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Abstract

Background: Addictive drugs have in common that they cause surges in dopamine (DA) concentration in the mesolimbic
reward system and elicit synaptic plasticity in DA neurons of the ventral tegmental area (VTA). Cocaine for example drives
insertion of GluA2-lacking AMPA receptors (AMPARs) at glutamatergic synapes in DA neurons. However it remains elusive
which molecular target of cocaine drives such AMPAR redistribution and whether other addictive drugs (morphine and
nicotine) cause similar changes through their effects on the mesolimbic DA system.

Methodology / Principal Findings: We used in vitro electrophysiological techniques in wild-type and transgenic mice to
observe the modulation of excitatory inputs onto DA neurons by addictive drugs. To observe AMPAR redistribution, post-
embedding immunohistochemistry for GluA2 AMPAR subunit was combined with electron microscopy. We also used a
double-floxed AAV virus expressing channelrhodopsin together with a DAT Cre mouse line to selectively express ChR2 in
VTA DA neurons. We find that in mice where the effect of cocaine on the dopamine transporter (DAT) is specifically blocked,
AMPAR redistribution was absent following administration of the drug. Furthermore, addictive drugs known to increase
dopamine levels cause a similar AMPAR redistribution. Finally, activating DA VTA neurons optogenetically is sufficient to
drive insertion of GluA2-lacking AMPARs, mimicking the changes observed after a single injection of morphine, nicotine or
cocaine.

Conclusions / Significance: We propose the mesolimbic dopamine system as a point of convergence at which addictive
drugs can alter neural circuits. We also show that direct activation of DA neurons is sufficient to drive AMPAR redistribution,
which may be a mechanism associated with early steps of non-substance related addictions.
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Introduction

The VTA, which is the origin of the mesolimbic DA system, has

been implicated in both the signaling of natural rewards and in the

formation of drug addiction. Much previous data has shown that

animals will readily self-administer electrical currents or addictive

drugs into the VTA [1]. However due to the non-specificity of

these interventions, it has been difficult to isolate the component

that initiates the reinforcing behavior, which may eventually lead

to addiction. Nevertheless, neurons of the VTA that release DA in

target regions including the nucleus accumbens (NAc) and the

prefrontal cortex as well as locally [2,3] appear to be centrally

involved.

Despite their diverse molecular targets, addictive drugs have in

common that they increase mesolimbic DA levels [4]. One of the

leading hypotheses posits that this surge in mesolimbic DA levels

triggers synaptic adaptations, first in the VTA, which may be

permissive for subsequent more general changes in other parts of

the brain. Such circuit reorganization may eventually cause

behavioral changes that underlie addiction.

According to the cellular mechanism engaged to increase DA

levels, addictive drugs have been classified into three groups [5].

Opioids, cannabinoids, benzodiazepines [6] and the club drug

gamma-hydroxybutyrate reduce transmitter release from inhibitory

afferents onto DA neurons, indirectly increasing the firing rate of

DA neurons, a mechanism defined as disinhibition. Nicotine, as a

member of the second group, directly depolarizes DA neurons by

activating alpha4beta 2-containing acetylcholine receptors, whereas

the third group, comprised of cocaine, ecstasy and amphetamines,

targets the DAT. Despite the observation that the representatives of

this third group decrease the firing frequency of the VTA neurons

[7,8] through D2 receptor mediated autoinhibition, extracellular

DA levels actually surge [9]. This is due the block of the reuptake of

the somato-dendritically released DA [10,11].

Drug-evoked synaptic plasticity in the VTA appears at

excitatory afferents onto DA neurons of the VTA already 24 h
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after a single injection of addictive drugs [12,13]. In the case of

cocaine it is induced by D1/D5 receptor [14] and NMDAR

activation [12] and expressed in part by an insertion of GluA2-

lacking AMPARs [15]. When rendered persistent through

repetitive drug application, such adaptations in the VTA trigger

synaptic plasticity downstream in the NAc [16,17]. Several studies

have identified the effects of cocaine on the DA system as a key

contributor to its addictive properties. However, as cocaine also

inhibits serotonin and noradrenaline uptake, it is unknown

whether increased DA levels are crucial for cocaine-induced

AMPAR redistribution. If that is the case, other addictive drugs

should drive a similar receptor redistribution; even strong

activation of VTA DA neurons alone may be sufficient.

