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Neural landscape diffusion resolves conflicts 
between needs across time

  
Ethan B. Richman1, Nicole Ticea2,3,6, William E. Allen1,7, Karl Deisseroth2,4,5 ✉ & Liqun Luo3,5 ✉

Animals perform flexible goal-directed behaviours to satisfy their basic physiological 
needs1–12. However, little is known about how unitary behaviours are chosen under 
conflicting needs. Here we reveal principles by which the brain resolves such conflicts 
between needs across time. We developed an experimental paradigm in which a 
hungry and thirsty mouse is given free choices between equidistant food and water. 
We found that mice collect need-appropriate rewards by structuring their choices 
into persistent bouts with stochastic transitions. High-density electrophysiological 
recordings during this behaviour revealed distributed single neuron and neuronal 
population correlates of a persistent internal goal state guiding future choices of  
the mouse. We captured these phenomena with a mathematical model describing  
a global need state that noisily diffuses across a shifting energy landscape. Model 
simulations successfully predicted behavioural and neural data, including population 
neural dynamics before choice transitions and in response to optogenetic thirst 
stimulation. These results provide a general framework for resolving conflicts between 
needs across time, rooted in the emergent properties of need-dependent state 
persistence and noise-driven shifts between behavioural goals.

Deviations from physiological homeostasis produce diverse needs, 
such as thirst and hunger, and drive profound changes in an animal’s 
behaviour3,4. These needs have historically been conceived as distinct 
forces acting on animal behaviour, with effects gated by the availabil-
ity of appropriate rewards13. Recent studies have established neuro-
biological bases for detecting individual physiological imbalances 
and for generating goal-directed behavioural9–12 and neural14 states. 
Animals in nature often confront multiple co-occurring needs, yet still 
exhibit discrete and coherent goal-directed actions. Precisely how 
conflicts between needs are resolved, especially in the case of equally 
available rewards, has been a subject of perplexity since the time of 
Aristotle, who questioned whether an equally hungry and thirsty 
person would remain stuck between equidistant food and water15; 
later philosophers replaced the person with a donkey and popularized 
this quandary as ‘Buridan’s ass’16. Although neurobiological studies 
have compared the circuit and behavioural properties of thirst and 
hunger and their interactions, these needs have not been studied in 
a conflicting, moment-by-moment context9,17–22. We reasoned that 
the quandary of Buridan’s ass highlights an incomplete conceptual 
framework relating needs to motivated behaviour—namely, a lack of 
neurobiological explanation for how conflicting needs could jointly 
organize behaviour across time (Fig. 1a). A more complete framework 
for resolving conflicting needs across time should: (1) relate the inten-
sity and salience of individual needs to behavioural choices at any 
given moment; (2) identify a neural basis for behavioural choices; 
and (3) explain the dynamics of switching between need-appropriate 
behaviours.

 
Choice assay for conflicting needs
We developed an experimental paradigm that we term Buridan’s assay, 
in which simultaneously hungry and thirsty mice were repeatedly given a 
free choice between satiating one need or the other, but not both at once 
(Fig. 1b,c). Mice were food- and water-restricted, head-restrained and 
placed in front of two equally accessible reward spouts delivering water 
or salted liquid food (Fig. 1b). In a modified olfactory Go/No-Go para-
digm14,23, a Go odour indicated that both food and water rewards were 
available; however, which reward was dispensed on a given trial depended 
on the mouse’s free choice, determined by the direction of their first lick 
(Fig. 1c). A No-Go odour indicated reward unavailability. Go-odour trials 
(67% frequency) were randomly interleaved with No-Go-odour trials (33% 
frequency). Mice learned to choose either food or water in response to the 
Go odour, and to withhold licking during No-Go odours and the variable 
inter-trial interval (Fig. 1d). After training, food- and water-restricted mice 
performed hundreds of trials across a behavioural session, collecting 
incremental food and water rewards until sated. Trained mice made 
need-appropriate reward choices: food-restricted mice mostly chose 
food rewards; water-restricted mice mostly chose water rewards; and 
food- and water-restricted mice chose both food and water rewards 
within a given session (Fig. 1d and Extended Data Fig. 1a,b).

Persistent, stochastic choice behaviour
We next investigated what strategy an animal might pursue to resolve 
conflicting needs across a session. In a hierarchical needs model,  
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mice would repeatedly choose one reward type until satiation, then 
switch to satiate the other need (Fig. 1e, left). In a relative needs model, 
mice would choose to reward the more deficient need until equality and 
subsequently oscillate regularly between each reward choice, subject 
to a fixed feedback delay to account for the time it takes for food or 
water ingestion to affect behaviour7,8 (Fig. 1e, middle). In a random 
model, mice would choose rewards arbitrarily until both needs were 
sated (Fig. 1e, right). None of these models matched our data; instead, 
we found that food- and water-restricted mice made highly persistent 
reward choices punctuated by sudden switches (Fig. 1f and Extended 
Data Fig. 1c), forming spontaneous reward-choice bouts. This pattern 
is characteristic of a Markov process, in which the identity of a given 
choice in a sequence depends predominantly on the most recent previ-
ous choice outcome. Indeed, the distribution of bout lengths agreed 
with a Markov process (Fig. 1g), and previous reward collection patterns 
did not significantly influence subsequent choice timing and bout 
lengths (Extended Data Fig. 1e,f).

Although these data are inconsistent with a deterministic model, 
relative magnitudes of needs could still probabilistically influence 
choice. To examine this, we operationally defined thirst and hunger at 
any moment of a trial as the cumulative future food and water rewards 
that an animal would collect until satiation, and constructed a measure 
of normalized relative thirst and hunger ranging from –1 to +1 (Extended 

Data Fig. 1d). Considering each trial independently, the probability of 
choosing water on a given trial correlated with the mouse’s relative need 
(Fig. 1h). However, the most recent previous choice was significantly 
more predictive of current choice than need magnitudes (Fig. 1i). We 
next measured the probability of repeat choices across relative need 
values. Although the repeat choice probability decreased as the rela-
tive level of the opposing need increased, it remained generally above 
80% (Fig. 1j). For trials with approximately balanced needs (relative 
need values between –0.25 and +0.25), choice outcomes recurred with 
greater than 90% probability (Fig. 1k).

These results suggest that transitions between persistent choices  
occur probabilistically, rather than being determined on a moment- 
to-moment basis by the exact balance of needs. To directly test this 
persistence and stochasticity, we performed transient optogenetic 
stimulation of channelrhodopsin-expressing RXFP1+ neurons in the 
subfornical organ (Fig. 1l) in either sated (Fig. 1m) or hungry-only mice 
(Fig. 1n); these RXFP1+ neurons (hereafter referred to as osmotic thirst 
neurons) are activated by increased osmolarity and their optogenetic 
activation produces an artificial thirst that drives drinking behaviour24. 
Sated mice that were unresponsive to Go odours transiently transi-
tioned to choosing water upon thirst stimulation in a probabilistic 
manner (Fig. 1m). Thirst stimulation also promoted hungry mice to tran-
sition from choosing food rewards to choosing water rewards (Fig. 1n 
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Fig. 1 | Reward choice under conflicting needs is structured by persistent 
behavioural states with stochastic transitions. a, The conceptual problem. 
b, Buridan’s assay. A food- and water-restricted mouse is head-restrained with 
two equally accessible reward spouts, delivering salted liquid food and water, 
respectively. c, Trial structure. Go odour indicates reward availability and 
No-Go odour indicates reward unavailability after a variable inter-trial interval 
(ITI). After Go-odour onset, mice freely choose food or water reward by licking 
right or left, respectively. d, Licking behaviour during Buridan’s assay under 
different restriction conditions. The y axis shows average lick rate at a given 
spout, multiplied by the fraction of licks to that spout per session. Data are 
mean ± s.e.m. n = 15 mice, 22 sessions for food and water restriction; n = 3 mice, 
3 sessions for water or food restriction only; n = 2 mice, 2 sessions for no 
restrictions. e, Hypothetical reward-choice patterns under different strategies. 
f, Behavioural session showing food and water licks across trials until satiation 
(grey). g, Reward-choice persistence counts distribution for all behavioural 
sessions with both food and water restriction. Dashed red line indicates 
probability density for log[persistence counts] generated by a sticky Markov 
process (geometric distribution fit to data, maximum likelihood shape 
parameter P = 0.061, 95% confidence interval [0.05, 0.074]). h, Probability  
of choosing a water reward on rewarded Go trials, fit by linear regression 

(dashed line) to observed relative need (normalized (norm.) thirst − hunger). 
R2 = 0.92, slope = 0.426. Data are mean ± 95% confidence interval. The first and 
last two data points lack confidence intervals owing to too few data points.  
i, Prediction of current choice as a function of current needs or the most recent 
previous choice, based on a support vector machine model. AUC, receiver 
operating characteristic area under the curve. Data are mean ± 95% confidence 
interval. Two-sided paired t-test; n = 22 sessions, t = −5.89, P = 6.28 × 10−6. j, Self- 
transition probability fit by linear regression to normalized thirst − hunger. Data 
are mean ± 95% confidence interval. Water choice: R2 = 0.612, slope = 0.07; food 
choice: R2 = 0.844, slope = −0.077. k, Go-trial transition probability between 
reward choices. Probabilities are maximum likelihood estimates from trials 
with normalized thirst − hunger between −0.25 and 0.25. g–k, n = 15 mice, 22 
sessions. l, Schematic of optogenetic activation of osmotic thirst (RXFP1+) 
neurons in the subfornical organ (green) in 10-s epochs during Buridan’s assay. 
m,n, Probability density (kernel density estimate) of food and water choices  
in Go trials as a function of optogenetic thirst stimulation (purple bars), in 
experiments on sated mice (m; n = 2 mice, 63 stim epochs) or on hungry-only 
mice (n; n = 2 mice, 69 stim epochs). o, Trial outcomes (colour-coded, right) 
surrounding each optogenetic thirst-stimulation epoch (rows; n = 27) from a 
single session on a hungry-only mouse.
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and Extended Data Fig. 1g), but these transitions appeared stochastic 
in any given stimulation epoch (Fig. 1o) and were not influenced by 
reward collection prior to stimulation (Extended Data Fig. 1h). In both 
cases, water choices persisted for at least 10 s after the termination of 
optogenetic stimulation (Fig. 1m,n and Extended Data Fig. 1g), sug-
gesting the induction of a behavioural state that is partially uncoupled 
from the immediate optogenetic stimulation period.

