Of course, if ξ = O(L), then fmax ∝ L.)

In contrast, for power-law correlated landscapes we have

fmax ∼ (log L)(1+α)/2(1−α) (45)

This is still logarithmic in L, but can be many times higher than
for the independent case (which corresponds to α = 0).

How good are the maxima which adaptive walks reach?
Specifically, one can ask: how large is fmax compared to the max-
imum fitness fmax(ball) of any genome within the same distance
from the starting point as the length of the walk, x? Using Eq. (11),
we can compute fmax(ball) for a ball of radius x. For power-law

landscapes, fmax(ball) ∼ x(1+α)/2
√
log(L). As the adaptive walk

reaches x = (log L)1/1−α and f (x) ∼ x(1+α/2), both fmax and fmax(ball)
are powers of log(L), but the latter has an extra factor of

√
log(L).

Another way to quantify how effective adaptive walks are is to
compare their fitness increase to fmax,up, the maximal fitness gain
attainable via any adaptive walk. The question of whether or not
fmax,up reaches the maximal possible fitness is called accessibility
percolation (Nowak and Krug, 2013; Hwang et al., 2018). For the
independent fitnesses case, explicit computations (Appendix C.2)
yield fmax,up ∼ L1/4. This is a factor of L1/4 smaller than the
maximum fitness F∗

∼ L1/2 of any genotype on the hypercube.
Therefore the largest possible fitnesses are inaccessible via purely
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Fig. 6. Logarithmic derivatives d log(quantity)/d log(x) of trajectories for s, µ, and f . Derivatives computed numerically from trajectories in Fig. 5 around x = 100.
Derivatives of average values in blue, derivatives of standard deviations in orange. All quantities roughly follow power law trajectories. Exponents of s and f increase
linearly with α, while µ decreases. Simulations (dots) match theory (dashed lines) well for s for all α and for µ for low α. Deviations are due in part to finite
walk-length effects.

uphill evolution. This is consistent with previous proofs that the
probability that there exists an uphill path to the maximal fitness
goes to zero in the independent fitnesses model (unless the initial
fitness is anomalously small) (Hegarty and Martinsson, 2014).

In contrast, the RMF model behaves like the additive model,
with probability one of having an uphill path to the maximal
possible fitness. For landscapes without an additive piece, results
are likely similar to the independent fitnesses case. As we will
show in Section 5, even alternate weighting schemes to choose
better adaptive walks do not enable them to reach anywhere near
F∗ in power law models.

All the above results underscore that understanding typical
behaviors of adaptive walks is very different than understanding
either ‘‘typical’’ local or large-scale geometric properties of the
fitness landscape.

4.2. Comparisons with typical paths to uphill points

One way to quantify the ‘‘non-generic’’ nature of the evolu-
tionary dynamics is to compare adaptive trajectories to ‘typical’’
paths that reach the same fitness gain in the same number of
steps. We thus must ask: on a power-law correlated landscape,
what does a typical random walk of length x and fitness gain
x(α+1)/2 look like?

We can use the covariances calculated in Appendix A.1 to find
the average trajectory conditioned on the endpoints using formu-
lae for conditional expectations of Gaussian random variables: For
power-law correlated landscapes, we find

E[s(y)|f (x)] ≈
α

2

(
yα−1

+ (x − y)α−1) x(1−α)/2 (46)

(Note that here the conditioning is done simply over the ensem-
ble of landscapes.) In contrast to adaptive trajectories, the typical
trajectories are symmetric, steepest at both ends. The average
step size is at most x(1−α)/2, but decreases greatly in the middle
to x−(1−α)/2.

Sample trajectories for α = 0.5 are shown in Fig. 7. The typical
conditioned trajectories tend to be very lucky at the beginning
and end (with high slopes there), and increase only very slowly
in the middle. This is in contrast to the adaptive walks, which
are typical at the beginning, and then gradually slow down but
continue to gain fitness. In the middle portion of the typical
conditioned random walk the average step size is x−(1−α)/2, but
the variance of the step sizes is O(1), which means that the typical
conditioned path does not go systematically uphill. Indeed, the
probability of a step in the middle being deleterious is only
slightly less than 1

2 . Conversely, the late steps are much larger
than those of adaptive walks.

Despite these differences, the neighborhood of the endpoint
of the typical conditioned walk has µ(x) ∝ −x(1−α)/2 just like the
adaptive walk. However, even though the scalings of the µ(x) at
the end of the typical walk and the adaptive walk are the same,
the coefficients are not; the typical walk has a larger negative µ(x)
by a multiplicative factor. Since the fraction of mutations that are
adaptive falls off as a Gaussian in µ(x), this difference can be very
important for future dynamics — adaptive walks are more likely
to continue further before getting stuck.

More generally, the unexplored local neighborhood around
the endpoint of the two types of walk looks different. For the
typical conditioned walk, the mean available step a distance ℓ
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Fig. 7. Average evolutionary trajectory (for α = 0.5) compared to typical
trajectories of random walks on the landscape constrained to end at a distance
and fitness on the evolutionary trajectory. Evolution finds a steady path uphill,
while typical trajectories with the same fitness gain are lucky at the start and
end of the path.

away from the endpoint, µ(x+ℓ) increases towards zero smoothly
as −ℓα−1µ(x). However, for an adaptive walk, the magnitude of
µ(x+ℓ), decreases sharply from µ(x) before a smoother decrease
towards zero. Characterizing in detail the landscape as a function
of ℓ for the adaptive walk is more complicated than for the
typical walk; although our methods could be generalized to do
so. Regardless, the behavior in the immediate vicinity of the end
of a past evolutionary suggests that it is easier to go further uphill
than it would be from a typical conditioned path with the same
overall fitness gain.

4.3. Variability of evolutionary outcomes

The variances computed in Section 3.3 were computed across
the entire ensemble of fitness landscapes, by comparing all uphill
walks on all landscapes with particular statistics. For power law
walks, we noted that the variability across landscapes ⟨δf (x)2⟩ ∝∑

y<x⟨δs(y)
2
⟩ — suggesting that the correlation between individ-

ual steps is weak enough to not contribute (at least in a scaling
sense) to the overall variability of evolutionary trajectories. How-
ever, for natural populations we are usually interested in the
variability between two evolutionary trajectories starting from
a single genotype on the same landscape. This is important to
understand populations separated by spatial structure, the vari-
ability of evolutionary outcomes, and in experimental settings
to understand the statistics of parallel evolutions from a single
common ancestor.

The analysis of adaptive walks suggests that the conditioning
on past evolution is important to understand this variability;
therefore we should consider two adaptive walks starting from a
genotype which is itself the result of evolution. More concretely,
we consider the following scenario: a population evolves via an
adaptive walk for some genetic distance xb. Then the population is
separated into two non-interacting subpopulations, each of which
explores a separate direction in the same landscape. We will refer
to this trajectory as a branching path. The walk starts at a root
x = 0, continues along a shared trunk, and then splits into two
branches at the branch point xb, each branch continuing until the
total number of steps in each reaches a total of x. We will be
interested in tracking the fitness fi(x) relative to the root for the
two paths i = 1, 2, and the difference ∆f (x, xb) ≡ f1(x) − f2(x)
between the fitness of the endpoints of the two paths which

Fig. 8. Typical example of cumulative fitness gain f for the two branches of a
branched trajectory in a power-law correlated landscape. Paths branch at end
of black curve (a distance of xb = 75 steps from root of walk). Correlations
between branches quickly decay, but global structure of epistasis keeps relative
variability of f small. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

branched at xb. Fig. 8 shows the trajectory of f for such a walk
on a power-law correlated landscape.

On power-law correlated landscapes, simulations show that
long after the branching, the variance between the two branches
on the same landscape behaves the same as the variance of a sin-
gle path across different instantiations of the random landscape
(trivially true for the independent fitness model). Specifically,
Fig. 9 shows the ratio of Var[∆f (x, xb)] to twice the between-
landscapes variance of the post-branch parts of the walk:
2Var[f (x) − f (xb)] (with the factor of two accounting for the
variance of the difference between two – putatively – indepen-
dent fitness increases.) As expected, Var[∆f (x, xb)] is smaller than
2Var[f (x)−f (xb)] due to correlations induced by the shared trunk.
However, the ratio approaches unity for x ≫ xb, suggesting
that, indeed, variance between landscapes behaves the same as
variance between branches in the same landscape at large genetic
distances. We expect that the ratio approaches unity as a power
of 1/(x − xb).

The numerical results suggest that for longer evolutions, there
is not much difference between taking multiple paths on the
same fitness landscape, or taking paths on different fitness land-
scapes. For a branching path, the shared part provides some extra
correlation, but this only persists for short distances from the
branch. The long-term variability between branches only depends
on the long-range statistics of the fitness landscape.

5. Greedy and abstemious walks

Thus far, we have considered walks that take uphill steps with
probability independent of the fitness increment, s. However,
in actual evolutionary processes the probability of fixation can
depend on s. A natural question, then, is whether it pays to be
more greedy (weighting towards larger s) or more abstemious
(weighting towards smaller s) in the long run.

In general, whether being greedier increases or decreases the
maximum fitness reached depends strongly on the statistics of
the landscape and the resulting conditioning on past evolution.
It has been previously found that in the independent fitnesses
model, greedy walks do better than random (or abstemious)
adaptive walks. For the NK model, the most effective walk type
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Fig. 9. For branched random adaptive walks, ratio of the between-branch variance on a single landscape, to the single branch variance across landscapes:
Var[∆f (x, xb)]/2Var[f (x) − f (xb)]. The different colors correspond to different distances, xb , of the branch point from the starting point. Results for power-law
correlated landscapes with several values of α are shown. The variance ratios saturate to unity, suggesting that variability between different paths on the same
landscape behaves similarly to variability between paths on different landscapes with the same statistics.

depends on the choice of parameters (Nowak and Krug, 2015);
for small ξ (close to independent) or large ξ (close to additive),
greedy walks are better, but for intermediate ξ , reluctant walks
which take the smallest possible steps (the most abstemious
dynamics) are better. Reluctant and greedy walks have also been
studied in the context of the Sherrington–Kirkpatrick model in
physics (Parisi, 2002).

We will analyze a family of strategies with varying amounts
of greediness on both exponentially correlated and power law
correlated landscapes. We will also be interested in rare (but
attainable) adaptive walks whose fitness trajectories are highly
anomalous.

5.1. Adaptive walks with weighted choices of steps

With birth–death fluctuations in the strong-selection weak-
mutation regime, the probability of fixation of a beneficial mu-
tation is proportional to the fitness benefit, s. We only need a
slight change in the analysis to understand the dynamics under
such a weighting, or, indeed, weighting by any power sκ (although
we know of no natural biological process that would correspond
to negative κ .) Because the distribution of non-negative s is
exponential in the limit −µ ≫ σ , for a large class of weighting
functions we have:

⟨s(x)|µ(x)⟩ ≈ qσ 2/(−µ(x)) (47)

where the ‘‘greediness factor’’ q is the ratio of the average step
taken to the average positive step available: it parameterizes the
greediness of the walk. For weighting sκ , q = Γ (κ + 2). For
unweighted steps q = 1; with fixation probability proportional
to s, q = 2. Abstemious walks can be analyzed by taking non-
negative q < 1. As we will see, the change in average step size
will not change the scaling of f with respect to x, or the critical µ
before getting stuck; however, it can change the maximal fitness
reached, fmax, by a multiplicative factor.

On exponentially correlated landscapes, as long as the evolu-
tionary rule is local, the statistics of the current DFE only depends
on the current fitness F (x). Therefore, the current µ(x) does not
depend on the shape of the fitness trajectory; asymptotically in
the limit of large L, the value of F (x) reached when the probability
of an uphill step is O(L−1) is independent of q. The walk will
proceed until F (x) is in a quantile a(q)/L of its cumulative distribu-
tion function. The L-independent coefficient a(q) will depend on
the correlation length, ξ , of the landscape, and the results about
the NK model from Nowak and Krug (2015) suggest a(q) will be
non-monotonic in q.

For power law correlated landscapes, q has a non-trivial effect
which can be analyzed simply. The analysis in Section 3.3 relied
on self-consistently solving Eqs. (29) and (36) given the response

kernels. For weighted walks, we replace Eq. (36) with Eq. (47). A
simple substitution shows that if µ(x) and s(x) satisfy the original
equations, then µ̃(x) =

√
qµ(x) and s̃(x) =

√
qs(x) satisfy the

weighted walk equations.
If we compute fmax as in Section 4.1 using µ̃(x) and s̃(x), we

find that the walk reaches a local maximum fmax(q) after X steps
when

fmax(q) ∼
√
qX1−ν

∼
[log(L)](1−ν)/2ν

q−1+1/2ν (48)

with ν = (1−α)/2. Note that 1/2ν = 1/(1−α) > 1 for all positive
α, and q > 1 corresponds to greedy walks. We thus conclude
that more abstemious walks go further than greedy walks. Being
greedy is good in the short term but bad in the long term.

Though the individual fitness gains s̃(x) scale as
√
q (larger for

greedier walks), the total number of steps before getting stuck
goes as X ∼ [log(L)/q]1/2ν — larger for more abstemious walks,
and enough to overcome their smaller step sizes. Concretely,
going from randomly chosen mutations to fixation probability
proportional to s decreases the maximum fitness reached by a
factor of 2−α/(1−α). The suppression is strongest for α near 1. (But
note that for α = 1 this result does not apply as the maximum
fitness is of order L independent of q: q only determines in which
order the steps are likely to be taken).

Contrasting the results for power-law correlated and NKmodel
landscapes, we see that whether being greedy or abstemious is
better in the long run depends on the statistics of the landscape
and the past evolution. A surely interesting question is what
happens for real fitness landscapes.

In larger populations, the fixation of mutations tends to be
greedier than in the strong-selection, weak-mutation regime on
which we have focused. Multiple mutations will arise in each
generation and compete with each other: this yields fixation
probabilities that grow much more rapidly than linearly in s.
However large populations are polymorphic with the population
spread out over many genomes – effectively taking many paths
in parallel – and the behavior is much more complex; we discuss
this briefly in Section 8.

5.2. Slow but steady adaptive walks

The above results suggest that to reach as high as possible
fitness in an adaptive walk on a landscape with long-distance
correlations, one should carefully – and artificially, although using
only local information and memory – chose which uphill steps
to take, being as abstemious as possible. Although unlikely rel-
evant biologically, this is of potential interest for evolutionary
algorithms, thus we summarize some results here, leaving the
analysis to Appendix C.5, and raise some interesting questions.
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The analysis carried out above is correct for any fixed q for
large L. What happens if we choose much smaller q, e.g. q ∼ L−ζ

for some positive ζ < 1? In particular, is it possible to take of
order L steps before getting stuck? We show that, in power-law
correlated landscapes, it is indeed possible. By considering only
paths that do not change any site more than once, we find a
lower-bound on the fitness reached:

f (X) ≥ O(Lα
√
log(L)) . (49)

As explained in Section 2.3 the absolute maximum fitness
on the hypercube is of order L(1+α)/2. For α = 1, the additive
model, the above bound – up to the log factor which is unreliable
in this case – is the same as this; but of course, any strategy
works perfectly for additive models. In the opposite limit, with
independent fitnesses, α = 0, the analysis breaks down but naive
extrapolation gives

√
log(L) with no power of L, the same form as

natural walks which have q = 2.
For power-law correlated landscapes how well can one do

if even longer walks are allowed, so that many mutations are
reversed with some – presumably many – reversing multiple
times? This is a complex question which we will not endeavor to
answer here. But the method of conditioning on the past should
enable some exploration even in this regime. We leave as an
intriguing open question whether, using only local information,
the lower bound of the maximum reachable fitness in Eq. (156)
can be beaten.