Here we show that mice with a cocaine-insensitive DAT lack

the redistribution of GluA2-lacking AMPARs following a single

injection of cocaine. Furthermore, we demonstrate that single

injections of addictive drugs with distinct mechanisms of action

lead to a redistribution of AMPARs. Finally, we show that selective

stimulation of DA VTA neurons at frequencies shown to increase

DA levels in target regions [3] using channelrhodopsin mimics the

AMPAR redistribution observed with addictive drugs.

Results

Cocaine-evoked AMPAR redistribution depends on DAT
inhibition

Cocaine is a non-selective monoamine reuptake inhibitor, and

has been shown to bind the serotonin, noradrenaline and

dopamine transporters with similar affinity [18]. To assess the

importance of the action of cocaine on the DAT for AMPAR

redistribution, we took advantage of a mouse line in which the

DAT is still able to take up endogenous DA but rendered

insensitive to cocaine (DATKI mouse, ref [19]. To validate this

approach we injected cocaine intraperitoneally (i.p.) whilst

recording from VTA neurons in vivo and observed an inhibition

in the in vivo firing rate of VTA neurons in WT mice but not in the

DATKI (Figure 1A, B). It is well established that the inhibition

observed in the WT mice is due to the activation of D2 receptors

present on the soma and dendrites of DA neurons. Nevertheless,

DA levels remain elevated in the VTA and the NAc [7,20] because

the blockade of the DAT by cocaine predominates [10].

We then recorded AMPAR-mediated EPSCs and plotted the

relative current–voltage (I–V)-relationship 24 h after a single

injection of saline or cocaine in WT and DATKI mice. In the

cocaine-treated DATKI mice, we found a linear I–V curve, similar

to saline-injected DATKI mice (Figure 1C). To quantify the inward

rectification, we calculated the rectification index (RI), which is the

ratio of the slope of the I–V curve at positive divided by the slope

at negative potentials. For GluA2-lacking AMPARs RI.1. This is

due to the specific polyamine-sensitivity that inhibits the current

flow at positive potentials [21]. As predicted from previous results,

RI was significantly higher in WT controls injected with cocaine,

reflecting the presence of GluA2-lacking AMPARs (Figure 1D).

This finding confirms that the insertion of GluA2-lacking

AMPARs is dependent on the inhibition of cocaine of the DAT.

Addictive drugs trigger AMPA receptor redistribution
Since these data suggest that the insertion of GluA2-lacking

AMPARs is dependent on the cocaine-evoked surge in DA, other

drugs known to increase DA levels could also drive this receptor

redistribution. Indeed a previous study observed that these drugs

can drive another form of synaptic change in the VTA [13]. We

therefore tested whether a single exposure to morphine or

nicotine, which increase DA in the mesolimbic system through

distinct mechanisms [5], also drives the insertion of GluA2-lacking

AMPARs. In such ex vivo slice recordings, we observed that the RI

was significantly higher after the exposure to an addictive

substance compared to saline-injected animals (Figure 2A, B).

To demonstrate that the synaptic insertion of GluA2-lacking

AMPARs occurred in exchange of native GluA2-containing

receptors, we directly visualized the GluA2 subunit with post-

embedding immunogold labeling at the electron microscopic level.

In slices from saline-treated mice the majority of GluA2 labeling

was observed at the synapse along with a small cytoplasmic pool.