In summary, in Buridan’s assay, mice autonomously organized their 
reward collection into persistent choice states whose sudden transi-
tions occurred probabilistically and were modulated by relative needs. 
This behavioural strategy is not used only by head-restrained mice, as 
food- and water-restricted mice in a freely moving setting exhibited 
similar persistent food- or water-collection bouts with stochastic transi-
tions (Extended Data Fig. 1i–k). Optogenetic activation of osmotic thirst 
neurons in head-restrained mice supported an underlying stochastic-
ity in the behavioural response of animals to changing levels of need.

Large-scale recording during behaviour
We next sought to explore neural mechanisms underlying the observed 
persistence and stochasticity in choice behaviour of mice facing 
conflicting needs. Previous findings have suggested that the sensory 
neurons underlying thirst and hunger are embedded in recurrent net-
works that project throughout the brain5–8,14. We therefore performed 
simultaneous extracellular electrophysiological recordings during 
Buridan’s assay with four Neuropixels 1.0 probes25 placed acutely 
along distinct trajectories spanning the frontal and motor cortices, 
basal ganglia, thalamus, hypothalamus and midbrain motor regions 
(Fig. 2a,b, Extended Data Fig. 2a,b and Extended Data Table 1). This 
strategy enabled us to synchronously record from 1,536 distinct chan-
nels, resulting in many hundreds of well-isolated units per recording 
session with anatomical locations recovered post hoc by atlas align-
ment16 (Extended Data Fig. 2a–d). Visualization of aligned spiking 
activities from all simultaneously recorded neurons suggested coordi-
nated changes in spike rates spanning many regions, both during and 
between task engagement (Extended Data Fig. 2e). Unbiased clustering 
of trial-averaged neural activity revealed diverse functional properties, 
including both persistent and phasic differences between choice out-
comes (Extended Data Fig. 3a). Whereas the activity of neurons in cer-
tain clusters correlated with a specific phase of the trial (for example, 
odour or action), other clusters were dominated by state-like neurons 
with persistent (throughout each trial, including before odour onset) 
firing rate differences between choices (Extended Data Fig. 3a). Neu-
rons belonging to most functional clusters, including the state-like 
clusters, were widely distributed across brain regions (Extended Data 
Fig. 3b).

Neural activity predicts upcoming choice
Given the prevalence of state-like neurons, we hypothesized that the 
persistence of behavioural choice is related to an underlying internal 
brain state of the animal. To avoid confounds with behavioural execu-
tion, we analysed neural activity at baseline (the 1 s of activity before 
odour onset) from all simultaneously recorded neurons across the 
duration of a behavioural session; during this baseline period, mice 
did not know when the next odour would be delivered (given the vari-
able inter-trial intervals) or whether it would be a Go or No-Go odour. 
Sorting neurons by their correlation with the upcoming food choice 
revealed systematic changes in baseline firing rates that correlated 
with behavioural choice or satiety states (Fig. 2c). The spike rasters of 
individual upcoming-choice-correlated neurons across the duration 
of a trial revealed persistent firing rate differences both at baseline 
and after odour onset in diverse brain regions; the firing rates of many 
neurons were additionally modulated after odour onset (Fig. 2d and 
Extended Data Fig. 4).

We measured how much information individual cells in each region 
contained in their baseline firing rates about upcoming choice using 
a regression analysis (Extended Data Figs. 3c and  5b). A set of hypo-
thalamic, midbrain, striatal, and frontal cortical regions contained 
significantly more informative cells compared to a conservative null 
distribution (Methods), but with quantitative differences between 
regions (Fig. 2e). For example, hypothalamic and midbrain regions 
exhibited greater aggregate baseline firing rate information regarding 

Food licks Water licks

5 minBaseline (0–1s before odour onset) �ring rateS
im

ul
ta

ne
ou

sl
y 

re
co

rd
ed

 c
el

ls

Regions Licks per trial

2 s.d. –2 s.d.

8
0

Licks

Food Water

CP

0

20

SI

0

25

HY

0

20

VTA

0

15

MRN

Food
choice

Water
choice

0

15

S
p

ik
es

(s
–1

)

Odour

Time (s)
30

CP

0

40

–1

0

0.05

0.10

B
as

el
in

e 
�r

in
g 

ra
te

va
ria

nc
e 

ex
p

la
in

ed
 b

y
up

co
m

in
g 

ch
oi

ce

****

**** ********

****
********

****

*
***

**

Current trial
0

0.5

1.0

U
p

co
m

in
g 

ch
oi

ce
p

re
d

ic
tio

n 
(A

U
C

)

U
p

co
m

in
g 

ch
oi

ce
p

re
d

ic
tio

n 
(A

U
C

)

NS

Go No-Go
Previous

trial

0

0.25

0.50

0.75

1.00

0

0.1

0.2

0.3

Fr
ac

tio
n 

si
gn

i�
ca

nt
b

as
el

in
e 

ch
oi

ce
in

fo
rm

at
io

n

a

b

c

d e

f g h

APN (8
2)

PeF
 (6

6)

VTA
 (3

5)

SCiw
 (1

61
)

LH
A (1

69
)

FF
 (4

3)
*

FS
 (6

6)

M
RN (3

34
)

CP (1
,2

69
)

OLF
 (2

26
)

ORBl5 
(2

58
)

ACB (2
98

)

Fig. 2 | Single-unit and population neural correlates of upcoming behavioural  
choice. a, Schematic of simultaneous recording from 1,536 channels across 
four acute Neuropixels 1.0 probes during Buridan’s assay. b, Locations of 
neurons in the Allen Brain Atlas space. Units are colour-coded by brain region 
(Extended Data Table 1). c, An example recording session showing per-trial 
baseline activity for each of 996 simultaneously recorded units, z-scored with 
brain regions colour-coded as in b. Neurons are sorted by their correlation 
coefficient to the upcoming behavioural choice (top row, cumulative food or 
water licks per trial). d, Per-trial spike rasters from six example neurons (brain 
regions indicated on top), with spiking (ticks) shown for the first 50 food and 
water choices within a single session. Dashed lines indicate odour onset. 
Bottom, firing rate per trial. CP, caudoputamen; HY, hypothalamus; MRN, 
midbrain reticular nucleus; SI, substantia innominata; VTA, ventral tegmental 
area. e, Firing rate variance explained by upcoming choice, averaged within 
brain region. Dashed lines, null distribution per region. Exact P values in 
Methods. Bars indicate 95% confidence interval across cells. Data are pooled 
across recording sessions. Numbers in parentheses are counts of recorded 
cells in given regions; asterisks indicate regions present in only a single session. 
See Extended Data Table 1 for numbers of cells, mice and sessions per region. 
ACB, nucleus accumbens; APN, anterior pretectal nucleus; FF, fields of Forel; 
FS, fundus of striatum; LHA, lateral hypothalamic area; OLF, olfactory areas; 
ORBl5, orbital area, lateral part, layer 5; PeF, perifornical nucleus; SCiw, superior 
colliculus, motor related, intermediate white layer. f, Fraction of simultaneously 
recorded neurons per session whose baseline firing rates are significantly 
associated with upcoming reward choice, compared to a circularly permuted 
null (dashed line). g, Predictiveness of upcoming choice for held-out trials 
flanking switches, using population activity of simultaneously recorded 
neurons in the 1 s before odour onset. Dashed lines, null (circular permutation, 
black; session permutation, red). h, Population predictiveness of upcoming 
choice as in g, following either rewarded Go or unrewarded No-Go trials. 
Two-sided paired t-test, t = −1.072, P = 0.325. Mean across sessions, error bars 
indicate 95% confidence interval; n = 7 mice, 7 sessions (f–h). NS, not significant.
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upcoming choice than cortical regions (Fig. 2e and Extended Data 
Fig. 5a,b).

Regression analyses also revealed that most recorded neurons 
exhibited mixed selectivity to multiple task variables (Extended Data 
Fig. 3c–j), as has been previously observed in large-scale neural activity 
recording in different behavioural contexts14,26–28. Most cells with signifi-
cant information about upcoming choices at baseline also contained 
significant information about multiple other regressors (Extended 
Data Fig. 3d). Pairwise analysis and unbiased hierarchical clustering 
of firing rate variance explained by each regressor revealed three 
major groupings of information mixture in cells: information related 
to cross-session satiety changes of the mouse (hit versus miss and early 
versus late), to the odour response task (Go versus No-Go), and to the 
choice of the mouse (food versus water) (Extended Data Fig. 3e–j).

Notably, about 20% of all recorded neurons per session contained 
significant information about the upcoming choice of the mouse in 
their baseline firing rate (Fig. 2f). The pervasiveness of this information 
suggested that the collective baseline activity of neurons across the 
brain could function as a distributed goal-like state. Indeed, we could 
predict upcoming choice with high accuracy using the 1-s pre-odour 
activity of all simultaneously recorded neurons (Fig. 2g). Whether 
the previous trial was rewarded or not did not significantly affect the 
prediction of upcoming choice (Fig. 2h), ruling out the possibility that 
the predictiveness of future choice was merely a reflection of previ-
ous reward. Subtle movements of the mouse were also predictive of 
upcoming choice (Extended Data Fig. 3k–m) and might account for 
some variability in the population activity29,30; however, neural data 
were significantly more predictive of upcoming choice than movement 
data (Extended Data Fig. 3n).