Note that there are already subtleties in actually finding a path
by choosing from the lowest q fraction of the available positive
steps. This could be done by trying many steps and picking the
lowest uphill one: in the regime where −µ is still of order σ ,
only roughly 2/q steps need to be tried. But once this is done,
then in principle the future possibilities are conditioned on the
s’s tested but not chosen. Due to this, the permutation symmetry
in the yet-untaken mutational directions can no longer be used.
We suspect that this would not actually affect the scaling of
the fitness achievable, but that would require a much trickier
estimate of the effects of the conditioning-by-testing. What we
have shown, is the existence of an uphill path that can reach a
fitness gain of order Lα

√
log(L), but it is not quite clear how to

find it with only local information.
What if some global information is available? In the inde-

pendent fitnesses model, we can come up with a good strategy
given only knowledge of the statistics of F . If from each point
the smallest available step is taken, then the walk can continue
for of order L steps of size ∼1/L before −µ(x) becomes of order
σ and the number of available steps starts being limited. Along
such a walk, L2 neighbors will have been ‘‘seen’’. Therefore a good
strategy is to take the smallest step until a genotype with fitness
of quantile O(L−2) is observed, take that step, and – most likely
– get stuck there. With appropriate tuning of the decision point,
with high probability such a fitness will be observed.

If information about the landscape itself is known, we can
ask: how high a fitness increase will the best possible path reach
from a random initial genome? In the independent case, a direct
computation (Appendix C.2) suggests that this goes as L1/4. More
generally, answering this question is likely to be very difficult
analytically because of the strong correlations among different
directions, and is numerically intractable without generating the
whole landscape and exploring it — exponentially hard in L.

6. Beyond Gaussian landscapes

A key question about all our results is the generalizability of
the quantitative and qualitative features to other models of epis-
tasis. In particular, how sensitive are the adaptive walks to the
assumptions of Gaussianity of the random landscape? Addressing

this generally is beyond the scope of this paper, but we can
begin to explore by considering mixed landscapes whose fitness
function is a linear combination of an epistatic Gaussian function
and a non-Gaussian additive part. More precisely, the fitness Ftot
is given by

Ftot (g) = FC (g) + FA(g) (50)

where FC is a distance-dependent correlated landscape, and FA is
an additive landscape. Both parts of the landscape depend on the
same parts of the genome, but they are statistically independent.
Note that this is different than having a fraction of the sites on
the genome not participating in the epistasis with mutations at
those sites simply adding to the fitness: in that case adaptive
walks can always continue until all the non-epistatic mutations
are exhausted. In contrast, the models we consider have many
local maxima and adaptive walks cannot necessarily take O(L)
steps. The RMF model is the simplest example, which assumes
FC is the independent fitnesses model.

One way to understand models of this mixed-type is to think
of the additive piece as being a modification of the dynamical
rules. Recall the general transition rule for steps, to be taken with
probability P(g → g ′) = φ(sg→g ′ )/Z . With a mixed landscape, we
can decompose the fitness benefit, s, of each potential mutation
into an additive part, sA, and the part from the correlated land-
scape, which we will call sC . Then, the probability of taking a step
becomes

P(g → g ′) = φ(sC (g → g ′) + sA(g → g ′))/Z (51)

After convolving with the distribution of sA, we can consider this
to be a modified transition rule for steps, sC , to be taken in the
correlated part of the landscape. With φ(s) still a step function,
the additive part of the landscape can compensate for the non-
additive part; the path can take negative steps in the correlated
landscape so long as a sufficiently positive step in the additive
part is available to make the total fitness step positive.

The effects of the loosening of the requirements for steps
in the correlated part of the landscape can keep the average
available fitness gain, µC , of the correlated part of the steps from
getting too negative and allow for long evolutionary trajectories.
In the limit of infinite L, µC (x) will saturate for large x and
from then on the statistics of the available steps will no longer
change. In Appendix C.3, we use the modified transition rule
together with the response kernels to directly study combinations
of an additive model with a power-law-correlated model, first
analyzing the saturation of µC .

A key question is the behavior large finite L: when can the
additive part of the fitness landscape stop walks getting stuck
at local maxima? We first consider the simplest case: the RMF
model (α = 0) (Neidhart et al., 2014). In this case, it is simple to
show that a Gaussian additive part with relative variance σ 2

A /σ
2
C

larger than O([log(L)]−1), will ensure that with high probability
there are always uphill steps available. This result also holds for
all power-law correlated landscapes (Appendix C.3). This quanti-
fies the crossover from walks that get stuck after a power of log(L)
steps, (Section 4.1) to walks of length O(L) (which in previous
work were analyzed in the infinite L limit only Park et al., 2015;
Neidhart et al., 2014). For any fixed non-zero σ 2

A /σ
2
C , in the limit

of large L adaptive walks can take O(L) steps. We note that the
behavior depends on the tails of the independently random part
of the RMF landscape; for example, with exponential tails there is
a phase transition at finite σ 2

A /σ
2
C in the limit L → ∞ (Park et al.,

2015).
It is instructive to compare how much of an additive part

is needed to avoid random adaptive paths getting stuck, with
the probability that there exists an uphill path of length O(L)
(a ‘‘traversable’’ path Hwang et al., 2018). An upper bound for
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the relative variance needed is only σ 2
A /σ

2
C ∼ O(L−2). Here, the

strategy is to pick a step with positive sA and random sC with
|sC | < sA. We can do this with high probability so long as σA ≫

L−1. With this strategy, the induced µC (x) is random and O(1), so
the walk can continue until all positive additive steps are taken.
Such a walk would only have fitness gain of O(1); it remains an
open question if a more refined strategy can lead to large fitness
gains.

The effects of additive parts of the fitness function are more
dramatic if the additive parts of the step-sizes are broadly dis-
tributed, especially when there are rare mutations that have
very large fitness effects. As an explicit example, we consider a
distribution of sA with a power law tail so that the cumulative
distribution function is∫

∞

s
P(sA = s′)ds′ ≈

(
s
σA

)−ψ+1

(52)

for large s. For ψ > 3, the scale σA sets the standard deviation; for
smaller ψ , the variance is infinite. When the µC of the correlated
landscape is large and negative, adaptive mutations must involve
rare values in the tail of sA. If there is a large negative step sC in
the correlated landscape, the probability that the mutation is net
adaptive is given by

P(s > 0|sC ) ≈

(
−sC
σA

)−ψ+1

(53)

So long as this probability is greater than O(L−1), one of the L
possible mutants, is likely to have sufficiently large sA and the
rare, high effect mutation will prevent getting stuck at a local
maximum. The correlations in the landscape reflected in the
response kernel structure imply that taking deleterious steps in
the correlated part of the landscape makes the DFE average µ
tend to increase becoming less negative. Therefore if the large
additive steps are rare but not too rare, there will be a dynamical
balance: evolution proceeds by usually taking small uphill steps
in the correlated landscape, and occasionally uses the broadly
distributed piece to keep going and ‘‘release the pressure’’ on
the correlated landscape. This dynamics is studied in detail in
Appendix C.4. We find that the effects of the additive piece are
strong enough to allow this process to continue if
σA

σC
∼ L−1/(ψ−1) (54)

(with σ 2
C the variance of the correlated parts of the steps). Thus

only a very small additive piece is needed to un-block long
adaptive walks. (The limitψ → ∞ is like the Gaussian case which
requires σA ∝ 1/

√
log(L).) For ψ = 2, we only need an additive

piece of O(L−1) for long walks — just enough to offset the smallest
possible sC when µ = O(1).

Note that with a long-tailed distribution of available muta-
tions, the behavior can depend strongly on the probability, φ(s),
of a mutation fixing. If φ(s) ∝ s, then for ψ < 2 the largest
effect (‘‘jackpot’’) mutations would be chosen which modifies the
nature of the walks and their dependence on L.

The analysis of the additive-plus-correlated landscapes shows
explicitly how long-term evolutionary dynamics can depend sen-
sitively on the tails of the distribution of fitness effects of mu-
tations. Rare large effect mutations can drive evolution in parts
of the landscape where the ‘‘typical’’ modest effect mutations
– the bulk of the DFE – are deleterious. And such rare large
mutations can unlock new sections of the fitness landscape and
enable the typical DFE to again drive the evolution. As we will
discuss below, these phenomena do not require an additive part
of the landscape: they can occur whenever the distribution of
effects of available mutations around some genomes has a long
tail.

7. Time-dependence of walks and landscapes

7.1. Adaptive walks in time

The properties discussed thus far all depended only on the
geometry of the random adaptive walks. The pseudo-‘‘dynamics’’
was in terms of number of mutations. However we are also
interested in how the evolution progresses in time. The simplest
way to convert the mutation steps to actual dynamics, which is
essentially correct for modest size populations, is to take the time
between mutations to be exponentially distributed with charac-
teristic rate 1/τM proportional to the total population mutation
rate (the product of the mutation rate per site, L, and the popula-
tion size). If a mutation is deleterious, it is purged with probability
one in a time much shorter than τM . If the mutation is adaptive,
it fixes in time much shorter than τM . We will henceforth set
τM = 1.

With this dynamics, evolution on any Gaussian landscape
slows down dramatically with time. Fig. 10 shows an example of
the fitness gain as a function of time, plotted together with the
DFE average µ(x(t)). When µ is a large and negative (which it will
systematically go to as the number of mutations increases), the
waiting time for the next mutation is very long. More precisely,
we let τU (x) be the time taken for the xth uphill step. The average
time τ̄U (x) = ⟨τU (x)|µ(x)⟩ goes as τ̄U (x) ∝ 1/P(s(x) > 0|µ(x)),
which with our Gaussian fitness DFEs gives

τ̄U (x) ∼ eµ(x)
2/2σ2

(55)

when −µ ≫ σ (Appendix D.1). There is a super-exponential
slowdown in the beneficial mutation rate due to the rarity of
uphill directions; τ̄U (x) will reach O(L) as the number of beneficial
mutations becomes O(1) and at that point the walk is likely to
stop at a local fitness maximum.

While there are still many available beneficial mutations, the
logarithm log(τU (x)) is roughly normal, with mean and variance
that increase as x1−α (Fig. 10, right panel). The broad distribution
of the waiting time between mutations means that there is not
a steady slowing down: initially, there will be a small number
of quick, large effect mutations, but after a while there will be
a mixture of long and short intervals as seen in Fig. 10, before
the evolution stops. Of course, if fluctuation effects are included,
deleterious mutations can fix, or, in larger populations, ‘‘tunnel-
ing’’ through deleterious intermediaries can occur: the dynamics
then becomes more complicated.

7.2. Time-dependent landscapes

In nature, and even in the lab, environments are never com-
pletely static and whether or not mutations are beneficial can
be very sensitive to even small changes in the environment (Li
et al., 2018). As this can result from changing the subtle balance
between the deleterious and beneficial consequences of a mu-
tation, random fitness changes are a natural caricature of these
effects. More generally, we would like to understand the effects of
conditioning on evolutionary history in environments that have
been somewhat different than the current one. Thus we are led
to consider evolution in slowly changing fitness landscapes —
sometimes dubbed ‘‘seascapes’’.

To make progress, we again focus on Gaussian correlated
fitness functions, but now with temporal correlations as well.
The response kernel framework can be used to analyze fitness
landscapes that change simply in time — we comment later on
more complex time-dependence.

Given a time-dependent fitness function F (g, t), we can define
a time-dependent divergence function D(ℓ, t, t ′) as

D(ℓ, t − t ′) ≡ E[(F (g, t) − F (g ′, t))(F (g, t ′) − F (g ′, t ′))] (56)
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Fig. 10. Time-dependence of adaptive walks. Left panel shows an example of the fitness gain versus time, F (x(t)), of a typical adaptive walk (blue) on a power-law
correlated landscape with α = 0.75, along with the dynamics of the DFE average, µ(x(t)) (orange). The typical time between steps, τU (x), goes as exp[µ[x(t)]2/2σ 2

],
so that the logarithm of the waiting time for a beneficial mutation to arise and fix has mean and variance that both increase rapidly – although not monotonically
– as the evolution progresses (right panel). Time is in units of total population mutation rate. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

where |g − g ′
| = ℓ. We have restricted ourselves to the case

where D is time-translation invariant. The time-dependent di-
vergence therefore is the correlation of the fitness difference
between genomes a distance ℓ apart, with the fitness difference
between the same genomes a time t in the future (or past).

Consider the case of exponential decay of time correlations,
given by

D(ℓ, t) = e−|t|/τED(ℓ) (57)

At any given instant in time the statistics are the same as in the
time-independent case; however, fitnesses at different times be-
come decorrelated on a timescale of τE . The exponential time de-
cay corresponds to a memoryless process, which simplifies both
analytical and computational understanding (see Appendix D.2
for details).

Time-dependence qualitatively changes the nature of ran-
dom adaptive walks — especially their dynamics. The system
approaches a statistical steady state for which the distribution of
the time to take an uphill step, τU (x), loses explicit dependence on
the mutational distance from where it started. The average time
between steps in the statistical steady state, τ̄U ≡ ⟨τU ⟩ plays an
important role in the overall dynamics — but there are a whole
spectrum of time scales. The behavior in the random seascape
is controlled by the balance between finding uphill steps, in
τU (x), and significant decorrelation of the landscape tending to
decrease −µ(x) back towards zero on time scale τE . Calculations
in Appendix D.3 show that for τE large, our focus, the typical value
of the DFE mean in steady state, which we denote as µc , scales
as

−µc ∼ σ (τE/τ̄U )
(1−α)/2 (58)

This is because ξD ≡ τE/τ̄U serves as an effective length scale: it
is the number of steps taken in a time τE , and gives the number
of mutations in the past that still have significant effect on the
current DFE, via contribution to the current µ(x).

From Eq. (55), we know that µc only depends logarithmically
on τU . Eq. (58) then implies that in the dynamical steady state, to
logarithmic accuracy, log(τU (x)) ≈ log(τ̄U ) ≈ log(τE) so that, for
self-consistency we must have

µc ≈ −σ [2 log(τE)]1/2 (59)

independent of α due to the sharp Gaussian tails of the distribu-
tions.

Numerical simulations confirm this predicted scaling: Fig. 11
shows µc versus log(τE)1/2. Each simulation was run for a fixed

Fig. 11. Scaling of the steady state average available fitness step, µc , with
log(τE )1/2 for walk of length X = 200. Relationship is linear until ln(τE ) ∼

X (1−α)/2 , where simulations have not saturated (not shown). For large α and
τE , µ did not saturate for any simulations with this X due to slower growth of
−µ(x).

number of uphill steps X = 200. For low α, the relationship is
linear over a large range. For larger α, the behavior is linear for
modestly large τE , but for longer τE , namely those where |µc | ≪

X−(1−α)/2, µ did not saturate in the number of steps allotted for
the simulations. The data in Fig. 11 is thus plotted only for τE less
than this characteristic crossover value.