In slices from morphine, nicotine and cocaine-exposed mice the

cytoplasmic GluA2 particles increased at the expense of the

synaptic staining (Figure 2C, D). As a control, labeling of PSD95

was always observed at synaptic locations (Figure 2E, F). Thus we

find that addictive drugs with diverse sites of action all can lead to

AMPAR redistribution. A common feature of all these drugs is

their ability to increase DA levels (either through increasing

neuron activity or blocking DA reuptake). If this point of

convergence is a critical component for the induction of AMPAR

redistribution, then selectively stimulating DA VTA neurons in the

absence of drugs should mimic this synaptic effect.

Selective stimulation of VTA DA neurons mimics drug-
driven AMPAR redistribution

To assess the ability of VTA DA neuron activation to induce

AMPAR redistribution, we virally expressed channelrhodopsin 2

(ChR2) selectively in DA neurons in vivo (stereotactic injection of

AAV2 vectors with ChR2 flanked by double loxP sites into the

VTA of DAT-Cre mice, see methods). We then lowered an optic

fiber, connected to a blue light solid-state laser (473 nm), to drive

action potentials in VTA DA neurons in vivo with brief pulses of

light. We observed that VTA DA neurons expressing ChR2 fired

action potentials immediately following five light pulses at 20 Hz

(Figure 3A–C), whilst non-DA VTA neurons exhibited no light-

evoked response (Figure 3D). This pattern of firing is similar to the

burst firing of DA neurons recorded during rewarding stimuli or

following administration of some addictive drugs [22,23,24]. Ex

vivo slice recordings confirmed the presence of ChR2-induced

photocurrents in DA neurons of DAT-Cre+ mice but not of non-

DA neurons (Figure 4A–C). Injected animals were then exposed to

an intermittent light stimulation protocol (Figure 5A. 5 pulses at

20 Hz each second) for 2 h. This duration mimics the time course

of increased DA levels observed with a single dose of cocaine or

nicotine [20,25]. In whole-cell recordings ex vivo one day after the

light simulation protocol, we obtained I-V curves from DA

neurons and found that the RI was significantly higher in slices

from DAT-Cre+ mice with respect to DAT-Cre2 controls

(Figure 5B, C). In a different set of experiments, we then applied

the above stimulation protocol immediately following an infusion

of SCH23390, a D1 receptor antagonist (Figure 5D). Under these

conditions the RI was significantly lower that in control

experiments where saline was infused (Figure 5E, F). Taken

together, these experiments show that a strong stimulation of DA

neurons, shown to efficiently release DA [3] and mimicking the

time course of the drug action is sufficient to drive AMPAR

redistribution at excitatory afferents onto DA neurons through a

D1 receptor-dependent mechanism.

Discussion

In the present study we show that the cocaine-driven

redistribution of AMPARs depends on its effect on the DAT.

We also show that morphine and nicotine, despite their distinct

cellular effects on the VTA, cause a similar synaptic adaptation.

Drugs and Dopamine Induce Synaptic Plasticity
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Figure 1. Cocaine drives the insertion of GluA2-lacking AMPARs via its effect on the DAT. (A) Single unit extracellular in vivo recordings
(above) and corresponding firing rate plots (below) of VTA neurons during a single i.p. injection of 15 mg/kg cocaine in either WT (left) or DATKI (right) mice.
Black bar denotes injection time, (a) and (b) denote points from which example traces were taken. (B) The resulting inhibition of neuron firing rate observed
in WT mice (3863.3%) was not present in DATKI mice (94.961.4%). n = 4–5, t(7) = 16.5, p,0.0001. (C) Representative AMPAR excitatory postsynaptic currents
recorded at 260, 0 and +30 mV (normalized to +40 mV AMPAR component) and RIs (D) of WT and DATKI mice 24 h post cocaine injection. Linearity
corresponds to and RI of 1. Mean RI = 1.9560.17 in WT, and 1.1260.08 in DATKI; F(2–22) = 9.8, p,0.001, n = 5–9). All data are expressed as mean 6 sem.
doi:10.1371/journal.pone.0015870.g001
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Finally, in the absence of any pharmacological intervention, we

use optogenetic tools to selectively drive the activity of DA

neurons, and observe that this manipulation causes the AMPAR

redistribution. We conclude that, as with addictive drugs, selective

activation of the DA system is required to induce the insertion of

GluA2-lacking AMPARs.