The predictiveness of upcoming choice improved as increasing num-
bers of simultaneously recorded neurons were included in the decoder 
(Extended Data Fig. 3o), and this decoding activity explained about 
10% of trial-by-trial population variance in the 1-s pre-odour period 
(Extended Data Fig. 3p). Thus, the wide distribution of goal information 
across cells and regions may allow individual neurons to fluctuate on 
single trials because of mixed selectivity while the population together 
maintains state. Furthermore, consistent with a distributed goal-like 
network, neurons with significant goal information were more likely 
to be functionally coupled than cells without goal information, both 
within and across regions (Extended Data Fig. 3q,r). Together, these data 
suggest that a substantial fraction of neurons across the brain partici-
pate in a ‘goal’ state predictive of future behavioural choice. Combined 
with the findings of diverse phasic responses to the task and mixed 
selectivity, these data suggest a possible mechanism for coordination 
of goal information across the brain, in which fast-timescale activities 
unrelated to goal are superimposed on a distributed, slow-timescale, 
goal information carrying network.

Forward model for the resolution of needs
We next aimed to formulate a minimal generative model, integrating 
our findings of behavioural state persistence, stochastic transitions, 
probabilistic influences of needs, a widely distributed neural popula-
tion with goal-like information, and mixed functional selectivity of 
individual neurons. We made an informed guess (ansatz) at a set of 
governing equations inspired by the Langevin dynamics of molecu-
lar diffusion, which enables a formal description of slow dynamics in 
non-equilibrium systems by capturing the contribution of fast dynam-
ics as noise31,32 (Extended Data Fig. 6a). We reasoned that Langevin 
dynamics may similarly arise in neural networks in which an inter-
related set of neurons with slow-timescale dynamics (goal-related) 
are widely embedded in diverse neural networks with fast-timescale 
dynamics (Extended Data Fig. 6b). Notably, the noise that arises in the 
Langevin equation is a key driver of resulting macroscopic phenomena, 
such as Brownian motion or chemical state transitions across reaction 

energy landscapes33 (Fig. 3a). We thus formulated a set of stochastic 
differential equations in which need-related population neural activ-
ity diffuses across an energy landscape with wells scaled by thirst and 
hunger (Fig. 3b and Extended Data Fig. 6c–f). The state of need-related 
neural activity is partitioned into zones that specify contexts for spe-
cific behavioural goals, such as pursuing food, water, or other needs 
(Fig. 3b). As rewards are collected and a given need is quenched, the 
depth of the corresponding landscape well is diminished. The diffusion 
of neural activity across this needs landscape in time depends only on 
the local gradient at the present position in the landscape (influence of 
needs) and a white noise contribution (stochastic dynamics) (Fig. 3b 
and Extended Data Fig. 6c–f). This approach yielded a generative, for-
ward mathematical model for need resolution.

We simulated Buridan’s assay with our model by inputting high initial 
values for hunger and thirst, an initial position, and Go and No-Go trial 
timepoints. Running the equations forward in time produced a shifting 
need landscape and diffusive neural state dynamics with a resulting 
pattern of choices approximating that of experimental observations 
(Fig. 3c,d and Extended Data Fig. 7a and Supplementary Video 1; com-
pare to Fig. 1f and Extended Data Fig. 1c). To match the experimental 
data, we exploited results from non-equilibrium statistical mechanics34 
to derive from the model a set of theoretical equations for the state 
equilibrium and transition probabilities. Using these equations, we fit to 
the trial-by-trial behavioural data three fixed model parameters: scaling 
factors on the relative contribution of landscape gradient and noise 
to the dynamics, as well as a weight term on the relative scale of thirst 
and hunger to other needs (Methods). We used these fit parameters 
for the above and all subsequent behavioural simulation and analyses.

Model recapitulates behavioural data
Theoretical equations derived from the model and fit to the trial out-
come data matched the single-trial transition and choice probabilities 
of the data as a function of needs (Extended Data Fig. 7b–f). We then 
simulated each behavioural session of Buridan’s assay in our experi-
mental dataset by matching the initial hunger and thirst magnitudes 
and running the generative model (Extended Data Fig. 6c) forward 
in time for 120 min per session. Owing to the stochastic nature of the 
simulation, the same initial conditions will produce distinct outputs 
over repeated simulation runs. Therefore, we repeated the simulation 
128 times to generate distributions for all summary analyses. Analyses 
comparing theoretical, experimental and simulated datasets revealed 
both qualitative agreement and quantitative matches for key phenom-
ena (Fig. 3e–k and Extended Data Fig. 7f–l).

Superimposition of the experimental choice persistence-length 
distribution onto the set of distributions in simulated sessions revealed 
close overlap, indicating similar underlying patterns of persistence and 
stochastic transitions (Fig. 3e). The distribution of choice probabili-
ties as a function of relative need overlapped with experimental data 
(Fig. 3f and Extended Data Fig. 7g) and the linear slope relating choice 
probability to relative need was not significantly different between 
simulation and experiment (Extended Data Fig. 7h). Similarly, the prob-
ability in simulation of repeating previous choices was modulated by 
relative need in a manner that agreed with experimental data (Fig. 3g 
and Extended Data Fig. 7f,i). Because of the underlying diffusive pro-
cess, the model predicts that without any change in need, the prob-
ability of switching choices should increase the longer an animal waits 
between choices. Indeed, the transition probability across increasing 
intervals of time between choices (using the random number of No-Go 
trials intermixed with Go trials) in the experimental data matched the 
theoretical prediction of the model (Fig. 3h).

We next simulated optogenetic activations of thirst in the context 
of hungry-only mice by transiently adding additional thirst in the 
model, with timing parameters matching those of experiment. This 
perturbation had the effect of temporarily deepening the energy well 
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in the water zone (Fig. 3i). The model predicts that some stimulation 
epochs will result in a transition to water choices from food, whereas 
other epochs will have no observable behavioural change (Fig. 3i), 
resulting in a probabilistic effect of stimulation. Repeated simula-
tions of the optogenetic stimulation experiment closely matched 
the experimental choice probabilities across the stimulation epoch 
(Fig. 3j); notably, transiently added thirst resulted in switches from 
food to water collection in some but not all epochs (Fig. 3j,k), and the 
decay time course of water choices back to food following the end of 
thirst stimulation (a phenomenon dominated by diffusion according 
to the model) was not significantly different between simulation and 
experiment (Extended Data Fig. 7j–l). Together, these results suggest 

that the landscape diffusion model captures the stochastic relation-
ship between the magnitude of conflicting needs and behaviour that 
we observed experimentally, thus linking the contributions of state, 
need and noise to generate need-appropriate behaviour.

Model predicts transition dynamics
We next addressed how behavioural state transitions could occur if 
behaviour is persistent and the relative magnitude of needs does not 
directly drive choices. In the landscape diffusion model, transitions 
are emergent phenomena of the balance between landscape slope and 
noise-driven random walks, and thus occur spontaneously. To assess 
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6 | Nature | www.nature.com

Article

the explanatory sufficiency of the model, we sought to compare neural 
transition dynamics predicted by the model with those recorded experi-
mentally. Experimentally recorded neural activity and model-simulated 
trajectories can be directly compared via their dynamics along a shared 
‘goal dimension’ that separates upcoming water choice-related activity 
from upcoming food choice-related activity (Fig. 4a,b). In the recorded 
neural data, the ‘goal dimension’—which we define as the difference 
between average baseline population activity before water choices 
and before food choices—was extracted with a linear classifier; neural 
population activity along the goal dimension at a specific time was 
measured by linear projection (Fig. 4a and Methods). In the model, 
these dynamics were measured by taking the simulated position in 
time along the vector from the centre of the hunger well to the centre 
of the thirst well (vertical axis in Fig. 4b).

We compared experimental neural dynamics with the model along 
the goal dimension for each trial in a given behavioural session (Fig. 4c,d 
and Extended Data Fig. 8a). In both experiment and model, we found 
baseline population activity along the goal dimension to be persistent 
within contiguous reward-choice outcomes, including the intermingled 

No-Go trials, with minimal slow-timescale variation between behav-
ioural switches. Thus, neural population activity along the goal dimen-
sion at a given point in time could function as an ‘internal goal state’ 
that underlies the persistent behavioural states that we observed. As 
predicted by the model, we observed fast-timescale noise-like variation 
in the experimental per-trial neural activity along the goal dimension 
(Fig. 4c and Extended Data Fig. 8a). Moreover, the model predicts rapid 
trajectories along the goal dimension during behavioural state tran-
sitions (owing to the landscape saddle between wells and pull of the 
landscape gradient). These rapid transition dynamics along the goal 
dimension were readily observable in both experimental neural activity 
(Fig. 4c and Extended Data Fig. 8a) and simulated trajectories (Fig. 4d).

Despite the noisy trial-by-trial fluctuations in fast-timescale activ-
ity along the goal dimension, both the experimental neural data and 
model remained highly predictive of upcoming choice in the 1 s before 
odour onset (Extended Data Fig. 8b,c). Although this was the case on 
average, the model also suggests that alternative dynamics take place 
before behavioural switches: the spontaneity of choice transitions with 
respect to behavioural trial times and the proximity of noisy transition 
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trajectories to the decision boundary implies that activity just before 
a behavioural switch should lose predictiveness for upcoming choice. 
Indeed, this was apparent in analysis of baseline activity for trials sur-
rounding behavioural switches, for both experimental data (Fig. 4e) and 
model simulations (Fig. 4f). We note that the loss of baseline predictive-
ness of choice just before switches also suggests that the population 
goal state is not merely persistently reflecting the identity of the most 
recent reward (Fig. 2h and Extended Data Fig. 8d). Conversely, if the 
population activity loses choice discriminability near switches, then 
a lack of choice discriminability in the neuronal population activity 
at any moment in time should be predictive of an upcoming switch. 
Indeed, for both experimental data (Fig. 4g) and model simulations 
(Fig. 4h), the predicted probability of an upcoming switch, based 
solely on the distance of activity along the goal dimension from the 
midpoint (Extended Data Fig. 8e), increased just before behavioural 
switches compared with all other trials. Furthermore, the magnitude 
of goal dimension activity at baseline alone could predict upcoming 
switches in both the experimental data (Fig. 4i) and the model simula-
tions (Fig. 4j). We additionally found that the transition dynamics of 
experimental data agreed with the noise-driven transition model but 
not with a forced-transition model (Extended Data Fig. 9).