The typical fitness gain of the xth mutation taken at the
time t where it fixed, s(x, t), is of order σ 2/(−µc). This, times
the average rate of fixing of beneficial mutations, ∼1/τ̄U , is the
‘‘fitness flux’’ — the apparent rate of increase of fitness (Mustonen
and Lässig, 2010). If −µc is small – when the landscape changes
quickly relative to mutations – then the fitness flux is high.
Conversely, the fitness gain in any one environment – that is,
the maximal fitness of any genotype reached during evolution
as measured in the fitness landscape at a fixed time – scales,
when the changes are slow, as ξDσ 2/(−µc). The faster the en-
vironment changes, the less adaptation occurs measured in any
fixed environment.
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The details of the dynamical behavior are much more in-
teresting and subtle. Due to the broad distribution of τU (x), to
understand the qualitative behavior of the dynamics we must an-
alyze the distribution of mutation times and not just the average
τ̄U . This can be done asymptotically for large τE , as carried out in
Appendix D.4. A key quantity is µ(x), here the average-available
fitness step just after the previous step. For very slowly changing
landscapes, µc = ⟨µ(x)⟩, is much larger than σ , and their ratio,
m ≡ −µc/σ ≈

√
2 log(τE) ≫ 1 is the basic large parameter that

enables the analysis.
There are two classes of mutations: those that occur in time

much smaller than τE , so that the landscape does not change
significantly between mutations, and those with long enough
waiting times that some significant changes in the landscape have
occurred. This can be seen by analyzing r(t), the probability per-
time of a beneficial mutation occurring a time t after the previous
mutation. This rate is increased by the exponential decay of the
average available fitness step; since E[µ(x, t)|µ(x)] = e−t/τEµ(x),
for t ≪ τE we have µ(x, t)2 ≈ µ(x)2(1−2t/τE) with the stochastic
part of the change (of order

√
t/τE) only giving negligible correc-

tions (Appendix D.4). Thus r(t) increases roughly exponentially
with time after the previous step.

The first beneficial mutation will typically occur at a time τU
at which

∫ τU
0 r(t)dt ∼ 1 For typical −µ(x), the time-dependence

of the landscape turns out not to matter: the next mutation is
very likely to occur before the environment changes by enough
to make a difference (i.e., r(τU ) ≈ r(0)). The typical τU (x) are
broadly distributed but they are much smaller than τE by a factor
exponentially small in the large parameter m Eq. (176).

In contrast to the typical relatively fast mutations, there are
rare situations in which −µ(x) is anomalously large so that a
beneficial mutation is unlikely to occur until after the environ-
ment has started to change substantially. The waiting time for
these is proportional to how much −µ(x, t) has to decrease for
the mutation to have a high chance of occurring. Although such
waiting only occurs for a very small fraction of cases, the average
waiting time τ̄U is dominated by these rare situations, which have
waiting times of order τE/m. As this waiting time is still much
smaller than the landscape-decorrelation time, τE , these can be
thought of as situations that are only ‘‘slightly-stuck’’. Note that
although mutations in such situations are very unlikely to occur
before the landscape has changed, there will typically be some
beneficial mutations that could have occurred without waiting,
but there are few enough of these that this is unlikely to occur.

For power-law correlated landscapes, the effects of past his-
tory from Eq. (58) give τ̄U/τE ∼ 1/m2/(1−α)

∼ (log τE)−1/(1−α).
As many slightly-stuck situations will occur in a decorrelation
time, the total number of steps per τE is well approximated by
ξD = τE/τ̄U with smaller variations around this. The dynamics is
thus quite smooth on time scales of τE and length scales of ξD.

Our analysis implies very heterogeneous dynamics. For all but
a small fraction, (∼1/m(1+α)/(1−α)) of the steps, the effects of the
time-dependence of the landscape are negligible. Many relatively
rapid steps are taken as if in a static landscape, until a rare
slightly-stuck genome is reached: the population then ‘‘waits’’ for
small changes in the environment — even though for large L it
might still have had many potential beneficial mutations available
before the landscape changed. Of course, as for most quantities
in these Gaussian seascapes, the parameter that controls the
intermittent dynamics is only logarithmically large — in this case,
m ≈

√
2 log τE .

The numerics confirm this picture. Fig. 12 shows a typical
example of the dynamics of fitness gain with exponential tem-
poral correlations. There is a period of rapid adaptation before
the time-dependence of the environment comes into play: the
fitness flux is initially large and µ decreasing (left panel). As

the transient dynamics slows down the time-dependence of the
fitness seascape matters; µ and the fitness flux (whose integral
is plotted in the figure) saturate and then fluctuate stochastically
with steady-state distributions (middle panel). The middle panel
shows the heterogeneity in the fitness flux; the fitness looks as if
it is taking very discrete steps. Looking more closely (right panel),
one can see that there are periods during which mutations oc-
cur rapidly, interspersed with occasional anomalously long gaps
between successive mutations, as predicted.

Although the integral of the fitness flux is well defined, the
increase in fitness, f (x), no longer is. However, the fitness gain
measured in the environment at a chosen time t∗, f (x(t), t∗), is
well defined (Fig. 12). With respect to the initial landscape (t∗ =

0), the fitness first increases and then does a random walk with
diffusion constant ∼σ 2/τ̄U as the dynamics become uncorrelated
from the initial landscape. The transition from uphill behavior in
the initial landscape to the random walk behavior depends on
D(ℓ). If anticorrelations with previously observed genotypes are
strong, the dynamics drives the fitness in the original-landscape
fitness back to zero before commencing the random walk. If
correlations with other genotypes are weak, then the random
walk commences almost immediately and is centered around
the highest fitness value reached in the initial landscape during
the early part of the trajectory. This can be seen most easily by
examining the independent and the additive models, respectively.
In the independent model, once the steps are no longer biased
towards being uphill, any single step will tend to take the fit-
ness to a random genotype (with fitness distribution centered
around zero). Conversely, for the additive model, future steps are
independent of the previous fitness gains; therefore, the average
value of the fitness in the present landscape at future times
will be the average value of the current fitness — the evolution
‘‘remembers’’ that it gained fitness when the reference landscape
at t∗ was the one driving the dynamics. Models that lie between
the two extremes – such as the exponentially and power-law
correlated landscapes – will either have smaller memory of the
fitness gain, or memory that decays more slowly with time than
for the independent fitnesses model.

The above analyses of the intermittent dynamics hold when
there are significant anticorrelations in the landscape, more quan-
titatively, when the anticorrelations extend over the dynamically
induced length scale ξD. For landscapes that are additive up to a
length-scale ξ (like the exponentially-correlated landscapes), the
behavior of the dynamics is qualitatively different for ξD < ξ

than for ξD > ξ . If ξD > ξ then the previous analyses hold, and
there is intermittent dynamics where the population occasionally
waits a long time for the landscape to change before taking a step.
However, if ξD < ξ , then the landscape is effectively additive and
µc is always small (zero for the perfectly additive model). In this
case evolution always proceeds steadily as beneficial mutations
are always available. Such seascapes forget past fitnesses quickly
enough that their correlations remain small and do not drive µ(x)
to large negative values.

An important question is: In what sense are the fitness land-
scape neighborhoods in steady-state atypical? They do not look
like neighborhoods of ‘‘typical’’ points with the same DFE mean
µ(x) ≈ µc . To see this, consider what happens when the dynam-
ics starts at some random point on the fitness landscape with
µ(0) < µc . Fig. 13 shows that the dynamics very quickly ‘‘resets’’
to what it would be if originally had µ(0) = 0. The initially large
negative µ decays away due to a combination of the exponential
time decorrelation at rate τE , but also due to the history of the
trajectory. As at early times, there have not been a large number
of genotypes visited in the near past that had large negative µ,
thus the response kernel does not have enough ‘‘memory’’ to
drive down future µ. (This is analogous to the future evolution of
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Fig. 12. Dynamics of µ and fitness gains, f , for uphill random walks in exponentially time-correlated power-law random landscapes, with time in units of the landscape
correlation time τE = 108 . Left panel: rapid adaptation occurs at start of evolution as µ (blue) decreases. Middle panel: cumulative fitness flux

∑x
y=1 s(y, ty) (sum of

fitness gains evaluated at times of mutations, orange) increases linearly in time. For any fixed time, t∗ , fitness gains in the landscape at t∗ , f (x(t), t∗), are guaranteed
to be positive only for times near t∗ . Gain in initial landscape, t∗ = 0, (green) is correlated with fitness flux at start but then becomes a random walk with diffusion
coefficient σ 2/τ̄U . Fitness gains in later landscapes, at t∗ = 3.3τE (red) and t∗ = 6.7τE (brown) are random, then correlated with fitness flux, then random again.
Right panel: In steady state, on a finer temporal scale, µ is seen to fluctuate (blue) leading to heterogeneous fitness flux. Cumulative fitness flux (orange) plotted
from 0, for convenience. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

a ‘‘typical’’ random trajectory conditioned only on the end point
fitness, discussed in Section 4.2.) This lack of a past history causes
the dynamics to ‘‘forget’’ its initialization.

Further evolution then drives µ down towards µc slowly;
stabilization around µc requires the development of a history of
large negative µ in the near past. After some time of order τE ,
µ will reach, and then fluctuate around, µc . At this point, the
last few steps (more precisely, the last ξD steps) will all have
had µ ≈ µc . The population, now in dynamical steady state,
has arrived at a location on the fitness landscape on a ‘‘ridge’’. In
the neighborhood of the current genome, most directions tend to
decrease the fitness F sharply while relaxing µ to less negative
values. But there are some special directions – back along the
evolutionary trajectory – in which both F and µ do not change
very much. The history of evolution has led the population to a
region that has different geometry than a typical region with the
same DFE average µ.

Though many of our results depend on the Gaussian nature of
the landscape, the nature of local landscapes in dynamical steady
state is less sensitive to it — and therefore may be a general
phenomenon. The ‘‘ridge-like’’ character only requires that the
current average size of potential steps is correlated with the past
evolutionary trajectory as a whole. This type of dependence on
the past means that to reach any sort of dynamical steady state
in a stochastically varying high-dimensional seascape, the popu-
lation must be in a region of the current landscape for which its
whole past trajectory is consistent with the steady state, so that
the memory of past history affects it in a steady-state manner.
This criterion is very different than just matching the statistics of
the single-mutation DFE.

The analysis of simple exponentially-decaying temporal cor-
relations of the landscape suggests that even very slow time-
dependence qualitatively changes the nature of evolutionary
dynamics and the character of local landscapes conditioned on
the past evolutionary history. Exponential time correlations ‘‘blur
out’’ the effects of the static-landscape structure. We have seen
that at long timescales in randomly changing environments,
evolution reaches a dynamical steady state where it does not
improve too much in any one landscape; however, the population
is always improving in the current environment. This means that
the rate of fixation of new mutations, the fitness flux, does not
decrease, on average. But in direct head to head competition with
an ancestor in the original environment, the fitness difference of

Fig. 13. Dynamics of walk started from a randomly chosen point with
anomalously negative µ(0) < µc in exponentially time-correlated power-
law landscape. Large negative value of the mean-available fitness step, µ, is
‘‘forgotten’’ as it quickly becomes greater than the steady state average value, µc ,
then approaches this from above (as occurs with random initialization, µ(0) = 0,
not shown), and then fluctuates around µc . This illustrates that history of a
trajectory, rather than just the local neighborhood parameterized by µ, matters,
and in steady state, the genomes are not at all like typical points with µ ≈ µc .

the evolving population would increase only slowly and then vary
randomly. In spite of this seemingly simple behavior, the complex
dependence on the past remains, as evidenced by the fact that
neighborhoods at steady state have a special ‘‘flat’’ direction in
contrast to random points in the landscape with the same DFE
(i.e. µ ≈ µc); the latter tend to have uniformly large negative
curvature.

7.3. General time-dependent Gaussian landscapes

Many of the concrete features discussed above depend on
the simple exponential time-correlations of the landscapes. But
within the Gaussian framework, one can consider more general
time correlation, parameterized by a time-dependent amplitude
spectrum. In short, each Fourier mode – roughly correspond-
ing to each length-scale – has its own time-dependence. The
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most general form of the divergence function consistent with the
distance-dependent statistical structure is given by

D(ℓ, t) = 2
∫ 1

0

[
1 − (1 − 2z)ℓ

]
ρA(z, t)dz (60)

with ρA(z, t) any function of time with non-negative temporal
Fourier coefficients, ρ̂A(z, ω) which could be used to parameterize
it.

Though we can formally write down the general time corre-
lation, our current methods are not sufficient to analyze cases
beyond simple exponential time correlations – each ρA(z, t) hav-
ing the same pure exponential time-dependence – as in the
previous section. Because, in general, every order of epistasis has
a different time-dependence, generating the landscape on the fly
becomes problematic since the conditional probabilities of the µ
no longer have simple response kernel forms; they depend on
the entire history of the known landscape. In principle, one could
compute ‘‘space–time’’ response kernels which were a function
of distance as well as time. However this would quickly become
problematic numerically as in steady state the landscape could
need to change significantly between each mutational step so that
the number of variables would grow at least as x2 for a walk of
length x, leading to matrix inversion on the order of x6 per step for
a total complexity for a walk of length X of X8 which, while still
polynomial, rapidly becomes intractable. This is likely still true if
the space–time kernels were computed iteratively, although the
complexity might then be held at X6.

Further development of, heuristic, asymptotic, and approx-
imate numerical methods are needed to study general-time-
dependent Gaussian random landscapes. Because of the complex
environmental and evolutionary histories, and strong effects of
conditioning on the history, the behavior is potentially especially
interesting. For example, relatively rapid changes of the small-
scale properties of the landscapes could open up possibilities to
continue evolving in the much more slowly changing large-scale
structure of the landscapes.

8. Discussion

8.1. Lessons from the theory

Our study of evolution on random landscapes with distance-
dependent correlations has yielded some key insights into the in-
terplay between evolution and epistasis. The distance-dependent
divergence function enables model definition based on features
about which one might have intuition, such as the relationship
between genetic and phenotypic relatedness, with more flex-
ibility and more explicitly than previous models (like the NK
or RMF models). The simple relationship between the locally-
defined (distance-dependent divergences) and globally-defined
(rescaled amplitude spectrum) descriptions of epistasis facili-
tates classification and understanding of models; for example,
we recapitulated the finding that NK models, in the appropriate
scaling limit, correspond to correlations that decay exponentially
in genetic distance (as in the mean field NK model Hwang et al.,
2018).

Our analysis of random adaptive walks on high-dimensional
landscapes gives direct insight into how epistasis can shape evo-
lution and vice versa. One key point is that the evolutionary dy-
namics depends more on long-range properties than short-range,
local, properties. Intuition that the ‘‘ruggedness’’ of landscapes
– in particular distributions of local maxima – determine how
epistasis affects evolution is, in high dimensions, misleading at
best. The high dimensionality of the landscape, and consequent
large number of possible mutations, means that rare beneficial
mutations can occur even when most mutations are deleterious.

Subsequently such mutations can drive large gains in fitness. This
is especially true when the distribution of fitness of potential
mutations (DFE) is broadly distributed, as we showed in the
analysis of mixed models.