The observation that the cocaine-induced AMPAR redistribu-

tion is dependent on the action of cocaine on the DAT

demonstrates that, despite the many other targets and actions of

cocaine, the increased DA levels following cocaine administration

are necessary for the AMPAR redistribution. Previous studies have

suggested that, in a mouse line with a constitutive DAT knockout,

Figure 3. Light pulses are sufficient to mimic burst firing of dopamine (DA) neurons in vivo. (A) Representative single unit recording
(above) and peristimulus time histogram (below, 5 ms bins) of a VTA DA neuron during a single light pulse (black markers; 4 ms, one sweep every
2 s) (n = 7). (B) The same VTA DA neuron as in (A) responding to 5 light pulses at 20 Hz. (C) Light pulses (black markers) are sufficient to drive action
potentials, which do not differ in waveform characteristics from spontaneously occurring action potentials (above). Average percentage of action
potentials generated by consecutive light pulses (below). Note the decrease in fidelity of action potential firing with increasing numbers of light
pulses. (D) A GABAergic VTA neuron, which was recorded in close proximity to light-responsive DA neurons, exhibiting no response to five 4 ms light
pulses (n = 7).
doi:10.1371/journal.pone.0015870.g003

Figure 2. Addictive drugs cause rectification via AMPAR redistribution. (A) Representative traces of AMPAR excitatory postsynaptic currents
recorded at 270, 0 and +40 mV. Examples are shown from recordings 24 h post injection. (B) Individual and averaged normalized rectification indices
(RIs) (mean 6 s.e.m) of saline and each drug treatment. RIs of morphine (2.1260.27), nicotine (2.0660.23) and cocaine (1.7260.14) groups were
significantly different from the saline (1.1260.08) control group (F(3,35) = 4.93, p,0.01, ANOVA. n = 7–15). (C) Representative electron micrographs of
VTA sections from saline- or drug-treated animals. Large profiles (arrows) represent tyrosine hydroxylase (TH) immunoreactivity in dendrites (Den)
forming asymmetrical synapses with boutons (b), and small profiles (arrowheads) represent GluA2 immunoreactivity. (D) Number of small profiles
plotted against the distance from the postsynaptic density. (E) Same as in (C) but staining against PSD 95. (F) Same quantification as in (D) but for
PSD 95.
doi:10.1371/journal.pone.0015870.g002
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cocaine self-administration can still be established [26,27] while

the constitutive D1 receptor knockout mouse line showed no such

behavior [28]. These disparities may stem from significant

adaptive changes in a mouse in which the DAT is absent during

development. The DATKI mouse line, however, provides a model

in which the reuptake of dopamine is closer to the wild-type

condition (plus 64%), than in the DAT knockout [26,29], whilst

the action of cocaine on the DAT is severely impaired [30].

Figure 4. Expression of ChR2 causes light-activated currents in DA VTA neurons. (A) Representative whole cell voltage clamp recordings of
a DA VTA neuron. Following identification of cell type by the presence of an Ih current (left) responses to light pulses (black lines) at 4 ms (middle) or
100 ms (right) in the presence of TTX were tested (n = 10). (B) Same as in (A) but a representative non-DA VTA neuron (note lack of Ih (left); n = 6). (C)
Digital micrograph showing YFP labeling of neurons within the VTA, together with putative GABAergic unlabeled neurons (asterisks).
doi:10.1371/journal.pone.0015870.g004