Causal test of model predictions
Finally, we sought to test the causal link between thirst sensation 
and internal goal state dynamics as described by the model. To avoid 
behavioural confounds, we performed Neuropixels recordings while 
optogenetically stimulating osmotic thirst neurons during a quiet 
waiting period (stim epoch) without odour or reward spouts; this was 
followed by our standard Buridan’s assay in the same session (Fig. 4k). 
This experimental scheme enabled us to construct the goal dimension 
on each session from neural activity during the unperturbed Buridan’s 
assay, while still measuring changes in neural activity during the preced-
ing repeated thirst perturbations along the goal dimension.

The landscape diffusion model made several key predictions about 
this experiment: (1) activity along the goal dimension should move, on 
average, towards the water-seeking zone during optogenetic stimula-
tion; (2) even in the absence of behaviour, changes in activity along 
the goal dimension should slowly decay after stimulation offset; and  
(3) only a subset of stimulation epochs should result in a change of activ-
ity along the goal dimension towards the water-seeking zone (Fig. 3i). 
We simulated the thirst stimulation experiment by initializing the model 
with high values for thirst and hunger and then transiently adding 
thirst magnitude with timing matched to the experimental stimulation 
parameters. We found that in both experiment (Fig. 4l) and simulation 
(Fig. 4m), activity moved in the direction of the water-seeking zone 
along the goal dimension during thirst stimulation and declined slowly 
from its peak following the end of stimulation. As a control for the 
experimental data analysis, activity did not significantly change along a 
similarly constructed dimension discriminating Go from No-Go odours 
(Fig. 4l). Cells significantly modulated by optogenetic stimulation were 
distributed across multiple brain regions, with quantitative differences 
in frequency (Extended Data Fig. 10a,b). Complementary analyses sup-
ported the causal link between thirst and internal goal state (Extended 
Data Fig. 10c–e). In both simulation and experiment, individual epochs 
of thirst stimulation exhibited stochastic dynamics as predicted by the 
model, with some individual goal activity trajectories appearing to 
transition to and persist in a goal state associated with water-seeking, 
whereas others exhibited no obvious change (Fig. 4n,o and Extended 
Data Fig. 10f,g). For the experimental neural data, this variability within 
an animal occurred despite the same external experimental parameters 
and internal homeostatic deficit states.

Collectively, these data demonstrate a causal link between increas-
ing osmotic thirst neuron activity and moving the internal goal state 
towards water seeking. They lend support to the indirect effect of 

homeostatic deficits on behaviour, as described by the landscape 
diffusion model. These results further indicate that the stochastic 
resolution of conflicts between needs is not only a behavioural phe-
nomenon but also a neural phenomenon that can be dissociated from 
overt goal-seeking motor actions.

Discussion
Using thirst and hunger in mice, we explored the behavioural and neural 
dynamics of conflicting needs to reveal principles of an underlying 
neural control system that organizes behaviour across time. Unexpect-
edly, similarly hungry and thirsty mice made persistent choices to seek 
food or water and transitioned between choice bouts in a stochastic 
manner. Quantitative analyses indicate that the relative magnitude of 
needs modulates behavioural choices in a probabilistic manner. The 
persistence of behaviour despite shifting needs suggested an internal 
mechanism that maintains a goal state guiding upcoming choices. 
We found widely distributed neural correlates of this goal state in 
simultaneous recordings performed during behaviour, most notably 
the persistent baseline population activity along the goal dimension 
that coincides with reward-choice outcomes (Fig. 4c). Neurons that 
contained significant goal information also exhibited mixed selectiv-
ity for other fast-timescale features of the behaviour. We proposed a 
conceptual model in which goal-related neural activity diffuses across 
an energy landscape of needs to organize behaviour across time. Theo-
retical predictions and simulations from a mathematical realization 
of the model captured behavioural phenomena and neural dynamics 
with minimal free variables. Thus, rather than acting as a direct force 
on behaviour (Fig. 5a), our experimental data and modelling suggest 
that thirst and hunger indirectly drive shifts in behaviour by reshap-
ing an underlying energy landscape and thus biasing the stochastic 
movements of an internal goal state (Fig. 5b).
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the relative strength of landscape gradient and noise can shift the behaviour  
of the system across regimes of varying stability. Left, excess noise relative to 
gradient results in unstable states with numerous transitions. Right, excess 
gradient relative to noise results in overly persistent states that fail to 
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Our data and model resolve the quandary of Buridan’s ass via a 

goal-like brain state whose position in neural space determines behav-
iour, rather than a direct comparison of relative needs. According to 
this framework, the donkey’s mind is made up before it is given a choice; 
and if the donkey is made to wait, then its choice may spontaneously 
switch. Even in the case where the goal state lies at a decision boundary 
between behavioural outcomes and the magnitudes of hunger and 
thirst are equal, our model and experimental results suggest that this 
symmetry is spontaneously broken35 by random fluctuations in the 
internal state near the saddle between energy wells.

We next consider how the global goal-like context influences subse-
quent behavioural choice. Prior work has suggested that interconnected 
groups of neurons may implement actions via shared dynamics36–39. In 
this conceptual framework, sensory inputs37,38, inter-regional com-
munications, neuromodulatory tone40, or other features of internal 
state14 may create initial conditions that result in distinct behavioural 
outcomes. Indeed, we observed that baseline goal-related activity influ-
ences regional choice activity after odour onset (Extended Data Fig. 11), 
suggesting that the broadly distributed goal state activity could func-
tion as a shared initial condition to coordinate the population neural 
dynamics of distinct regions in the production of specific behavioural 
outcomes. In this way, goal-related activity in a large fraction of neurons 
could have no direct effect on action at baseline, while nonetheless 
specifying neural dynamics41 that generate action following the odour 
cue. The separation of longer-term plans from the implementation of 
behavioural actions enables more hierarchical motor planning, more 
robust learning and simplified reward assignment42.

Our recordings did not reveal the primacy of any one region in con-
trolling transitions between choices given balanced needs. Although 
we recorded activity from many regions, our sampling included only a 
small fraction of the brain, and it remains possible that our recordings 
missed key effectors or modulators of transitions. Nonetheless, we note 
that the Langevin-like model we propose here explains both natural and 
optogenetically induced transitions that agree with experimentally 
observed statistics without requiring any transition controller input. 
Moreover, computational analysis of the goal state dynamics was incon-
sistent with an external driver of transitions (Extended Data Fig. 9).

Key properties of our proposed model include: (1) the remodelling 
of the underlying energy landscape; (2) maintenance and update of 
position in the need subspace; and (3) scaling terms for both the land-
scape gradient and noise. The remodelling of the energy landscape 
could be physically realized by the broad release of state-related neuro-
modulators43,44, by synaptic reweighting45, or by other network activity 
mechanisms46. Identifying the neurobiological mechanisms tuning 
the gradient and noise scaling factors may be an important aim for 
future studies. The balance between these scale factors determines 
the rate of transition in the model: a high noise scale factor leads to 
frequent transitions with short dwell times, and a high gradient scale 
factor keeps subspace activity stuck in one well (Fig. 5c and Extended 
Data Fig. 7m,n).

The qualities of persistence and sudden transitions in internal state 
that we found in our assay share important features with the adaptive 
and maladaptive transitions of emotional and psychological states in 
humans. Intriguingly, major morbidity in schizophrenia arises from 
disorganized thought processes and behaviours, characterized by 
the abnormal persistence of, and transitions between, cognitive and 
behavioural states47,48. These debilitating symptoms lead to disruption 
of daily life activities including self-care, eating and drinking, as well 
as unstable emotional states and thought processes; this behavioural 
disorganization in time is evocative of an excess in the noise term of 
our model (Fig. 5c, left). On the other extreme, certain maladaptive 
conditions could arise from minimizing this noise term (Fig. 5c, right); 
for example, reduced ease of brain-state shifting could contribute 
to stereotyped and restricted behavioural patterns for those on the 
autism spectrum, and to behavioural symptoms in other disorders 

characterized by reduced exploration of available action space (such 
as major depression). Future work will elucidate to what extent our 
results generalize to diverse homeostatic needs and affective states in 
mice and in humans, and whether the model we describe may ultimately 
help to frame our understanding and treatment of psychiatric diseases.
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Methods

Experimental model and subject details
Female wild-type (C57BL6/J, Jax 000664) or Rxfp1em1(cre)Ngai (Rxfp1- 
P2A-cre, a gift from J. Ngai) mice were used for experiments. Experimen-
tal procedures were conducted on mice beginning at age 6–12 weeks. 
All animal procedures were conducted following guidelines approved 
by Stanford University’s Administrative Panel on Laboratory Animal 
Care (APLAC) and guidelines of the National Institutes of Health.

Surgical procedures
Sterile techniques were used throughout the duration of surgical pro-
cedures. Mice were anaesthetized with 1–2% isofluorane and given sus-
tained release buprenorphine (0.5 mg kg−1) prior to surgery. Following 
stereotaxic affixation, the head was cleaned with betadine antiseptic 
solution (Betadine) and 70% isopropanol wipes. The scalp and perios-
teum were removed and the skull cleaned thoroughly with 3% hydrogen 
peroxide solution and saline. Once the skull had dried completely and 
was level, a custom stainless steel headbar was affixed over the cerebel-
lum with clear dental cement, and a thin layer of clear dental cement was 
applied to the surface of the skull, forming a bowl with the headbar. The 
position of bregma was marked for later reference. In the case of subjects 
used for optogenetic experiments, Rxfp1-P2A-cre mice were prepared 
as described above. Additionally, AAV5-Ef1a-DIO-hChR2(H134R)- 
eYFP49 (350 nl of 5 × 1012 viral genomes per ml titre) was injected into the 
subfornical organ (SFO, –0.65 A/P, 0 M/L, –2.75 D/V relative to bregma; 
unit for all stereotactic coordinates is mm) at 100 nl min−1 using a Ham-
ilton syringe. The injection bolus was allowed 10 min for diffusion prior 
to withdrawing the syringe. Following the injection, a 400-µm fibre 
optic with a 1.25-mm cannula was implanted at a 30° angle from the 
dorsal–ventral axis above the SFO (–0.65 A/P, +1.4 M/L, –2.76 D/V) and 
affixed to the skull with dental cement.