A primary result of our analysis is that – and how – the
evolutionary history crucially matters. The current distribution of
available fitness effects of mutations (DFE) is determined by the
past evolutionary trajectory as a whole, not just the recent past.
Except in special cases – in particular with exponentially decaying
correlations – it is not enough to condition over summary statis-
tics like the current fitness, or the fitness gain over the last few
mutational steps. For landscapes in which the fitness differences
between genetically distant genomes can be large – in particular
the illustrative class we have studied for which fitness differences
typically grow as a power of genetic distance – mutations that
occurred far in the past collectively contribute in important ways
to the present DFE. This reflects the general conclusion that
evolution is far more sensitive to large-scale properties of fitness
landscapes than to local structure.

The dependence on the past leads to highly non-generic points
on the landscape near which the statistics of interactions be-
tween mutations in the neighborhood of the current genome
are very different than the neighborhoods of more generic, but
superficially similar, genomes, such as those with similar DFEs.
For example, at a random point, the double-mutant DFE (distri-
bution of fitness difference to all genotypes distance 2 away) is
determined solely by the current (single mutant) DFE, but when
past evolution has occurred, the double-mutant DFE depends
on an integral over the past evolution (a generalization of the
dependence of µ(x) on the past that we have analyzed in detail).
The non-generic nature of genomes conditioned on evolution is
supported by other studies; in particular, on a variety of theo-
retical landscapes, epistasis is found to be stronger further along
evolutionary trajectories (Draghi and Plotkin, 2013; Greene and
Crona, 2014).

Differences in the longer-range statistics determine how the
future evolution is conditioned on past evolution. We have shown
that adaptive walks tend to take populations to places on the
fitness landscape where they can continue uphill. Adaptive walks,
while taking individual steps that are not special – other than
being uphill – are overall rare and special paths through the land-
scape. In particular we have shown that they are very different
than typical uphill paths that take the same number of steps and
have the same total fitness increase.

Uphill evolution can continue as long as there are some ben-
eficial mutations available. The depletion of beneficial mutations
depends on the entire past trajectory. Our results suggest that
long-range correlation leads to long-term benefits to
‘‘abstemious’’ walks where smaller fitness gains are accrued at
each step; if the current DFE depends on the shape of the fitness
trajectory, and not just the current fitness, ‘‘greedy’’ walks tend
to drive down the average available fitness µ(x) and lead popu-
lations to dead ends much faster. An interesting open question is
whether or not this is the case in real evolutionary contexts.

In some families of landscapes, in particular with an additive
part of the fitness function, an adaptive walk can ‘‘unstick’’ itself
from genomes near which there are very few beneficial mutations
and move to where there are more. This is easier if the addi-
tive parts of the step distribution are long-tailed: evolution can
proceed in a mixed additive-plus-correlated landscape by mostly
steps that are uphill in the correlated landscape, only occasionally
using a rare, large additive mutation to get unstuck.

Similar behavior occurs when the landscape changes slowly
in time. In the statistical steady state that is reached after a long
time, a large fraction of mutational steps – almost all in the limit
of very slow rate of environmental change – are uphill in the
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current landscape and occur fast enough that the landscape is
effectively static. Only a small fraction of the steps ‘‘wait’’ for
more beneficial mutations to become available because of the
slightly changed environment — but these few mutations occur
slowly enough that they dominate the average time between
mutations fixing and thus the average fitness flux.

Collectively, the various features of evolution on epistatic
landscapes show that the statistical properties of fitness land-
scapes (and more generally seascapes) are insufficient for un-
derstanding evolutionary dynamics. What really matters is the
statistical properties of the landscape (seascape) conditioned on
past evolution — in general very different than unconditioned
neighborhoods of the landscape. This conclusion is much broader
than the particular class of landscapes we have analyzed.

8.2. Possible experimental connections

The genomic fitness landscapes we have analyzed are, of
course, far from those that occur in nature. However some in-
sights can be gleaned for experimental microbial evolution and
some other real systems.

Richard Lenski has carried out long-term evolution experiments
in E. Coli in a nominally simple environment with selective pres-
sure designed to be due solely to glucose limitation (Lenski et al.,
1991). This experiment has run continuously for over 65,000
generations, with 12 replicate lines. Quantitative analysis of the
populations has shown that the fitness relative to the ancestor
has been steadily increasing throughout the evolution, but the
rate of fitness increase has slowed down, initially strongly and
then more gradually (Wiser et al., 2013). The fitness trajectories
have been fit by a rough model of diminishing returns epistasis
that predicts logarithmic time-dependence of the fitness trajec-
tories (Wiser et al., 2013; Good and Desai, 2015). The shapes
of fitness trajectories will certainly depend on properties of the
landscape, but our conclusion that they will depend on large
genetic-distance scale properties, rather than just simple features
such as overall diminishing-returns epistasis, suggests that better
models are needed.

The time-dependence of the fitness, and the similarity among
Lenski’s 12 separate lines, cannot be compared to our analysis,
even roughly. The experimental populations are large enough
that many mutations arise, interfere, and add before any can
fix. This tends to make the evolution of large populations much
steadier than the highly sporadic nature of the evolution in small
populations for which, as we have seen, the epistatic interactions
can make the number of available beneficial mutations change
stochastically as the evolution proceeds. Large populations are
likely to average over some of these variations because of the
multiple directions that they explore in parallel. In addition, the
likely non-Gaussian nature of the evolution-conditioned DFEs
likely makes the dynamics in both time and number of mutations
quantitatively different.

A surprising feature of Lenski’s data, revealed by following
trajectories of mutations by deep sequencing of populations ev-
ery 500 generations, suggests that the rate of fixation of new
mutations does not change much after the initial decrease (with
the exception of the emergence of hypermutator strains) (Good
et al., 2017). This could occur if the environment were gradually
changing so that the increases in fitness relative to the ancestor
were not indicative of changes relative to the current popula-
tion — i.e. the fitness flux could decrease much more slowly
than the rate of increase of fitness in the original environment.
Evidence from the mutation frequency trajectories for the de-
velopment of ecological interactions (including coexistence of
evolved strains for much longer times than could be attributed
to them by chance) (Good et al., 2017), support this candidate

explanation. This would mean that the systems are evolving
in a landscape that is more like an externally time-dependent
‘‘seascape’’ than a static landscape. It is worth noting that even
if the time-dependence of the environment had been steady and
systematic instead of determined by the evolution itself, one
would nevertheless have expected a period of rapid adaptation
in an effectively static landscape followed by reduced adaptation
in any one environment but nevertheless a relatively steady
accumulation of further mutations. Lenski’s experiments do not
seem to have reached a state in which the fitness increases in
the original environment – measured by competing with labeled
ancestors that dominate the population (Wiser et al., 2013) –
have become random. But that is not what would be expected if,
in addition to mutations with epistatic interactions that depend
on the environment, there were also a small but still available
supply of unconditionally beneficial mutations (most simply with
additive effects) that have not yet been depleted: these would
cause steady increase in fitness even measured in the original
environment.

An opposite extreme of genome-wide adaptive evolution is to
artificially construct a large number of closely related genomes,
and directly measure empirical fitness landscapes. Great advances
in genomics have made it possible to map out portions of a fitness
landscape by creating all possible variants at a small number of
sites in the genome of an organism, and measure the relative
fitness of each variant (see the recent review article de Visser and
Krug, 2014). Examples include a set of mutations in a single pro-
tein, β-lactamase, which increase antibiotic resistance (Weinreich
et al., 2006), biosynthetic loci in yeast (Hall et al., 2010), and 24
loci on an RNA whose ‘‘fitness’’ is defined by its binding affinity to
a GTP agarose resin (Jiménez et al., 2013). Researchers can fit the
landscapes to models or, more generally, decompose them, via
their Fourier spectrum, as sums of all possible orders of epistatic
interactions. A recent meta-analysis showed that the Fourier am-
plitude spectra of some low-dimensional (L = 4 − 7) complete
landscapes range from nearly additive to highly epistatic (70% of
variance from non-linear terms) (Szendro et al., 2013). Previous
analyses had mainly focused on fitting Rough Mount Fuji or NK
models to the empirical landscapes (Neidhart et al., 2013; Szen-
dro et al., 2013), with limited success. More recently, correlation
based measures have been used to characterize the statistics of
empirical landscapes (Bank et al., 2016).

In addition to the question of what more general can be
learned from empirical landscapes in particular contexts, there
is the much broader question of whether evolution on high
dimensional landscapes is fundamentally different than on low-
dimensional ones. Most empirical landscapes are very low di-
mensional with the number of sites varied usually ranging from
10–20. Larger studies have been carried out — see Li et al. (2016)
for a recent example where variants at 69 sites of an tRNA gene
were considered – but they are far less comprehensive, only
probing modest pairwise-distances – in the tRNA gene, only 9 or
so. With a small number of sites, ℓ, changed, high order epistatic
effects – in the more general representation, larger length-scale
components – are not probed. The combinatorial explosion of
genomes and hence interactions with ℓ means that even rare,
strong, interactions can contribute to the overall landscape for
even modest ℓ. The higher order interactions can dominate the
long-distance statistics of fitness landscapes, which our modeling
and analysis suggests can be a crucial driver of evolution via
multiple successive mutations. Recent computational work on
fitness landscapes from data suggests that epistatic interactions
determine available evolutionary paths even in low-dimensional
landscapes (Sailer and Harms, 2017).

There are several problems with drawing lessons from empir-
ical landscapes involving only very small parts of the genome.
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Such restricted studies leave out the potential for rare mutations
on other parts of the genome that might have weak epistatic
interactions with the sub-system studied, but sufficient to ‘‘un-
block’’ the sub-system’s fitness landscape and enable evolution
to avoid getting stuck at local maxima. Further issues are that
the studies are conditioned on both past evolution, and the sub-
space studied often has special properties. For example, for the
β-lactamase protein, the collection of mutations analyzed were
known to be jointly beneficial, while for the yeast study analyzed
in Szendro et al. (2013), mutations were individually deleterious.
We have shown that the properties of the fitness landscape in
the neighborhood of a particular genome, depend heavily on
conditioning: this includes on whatever is already known about
relationships among mutations being considered.

Studying restricted regions of the genome involved in impor-
tant processes is valuable for evolution of specific traits.
Additionally, the interplay between evolution and epistasis in
individual (and pairs of interacting) proteins has been extensively
used to predict aspects of protein structure using evolutionary
co-variation to infer functional relationships between residues
(Marks et al., 2011, 2012; Nugent and Jones, 2012). But we feel
that focusing on evolution of small subsets of genomes gives only
limited insights about how even intermediate-term evolution is
affected by, and determines, epistasis among the great number of
other possible beneficial genetic changes.

To glean information about epistatic interactions between
many mutations, and the effects of conditioning on past evolu-
tion, can one overcome the biases caused by choice of ‘‘wild-type’’
genome and sets of mutations around it? One system where
this should be possible is with yeast for which a wide range
of genomic technology has been developed and the ability to
bring random combinations of mutations together is enabled
by controlled mating. Empirical studies of epistasis have been
made with yeast crosses, where two genetically distinct strains
of yeast are mated repeatedly to generate a large number of
offspring which are genetically ‘‘between’’ – in the sense of
genetic distance – their two parents (Bloom et al., 2013). In this
particular experiment, the two parental strains differ on 0.5%
of their genome (roughly 3 · 104 possible SNPs). The fitness of
a large number of the created recombinant variants – upwards
of 4 · 103 in Bloom et al. (2015) – were assayed in a variety
of environments. The resulting fitness measurements in each
environment were combined with genotyping information to
estimate the fraction of fitness variation between types that is
explained by additive fitness effects: the unexplained variance is
then a statistical estimate of the total epistatic contribution to the
fitness landscape in that environment. The findings vary across
environments; some have >90% of the variance explained by an
additive model, while others have closer to 50%.

Unfortunately, even from the very large number of yeast-
crosses studied, and the very high-dimensional sub-space
spanned by the set of mutations by which the parents differ,
extracting information about the important statistical properties
of the fitness landscape is problematic. One issue is that the
distribution of pairwise genetic distances between variants tends
to be narrow. In Bloom et al. (2013) the distribution of distances
was peaked at 50% of the genomic distance between the ancestors
with a standard deviation of ∼5%. Thus the data provide informa-
tion primarily about the overall scale of the fitness landscape at
one, particular, long distance. The crucial distance dependence is
thus not explored. Another issue is parameterizing the distribu-
tion of the fitness landscape by a few simple summary statistics
— here decomposing into additive and ‘‘unexplained’’ variance.
While the models we have analyzed were, for tractability, as-
sumed Gaussian, that is certainly not expected in nature and
more information on distributions of fitness differences, rather

than just covariances, is needed. (Indeed, we found this already
in our analysis of mixed models with Gaussian epistatic parts and
non-Gaussian additive parts for which the tail of the distribution
was particularly important.)

Regardless of the difficulties of extraction of the most useful
information, experiments that combine substantial numbers of
mutations to make a great many combinations have the po-
tential to tell us much about the statistics of genomic-scale –
rather than protein scale – fitness landscapes. The ensemble of
landscapes with Gaussian distance-dependent correlations that
we have studied are, of course, far from realistic. But the goal
of advancing general understanding – as well as the paucity of
relevant data – mandates the exploration of caricature models as
we have done. Our findings as to how the long-genetic-distance
statistics can crucially affect intermediate term evolution, should
provide additional motivation to develop high throughput means
to probe the statistical effects of combinations of large numbers
of mutations.

An advantage of using crosses of well-adapted strains to pro-
duce the subset of mutations to explore, is that effort is not
wasted on large numbers of unconditionally deleterious muta-
tions. Another approach would be to take a set of mutations
that arose individually in evolution experiments and make many
recombinants of these, either engineered or by crosses of evolved
mutants that already differ by a substantial – but far less than
the strain-cross experiments – number of mutations. Such biased
sampling approaches have recently been experimentally real-
ized (Domingo et al., 2018; Pokusaeva et al., 2019). Explorations
of the distributions of fitness differences as a function of genetic
distance could be explored with either approach, as well as,
crucially, how these vary with small changes of environment. As
datasets become more sophisticated, one can start to develop
better caricatures of fitness landscapes and seascapes using the
data to guide development of models and insights from theory
to guide experimental design. The time is ripe for more detailed
back and forth between theory and experiment.

8.3. Theory beyond Gaussian landscapes

Studying adaptive walks on landscapes with distance-
dependent statistics has given us considerable insight into the
interplay between evolution and epistasis; however we are lim-
ited by the simplifying assumptions of the family of models,
especially by the Gaussian assumption, which enabled us to
generate landscapes on the fly and analyze the effects of past his-
tory via the response kernel framework. Real fitness landscapes
are surely not Gaussian (Levy et al., 2015); in the future one
needs to study caricatures that include non-Gaussian statistics,
especially the potential for anomalously large effect mutations
that can arise even after much evolution has already occurred
in the same environment, as seen during experimental microbial
evolution (Blount et al., 2008). In addition, to gain better under-
standing of the conditioning on past history, one needs to study
different forms of time-dependent seascapes than the very simple
exponential decay of temporal-correlations that we analyzed.

One way to go beyond the Gaussian simplification while keep-
ing the desirable distance-dependent statistical structure would
be to define the elements of the amplitude spectrum using other
distributions. This is equivalent to transforming to the Fourier
basis, then generating independent distributions for each Fourier
mode. A natural extension of the Gaussian model would be Levy
distributions; these would give a family of self similar random
variables which are broadly distributed with power-law tails.