Figure 5. In vivo stimulation of dopamine neurons is sufficient to drive AMPAR redistribution. (A) Protocol of light stimulation in vivo. (B)
Whole-cell voltage-clamp recordings made ex vivo 24 h post in vivo stimulation protocol. Representative traces of AMPAR excitatory postsynaptic
currents recorded at 260, 0 and +30 mV (below). (C) Individual and averaged normalized rectification indeces (RIs) (mean 6 s.e.m) following light
stimulation. RI of DAT Cre2 = 1.1260.14 (n = 5). RI of DAT Cre+ = 2.4560.32 (n = 5). p,0.01, Mann-Whitney U Test. (D) Protocol of intra-VTA infusion
and light stimulation in vivo, (E) Same as in (B) following intra-VTA infusion and light stimulation, (F) Same as in (C). RI of DAT-Cre+ saline
injected = 1.7960.23 (n = 4). RI of DAT Cre+ SCH23390 injected = 0.9960.09 (n = 5). p,0.05. Error bars represent s.e.m. Error bars are smaller than the
symbol for some data points.
doi:10.1371/journal.pone.0015870.g005
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DATKI mice do not self-administer cocaine and fail to develop

conditioned place preference [30,31] , which confirms that block

of DA reuptake mediates reinforcing properties of the drug.

Moreover, in DATKI mice, compensatory adaptations seem not to

affect D2-like receptors [32], which may explain why we did not

observe any change in baseline synaptic transmission.

That other addictive drugs also cause increases in DA levels,

albeit through distinct mechanisms, presents an intriguing

convergence that may ultimately be responsible for their addictive

properties. Our finding that these addictive drugs also induce

AMPAR redistribution, backed up by data showing that another

synaptic change is common to these drugs [13], further implicates

a common mechanism. The current finding that a single injection

of nicotine can cause rectification has also recently been confirmed

by another group [33]. With the ChR2 we mimicked the activity

of drugs that can activate the DA neurons directly (e.g. nicotine) or

through disinhibition (e.g. morphine). While this shows that

selective DA neuron activation is sufficient to mimic drug-induced

AMPAR redistribution, other drug-specific mechanisms may

contribute. Cocaine for example, while actually causing a decrease

in DA neuron firing rate, is also able to induce AMPAR

redistribution. One possibility for this result is that the increased

dopamine concentration is responsible for the induction of this

plasticity. Our data suggest that DA signaling within the VTA is

driving AMPAR redistribution. First, other reports have used fast

scan voltammetry to show that similar optogenetic stimulation

protocols produce large DA transients in VTA target regions

[34,35,36]. Second, a previous study has shown that a change in

the AMPA/NMDA ratio, induced following administration of

addictive drugs, was blocked by application of a D1-like receptor

antagonist [37]. Our data with local VTA infusion of the same

antagonist confirms this requirement for D1 signaling. This

observation is also of interest in the context of recent evidence

that some DA neurons co-release glutamate [35,36].

Further experiments will have to establish the necessity of DA

neurons activation by inhibiting the DA neurons while giving a

drug or testing for occlusion if the effect of the stimulation after

drug exposure.

Since previous pharmacological [12] and genetic [38] manip-

ulations also demonstrated the need for NMDARs on DA

neurons, intrinsic glutamatergic transmission may also be required

and future studies will have to identify the locus and hierarchy of

the convergence of DA- and NMDA-signaling. As drug-triggered

AMPAR redistribution has also been induced in a VTA slice

preparation, this implies a mechanism restricted to the circuitry

within the VTA [37]. Indeed, bursting of DA neurons is also

particularly efficient at driving DA release within the VTA [3,2].

However, whether or not reciprocal connections between

glutamatergic or GABAergic nuclei and DA VTA neurons were

potentiated with this protocol cannot be ruled out. Indeed it is

possible that adaptations in the NAc may have an indirect effect

on the VTA via the strong back-projection of this nucleus to the

midbrain [39].