One day prior to Neuropixels recordings, mice were anaesthetized 
with isofluorane as described above and craniotomies were drilled in 
4 locations on the skull: frontal cortex: 2.25–2.5 A/P, 1.5 M/L; dorsal  
striatum: 0.3–0.5 A/P, 3.15 M/L; hypothalamus: 2.2 A/P, 2.2 M/L;  
midbrain: 3.05–3.3 A/P, 1.5 M/L. The Neuropixels insertion trajecto-
ries were initially chosen to sample regions previously reported to be 
involved in stimulus-value association (frontal cortex), homeostatic 
needs and consumption (hypothalamus, especially lateral hypothala-
mus), action selection and behaviour initiation (striatum), and motor 
execution and reward (midbrain). Given these regions, we refined coor-
dinates based on long-range axon projection data between regions 
(Allen Brain Institute anterograde projection dataset50) to maximize 
our chances of recording simultaneously from multiple interconnected 
nodes of a circuit. Craniotomies were cleaned with saline and covered 
with Kwik-Cast (World Precision Instruments) until recordings. A  
reference electrode (platinum-iridium wire, 0.002-mm diameter, A-M 
Systems) was inserted over visual cortex and affixed with dental cement.

Behavioural training for Buridan’s assay
Mice were allowed at least one week to recover following surgical pro-
cedures. Mice were maintained on a reverse light–dark schedule and 
experiments were performed in dark periods or early light periods. Mice 
were placed on a food and water restriction schedule approximately 
1 week prior to behavioural training. Mice received approximately 3 g 
of dry food and 1 ml of water at the same time each day, with amounts 
adjusted to maintain mice above 80% baseline body weight. Once mice 
were reliably performing behavioural tasks, daily water allotment was 
obtained during behavioural sessions, and additional dry food (0.5–2 g) 
was supplemented depending on body weight and the amount of food 
collected during a behavioural session.

Mice were trained on a custom behavioural rig consisting of a 
two-odour olfactometer, a head-fixation apparatus, two reward deliv-
ery spouts—one delivering salted (0.5 M NaCl final concentration) liquid 

vanilla Ensure (Abbott), the other delivering drinking water—and a high 
speed (200 fps) colour camera (Basler Ace acA1300-200uc USB3) used 
for tongue detection (custom detection code, implemented using 
BonsaiRx51, with a measured detection latency of 5–10 ms (1–2 camera 
frames)). Behavioural protocols were controlled by an Arduino (Bpod 
Generation 2 and associated code in Matlab 2019). Odorants (ethyl 
acetate, 2-pentanone) were diluted into approximately 4% v/v mineral 
oil and were delivered to mice via a Teflon odour tube placed in front 
of the nose of the mouse. Clean air was flowed through the odour tube 
continuously and odorants were delivered by programmatically mixing 
a given odorant into the airstream for a duration of up to 1.5 s. Mice were 
head-restrained to the behavioural apparatus and placed via a magnetic 
base such that the two reward delivery spouts lay equidistant below 
and in front of their mouths. Spout positions were finely adjusted to 
maintain equidistance for each mouse.

Once established on food and water restriction, mice began 
behavioural training across two phases. In the first phase, food- and 
water-restricted mice learned to voluntarily lick spouts to receive 
either a food or water reward, with both rewards equally available. A 
lick detected at the food spout resulted in a ~5-µl food reward, and a lick 
detected at the water spout resulted in a ~5-µl water reward. Each trial 
was followed by an inter-trial interval (ITI) of 1–3 s, with a maximum 
trial time of 10 s (in the event that no lick occurred). Mice performed 
this simplified two-reward collection task until they proficiently 
(within 1 h) collected sufficient food and water rewards to reach satia-
tion. During this first training phase, the ITI was gradually increased 
from 1 s to 3 s. Following proficiency in the first training phase, mice 
were introduced to the full task structure as the second training phase. 
Following a variable ITI period (minimum 2 s, maximum 8 s, uniformly 
distributed), either a Go or No-Go odour was presented to the mouse 
for a maximum of 1.5 s; odours were terminated immediately following 
a detected lick to either spout. Mice that licked during the Go-odour 
period to either the food or water spout were rewarded with food or 
water from that spout (~5 µl). Licks made during the No-Go-odour 
period resulted in a longer ITI period and were not rewarded. Mice 
were trained until they consistently obtained sufficient food and water 
rewards to satiate both needs, reliably responded to the Go odour 
when hungry or thirsty, withheld licking during the baseline pre-odour 
period, and correctly rejected responses to the No-Go odour (>90% 
correct rejection rate). Data were collected from mice with behaviour 
sessions following the same task structure as that described for the 
second training phase.

We empirically chose the food (liquid Ensure with added salt) and 
water rewards to reduce cross-talk between needs by minimizing the 
extent to which a food reward would decrease thirst. The added salt 
additionally reduces the hedonic value of the food reward, as mice 
will not consume it when not hungry (Extended Data Fig. 1b) but will 
consume plain Ensure in the absence of hunger (data not shown). It is 
possible that the extra salt content of the liquid food reward leads to 
an increase in thirst over time. However, on the timescales of Buridan’s 
assay, there does not appear to be a link between the amount of food 
rewards collected and the subsequent collection of water rewards: 
there was no significant timing relationship between food choices and 
water choices (Extended Data Fig. 1e), nor any relationship between 
the amount of salted liquid food rewards collected in a bout and the 
amount of water collected in the subsequent bout (Extended Data 
Fig. 1f). This suggests that the switching behaviour we observe cannot 
be simply accounted for by fast-timescale induction of thirst from 
the salty food.

We note that at the start of the assay, our mice are not usually exactly 
equally thirsty and hungry. However, while performing the assay, the 
mice often encounter being approximately ‘equally thirsty and hun-
gry’ according to our quantitative behavioural definition of thirst and 
hunger. That is, they will experience as many food-collecting trials as 
water-collecting trials until they reach satiation for both (see Extended 



Data Fig. 1d for an example). Note also that our Buridan’s assay is distinct 
from ‘Buridan’s paradigm’, a visuomotor task in Drosophila mimicking 
a state of indecision not involving a choice between needs52.

Optogenetics behavioural experiments
Rxfp1-P2A-cre mice maintained with ad lib food and water access were 
screened after at least 2 weeks of viral expression for optogenetically 
induced drinking behaviour in their home cages (stimulus paradigm: 
30-s on, 30-s off, 20-Hz stimulation with a 450-nm laser (Doric), pulse 
width 20 ms, measured at 15 mW at the end of the fibre optic cable). 
Mice with clear optogenetically induced drinking behaviour were used 
for subsequent experiments in Buridan’s assay; mice with no clear 
optogenetically induced drinking (probably owing to a lack of suf-
ficient transduced cells or a misalignment of the optogenetic fibre 
with transduced cells) were discontinued from further study. Follow-
ing behavioural training, mice were returned to ad lib food and water 
(sated condition) prior to optogenetic experiments. Mice performed 
Buridan’s assay while sated (Fig. 1m) or food-restricted (Fig. 1n) and 
received 20 stimulation epochs, each lasting 10 s at 20 Hz with 2-ms 
pulse widths of 450-nm, 15-mW laser light; epochs were repeated 
approximately every 2 min. Stimulation epochs were pseudorandomly 
triggered during the ITI phase of the assay.

Freely moving behaviour for food versus water choice
In a freely moving version of Buridan’s assay, mice were food and water 
restricted, then placed in a four-sided custom operant chamber (Pan-
lab, Harvard Apparatus) containing two levers and two corresponding 
reward ports delivering incremental salted liquid food (in the freely 
moving assay, liquid food was Soylent salted to 0.5 M NaCl concentra-
tion) or water. The levers and reward ports were arranged diagonally on 
opposite walls and mice were required to collect reward from a given 
port before more reward could be triggered at the same port (Extended 
Data Fig. 1i). Thus, to repeatedly collect rewards of a given type, mice 
had to run diagonally back and forth across the chamber, triggering 
reward (~5 µl) with a lever press and collecting it at the corresponding 
reward port. Unlike the head-fixed olfactory Go/No-Go task, the freely 
moving assay was conducted without any cue-based instrumental 
conditioning so that mice made free choices both for which reward to 
collect as well as when to collect a reward. Because mice passed through 
the centre of the arena after each reward collection, they were repeat-
edly equidistant from both food and water manipulanda. Behavioural 
session data (Extended Data Fig. 1j,k) were collected following several 
days of training in which mice became proficient at triggering and 
rapidly collecting reward for both reward types. Behavioural sessions 
typically lasted 1 h before satiation.