Seascapes can similarly be generated in the Fourier basis with
each mode a stochastic process in time instead of a static random
variable. Even within the Gaussian-correlated models, one can
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have a broad range of time scales with longer distance correla-
tions of the landscape changing more slowly. The response kernel
framework we have developed should enable progress to made
on such models. More generally, one could consider dynamics
that have more complex temporal structure than simple random
walks, for example, having periods of relative tranquility punc-
tuated by large, abrupt changes — loosely, a temporal analog of
Levy distributions. This sort of model can be implemented within
the framework described in Section 7.3.

Unfortunately, as soon as one goes beyond Gaussian random-
ness, one loses the ability to efficiently sample landscapes (or
seascapes) on the fly as the evolution proceeds. In general, one
needs to define 2L Fourier coefficients — intractable for numerical
explorations. We propose that further progress can be made
by defining sparsified models of fitness landscapes which keep
only a small number of interactions while matching some of the
believed-to-be important statistical structure of the landscapes.
By analogy with sparse random matrices, where O(N log(N)) non-
zero elements in an N × N matrix are sufficient to give the same
eigenvalue spectrum as with all elements random, preliminary
calculations suggest that at least the pair correlation structure of a
Gaussian landscape, in particular a power-law correlated one, can
be preserved with a number of Fourier coefficients polynomial
in L. With this, our analytical framework could not be used,
but numerical simulation would be computationally inexpensive
to perform as with such a sparsified representation one could
cheaply evaluate the landscape at any point in (genotype) space
and time. An important question is what features of the sparsified
landscapes determine the long-term evolution: even with Gaus-
sian random coefficients, the rare regions into which evolution
takes the population may be very different in a sparsified than a
fully Gaussian landscape with the same amplitude spectrum.

With non-Gaussian statistics, many of the statistical features
of adaptive walks will change, some quite dramatically. We have
already seen that a broadly distributed additive piece greatly aids
evolution. Walks in non-Gaussian landscapes will have different
relationships between the past evolution and the distribution of
available steps, as well as different conditions for how they get
stuck for large but finite L.

8.4. Beyond weak-mutation strong-selection dynamics

We have in this paper considered only the simplest evolu-
tionary process: a population that is small enough that mu-
tations arise only infrequently, but large enough that drift is
unimportant, especially that deleterious mutations cannot fix.
Such a population takes a simple uphill adaptive walk. We end
by discussing several important effects that are ignored in this
simplified caricature.

Small populations do not need to evolve solely uphill be-
cause weakly deleterious mutations can drift to fixation with
probability of order e−Nδ for a deleterious mutation of selective
disadvantage δ in a population of size N . This means that the
population never gets completely stuck. Its dynamics is essen-
tially identical to stochastic motion on the landscape with a
‘‘temperature’’ of 1/N . There is a rich literature analyzing stochas-
tic thermal dynamics on random landscapes (Cugliandolo and
Kurchan, 1993; Kurchan and Laloux, 1996; Cugliandolo and Le
Doussal, 1996) which would be instructive to extend to power-
law correlated landscapes such as those we have studied. In spite
of never getting fully stuck, the dynamics will continue to slow
down, at least at low temperatures, but investigating how it
does so, and how this depends on additional features such as
long-tailed distributions of potential fitness steps, is a possible
direction for future research.

Large populations are much more interesting. They can also
escape local maxima but instead by ‘‘tunneling’’ through inter-
mediate lower fitness genomes to reach a higher fitness one.
This process involves only part of the population and its rate is
a complicated function of the population size and fitness differ-
ences especially when the move to a higher fitness involves more
than one intermediate lower-fitness step (Weissman et al., 2009).
But the overall effect can be crudely approximated by allowing
double (or triple, etc.) steps to find points of higher fitness.
As the number of double net-uphill steps is much larger than
single uphill steps when the mean available fitness, µ, is strongly
negative, the effects of tunneling processes on the evolution can
be large even before a local fitness maximum is reached.

But this is only one of the complexities of large population
caused by the diversity engendered by multiple independent
mutations occurring each generation. Complications include com-
petition between mutants (clonal interference), as well as the
fact that several mutations can occur on the same lineage before
any fix. Large populations effectively explore many directions of
the landscape in parallel. The rate of evolution is then limited
primarily by selection rather than mutation. The competition
that will make one of the directions eventually win is played
out over a longer time scale – extensively studied for additive
models (Desai et al., 2013; Fisher, 2013; Neher and Hallatschek,
2013) – and involves luck in both when and which several steps
of further beneficial mutations occur.

Naively, being able to explore multiple directions in the fit-
ness landscape before committing to any would suggest that,
even if only beneficial mutations are allowed, large populations
will increase their fitness more before getting stuck than small
populations will. But there is another effect that goes in the
opposite direction. Large populations are much greedier: the mu-
tations that are likely to fix are much more heavily weighted
toward larger effect – exponentially so – than in small popu-
lations (Fisher, 2013; Good et al., 2012). We have shown that
greedier adaptive walks can get stuck at lower fitness local-
maxima. Furthermore, experiments (Rozen et al., 2008) and the-
ory (Jain et al., 2011) have shown that there are at least some
rapid adaptation scenarios in which larger populations fare worse
at later times. More generally, which of the two competing effects
– exploring multiple paths or being too greedy – dominates in
determining when large populations get stuck is certainly a key
question. Understanding the evolution on epistatic landscapes of
large populations that are continually diversifying and pruning,
is an important avenue for further research which should be
enabled by the progress we have made thus far.

Beyond their interest for natural evolution, questions about
how fast and how far evolution proceeds and how these depend
on the nature of the evolutionary process, including strength of
competition, sizes of population or multiple partially separated
sub- populations, etc. are also of practical interest as evolution is
being used in both bioengineering (Si et al., 2017; Michener and
Smolke, 2012) as well as machine learning (Real et al., 2017) in
order to optimize a wide spectrum of systems. Developing more
general understanding of the interplay between the evolutionary
dynamics of populations, and the statistical properties of fitness
landscapes and seascapes is surely merited.
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Appendix A. Distance-dependent divergence functions

A.1. Divergence function derivatives

It is often useful to compute the correlations between the
fitness differences induced by two sets of mutations in terms of
the divergence function D. Recall that we have

D(|g − g ′
|) ≡ E[(F (g) − F (g ′))2] (61)

where |g − g ′
| is the number of sites where g and g ′ differ.

Consider the pair of fitness differences F (a)−F (b) and F (c)−F (d),
oriented so that the shortest path a → b runs in the same
direction as c → d. Then we have

E[(F (a) − F (b))(F (c) − F (d))] = E[F (a)F (c)] + E[F (b)F (d)]

− E[F (a)F (d)] − E[F (b)F (c)] (62)

We can rewrite this correlation as

E[(F (a) − F (b))(F (c) − F (d))] =
1
2
(D(|a − d|) + D(|b − c|)

−D(|a − c|) − D(|b − d|)) (63)

where we use the fact that E[F (g)2] is independent of g .
One case of interest is when c and d are adjacent, and the

edge c → d is contained inside the line between a and b. Let
ℓtot = |a − b| and ℓac = |c − a|. Then we have

E[(F (a) − F (b))(F (c) − F (d))] =
1
2
(D(|ℓac + 1|) + D(|ℓtot − ℓac |)

−D(|ℓac |) − D(|ℓtot − ℓac − 1|))
(64)

which in the continuous limit gives us

E[(F (a)−F (b))(F (c)−F (d))] =
1
2

(
dD
dx

⏐⏐⏐⏐
x=ℓac

+
dD
dx

⏐⏐⏐⏐
x=ℓtot−ℓac

)
(65)

This tells us that the total fitness gain on a path is correlated with
the fitness effect of a single mutation by dD

dx for a random path.
For power law walks, we have

1
2

(
dD
dx

⏐⏐⏐⏐
x=ℓac

+
dD
dx

⏐⏐⏐⏐
x=ℓtot−ℓac

)
≈
α

2

[
(ℓac)

α−1
+ (ℓtot − ℓac)

α−1]
(66)

That is, for a random path the total fitness gain is most correlated
with the fitness gains at the end, and least correlated with the
fitness gains in the middle.

Another useful case is the correlation between the effects
of random single mutations between two genomes a distance
ℓ apart. In particular, we care about the correlation between
two mutations on a single trajectory. Labeling genomes by their
distance along a single path, we have

E[(F (1)−F (0))(F (ℓ+1)−F (ℓ))] =
1
2
[D(ℓ+ 1) − 2D(ℓ) + D(ℓ− 1)]

(67)

where F is indexed by steps along a path. We can approximate
as

E[(F (1) − F (0))(F (ℓ+ 1) − F (ℓ))] =
1
2
d2D
dx2

⏐⏐⏐⏐
x=ℓ

(68)

This approximation is good when D changes slowly with genetic
distance. For sublinear D, dD

dx > 0 but d2D
dx2

< 0 — giving negative
correlations between mutational steps on the same path.

A.2. Computing divergence functions from amplitude spectra

One undesirable feature of the amplitude spectrum is that it
depends on the total genome size L. We would like to be able to
write the spectrum in a scale-invariant way so that we can un-
derstand what models look like in the large L limit. Accordingly,
we define the rescaled amplitude spectrum ρA by

ρA(z) = L
(

L
Lz

)
ALz (69)

where Lz is rounded to the nearest integer. This normalization
is chosen so that weighted sums over the amplitude spectrum
can be converted to an integral. For example, consider a function
ψ : [0, 1] → R. The average of ψ weighted over the amplitudes
Ak of the Fourier modes (equal amplitude for all K with |K| = k)
can be computed as:
L∑

k=0

∑
K, |K|=k

Akψ(k/L) =

L∑
k=0

(
L
k

)
Akψ(k/L) ≈

∫ 1

0
ψ(z)ρA(z)dz (70)

The amplitude spectrum has been described previously, but the
rescaled limit – crucial for giving landscapes whose structure is
well behaved in the large L limit – has, to our knowledge, not
been studied previously.

For simple models we can compute the Ak easily and therefore
the ρA as well. For the additive model, only terms at order 1
contribute; we have

ρA(z) = δ(z − L−1) (71)

For independent fitnesses, each mode has equal weight (since it
is a graded sum of independent random variables). The combi-
natorics of terms at each order sets the distribution; we have

ρA(z) =
L
2
2−L
(

L
Lz

)
≈ δ(z − 1/2) (72)

We can readily compute the divergence function D(ℓ) given ρA(z).
We begin by calculating the correlation E[F (g)F (g ′)] between two
genomes g and g ′ such that |g − g ′

| = ℓ. We have

E[F (g)F (g ′)] =

∑
K

S(K, g, g ′)Ak (73)

where

S(K, g, g ′)

=

⎧⎨⎩
1 if g and g ′ differ at an even number of sites

where Ki = 1
−1 otherwise

(74)

The sum over the K can be rewritten as∑
K, |K|=k

S(K, g, g ′) =

min(k,ℓ)∑
d=0

(−1)d
(
ℓ

d

)(
L − ℓ

k − d

)
(75)

(Note that the terms on the right hand side are Krawtchouk
polynomials — as first developed in Stadler and Happel, 1999).

This sum cannot be evaluated exactly, but can be evaluated
approximately in two cases. First, for L, ℓ ≫ k – low order
epistasis but macroscopic distances – we have∑
K, |K|=k

S(K, g, g ′) =

k∑
d=0

(−1)d
(
ℓ

d

)(
L − ℓ

k − d

)
(76)

Use of Stirling’s approximation gives∑
K, |K|=k

S(K, g, g ′) ≈
1
k!

k∑
d=0

(−1)dℓd(L − ℓ)k−d
(
k
d

)
(77)
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which can then be evaluated via generating functions as∑
K, |K|=k

S(K, g, g ′) ≈

(
L
k

)(
1 − 2

ℓ

L

)k

(78)

To evaluate the full sum with this approximation, we use the
rescaled amplitude spectrum:

E[F (g)F (g ′)] ≈

∫ 1

0

(
1 − 2

ℓ

L

)Lz

ρA(z)dz for L, ℓ ≫ Lz (79)

This approximation is useful if most of the weight of ρA is at
low orders. If terms of some particular lower order dominate,
the correlations drop off polynomially, with fitnesses becoming
uncorrelated at ℓ = L/2 and anticorrelated at ℓ = L.

The second and more useful case is when L, k ≫ ℓ — short-
distances (compared to L, but arbitrarily high order epistasis.
Then we have∑
K, |K|=k

S(K, g, g ′) =

ℓ∑
d=0

(−1)d
(
ℓ

d

)(
L − ℓ

k − d

)
(80)

Stirling’s approximation then gives∑
K, |K|=k

S(K, g, g ′) ≈

(
L
k

) ℓ∑
d=0

(−1)d
(
ℓ

d

)
×

(L − ℓ)!
L!

k!
(k − d)!

(L − k)!
(L − ℓ− (k − d))!

(81)

which simplifies to∑
K, |K|=k

S(K, g, g ′) ≈

(
L
k

) ℓ∑
d=0

(−1)d
(
ℓ

d

)(
k
L

)d ( L − k
L

)ℓ−d

(82)

and a similar generating function computation gives∑
K, |K|=k

S(K, g, g ′) ≈

(
L
k

)(
1 − 2

k
L

)ℓ
(83)

In terms of the rescaled amplitude spectrum we have

E[F (g)F (g ′)] ≈

∫ 1

0
(1 − 2z)ℓ ρA(z)dz (84)

and therefore

D(ℓ) ≈ 2
∫ 1

0
[1 − (1 − 2z)ℓ]ρA(z)dz (85)

where we have rescaled so that D(1) = 1. Here we arrive at a nice
intuition for how terms of different order affect the statistics of
the landscape. Epistasis of order Lz contributes a term with ex-
ponential decay of correlations with lengthscale log(|1 − 2z|)−1.
Terms of order less than L/2 contribute positively to correlations,
while higher order terms contribute alternating signs on average.

Arbitrary combinations of different orders of epistasis can be
represented in the large L limit, with ℓ ≪ L – the regime of
interest for almost all we study in this paper – by the general
scaled linear combinations of Eq. (84).

A.3. Amplitude spectrum of power law landscapes

In order to have correlations with super-exponential long-
range structure, ρA(z) needs to diverge as z → 0. Specifically,
consider power law divergence functions. In general, going from
divergence functions to amplitude spectra is difficult; it requires
inversion of the matrix M whose elements are given by

Mij =

∫ 1

0
(1 − 2z)i+jdz =

1
i + j + 1

· [(i + j + 1) mod 2] (86)

However, we can make an ansatz for the form of ρA that corre-
sponds to power law scaling of D(ℓ). We want a ρA(z) such that

∫ 1

0

(
1 − (1 − 2z)ℓ

)
ρA(z)dz ∝ ℓα (87)

Differentiating with respect to ℓ gives us the condition

−

∫ 1

0
(1 − 2z)ℓ log(1 − 2z)ρA(z)dz ∝ ℓα−1 (88)

For large ℓ, we expect the integral to be dominated by small z. The
integrand, sans ρA, peaks around z = O(ℓ−1), and has significant
value over a range that is O(ℓ−1) as well. The value it takes is also
O(ℓ−1). This suggests that O(ℓ−2)ρA(z = ℓ−1) = O(ℓα−1) or

ρA(z) ∝ z−1−α (89)

for small z. This is peaked at z = 0, and is consistent with the
approximation that the integrand in Eq. (88) is peaked around
ℓ−1. Note that the exponent of ρA(z) is less than −1. Therefore,
power law distance-dependent divergence functions correspond
to power law distributed power spectra, with most of the weight
at small z.