A previous report has shown that stimulation of DA neurons,

albeit with a different protocol, leads to behavioral conditioning,

such as conditioned place preference (CPP, [34]. This provides

evidence that increasing DA neuron activity could be sufficient to

drive this behavioral response, and so represents a reinforcing

stimulus [40,41]. However the relationship between mesolimbic

DA, synaptic plasticity and behavior is complex. Earlier reports

suggest that CPP can be observed with morphine in mice that lack

efficient DA synthesis [42]. Moreover the cellular changes were

not investigated in these studies. In an inducible, conditional

mouse line lacking NMDARs in DA neurons, the insertion of

GluA2-lacking AMPARs and conditioned place preference were

dissociated. Cocaine-evoked unbiased CPP was not affected (but

see[43] for results with a biased protocol) in the NMDAR-mutant

mice where AMPAR redistribution was absent. However these

mice did show reduced reinstatement [38] and cue-induced

cocaine seeking [16]. Our finding that selective stimulation of DA

VTA neurons leads to AMPAR redistribution therefore provides

strong evidence that increased DA neuron activity is capable of

modifying the network at the synaptic level.

Given that addictive drugs are chemically very diverse and each

has a distinct molecular target, it is surprising that they induce

symptoms that are indistinguishable. Our study provides proof of

principle for an early point of convergence in the function of the

DA neurons of the VTA. The release of mesolimbic DA seems

critical for the induction of a form of synaptic plasticity that

predicts long-term adaptations in the neural reward circuits. The

fact that we were able to elicit AMPAR redistribution with passive

drug administration or passive light-activation indicates the

permissive nature of these events for addiction.

We believe that by proposing a site of initiation for the final

common pathway, future research may lead to an unifying model

including non-substance dependent addictions to gain further

mechanistic insight, and propose rational therapies.

Materials and Methods

Ethics Statement
All experiments were carried out in accordance with the

Institutional Animal Care and Use Committee of the University of

Geneva and with permission of the cantonal authorities (Permit

No. 1007/3592/2).

Subjects. Experimental procedures were conducted in C57/

BL6, DATKI [19] and DAT-Cre [44] mice. Mice were house

together except for those implanted with guide cannulae, which

were housed separately.

Intraperitoneal (i.p.) injections in mice
C57/BL6 or DATKI mice (P14–21, 8–11g bodyweight) were

injected i.p. with cocaine (15 mg/kg), morphine (15 mg/kg),

nicotine (0.5 mg/kg) or 0.9% saline with a 26G hypodermic

needle to minimize stress.

Stereotactic injection of ChR2-AAV
Injections of AAV-ChR2 [34] produced at the University of

North Carolina (Vector Core Facility) were made in 7–9 g DAT-

Cre mice for ex vivo experiments, and 15–20g mice for in vivo

electrophysiological recordings and in vivo light stimulation.

Anesthesia was induced and maintained with isoflurane (Baxter

AG, Veinna, Austria). The animal was placed in a stereotaxic

frame (Angle One; Leica, Germany) and craniotomies were

performed over the VTA either unilaterally (for in vivo recordings

and in vivo light stimulation) or bilaterally (for ex vivo experiments)

using stereotaxic coordinates (AP 23.3, ML 61.3, DV 4.4, 10u
angle). Injections of AAV-ChR2 were carried out using graduated

pipettes (Drummond Scientific Company, Broomall, PA), broken

back to a tip diameter of 10–15 mm, at a rate of ,1 ml/min. In all

experiments the virus was allowed a minimum of 12 days to

incubate before any other procedures were carried out.

Cannula implantation
Following anesthesia and completion of the craniotomy (see

above), three holes were drilled around the craniotomy into which

screws were placed. After virus injections (see above), a guide

cannula (Plastics One, Roanoke, VA) was lowered slowly into

Drugs and Dopamine Induce Synaptic Plasticity
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position using the same coordinates as for virus injection, and

cemented in place using dental cement (Lang Dental MFG

Company, Wheeling, IL) to encase the base of the guide cannula

and the screws. Once the cement had dried, a dummy cannula

(Plastics One) was placed inside the guide cannula to prevent

infection.