Electrophysiological recordings
All recordings were acquired using Neuropixels 1.0 probes and asso-
ciated hardware. Electrodes were cleaned prior to recordings with 
saturated Tergazyme detergent solution (Alconox), washed with pure 
water, and allowed to dry completely. Before each recording, electrode 
tips were coated in the fixable dye CM-DiI (Thermo Fisher) and dried. 
The Kwik-Cast coating over each craniotomy was removed and crani-
otomies were flushed with sterile saline prior to placing the mouse on 
the experimental apparatus. Once on the experimental apparatus, the 
reference and ground contacts of each probe were connected in circuit 
to each other and to the mouse’s reference electrode and headbar. In 
the case of optogenetic recording experiments, a fibre optic cable was 
connected to the fibre optic cannula on the mouse’s cranium. A circular 
positioning apparatus (Multi-Probe Manipulator, New Scale Technolo-
gies) was used to place four Neuropixels 1.0 probes above the mouse’s 
skull. Probes were positioned radially around the anterior–posterior 
axis (front left probe, –30°; front right probe, +30°; back left probe, 
–150°; back right probe, +150°). All probes were positioned at a + 15° 
angle from the dorsal–ventral axis. Micromanipulators (New Scale 

Technologies) were used to finely position probe tips at the surface of 
the brain for each craniotomy. The four probes were simultaneously 
inserted into the brain at a speed of 3.33 µm s−1. Insertion depths ranged 
from 3.85 mm to 6 mm but were generally between 4 and 5 mm from the 
brain surface. Following the completion of probe insertions, ~10 min 
were allowed to elapse before recording started to allow for any residual 
brain motion around the probes to settle. Data was acquired and writ-
ten to disk using SpikeGLX (B. Karsh) using default settings (AP gain 
= 500, recordings acquired from the bottom 384 electrode sites per 
probe). Acquisitions across probes were synchronized using a square 
wave 0.5-s duration pulse with a 1-s period. The probe synchronization 
signal, behavioural signals, and any optogenetic stimulation signals 
were concurrently acquired on a Nidaq (Texas Instruments) and later 
aligned to the probe synchronization signal (TPrime, B. Karsh). Videos 
of the mouse’s face, head, and body were acquired during recordings 
and synchronized using infrared LEDs coupled to a trial-start TTL pulse 
recorded on the Nidaq.

In all experiments, the experimental setup period (prior to recording 
start) was conducted with spouts lowered away from the mouse’s mouth 
and odour airflow turned off. Just prior to the start of the behavioural 
assay, spouts were raised to an accessible position and odour airflow 
was turned on. Mice performed Buridan’s assay during recordings 
until satiation; subsequently, behavioural sessions were terminated 
and recording completed. In the case of optogenetic stimulation 
experiments performed during recording (Fig. 4k–o and Extended 
Data Fig. 10), spouts remained lowered and airflow remained off after 
the start of recording until the completion of optogenetic stimulation 
epochs (10-s stimulation at 20 Hz with 2-ms pulse widths of 15-mW 
405-nm laser light, 20 stimulation epochs per session spaced 1 min 
apart); following a 5-min rest period, spouts were raised, airflow was 
turned on, and mice performed Buridan’s assay with no further optoge-
netic stimulation.

Brain registration and electrode tracks reconstruction
Mice were euthanized following the completion of experiments and 
perfused with ice-cold phosphate buffered saline (1× PBS, Thermo 
Fisher) and 4% paraformaldehyde (PFA, Electron Microscopy Sciences). 
Brains were dissected from the skull and postfixed overnight in 4% 
PFA at 4 °C. Brains were cleared as previously described16. Following 
clearing, brains were imaged across both hemispheres in the horizon-
tal plane on a LaVision light-sheet microscope in dibenzyl ether. Two 
image volumes were collected: a 488-nm autofluorescence volume 
and a 532-nm CM-DiI volume. Volumes were each collected at a 4-µm 
step size in the z axis and a 4-µm pixel size at 0.8× magnification using 
a single light-sheet horizontal focus.

Both resulting volumes were down-sampled to 25 µm. The 488-nm 
autofluorescent volume was registered using an affine transform 
followed by a warping b-spline transform (Elastix) to the Allen Brain 
Atlas CCFv353 (available at https://allensdk.readthedocs.io/en/latest/). 
The resulting transformation was used to deform the 532-nm CM-DiI 
volume onto the reference atlas. Alignments between the reference 
atlas and both the autofluorescent volume and the CM-DiI volume 
were visually inspected for good agreement between structures. The 
Python image volume viewer Napari54 was used to label points along 
electrode tracts; each set of points per track was given a unique name 
and saved per brain. Custom Python code was used to transform probe 
point sets to insertion tracks and to map electrode locations to brain 
regions (see code repository on GitHub, https://github.com/erichamc/
brainwide-npix). Using custom code, local field potential (LFP) data 
from each probe was extracted and plotted against colour-coded (fol-
lowing the Allen Institute Brain Atlas colour map) regional annotations, 
and fine adjustments were made to the position of the lowest point 
labelling a given trajectory until a satisfactory qualitative alignment 
between LFP activity and regional boundaries was observed (Extended 
Data Fig. 2d).

https://allensdk.readthedocs.io/en/latest/
https://github.com/erichamc/brainwide-npix
https://github.com/erichamc/brainwide-npix
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Spike sorting and preprocessing
All recordings were pre-processed using the CatGT tool (B. Karsh, https://
billkarsh.github.io/SpikeGLX/#catgt) to common average reference 
(CAR) recorded voltage traces per-probe and to zero out any tran-
sient electrical artifacts remaining after CAR (command-line option: 
-gfix=0.40,0.10,0.02). Following preprocessing with CatGT, data was 
spike sorted using Kilosort3 (https://github.com/MouseLand/Kilosort). 
Cluster spike times (output from Kilosort3) and Nidaq events (detected 
via CatGT) were aligned to the reference probe sync signal using TPrime 
(Karsh, https://billkarsh.github.io/SpikeGLX/#tprime). Cluster wave-
form averages were calculated using C_Waves (B. Karsh). Code from 
the ecephys_spike_sorting pipeline ( J. Colonell, https://github.com/
jenniferColonell/ecephys_spike_sorting) was used to organize pipeline 
executables and input/output files, and was further used to calculate 
QC metrics on Kilosort3 clusters and to tag candidate electrical noise 
clusters. Following all preprocessing, spike sorting, and postprocessing 
steps, all clusters were manually examined using Phy2 (https://github.
com/cortex-lab/phy)55 and re-labelled as noise or non-noise clusters as 
necessary. An automated threshold was set for well-isolated units based 
on manual noise cluster labelling and QC metrics (inter-spike interval 
violations <0.1, signal-to-noise ratio >2, number of spikes per cluster 
>500). The combination of these thresholds qualitatively agreed well with 
manual annotation of well-isolated versus multi-unit activity clusters. All 
clusters that did not pass these thresholds were excluded from analysis.

Analysis software
All data analysis was carried out using Python code in Jupyter IPython56 
Notebooks. These analyses relied heavily on Numpy57, Scipy58, Pandas59, 
and Scikit-learn60. Computational simulations were composed using 
Jax61. Seaborn62 was used for bar plots, box-and-whisker plots and KDE 
plots. Matplotlib63 was used for all other plots. Statsmodels64 and Scipy 
were used for all statistical analyses that were not carried out using 
bootstrapping.

Behavioural data analysis
Selectivity index. We calculated the selectivity index as a per-session 
average of reward choices (no. of cumulative water choices − no. of 
cumulative food choices)/(no. of cumulative water choices + no. of 
cumulative food choices) (Extended Data Fig. 1a).

Markov process choice persistence counts. The persistence count 
distribution of a two-state Markov process follows a geometric distri-
bution. We fit geometric distributions to the persistence counts data 
using Scipy (Fig. 1g and Extended Data Fig. 1k).

Definition of behavioural thirst, hunger and relative need. We defined 
a per-trial measurement of behavioural thirst or hunger, respectively, 
as the total number of water or food rewards the mouse would collect in 
the entire session minus the current number of collected water or food 
rewards. We further normalized these ‘behavioural thirst’ or ‘behavioural 
hunger’ values by the median number of total water or food rewards, 
respectively, that mice on food and water restriction collect in Buridan’s 
assay. For example, behavioural thirst = (no. of total water rewards in the 
session − no. of water rewards collected up to the current trial)/(median  
of no. of total water rewards collected by an initially hungry and thirsty 
mouse in a session, calculated across all sessions). We then further defined 
the relative level of behavioural thirst and hunger as an index ranging 
from −1 (maximally hungry versus minimally thirsty) to +1 (minimally 
hungry versus maximally thirsty), which we refer to as the relative need of 
the mouse and calculated as [(behavioural thirst − behavioural hunger)/ 
(behavioural thirst + behavioural hunger)] (Extended Data Fig. 1d).

Marginal and conditional per-trial probabilities. To analyse the mar-
ginal or conditional probabilities of per-trial choices, we first collated all 

trials from behavioural sessions into a per-trial outcome table, in which 
each Go-trial was tagged with the position in session, previous Go-trial 
choice, subsequent Go-trial choice, cumulative rewards per session, 
and current number of food and water rewards collected. The marginal 
probability of choosing water on any given trial was fit using linear  
regression to predict rewarded Go-trial outcomes from the relative 
need value, for trials of sessions in which the mouse was under both 
food and water restriction (Fig. 1h). 95% confidence intervals on these 
fits were estimated by bootstrapping. We also calculated maximum like-
lihood estimates (MLE) for the marginal probability of choosing water 
on a rewarded trial as the fraction of rewarded trials in which the mouse 
chose water, evaluated for trials falling within a given 5-percentile-wide 
bin of relative need values (Fig. 1h, black dots). 95% confidence intervals 
on the MLE estimates were bootstrapped and plotted as vertical lines.

Using the tabulated trial choice outcomes and their associated previ-
ous trial or subsequent trial choice outcomes, we calculated an MLE 
Markov transition matrix for trials from all behavioural sessions. For the 
transition matrix given relatively balanced needs (Fig. 1k), we used only 
trials with a relative need value between –0.25 and +0.25. We excluded 
sessions from these analyses in which mice were only under a single 
restriction paradigm (food only or water only), and we excluded trials 
in which the mouse had fewer than 10 remaining rewards to collect of 
a given type (to avoid sampling issues). The self-transition probability 
for food choices and water choices (Fig. 1j) was also estimated by fitting 
a linear regression on relative need values per trial to predict whether 
a food choice would follow a previous food choice; an equivalent pro-
cedure was applied for water trials. The 95% confidence intervals were 
estimated for each self-transition probability fit by bootstrapping. MLE 
values for the probability of self-transition were calculated as the frac-
tion of self-transitions for a given choice type, restricted to trials whose 
relative need value fell within a given 5-percentile-wide bucket, with 
95% confidence intervals for MLE values estimated by bootstrapping.