Note that though ρA(z) is weighted towards z = 0, for large
L we can still have a significant weight at higher order (k >

1) Fourier modes. This suggests quantitatively that higher order
epistasis matters increasingly for increasing genetic distances, at
least in models that have a consistent large L limit (as all models
defined by the divergence function do). We also again come to
the lesson that there is some flexibility in the exact form of ρA(z)
with regard to its effect on D(ℓ); the form of the divergence at 0
sets the long tail behavior.

Appendix B. Response kernel approach

B.1. Dependence of DFE on past evolutionary history

A key property needed to understand evolutionary processes
is the distribution of fitness effects (DFE) of all single mutants
away from a given genotype. Consider a genome g on a distant-
dependent correlated landscape, and let si be the fitness gain from
a mutation at site i. The si are distributed as a covariate Gaussian,
with zero mean, variance D(1) and correlation D(1) −

1
2D(2).

We can write each difference s(y) as a sum of two Gaussian
random variables:

si = Zc + Zi (90)

Here Zc is the ‘‘shared’’ part of the variability — a random variable
with variance D(1) −

1
2D(2) identical across all the sites. The

Zi give the ‘‘private’’ part of the variability — Gaussian random
variables with variance 1

2D(2), independent for all sites. This type
of decomposition is always possible with identically correlated
Gaussian random variables.

In the limit of large L, we can approximate Zc with the average
available fitness step, µ(g) ≡

1
L

∑
i si. We have:

si = µ(g) + Zi + O(L−1/2) (91)

In this limit, the (empirical) DFE is approximately Gaussian with
mean µ(g) and variance 1

2D(2). Since D(2) is a constant set by the
landscape, once µ(g) is known, the entire DFE is known as well.

This gives us the following strategy for constructing adaptive
walks:

• Draw the value of µ(x) from its distribution.
• Use the resulting DFE to take an evolutionary step.
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• Define x + 1 as shorthand for the genome after the step is
taken.

• Draw the next µ(x + 1) conditioned on past evolution and
repeat

where x labels the number of steps taken. Note that the DFE
conditioned on µ(x) (and the previous evolution) is still Gaussian,
even though the actual step taken s(x) is not. This simplifies the
dynamics considerably, as each step in the evolution involves
first evaluating a conditional Gaussian random variable, and then
drawing from a simple distribution — the positive s part of the
Gaussian DFE.

This suggests that in order to understand the dynamics along
a single random adaptive walk, in the limit of large L all we need
to understand the DFE at any point is its conditional mean µ(x) at
that point. This approximation starts to break down when we ask
about events which have probability O(L−1) in the Gaussian distri-
bution; in particular, extremal values of the empirical distribution
are no longer in the large number regime and need to be treated
with care. But the continuous Gaussian approximation for the DFE
holds so long as the number of possible adaptive mutations is
large.

B.2. Deriving response kernels on power-law correlated landscapes

We now analyze how the DFE around the current genome
is conditioned on the past history of the adaptive walk to that
genome. Assume the walk has taken a sequence of steps, y =

1, 2, . . . , x − 1 leading to the current point labeled x with these
steps having fitness changes s(y), each taken from the local DFE of
average available fitness steps, with average µ(y). In this section
we will describe how to compute the response kernels J and K
such that

µ(x) =

x−1∑
y=0

K (x, y)µ(y) + J(x, y)s(y) + η(x) (92)

where η(x) is the additional random part of the DFE average:
η(x) has mean zero and variance, Vη(x). We make the continuous
approximation for the sums:

µ(x) =

∫ x

0
K (x, y)µ(y) + J(x, y)s(y)dy + η(x) (93)

Note that the J and K are non-zero only for x > y.
For most cases it will suffice to use this continuum approxima-

tion; but there are a few special cases of landscapes with partic-
ular divergence function D(ℓ) which are more easily understood
with the discrete equations.

It is useful to define and use the following correlation func-
tions in order to obtain self-consistent equations for J and K :

A(x, y) = E[µ(x)µ(y)] (94)

B(x, y) = E[µ(x)η(y)] (95)

G(x, y) = E[µ(x)s(y)] (96)

S(x, y) = E[s(x)s(y)] (97)

In addition, we define the convolution operator ∗ by

A ∗ B (x, y) ≡

∫ x

0
A(x, z)B(z, y)dz, (98)

and the transpose, T, by

A(x, y)T ≡ A(y, x). (99)

(In terms of the discrete sums, these are simply matrix multipli-
cation and transpose.)

By explicitly computing A, B, and G using Eq. (93) multiplied
by on of µ, s, or η at a different point on the path, and averaging,
we get:

A = BT
+ K ∗ A + J ∗ GT (100)

G = BT
+ K ∗ G + J ∗ S (101)

B = Vηδ(x − y) + K ∗ B + J ∗ B (102)

Note that K shows up once in each equation, convolved with the
quantity on the left hand side. With some foresight, we rewrite
K = δ + P to cancel the left hand sides. In terms of P we are left
with:

0 = BT
+ P ∗ A + J ∗ GT (103)

0 = BT
+ P ∗ G + J ∗ S (104)

0 = Vηδ(x − y) + P ∗ B + J ∗ B (105)

Up until now, the equations are exact (and also hold for the
discrete sums). We now take the large x limit keeping terms to
leading order in powers of 1/x and similarly for y and x − y. We
now define a useful quantity related to the second derivative of
D(ℓ) in the large ℓ regime:

M ≡ m sign(x − y)P[1/(x − y)2−α] (106)

with m a positive coefficient given by the normalization of D, and
the principal part, P , ensuring that

∫
dyM(x, y) = 0. Then in the

large x limit, from the definitions we have:

S ≈ −M − MT (107)

A ≈ σ 2δ(x − y) + M + MT (108)

G ≈ −M + MT
+ O(dδ/dy) (109)

with σ 2 proportional to Vη . Corrections to all of these correlations
are smaller by one power of 1/x except for A: the symmetry under
the transpose means that there is only a second derivative of
δ(x− y) correction to the δ function part of A (like a correction of
O(1/x2)).

We now make the ansatz (readily shown to be correct) that J
scales as xν−1, with 0 ≤ ν ≤

1
2 , and that P is much smaller for

large x. Then from Eq. (105) we have

B ≈ −VηJ−1 (110)

with inversion taken over ∗ (like matrix inversion). In Eq. (104),
the P ∗ G term is negligible and in Eq. (103), P ∗ A ≈ σ 2P plus
smaller corrections. Writing an expression for BT and substituting,
we get

BT
≈ J ∗ (M + MT) ≈ −σ 2P + J ∗ (MT

− M) (111)

which can thus determine J and P = −2J ∗ M/σ 2, subject to
conditions that they are only non-zero for x > y, as is B — the
latter not automatic. Counting powers of x we see that B ∼ P ∼

x−1−ν and, from the form of M , that must have

ν =
1 − α

2
. (112)

One can directly get the scaling behavior and this result for ν by
considering the behavior for (x − y) ≪ x. This can be obtained
straightforwardly by approximating the kernels as functions of
only x − y, taking x → ∞ and then Fourier transforming and
decomposing functions into sums of parts that are analytic in
upper and lower half-planes corresponding to being zero for
either x < y or x > y. Armed with these forms (and some
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knowledge of such singular integral equations), exact solutions
can be guessed:

J(x, y) ≈ −cJ Θ(x − y)
yν

(x − y)1−νxν
, (113)

K (x, y) ≈ δ(x − y) + cK Θ(x − y)
xν

yν
P(1/(x − y)1+ν) , (114)

and

B ∝ −Θ(x − y)
yν

xν
P(1/(x − y)1+ν) (115)

with cJ and cK positive coefficients that can be written in terms
of Beta functions and combinations of Vη and σ 2 to set the scales,
andΘ(z > 0) = 1 whileΘ(z < 0) = 0. Note that with the correct
value of ν – indeed only with that value of ν – the x > y part of
J ∗ (M + MT ) = BT vanishes as it must.

The sign of P is rather misleading due to the principal part. If
the convolution integral is done by parts, we have that∫ x

0
dyK (x, y)µ(y) = µ(x) −

cq
xν
µ(x) −

∫ x

0
dyQ (x, y)

dµ
dy

(116)

with the kernel for dµ
dy ,

Q (x, y) ≡

∫ y

0
dzP(x, z) (117)

and Q and the coefficient cq both positive. Thus the effects of K
are: δ(x − y), a negative – but needed – correction to this, and a
negative convolution with dµ/dy, the latter two being the same
order for large x.

In order to show that the solutions to the integral equations
are of the form given, two integrals need to be done. To show
that B is proportional to the inverse of J – i.e. that J ∗ B =∫ x
0 dzJ(x, z)B(z, y) = −Vδ(x − y) – one only needs to note that

the z dependent parts of the zν/xν and yν/zν factors from J and
B cancel. To do the integrals J ∗ M and J ∗ MT , the substitution
z = xy/(x + y − ζ ) changes the integral over z from 0 to x to
an integral over ζ from −∞ to x, eliminates the zν part from
J , brings out (combining with the x−ν from J) an overall factor
of xν/yν , replaces x − z and y − z with x − ζ and y − ζ , and
cancels all factors of x + y − ζ thereby making the integrand the
simple standard form (x − ζ )ν−1(ζ − y)−1−2ν and the integrals
over the different parts of the range of ζ and for x > y and x < y
all simply expressible in terms of Beta functions. The structure
is now exactly the same as it would be if the limit |x − y| ≪ x
were taken initially and Fourier and Wiener–Hopf analysis used.
Note, however, that for µ(y) and s(y) powers of y, as we find,
the contributions from the kernels are dominated by intermediate
range of y/x and thus the approximation x − y ≪ x is incorrect
by multiplicative constants, but gives the correct scalings with x.

The theoretically predicted scaling forms match up well with
our numerics. One way to see this is to plot J and K as functions
of (x − y)/x, for various walk lengths x. Theory predicts that if
J is scaled by x1−ν and K by x1+ν , the response kernels should
collapse onto a single, universal scaling form. Fig. 14 shows these
rescaled response kernels. We can see that both J and K collapse
as expected. The shape of the theoretical curves at large x (dashed
lines) matches the actual universal scaling form inferred from the
numerics.

The largest deviations are for J with α near 0, and for K with
α near 1. This is to be expected; these are when the power law
regime falls off the most slowly for each, and the corrections
are expected to be the largest. Regardless, the basic power law
character of the response kernels at intermediate scales seems
to hold; this intermediate range behavior is what dominates the
dependence of evolutionary dynamics on past evolution. These
numerical results support our use of the theoretical scaling forms
to compute the typical evolutionary trajectories.

B.3. Adaptive walks on exponentially correlated landscapes

Here we analyze adaptive walks on landscapes with diver-
gence function

D(ℓ) =
1
b
(1 − e−ℓ/ξ ) (118)

where b = 1−e−1/ξ normalizes so that D(1) = 1 for all ξ . That is,
the fitness of genomes at a distance ℓ ≪ ξ are highly correlated,
and the fitness of genomes at long-distance ℓ ≫ ξ are close to
statistically independent. In particular we are interested in the
case where ξ ≫ 1, which arises from the NK model.

The exponential correlations give the advantage that the re-
sponse kernels can be computed exactly. We want to know the
conditional distribution of the fitness at a distance x along the
walk. It is easiest to compute in terms of F (x) along the path,
where F is the absolute fitness function (well-defined since D(ℓ)
is bounded). For arbitrary genomes g and g ′ we have

E[F (g)F (g ′)] = e−|g−g ′
|/ξ (119)

where for convenience we have normalized the landscape so that
the absolute fitness at any point has 0 mean and variance 1

2
(instead of with D(1) = 1 as in the main text). On any path, we
can compute the conditional mean of the fitness at the end of the
path F (x) in terms of the previously observed fitnesses as:

E[F (x)|F (y), y < x] =

x−1∑
y=0

KF (x, y)F (y) (120)

where KF (x) obeys the equation
x−1∑
y=0

KF (x, y)E[F (y)F (z)] = E[F (x)F (z)] (121)

for all y on the path. We can solve for KF directly. Substitution
gives
x−1∑
y=0

KF (x, y)e−|y−z|/ξ
= e−|x−z|/ξ (122)

Solving for KF (x, y) for all z < x we get

KF (x, y) = e−1/ξ δ1y (123)

That is, the final fitness F (x) is correlated directly only with the
previous fitness F (x − 1) with correlation e−1/ξ .

Evolution in an exponentially correlated landscape is in some
sense a Markov process; only the last fitness value reached con-
tributes to the statistics of the current neighborhood. The cor-
relation coefficient e−1/ξ has the right limits; when ξ ≫ 1, the
landscape is effectively additive on short distances and the cor-
relations vanish. When ξ ≪ 1 the landscape is of the independent
type and the average step available is exactly −F (x).

Though we have computed correlations in terms of the ab-
solute fitnesses F (x), in exponentially correlated landscapes this
gives complete information about µ(x). We can see this by com-
puting the simple conditional variance Var[F (x)|µ(x)]:

Var[F (x)|µ(x)] = Var[F (x)] − cov(F (x), µ(x))2/Var[µ(x)] (124)

We can compute Var[F (x)] =
1
2D(∞) (since long range correla-

tions vanish), Var[µ(x)] = D(1) −
1
2D(2), and cov(F (x), µ(x)) =

−
1
2D(1). Combining, we have

Var[F (x)|µ(x)] = 0 (125)

Therefore we have:

F (x) = −µ(x)/(1 − e−1/ξ ) (126)
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Fig. 14. Rescaled J(x, y) and K (x, y) for various walk lengths, x. Genetic distance x − y is rescaled to range [0, 1] by dividing by x, and J and K are rescaled by
predicted powers of x to compensate. Rescaling collapses response kernels. Theoretical scaling form for large x (dashed line) captures power law regime well. Largest
deviations from the theoretical asymptotic forms are: J for small α, and K for α close to 1.

One can think of this as an extension of the situation in the
independent fitnesses case. There, since µ(x) =

1
L

∑
x′ F (x

′)−F (x),
where x′ are all one-step neighbors of x, independence and the
central limit theorem gives 1

L

∑
x′ F (x

′) ∼ O(L−1/2), and we have,
for large L, µ(x) = −F (x).

The combination of Eq. (126) as well as s(x) = F (x) − F (x − 1)
cause knowledge of the F (x) to be equivalent to knowledge of
the s(x) and µ(x). Therefore Eq. (123) can be used to compute
the response kernels J and K . However, there is an additional
complication: there are 2x total s and µ for a walk of length x,
but only x total values of F . This redundancy leads to zero-modes
in the s − µ covariance matrix, and a degeneracy of degree x in
the response kernel.