Slice electrophysiology
Horizontal 200–250 mm slices of mouse midbrain were

prepared in cooled artificial cerebrospinal fluid (ACSF) containing

(in mM) NaCl 119, KCl 2.5, MgCl 1.3, CaCl2 2.5, Na2HPO4 1.0,

NaHCO3 26.2 and glucose 11, bubbled with 95% O2 and 5%

CO2. In older mice in which cannulation and in vivo light

stimulation had been performed, slices were prepared in ACSF as

above with the addition of (in mM) kynurenic acid 3, NaHCO3,

sucrose 225, glucose 1.25 and MgCl2 4.9. Slices were kept at 34uC
for 1 h before being transferred to the recording chamber

superfused with 2.5 ml min21 ACSF. Visualized whole-cell

voltage-clamp recording techniques were used to measure holding

currents from neurons of the VTA, identified as the region medial

to the medial terminal nucleus of the accessory optic tract. Where

possible, DA neurons were identified by presence of a large Ih

immediately after entering whole-cell configuration. For experi-

ments in which AMPAR EPSCs and photocurrents were

recorded, the internal solution contained (in mM) CsCl 130,

NaCl 4, MgCl2 2, EGTA 1.1, HEPES 5, Na2ATP 2, sodium

creatine-phosphate 5, Na3GTP 0.6 and spermine 0.1. For

experiments in which only photocurrents were recorded, the

internal solution contained (in mM) potassium gluconate 130,

MgCl2 4, creatine phosphate 10, Na2 ATP 3.4, Na3 GTP 0.1,

EGTA 1.1, HEPES 5. Traces were amplified, filtered at 5 kHz

and digitized at 20 kHz. The liquid junction potential was small

and so traces were not corrected. All experiments measuring the I–

V relationship were carried out in the presence of picrotoxin

(100 mM) and D,L-APV (100 mM) in order to block GABAA and

NMDA receptors, respectively. The holding potentials were 260/

270 mV, 0 mV and +30/+40 mV, and the access resistance was

monitored by a hyperpolarizing step of 210 mV with each sweep,

every 10 s. Experiments were discarded if the access resistance

varied by more than 20%. Synaptic currents were evoked by

stimuli (0.04–0.1 ms) at 0.1 Hz through bipolar stainless steel

electrodes placed rostral to the VTA. The rectification was

calculated by dividing the gradient of the slope at negative

potentials by the gradient of the slope at positive potentials.

Simultaneous in vivo electrophysiological recordings and
light stimulation

Anesthesia was induced with choral hydrate (4% w/v, 480 mg/

kg i.p.) and maintained with supplemental doses as required (4%

w/v, 120 mg/kg i.p.). All wound margins were infiltrated with

lidocaine (4%), and corneal dehydration was prevented with

Viscotears (Novartis; Basel, Switzerland). Mice were placed into a

stereotaxic frame (Angle One) and their temperature was

maintained using a homeothermic heating blanket (Harvard

Apparatus, Holliston, MA). Anesthesia was continually monitored

by testing reflexes to gentle corneal stimulation and a cutaneous

pinch.

A craniotomy was performed to expose the cortex overlying the

left VTA, of a size large enough to accommodate the guide

cannula and the recording electrode. The cannula was sterotaxi-

cally positioned and slowly lowered vertically into position at the

dorsal boundary of the VTA. Dental cement (Lang Dental) was

used to secure the cannula whilst taking care not to allow cement

to cover the craniotomy. A fiber optic cable (Thorlabs, Munich,

Germany) was then lowered through the guide cannula so that

,50 mm of fiber protruded from the guide cannula, and attached

to a 473 nm solid-state laser (Crystalaser, Reno, NV). Extracellular

recordings of action potentials were made using a glass recording

electrode with a tip diameter of ,1–2 mm, filled with a saline

solution (0.5M NaCl) containing Chicago Sky Blue dye (2% w/v)