Comparison between behavioural features predicting upcoming 
choice. We compared the upcoming-choice predictiveness of needs 
and of previous choice by fitting and evaluating a support vector 
machine with a radial basis kernel (L2 regularization weight C = 1.0 
and gamma scaled according to the feature variance; Scikit-Learn  
defaults with gamma = ‘scale’). When evaluating the predictiveness of 
needs, we fit a two-feature model using only the behavioural thirst and  
behavioural hunger (see above) values of trials in a 50% training split 
of the data. When evaluating the predictiveness of previous choice, we 
fit the support vector machine using only the binary outcome of the 
previous choice to predict the present choice in a 50% training split of 
the data. Predictiveness (AUC) was evaluated on test data for models 
fit separately on each session, yielding median and 95th percentile 
confidence interval values for each parameter set across all sessions 
(n = 15 mice, 22 sessions).

Optogenetic behavioural experiments. For all optogenetic stimu-
lation epochs, nearby Go-trial start times were tagged by the choice 
outcome (food, water, miss) and the start time relative to the near-
est optogenetic stimulation epoch onset time. These food and water 
choice trial times, relative to stimulation epoch onset, were smoothed 
across time using a kernel density estimator (KDE) (Seaborn, Scipy) to 
yield a probability density estimate of a food or water choice response 
as a function of time relative to optogenetic stimulation onset. For 
sated mice, no food choices were made, therefore the KDE analysis 
was omitted.

Electrophysiological data analysis
Firing rates. Spikes for each neuron were binned at 10-ms resolution 
and the binned counts were divided by the bin width and causally 
smoothed using a forward moving average window of 100-ms to yield 
smoothed firing rates at a 10-ms resolution. These rates were z-scored 
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across the duration of a session within neuron. For trial-timing relative 
analyses, the z-scored rates were concatenated into a per-trial vector 
410 bins long (4.1 s, the minimum trial time) and aligned to a trial-start 
trigger signal (recorded on the Nidaq and corrected into the refer-
ence probe synchronization time) such that the first bin per trial cor-
responded to the 10 ms adjacent to the trial-start trigger time. The 
baseline activity rate per trial was defined as the average number of 
spikes for a given neuron in the 1 s before odour onset.

Regional analyses. All analyses of single neurons used well-isolated 
clusters identified by Kilosort3 and postprocessing analyses (see ‘Spike 
sorting and preprocessing’). Each neuron was tagged with a corre-
sponding anatomical location using the atlas-aligned location of the 
electrode at which the neuron’s detected waveform had the greatest 
amplitude. These anatomical locations were used to extract from the 
Allen Institute CCFv3 annotation volume and associated structure tree 
a corresponding region name. Depending on the level of analysis, the 
region name used was either the leaf node of the structure tree or a 
higher order structure. In all figures, regions are colour-coded follow-
ing the colormap convention set by the Allen Institute’s Mouse Brain 
Atlas and were extracted using the AllenSDK.

Significantly modulated cells. The following analyses of single neu-
rons used only significantly task- and state-modulated cells: Fig. 2e,f 
and Extended Data Figs. 3–5. Significant modulation was defined as a 
logical OR operation over five measures each assessed by two-sided 
t-tests: difference in average firing rate in the 1 s before odour onset 
(baseline firing rate) between food choice trials and water choice  
trials; difference in baseline firing rate between Go trial responses  
(hit trials) and Go trial non-responses (miss trials); and differences 
between baseline firing rate and the average firing rate 0–1, 1–2, and 
2–3 s after odour onset. P values for each measure of modulation were 
Benjamini–Hochberg false-discovery rate corrected for the total num-
ber of cells. This measure of significance was used as a pre-filter on cells; 
subsequent analyses used additional measures of significance against 
relevant null distributions (see below on null distributions).

Visualization of baseline firing rates. Neurons were sorted by the 
correlation of the upcoming choice identity and their average baseline 
firing rate in the 1 s prior to odour onset and visualized with average 
firing rates in the 1 s before each trial concatenated together (Fig. 2c).

Agglomerative clustering. For significantly modulated cells, per-trial 
firing rates were averaged within condition (food choice, water choice, 
miss/sated) and condition-averaged firing rate vectors were concat-
enated. These concatenated, per-cell condition-averaged rates were 
treated as multidimensional measurements where each concatenated 
firing rate bin was a feature. Using the library Scanpy65, the cell by fea-
ture matrix was first reduced in dimension using principal components 
analysis, then a neighbourhood graph of observations was computed 
using n = 5 neighbours, then a uniform manifold approximation and 
projection66 manifold was computed, and finally clusters were identi-
fied on this manifold using Leiden clustering67. Cells were ordered by 
these cluster identities and their condition-averaged z-scored firing 
rates were visualized (Extended Data Fig. 3a,b).

Variance explained by regressors. A series of binary regressors were 
constructed from behavioural variables for each trial: choice outcome 
(food versus water); early (first third of trials in a session) versus late 
(last third) of food choices; early (first third) versus late (last third) of 
water choices; hit versus miss; Go-odour trial versus No-Go-odour trial. 
From these regressors, a set of 8 measurements of firing rate variance 
explained were made from each cell’s per-trial activity: average baseline 
activity (1 s pre-odour) compared to choice outcome, early versus late 
food trials, early versus late water trials, and hit versus miss regressors; 

average odour activity (300-ms window following odour onset) com-
pared to Go versus No-Go and choice outcome regressors; and average 
response activity (1-s activity window starting 1 s post-odour) compared 
to choice outcome and Go versus No-Go regressors (Extended Data 
Fig. 3c). For regional analyses of variance explained, distributions of 
variance explained by neuron within a region were visualized for a 
given regressor. Regions were sorted by the average value of firing rate 
variance explained per neuron recorded in that region, for regions with 
greater than 30 recorded neurons.

Null distributions for single-cell analyses. For all single-cell regres-
sion analyses, a per-cell null distribution was constructed, and true 
measurements for each cell (for example, variance explained for a given 
regressor) was compared to the corresponding null, with significance 
determined by the resulting one-sided tail statistic with P ≤ 0.05 as the 
threshold. For the variance explained measurements, each cell’s null 
distribution was constructed by circularly permuting the firing rate 
time series with respect to the regressor time series. We note that sig-
nificance tests against null distributions with random (unstructured) 
permutation of the time series failed to remove spurious long-timescale 
correlations, though we also note that long-timescale correlations 
may be relevant to some of the state phenomena we are interested 
in and therefore circular permutation may be overly conservative; 
future studies that enable tracking the same neurons across multiple 
sessions should increase the statistical power of the corresponding 
null distributions. For analyses that considered the average variance 
explained per region, an additional null distribution bootstrapping 
mean values from the circularly permuted null for cells in each region 
was used (dashed lines in Fig. 2e and Extended Data Fig. 5).

The following P values for regional means of variance explained are 
associated with Fig. 2e and Extended Data Fig. 5c and were obtained by 
bootstrapping (10,000 samples) the mean per-cell variance explained 
value within region and comparing the one-sided tail statistic to a 
similarly bootstrapped regional null using the per-cell null distribu-
tion variance explained values (obtained as described above). These 
P values were then FDR-corrected for multiple comparisons across 
brain regions: MRN, 0.000; SCiw, 0.000; APN, 0.000; CP, 0.000; OLF, 
0.000; FF, 0.000; FS, 0.000; ORBl5, 0.000; VTA, 0.006; ACB, 0.008; PeF, 
0.010; LHA, 0.016; ORBl1, 0.124; AIv5, 0.127; ORBl2/3, 0.130; SSp-m6a, 
0.130; ORBl6a, 0.130; ZI, 0.130; AON, 0.272; PO, 0.279; VPM, 0.279; VAL, 
0.279; RN, 0.279; SI, 0.279; AAA, 0.327; EPd, 0.336; VM, 0.417; AId6a, 
0.520; SCig, 0.603; CA1, 0.748; MOs6a, 0.828; POST, 0.834; LP, 0.834; 
PRNr, 0.955; PPN, 1.000 (brain region abbreviations are provided in 
Extended Data Table 1).

Null distributions for population predictions. For analysis of popu-
lation predictiveness of the upcoming choice, which is potentially 
confounded by long-timescale correlations in the neural activity, we 
took two approaches: (1) we compared all analyses to both a circularly 
permuted null distribution and to a session-permuted null distribution 
(the two dashed lines in Fig. 2g; both gave similar results); and (2) we 
evaluated predictiveness on a set of held-out test trial data flanking 
behavioural switches (reward trials –5 to –2 and reward trials +2 to +5  
relative to the first trial with an altered reward choice as trial 0); because  
this test set paired choices of each reward type to an equivalent 
set nearby in time, it helped to eliminate the confound of spurious 
long-timescale correlations with the choice.

Variance explained co-occurrence. An 8 × 8 regressor information 
correlation coefficient matrix was calculated from the Regressor 
variance explained × Cell matrix. Euclidean pairwise distances were 
evaluated between the resulting correlation coefficient values and a 
linkage between distances was subsequently estimated. Entries of the 
correlation coefficient matrix were reordered according to the leaves 
of the hierarchical linkage (Extended Data Fig. 3e).
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Coupling analyses. Cells were pooled across all recordings (n = 7 
mice or recordings, number of cells per region given in Extended Data  
Table 1). For each cell, firing rates binned at 10 ms in the 1 s pre-odour 
baseline period of each Go-trial were baseline-subtracted by the 
cross-session mean firing rate in the given choice outcome and then 
concatenated together for trials across the session. A matrix of pair-
wise noise correlations between cells was then calculated using these 
concatenated firing rates. Cells were categorized as goal-significant 
or non-goal-significant as described above (null distributions for 
single-cell analyses), and the noise correlation matrix was sliced 
according to the categories given in Extended Data Fig. 3q,r to yield 
the distributions plotted.