Using this degeneracy, we can write the response kernel in a
variety of ways. The two most interpretable are:

E[µ(x)| past] = −b
x−1∑
y=0

s(y) + µ(0) (127)

and

E[µ(x)| past] = −bs(x − 1) + µ(x − 1) (128)

where b = 1−e−1/ξ , and we normalize so that D(1) = 1 as in the
main text. The first form suggests a flat weighting over past s(x)
with an additional dependence on µ(0) — likely not important
for long walks for which the first term continues to grow. The
second form shows dependence only on the immediately pre-
ceding properties of the adaptive walk. The factor b accounts for

the fact that the landscape is somewhere between additive and
independent. For ξ ≫ 1 (so that have almost additive effects of
fitness steps), b → 0 and the dependence is only on µ(x), which
is also 0 in that limit, giving E[µ(x)| past] = 0 as expected. For
ξ ≪ 1 (effectively independent fitnesses), b → 1 and we recover
the response kernel of the behavior of the independent landscape.

Appendix C. Statistics of random and evolution-conditioned
maxima

C.1. Local maxima

The expected number of maxima on a random fitness function
on the hypercube depends on the local correlation properties
only. We can compute this expectation in the following manner.
Suppose that the fitnesses in some neighborhood of a genotype
(i.e. that genotype and all single mutations away) are covariate
Gaussian. Let si be the fitness benefit of a mutant at site i. We
assume that the si have 0 average, variance 1, and identical
correlation r . In the limit of large L, the {si} are independent given
their average µ(g). The distribution of µ(g) is a Gaussian random
variable with mean 0 and variance r .

In the limit of large L the empirical distribution of the {si} is
also Gaussian with average µ and variance 1− r . Note that g is a
local max if all si are negative, which happens with probability

Ploc−max =

∫
1

√
2πr

e−µ2/2rΦL
(

−
µ

√
1 − r

)
dµ (129)
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with Φ the error function. We use a saddle-point approximation
to compute P . The log of the integrand φ(µ)

φ(µ) = −
µ2

2r
+ L log

[
Φ

(
−

µ
√
1 − r

)]
(130)

Differentiating gives

φ′(µ) = −
µ

r
− L

[
Φ

(
−

µ
√
1 − r

)]−1 e−µ2/2(1−r)

√
2π (1 − r)

(131)

The peak is at µ = µ∗ determined by:

−
µ∗

rL
Φ

(
−

µ∗

√
1 − r

)
=

e−(µ∗)2/2(1−r)

√
2π (1 − r)

(132)

Clearly, µ∗ < 0. If |µ∗
| ≫

√
1 − r , then Φ

(
−

µ∗

√
1−r

)
≈ 1 (leading

correction O(e−(µ∗)2/2(1−r))). In this approximation, we have

−
µ∗

rL
=

e−(µ∗)2/2(1−r)

√
2π (1 − r)

(133)

And then, approximately

µ∗
≈ −

√
2(1 − r)(log(L) − log log(L)) (134)

We can use this approximation to calculate Φ
(
−

µ∗

√
1−r

)
. We need

this calculation to be accurate to o
( log(L)

L

)
in order to compute P

to logarithmic accuracy in large L. Error function asymptotics give

Φ

(
−

µ∗

√
1 − r

)
≈ 1 −

e−(µ∗)2/2(1−r)

√
2π (−µ∗/

√
1 − r)

(135)

Substitution gives

Φ

(
−

µ∗

√
1 − r

)
≈ 1−

1
rL

√
2π (1 − r)µ∗

√
2π (µ∗/

√
1 − r)

= 1−
1 − r
r

1
L

(136)

The second derivative of the log integrand φ is

φ′′(µ) = −
1
c

+ L
µ

1 − c

[
Φ

(
−

µ
√
1 − c

)]−1 e−µ2/2(1−c)

√
2π (1 − c)

− L
[
Φ

(
−

µ
√
1 − c

)]−2 e−µ2/(1−c)

2π (1 − c)
(137)

The value at µ∗ is

φ′′(µ∗) = −

(
1
r

+
(µ∗)2

r(1 − r)
+

(µ∗)2

r2L

)
(138)

which is dominated by the middle term and is approximately

φ′′(µ∗) ≈ −
2(log(L))

r
(139)

where we drop the log log(L) term as it does not contribute to
leading order in log(L).

The saddle point approximation then gives us

Ploc−max ≈

√
2π

−φ′′(µ∗)
eφ(µ

∗) (140)

We can evaluate this to get

Ploc−max ≈

√
1

2r log(L)
e−(µ∗)2/2r

(
1 −

1 − r
rL

)L

(141)

For large L, substituting in µ∗ gives us

Ploc−max ≈

√
1
2r

(eL)−(1−r)/r (142)

up to poly-log factors. Note that for the independent fitnesses
model, r =

1
2 , and Ploc−max =

1
L+1 , matching the approximate

calculation up to an O(1) factor.
The result for Ploc−max implies that if r has some limiting form

for large L, the probability of a single genome being at a local
max is some power of L. The total number of maxima thus scales
roughly like L−(1−r)/r2L. As the correlation between step sizes
decreases, the number of maxima does as well; the limit r → 0
corresponds to the additive model and there is a single local max
on the whole fitness landscape (so Ploc−max = 2−L).

Note that for power-law correlated fitness landscapes, r does
not determine the long-distance dynamics of random adaptive
walks. There are fitness landscapes with very different local struc-
tures which nonetheless have similar long-term evolutionary dy-
namics. In the limit of large genome size, L, the dynamics is
dominated by the long-distance behavior of D(ℓ), which gives rise
to the tails of the response kernels. Classifying the ‘‘ruggedness’’
of landscapes via expected properties of maxima is therefore not
very useful for understanding evolution on epistatic landscapes.

C.2. Maxima reached by uphill random walks

We can estimate the max fitness increase reachable by an
uphill-only random walk. First consider the independent fitnesses
landscape. The cumulative distribution function, CDF, of an uphill
walk of length X is given by Φ(F )X . Let the number of uphill paths
of length X be given by NU (X). If the uphill paths are statistically
independent, the maximum fitness attainable, fmax,up, could be
approximated by solving

1 −Φ(fmax,up)X = NU (X)−1 (143)

Correlations due to shared subpaths will cause this approxima-
tion to overestimate fmax,up. On the hypercube, we have NU (X) =

[1−Φ(F (0))]X
X !

(L
X

)
. Solving for the CDF approximately, we get

1 −Φ(fmax,up) ≈ [1 −Φ(F (0))]−X X !

X

(
L
X

)−1

(144)

The maximum is dominated by the combinatorics of the number
of paths, rather than the structure of the paths themselves. If
Φ(F (0)) is not too close to 1, the right hand side is minimized
at X ≈

√
L, giving us the optimal CDF value ∼ −

√
L, which gives

a max fitness gain of

fmax,up ∝ L1/4 (145)

in the independent Gaussian case, compared to the global max of
O(L1/2). Uphill paths have trouble reaching the global max, and
random adaptive walks do not go nearly as high. The only way to
go higher would be to allow some deleterious mutations as well
(which we will not analyze here).

Performing calculations as above for correlated landscapes is
more difficult and we will not attempt it here. However, we
expect interpolation between the independent fitnesses and ad-
ditive cases. The maximum absolute fitness F∗

≡ max
g

F (g) on the

landscape can be crudely estimated as

F∗
≈ L(1+α)/2 (146)

using the observation that the fitness difference between any
pair of points at a distance x is ∼xα/2, and there are roughly
exp(cL) ‘‘independent’’ pairs of points we can choose. We expect
something similar to the independent fitnesses case, where fmax,up
scales as a power of L, but not as much as F∗. As before, to reach
the global maximum one must have an extremely fortuitous
choice of starting location. However we will see in the next
section that small perturbations of the long range statistics can
drastically increase chances of reaching points near the global
maximum fitness.
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C.3. Mixed landscapes with narrowly distributed additive piece

A small additive piece of the fitness function can have large
effects on the global dynamics of evolution. The net effect on the
dynamics is also sensitive to the distribution of the additive part.
To show this concretely, we work with mixtures of a power law
and an additive piece and consider different tails for the additive
piece.

Let sC be the steps in the correlated part of the landscape, and
let sA be the steps in the additive part so the total fitness gain is
s = sA+sC . We first consider an additive part normally distributed
with variance σ 2

A . The distribution of sC and sA is jointly Gaussian.
The conditional means can be computed directly:

⟨sC |µC , s > 0⟩ =
σ 2
A

σ 2 + σ 2
A
µC +

σ 2

|µC |
, ⟨s|µC ⟩ ≈

σ 2
A + σ 2

|µC |
(147)

for |µC | ≫

√
σ 2 + σ 2

A . For µC < 0, ⟨sC |s > 0⟩ is reduced
compared to what it would be in the absence of the additive
piece. This change in the relationship between s and µC changes
the dynamics, making it easier to find uphill steps.

We can use the above equations to compute the dynamics
on a power law plus additive landscape. From Eq. (29) we have,
schematically

dµC (x)
dx

≈

∫ x

0
−aP((x − y)−(3−α)/2)µC (y) − b(x − y)−(1+α)/2

×

(
σ 2
A

σ 2 + σ 2
A
µC (y) −

σ 2

µC (y)

)
dy (148)

If µC (x) and sC (x) saturate, then we know s(x) must saturate to 0
(since J(x) has a divergent integral). We solve for the equilibrium
µ∗

C by setting the 2nd and 3rd terms equal to each other. If
E[µC (x)] is constant for all x, those two terms will be much larger
than the (x−y)−(3−α)/2 term. Define pA ≡

σ2
A

σ2+σ2
A
to be the fraction

of the landscape that is additive. This gives us the saturating value
µ∗

C = −
σ

√
pA
. We can find the approximate length X at which

saturation occurs for small values of pA by using the relationship
E[µC (x)] ∝ −σx(1−α)/2 for the power law walk. We have

X ∝ p−1/(1−α)
A (149)

After the walk reaches saturation, we have E[s] = 0 and the
saturated total step ssat goes as σ

√
p

1−p . Thus E[F (x)] goes like a
power law for roughly p−1/(1−α)

A steps, after which it goes roughly
linearly at a rate σ

√
pA

1−pA
per step.

We can also compute how far up the walk is expected to go
for finite L. We can find the minimal value of pA for which the
walk length is O(L) for fixed L. This occurs when µ∗

C/

√
σ 2 + σ 2

A =

O([log(L)]1/2), which occurs when

pA = O([log(L)]−1) (150)

For large enough p the population gains fitness linearly with
step size; for pA smaller than the critical value, the power law
correlations perform better as they still have f (x) ∼ x(1+α)/2.
This critical value goes to zero as L increases (albeit slowly). The
dynamics goes similarly for more narrowly distributed sA as well.

For Gaussian and sub-Gaussian distributions, the primary ef-
fect of the additive piece is to let s relax to 0. The adaptive walk
‘‘chooses’’ to use the additive component of the landscape as the
primary source of its adaptive steps, while not moving much
in the correlated landscape. A balance can be found where µC
does not change; this means that in the correlated landscape,
the trajectory goes along a path of constant curvature. This small
additive piece can have a large global effect on evolutionary
dynamics.

The transition to O(L) fitness gains due to the additive piece
has been previously seen in the case of RMF models (additive
mixture with α = 0). Previous work has shown phase transitions
from linear to sublinear fitness gains of random adaptive walks
as the amount of additive piece is changed in the limit of infinite
L Park et al. (2015) and Neidhart et al. (2014). The phase transition
occurs at p = 0 for sub-exponential tails of the random piece
if the additive piece is constant. These new results explicitly
show the crossover for finite but large L, showing the scale of
the amount of additive piece needed to go long distances decays
slowly with L if sA is narrowly distributed.

Even in cases where the additive component does not change
the ‘‘typical’’ dynamics, it may change extremal ones. Consider
the case of an additive, narrowly distributed component plus a
correlated component. Now suppose we wished to find the ‘‘best’’
uphill path starting at a particular node. If we had full knowledge
of the landscape, one simple strategy would be the following: for
every step, find a direction where s ≈ 0 and sA ≈ σA. If we can
easily find such a step, is has s > 0 and also ensures that µC will
not increase. Then, at the next step we should be able to easily
find such a step again.

So long as σA ≫ L−1, we should be able to find a step in the
correlated landscape such that s < 0 and |s| < σA. This means
that the critical p for the existence of at least one path which
gets close to the global maximum is at most L−1, as opposed to
the [log(L)]−1

C.4. Mixed landscapes with broadly distributed additive piece

In the main text, we considered the case where large steps
were relatively plentiful; however the regime where the proba-
bility of a large step is O(L−1) has some additional structure as
well.

Consider a simplified model of a correlated plus additive land-
scape, where with probability padd any single uphill direction
has an arbitrarily large uphill part. When padd = naddL−1 for
some nadd = O(1), there is some waiting time to find the uphill
direction. If the probability of any uphill step on the correlated
landscape alone is pcor , then an uphill step using the additive
piece occurs with probability padd

pcor+padd
, or every pcor L+nadd

nadd
steps.

The dynamics then proceeds as follows: the population follows
its normal trajectory on the correlated landscape until it finds
and picks a large uphill direction. It then takes the large uphill
direction, and takes a step µ in the correlated landscape. On
average then, this leads to the following equilibrium equation for
µ:

0 =

∫
a(x − x′)−(3−α)/2µc + b(x − x′)−(1+α)/2

×

(
padd

pcor + padd
µc +

pcor
pcor + padd

σ 2

|µc |

)
dx′ (151)

where pcor ≈
σ

|µc |
e−µ2

c /2σ
2
. The equilibrium condition is given

when the second and 3rd terms cancel; we have

σ 3

|µc |
3 e

−µ2
c /2σ

2
= padd (152)

which gives us µc ≈ −σ
√
2|log(padd)|, or pcor = 2|log(padd)|padd.

For small padd (as we expect in the crossover regime), pcor ≫ padd.
The walks are of extensive (linear in L) length when Lpcor =

O(1) (more accurately, when 1 − Lpcor = o(L−1)). Therefore, to
have dynamics of this type that nonetheless go a long-distance,
we need |log(padd)| = O(1) — guaranteed when padd = O(L−1).
A necessary condition for this ansatz to hold is that the additive
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piece gets used before the correlated piece would normally get
stuck; that is we need ℓcor ≫ ℓadd where

ℓcor ≈
1

1 − Lpcorr
, ℓadd ≈

pcorr + padd
padd

= 2|log(padd)| (153)

which means that walks in the correlated bit must go at least
length log(L) for this method of equilibration to work.

This again shows us that the global and sometimes extremal
statistics of the landscape matter far more than the local ones.
Different extremal statistics lead not only to different crossovers
in behavior, but potentially to different phases as well.

C.5. ‘‘Very abstemious’’ walks

To better understand the geometry of the fitness landscape, it
is useful to know what uphill paths exist (or are likely to exist),
and how these might be found by local ‘‘decisions’’. In Section 5.1,
we considered walks with large L and fixed q. What happens
when we choose very small q so that the smaller the step the
more likely it is to be chosen? More precisely, what happens
when q scales with L? As there are at most L possible steps, q
cannot be smaller than ∼L−1; to understand the behavior we
focus on the case where q ∼ L−ζ , for some positive ζ < 1.

If, for a slow, steady walk the number of steps, x, starts to
become of order L, the tree approximation we have been using
breaks down. A major complication is then that some fraction of
possible steps – of order x out of L – would reverse mutations
that have already occurred. This changes the correlations, and
the response kernel forms we have derived no longer obtain. But
there is a simple way out: if we only consider mutations that
have not already occurred, then the symmetry under permutation
still implies that the L − x allowable next steps will still have a
distribution well characterized by the now — restricted µ(x) as
long as L − x is large. Thus we should be able to take a total
number of steps, X , at least some fraction of L.