and lowered into the VTA at a 10u angle. A reference electrode

was placed in the subcutaneous tissue. Electrical signals were AC-

coupled, amplified (Neurodata IR 183; Neurodata Instruments

Corp., New York, NY), and monitored in real time using an

audiomonitor (custom made). Any 50 Hz noise was eliminated

using a Humbug (Quest Scientific, Vancouver, Canada). Signals

were digitized at 20 kHz (for waveform analysis) or 5 kHz and

stored on hard disk using a custom-made program within IGOR

(WaveMetrics, Lake Oswego, OR). The bandpass filter was set

between 0.3 and 5 kHz. Action potentials always exhibited an

initial positive deflection. The laser was controlled using the Igor

program via a TTL box. Following electrophysiological record-

ings, Chicago Sky blue dye was iontophoretically injected into the

recording site (Stoelting, Wood Dale, IL) for confirmation that the

recordings were made within the VTA. Dopaminergic VTA

neurons were identified based on their established electrophysio-

logical properties. These criteria included a biphasic action

potential $1.1 ms [45], and slow regular-irregular firing [46,47].

In vivo stimulation of VTA DA neurons
Virus-injected and cannulated animals were allowed a mini-

mum of 12 days to recover, and for the virus to express in VTA

DA neurons. The same solid-state laser used for in vivo

electrophysiological recordings was used to carry out the in vivo

stimulation protocol in awake mice. In a subset of experiments, an

infusion of 0.25mg of SCH23390 into the VTA through the guide

cannula in 0.9% ml NaCl just prior to light stimulation. A fiber

optic cable (Thorlabs) was customized to enable the mouse to

move freely during stimulation. Briefly, the plastic cap of a dummy

cannula (Plastics One) was hollowed out and a hole of sufficient

diameter for the fiber optic to pass through made in the top. This

was threaded onto the fiber optic, one end of which was stripped

to leave a 120 mm external diameter. The plastic portion of an

internal cannula (Plastics One) was glued onto the fiber optic

leaving enough fiber to reach the bottom of the guide cannula.

The fiber was then lowered into the guide cannula on the mouse,

and the hollowed-out dummy cannula cap screwed onto the guide

cannula. This allowed the fiber optic to turn freely throughout the

stimulation protocol, whilst ensuring a constant length of the fiber

remained within the guide cannula. The fiber was connected to

the laser, which delivered five 4 ms pulses per second at 20 Hz for

2 hours (controlled using a Master 8 (A.M.P.I.)). All stimulations

were carried out in a controlled environment.

Post-embedding immunohistochemistry
Slices of the VTA from saline- and drug-treated mice were cut

at 500 mm and immersed in 4% paraformaldehyde, 0.1%

glutaraldehyde and ,0.2% picric acid made up in 0.1 M

phosphate buffer (PB; pH 7.4) for 6 hours. Slices were incubated

in 1 M sucrose/PBS solution overnight, slammed onto copper

blocks cooled in liquid nitrogen and processed for osmium-free

embedding. Briefly, slices were incubated for 40 minutes in 1%

uranyl acetate, dehydrated in methanol and embedded in Unicryl

resin (Electron Microscopic Sciences, PA, USA). Ultrathin sections

(70–90 nm) from Unicryl-embedded blocks were incubated for

45 min on pioloform-coated nickel grids with drops of blocking

solution consisting of 2% albumin in 0.05 M TBS, 0.9% NaCl,

and 0.03% Triton X-100. The grids were transferred to solutions
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of GluA2 and TH or PSD-95 and TH antibodies at a final protein

concentration of 10 mg/ml diluted in blocking solution overnight

at room temperature. After several washes in TBS, grids were

incubated for 2 h in drops of goat anti-mouse IgG and goat anti-

rabbit IgG conjugated to 10 nm colloidal gold particles and

20 nm-colloidal gold particles, respectively (BioCell International,

Cardiff, UK), each diluted 1:80 in a 0.05 M TBS solution

containing 2% normal human serum and 0.5% polyethylene

glycol. Grids were then washed in TBS for 30 min and

counterstained for electron microscopy with saturated aqueous

uranyl acetate and lead citrate. Ultrastructural analyses were

performed in a Jeol-1010 electron microscope.

Statistical analyses
Compiled data are expressed as mean 6 s.e.m. The level of

significance was set at p = 0.05 as determined by the non-

parametric Mann-Whitney U Test or the one-way ANOVA with

Dunnett post-test.
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