For very small q, µ(x) will remain small until large x. The
distribution of available s is thus not far from symmetric and a
positive s can be chosen with typical value of order q (as long
as q ≫ 1/L). The contribution from the s(y) history to the
conditional mean, µ(x), is then simply −qxν . For Eq. (29) to be
true the effects of the s(y) history must cancel the effects of the
µ(y) history, so Eqs. (31) and (32) require that −µ ∼ qx2ν . The
walk can continue in this way until −µ(x = X1) ∼ σ which
occurs for X1 ∼ 1/q1/2ν at which point the fitness gain has already
reached

f (X1) ∼ qX1 ∼ q1−1/2ν
≫ σ . (154)

We can now choose q just small enough that X1 = O(L) by
choosing q ∼ 1/L2ν = L−1+α (which is larger than O(L−1) as
required). Then the walk has already reached f (X1) ∼ L1−2ν

= Lα
— a remarkably good outcome!

This walk can be continued into the regime where −µ ≫ σ .
To do this while keeping the total length X of order L, one needs

q ∼
log(L)
L2ν

(155)

and the walk then reaches a height

f (X) ∼ L1−2ν
√
log(L) = Lα

√
log(L) (156)

as quoted in the main text. Note that the logarithmic factor
should really be log(qL) as qL is the size of the pool of neighbors
with s in the bottom q fraction of the positive ones. But as
log(qL) ≈ (1−2ν) log(L) this only decreases the maximum fitness
reached by an order one factor, and the walk could keep going a
bit longer by loosening the restriction of q. However it will still
be highly restricted by conditioning on the past and we expect
that not much extra can be gained by gradually relaxing the q

restriction: this could be analyzed by our methods but as it would
at best change the coefficient of the bound, we do not do so.

Appendix D. Dynamics on static and time-varying landscapes

D.1. Time-dependence of power law walks (fixed landscape)

We assume a model where mutations arise from a Poisson
process, with characteristic time τM = 1 between mutations.
Deleterious mutations are purged instantly; adaptive mutations
fix instantly.

Under this model, the time τU (x) to take the x + 1 th step is
distributed exponentially with mean time 1/pU (x), where pU (x)
is the probability of any given step being uphill. Note that in the
large L limit, pU (x) only depends on the current average available
fitness gain µ(x), as the variance of available steps (given µ(x)) is
constant. For |µ|/σ ≫ 1, we have approximately

pU (x) ∝
σ

|µ(x)|
e−µ(x)2/2σ2

(157)

This means that τU (x) is super-exponential in µ(x) — the adaptive
walk is very slow.

Since µ(x) has variation, τU (x) is broadly distributed across
different walks. In fact, log(τU (x)) is roughly normal. We can
decompose its variance as

Var[log(τU (x))] = E[Var[log(τU (x))|pU (x)]]

+ Var[E[log(τU (x))|pU (x)]] (158)

where the average is taken over all uphill walks of length x. From
the convexity of log, we have approximately

Var[log(τU (x))] ≤ E[Var[log(τU (x))|pU (x)]]+Var
[
µ(x)2/σ 2] (159)

for large µ(x). Since τU (x)|pU (x) is exponentially distributed,
Var[log(τU (x))|pU (x)] is small compared to the variability from
µ(x) and the second term dominates. We expect, then, that
log(τU (x)) is distributed similarly to µ(x)2; its mean and variance
should both scale as x1−α . (Note that we expect a similar result
when considering the distribution of τU (x) conditioned on the
path itself; this is relevant for the analysis of time-dependent
landscapes in Section 7.2.)

Fig. 15 shows the exponents of power law fits to the mean
and standard deviations of E[log(t(x))], averaged over different
walks. These exponents show good agreement for low α where
the approximate arguments above are expected to hold. They
deviate at high α where µ(x) grows slowly enough that neglected
terms matter more (at least for the range of x explored).

This suggests then that the time taken to reach fitness gain
f (x) is dominated by the last step. We can write log(τU (f )) as

log(τU (f )) ∝ f 2(1−α)/(1+α) (160)

for the time taken to reach a fitness gain f . This is too slow to be
a reasonable model of evolution in most scenarios. However, this
result is very sensitive to the Gaussian tails of our random fitness
functions. It may be possible to find distributions with alternate
extremal statistics that give similar f (x) but faster τU : we leave
this for future research.

D.2. Exponential time correlation

In this section we develop the results needed to analyze ex-
ponentially time-correlated landscapes. Consider the general case
of a set of mean-zero Gaussian random variables {Z(y, t)}, with
correlations given by

E[Z(y, t)Z(y′, t ′)] = Σ(y, y′)e−|t−t ′|/T (161)
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Fig. 15. Average log derivatives of mean and standard deviation of log(τU (x)).
For low α, mean and variance scale like µ(x)2 .

Here t and t ′ denote times, while y and y′ denote some other type
of coordinate (spatial, genetic, etc.).

The exponential structure simplifies the process of making a
‘‘time update’’ across some set of y. More concretely, suppose that
the values of the Z(y, t1) are known at the time t1 for all y in
some set Y . Suppose we now want to draw Z(y, t2) conditioned
on Z(y′, t1) (across all y′ in Y including y), for some t2 > t1. The
conditional mean of Z(y, t2) is given by:

E[Z(y, t2)|{Z(y′, t1), y′
∈ Y }] = e−|t2−t1|/TZ(y, t1) (162)

The expected value in the future depends only on the previously
observed value at that location.

Eq. (162) can be verified by using Eq. (17), with Z in Eq. (17)
corresponding to Z(y, t2) (the unknown random variables) in the
notation of this section, and similarly W corresponding to Z(y, t1)
(the known random variables). Note that Eq. (17) is satisfied if

ΣWWKZ = Σ ZW (163)

With our identifications we have

KZ = e−|t2−t1|/T δ(y − y′), Σ ZW = e−|t2−t1|/TΣ(y, y′),

ΣWW = Σ(y, y′) (164)

for y, y′
∈ Y , which trivially satisfies the condition. Then Eq. (162)

comes from matrix multiplying (convolving) KZ with the vector
of known values Z(y, t1).

The conditional covariance across a pair y and y′ in Y at time
t2 can be written as:

E[Z(y, t2)Z(y′, t2)|{Z(y′′, t1), y′′
∈ Y }] = (1 − e−2(t2−t1)/T )Σ(y, y′)

(165)

using Eq. (18) with

Σ ZZ = Σ(y, y′) (166)

for y, y′
∈ Y (which also comes from our correspondence).

This means that we can write Z(y, t2) as

Z(y, t2) = e−(t2−t1)/TZ(y, t1) +

√
1 − e−2(t2−t1)/T Z̃(y) (167)

where the Z̃(y) are Gaussian random variables defined over the y
in Y , independent of all of the Z(y, t1), with covariance Σ(y, y′).
In other words, the effect of the passage of time is to add an
independently drawn equal-time slice to the last observed equal-
time slice (with appropriate weighting). (This decomposition is

possible since the sum of Gaussian random variables is also Gaus-
sian, and the decomposition has the same mean and correlation
as Z(y, t2).)

Eq. (167) holds even if other values of Z(y, t ′) are known
for time or times t ′ < t1 (including if an unequal number of
observations were made for different y). This means that a ‘‘space
update’’ is easy as well: if we need the value Z(x, t1) for some
x not in Y , given the observations Z(y, t1) for all y in Y (before
performing the time update to t2), we can draw the new value
the way we would without time-dependence (that is, condi-
tioning only on the Z(y, t1) via the time-independent covariance
function Σ).

The above analysis gives an efficient algorithm to simulate
evolutionary dynamics on a landscape with exponential time
correlations. Given a timestep ∆t and the function pU (µ) for the
probability of an uphill step given the current mean available step
µ, with current mutation number x and time coordinate t , we
proceed as follows:

1. Check if evolution finds an uphill step in time ∆t (proba-
bility pU (µ(x, t))∆t).

2. If an uphill step is found: generate the new step, s(x, t),
and new mean available step, µ(x + 1, t), as in time-
independent case (conditioned on µ(y, t) and s(y, t) for
previously observed y).

3. Generate new, random µ̃(y) and s̃(y) according to the time-
independent divergence, D(ℓ), independent of all previous
observations (generated for all observed y, including s(x, t)
and µ(x + 1, t) if uphill step was taken).

4. Set µ(y, t + ∆t) = e−∆t/τEµ(y, t) +
√
1 − e−2∆t/τE µ̃(y) for

all observed y (and equivalently for s(y, t +∆t)).
5. Return to step 1.

As ∆t goes to 0, the algorithm is exact. Note that the landscape
update steps 3–5 are exact due to the analysis above; the only
approximation is that the mutation occurs at the start of the ∆t
interval. In practice, for ∆t ≪ τE and ∆t ≪ τU , where τU is the
typical time to an uphill step, the algorithm is quite accurate.

It is also efficient. Every uphill step with exponential time
correlations takes the same amount of computation as the time-
independent case does. The additional cost is the updates to the
landscape when uphill steps are not taken. For average time τ̄U for
an uphill step, this introduces an extra cost of O( τ̄U

∆t X
4) to simulate

an evolution with X uphill steps.
This simple algorithm is specific to the case of exponential

time correlations with no extra spatial structure; for general
time correlations all past observations will play a role and the
computational complexity increases rapidly with time.

D.3. Power law landscapes with exponential time correlations

After a transient period, dynamics in a landscape with expo-
nentially time-decaying correlations leads to an equilibration of
the DFE average µ around some critical value µc . If the landscape
has power law correlations, we must solve an integral equation
to find µc .

For slowly varying landscapes, m ≡ −µc/σ ≫ 1 and the
average values of s and µ will control the overall dynamics. We
assume that the time for each uphill step is not too broadly dis-
tributed near the steady state. Using the response kernel asymp-
totics, we have the approximate differential equation

dµ
dx

≈

∫ x

0
e−|x−y|/ξD

×
(
−aP(|x − y|−(3−α)/2)µ(y) − b|x − y|−(α+1)/2s(y)

)
dy
(168)



A. Agarwala and D.S. Fisher / Theoretical Population Biology 130 (2019) 13–49 47

with

ξD =
τE

τ̄U
. (169)

Here we average over the new random part of the landscape that
came from the time-dependence of the landscape. The derivative
vanishes at steady state. If we replace µ(y) with µc and s(y)
with −

σ2

µc
, and take the limit of large x, the integrals are well

approximated by Γ functions and we get

µ2
c ≈ σ 2 b

a
cα ξ

(1−α)/2
D (170)

for some constant cα .

D.4. Heterogeneity in mutation waiting times

For power-law correlated seascapes with exponential time
correlations, mutations can be roughly divided into two classes:
‘‘fast’’ mutations whose waiting time is much less than τE (so the
landscape is effectively constant between mutation events), and
‘‘slow’’ mutations which occur after the landscape has changed
significantly (but before total decorrelation over time τE).

In order to understand the two classes we define r(t) to be the
probability, per time, of a beneficial mutation occurring a time
t after the previous mutation. We define µ(x) as the average-
available fitness step, at the time just after the previous step was
taken. For convenience, we also define the scaled minus-average
(over the steady state) m ≡ −µc/σ ≫ 1 and its scaled variance
W ≡ Var[µ(x)]/σ 2, so that the quantity h(x) ≡ (µc −µ(x))/σ has
mean zero and variance W . For very slowly varying landscapes,
τE ≫ 1, so that m will be large (although only logarithmically so
with m ≈

√
2 log τE , due to the Gaussian nature of the seascape.)

We expect that W will be of order unity with contributions
both from Vη(x) and the effects from conditioning on the past
as in Eq. (92). (Note that h is not exactly Gaussian due to the
distributions of the earlier s(x), but the deviations will not change
the overall conclusions.)

For t ≪ τE , from E[µ(x, t)|µ(x)] = e−t/τEµ(x) we have
µ(x, t)2 ≈ µ(x)2(1−2t/τE) where we have dropped the stochastic
part of the change (O(

√
t/τE)) which can be self-consistently

shown to be negligible from the analysis below. We thus have

r(t) ≈ R(h)ebt (171)

with

R(h) ∼
e−(m+h)2/2

m + h
(172)

and

b ≈ m2/τE ≪ 1. (173)

The first beneficial mutation typically occurs after a time τU
where the integrated probability of a mutation occurring is 1
(
∫ τU
0 r(t)dt ∼ 1). This gets us τU ≈ log(1 + b/R)/b. For not too

large −µ(x) (that is, if R(h) ≫ b), the time-dependence of the
landscape does not matter and τU ∼ 1/R(h). The next mutation is
very likely to occur before the environment changes by enough
to make a difference.

For anomalously large −µ(x), a beneficial mutation is likely to
occur only after the environment has started to change, although
still well before it is decorrelated. This regime occurs for R(h) ≪ b
corresponding to h > H with R(H) = b: h even slightly above
H leads to large b/R since R depends exponentially on (h + m)2.
The waiting time is proportional to how much −µ(x, t) has to
decrease for the mutation to occur. It is likely to occur after a
waiting time near

τU ≈ log(b/R)/b ≈ m(h − H)/b (174)

(the −[h − H]
2/2 in log(R) can be neglected). We shall show

that such waiting only occurs for a very small fraction of cases
— i.e. that H ≫

√
W . Thus the probability that h > H is

of order e−H2/(2W ) and its distribution has an exponential tail:
e−(h−H)H/W . The average waiting time τ̄U is thus dominated by the
rare ‘‘slightly-stuck’’ situations with h − H ∼ W/H so that

τ̄U ∼
m
bH2 e

−H2/2W , (175)

where we have used H ≪ m as shown below.
For power-law correlated landscapes, the effects of past his-

tory Eq. (58) give us τ̄U/τE ∼ 1/m2/(1−α). Thus for consistency we
must have H ≈

√
2Wκw log(m) with κw = (1 + α)/(1 − α). This

justifies both H ≪ m and H ≫
√
W . The typical τU (x) are broadly

distributed with

τU (x)typical ∼ e
1
2m

2
±O(m) . (176)

But since H is given by exp[(m+ H)2/2] = b = m2/τE , τU (x)typical
is much less than τE by a factor of
τU (x)typical

τE
∼ e−mH−H2/2

∼ e−m
√
2Wκw log(m)+O(m) (177)

(ignoring multiplicative powers of m). Moreover, even the delay
times for the rare slightly-stuck subset of steps that wait for the
environment to change and dominate the average τ̄U , are much
smaller than τE
τdominant

τE
∼

1
m

√
log(m)

≪ 1 (178)

showing that during the waiting time the environment has
changed but is only slightly decorrelated. This means that in one
decorrelation time, τE , the total number of steps taken is well
approximated by ξD = τE/τ̄U with smaller variations around this.
The dynamics is thus quite smooth on time scales of τE and length
scales of ξD. This justifies the analysis in Appendix D.3, which
assumed such smoothness.

On shorter timescales the dynamics is very heterogeneous,
with the effects of time-dependence negligible except for a small
(∼1/mκw ) fraction of steps. The dynamics alternates between
rapid adaptation in a static environment, and a process where
the population ‘‘waits’’ for more new directions to open up due
to changes in the environment.
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