Population decoding. All population choice prediction analyses were 
performed using a linear discriminant analysis (LDA) classifier with 
shrinkage of the covariance matrix determined analytically. All quantifi-
cations of model predictive accuracy (receiver operating characteristic 
(ROC) AUC) were evaluated on held-out test data. Feature vectors for 
population decoding used either single-time bin activity vectors for 
simultaneously recorded neurons (Fig. 4e and Extended Data Fig. 8b) 
or activity vectors averaging activity per-neuron in the 1-s pre-odour 
baseline period (Figs. 2g and 4c and Extended Data Fig. 8a). For upcom-
ing choice classifiers (‘goal dimension’ classifiers), trials in which licking 
occurred during the pre-odour baseline period were excluded to avoid 
behavioural contamination. Visualizations of neural activity along the 
discriminating axis used the decision function of a logistic regression 
classifier with inverse regularization strength set to 0.02. In the case of 
optogenetic experiments, a goal dimension was constructed using the 
difference of average water and food trial baseline activity during the 
behavioural assay, with weights normalized by the summed standard 
deviation within trials of each outcome39. One-second-binned neural 
activity surrounding each optogenetic stimulation epoch (–10 s to 
+20 s) was projected onto this goal dimension (Fig. 4i–o and Extended 
Data Fig. 10f,g). Alternatively (Extended Data Fig. 10c–e), a ‘thirst-stim’ 
classifier was constructed using average activity during optogenetic 
stimulation (averaged across 10 s of stimulation) or average activ-
ity in the 3 s prior to stimulation onset to predict stimulation versus 
non-stimulation periods, respectively. Projection of neural activity 
during behaviour onto this ‘thirst-stim’ dimension was used to meas-
ure activity along this optogenetic thirst dimension during different 
behavioural epochs.

Prediction of upcoming switches. An upcoming choice classifier using 
simultaneously recorded population activity was constructed using 
logistic regression with linear features consisting of the average neural 
activity per cell in the 1 s before odour onset. Regularization strength 
was set to 0.05. The classifier was trained on 70% of rewarded trials, with 
30% held out. The decision function of this classifier was then evaluated 
on all trials across each session to yield a population activity projection 
along the goal dimension. To predict the probability of switching on 
a given trial, the distance from zero of the magnitude of the upcom-
ing choice decision function, evaluated on 1 s pre-odour activity, was 
linearly rescaled into a probability using a unidimensional LDA classi-
fier fit on the switch outcomes of all trials (Fig. 4g,h). To measure the 
performance of the goal activity projection in predicting upcoming 
switches across a session, the receiver operating characteristic AUC 
was measured directly using the distance from zero of the magnitude 
of the upcoming choice decision function as evaluated on 1-s pre-odour 
activity across all rewarded trials (Fig. 4i,j).

Post-odour choice-selection activity analyses. To assess infor-
mation about choice gained following odour onset, population 
decoders of choice were constructed on a per time bin basis using 
baseline-subtracted firing rate activity in that time bin (Extended Data 
Fig. 11a). The baseline activity removed from each time bin consisted 

of the average activity in the 1 s before odour onset, evaluated on a 
per-trial basis. Removing the baseline activity per cell removes the 
average baseline predictiveness of upcoming choice, such that pre-
dictiveness increases can only come from changes in neural activity 
beyond the average baseline rate per trial. Classifiers for each region 
were constructed using the simultaneously recorded population activ-
ity vector within a given region (Extended Data Fig. 11a). The visualized 
baseline-subtracted post-odour predictiveness used the AUC as evalu-
ated first within session on held-out test trials, then averaged across 
session replicates. Regions without multiple session replicates or less 
than 30 neurons are marked with an asterisk.

To assess whether fluctuations of the baseline goal activity modu-
lated post-odour choice-selection dynamics, we constructed clas-
sifiers of choice using simultaneously recorded firing rate activity 
during the 1–2 s post-odour period from all simultaneously recorded 
neurons (Extended Data Fig. 11b,c) or from neurons in a given region 
(Extended Data Fig. 11f). For these analyses, we used a logistic regression 
classifier with linear features and a regularization factor of 0.1 (Scikit 
Learn). Classifiers were trained on a training dataset of 50% of trials and 
subsequent projections were evaluated on the 50% test set of trials. 
Projections to the discriminating choice-selection dimension were 
constructed using the per-region classifier decision function, which 
we further baseline-subtracted using the per-trial projection values 
in the 100 ms prior to odour onset. For each corresponding choice 
trial in the behavioural session, we computed baseline activity in the 
goal dimension (using the decision function of a logistic regression 
classifier trained to predict upcoming choice from the 1 s pre-odour 
neural activity of all simultaneously recorded neurons across regions). 
Both activity in the goal dimension and activity in the choice-selection 
dimension were normalized from –1 to 1 using a secondary linear clas-
sifier function to remove systematic differences in decision function 
magnitudes between behavioural sessions. For the analyses presented 
in Extended Data Fig. 11b,d,f, projections onto the choice-selection 
dimension were binned into 0–33, 34–66, and 67–100 percentile groups 
using the per-trial baseline goal dimension activity, with percentiles 
calculated within session and within choice. Linear regression analyses 
(Extended Data Fig. 11c,e) used per-trial goal dimension activity magni-
tude directly, not percentiles. For the regression analysis of the modula-
tion of post-odour choice-selection activity dynamics by within-choice 
baseline goal activity, choice-selection activity was summed from 0.1 s 
post-odour to 0.9 s post-odour.

Video decoding analysis
Videos of the face and body, acquired at 100 frames per second each, 
were cropped to regions of interest (ROIs) and converted to greyscale 
from RGB. ROIs were converted to motion energy (change in pixel 
intensity from frame to frame) and the top 500 principal components 
were extracted for each ROI by singular value decomposition using 
FaceMap68. Principal component video data was synchronized to behav-
iour data using a small in-frame LED trigger signal at the beginning of 
each behavioural trial. Behavioural decoding and decoding perfor-
mance evaluation was performed using LDA with receiver operator 
characteristic area under the curve (ROC AUC) quantification using an 
equivalent approach to that used for decoding of neural data.

Mathematical modelling
The mathematical model consists of several coupled differential and 
stochastic differential equations. These equations describe the shape 
of an energy landscape of needs as a function of thirst and hunger mag-
nitudes; the Langevin dynamics of motion across the landscape as a 
function of time; and the update dynamics for thirst and hunger mag-
nitudes as a function of odour presentation (sampling times) and the 
current position on the landscape (behavioural choice events) (Fig. 3b 
and Extended Data Fig. 6c–f). We chose a simple three-dimensional 
energy landscape shape (a two-dimensional space with a landscape 



depth defined at every position) that placed harmonic wells centred 
at three locations at equilateral distance to each other; these loca-
tions represent the means of thirst-related, hunger-related, and other 
needs-related neural activity. To give smooth saddles between wells we 
expressed the landscape as the log-sum of Gaussian probability density 
functions (Extended Data Fig. 6e,f) according to the following equation:

U x t s T t x s H t x x( , ) = log( × ( ) × Φ ( ) + × ( )×Φ ( )+Φ ( )) (1)w f o

where the shape of each well is defined by the following negative prob-
ability density functions of multivariate normal distributions:

x x µΦ ( ) = Φ( ; , Σ)w w

x x µΦ ( ) = Φ( ; , Σ)f f

x x µΦ ( ) = Φ( ; , Σ)o o

and where μw is the centre of the well for the thirst-related space; μf is 
the centre of the well for the hunger-related space; μo is the centre of 
the well for the ‘other needs’-related space; σ IΣ = ×2  is the covariance 
matrix of each normal distribution and is equivalent between all wells; 
T t( ) is the magnitude of thirst at time t; H(t) is the magnitude of hunger 
at time t; and s is a scaling factor that aligns experimentally observed 
normalized thirst and hunger magnitudes to the appropriate  
scale within the model. Thus, as the thirst and hunger magnitudes 
change over time, the depth of the respective wells in the energy land-
scape are scaled, leading to varying gradients on the landscape over 
time as a function of each need (Fig. 3b,c, Extended Data Fig. 6c–f and 
Supplementary Video 1). For simplicity, we assumed a constant scale 
of other needs, such that thirst and hunger are given as relative mag-
nitudes to other needs.

Behaviour of neural activity on this simplified two-dimensional 
subspace is approximated by overdamped Langevin dynamics in the 
following equation (see also Extended Data Fig. 6c,d):

x t x t t g U x t t n N I( + 1) = ( ) + d × × − ∇ ( , ) + d × × (0; ) (2)

At every discretized time step, we add to the current position x(t) the 
negative gradient of the present energy landscape, scaled by the factor 
g, and a time-independent white noise N (zero-centred normal distribu-
tion with covariance I the identity matrix, indicating zero dependence 
between noise in each dimension) scaled by a noise factor n. Behaviour 
of motion on the landscape is heavily dependent on the relationship 
between g and n and their magnitudes with respect to the distances 
between well centres and the scale on the well shapes. Higher values 
of n drive more frequent transitions between spaces on the landscape 
and in the limit overwhelm the contribution of the energy landscape to 
the dynamics; higher values of g increase the dominance of the energy 
landscape over the dynamics contributed by noise and decrease the 
transition frequency, as movement on the landscape tends to be pulled 
towards the closest energy well. The scale factor s in U(x, t) modifies 
the propensity of the system to stay in the food or water seeking zones 
instead of the ‘other needs’ zone. Increasing magnitudes of both s and 
g increase the rapidity of transitions between zones.

Behavioural emissions from these dynamics are given by a partition-
ing of the subspace into zones according to which unscaled negative 
probability density function φ has greater magnitude at every position, 
yielding a standard maximum likelihood decision function. We choose 
this maximum likelihood partition for simplicity, but we propose that 
learning in a particular environment or context can shape more arbi-
trarily complicated partitions of this subspace with respect to behav-
iour. Thus, behavioural choice emissions are defined by position x(t) 
and a sampling-cue at time t′ with the following equation:
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The magnitude of the thirst T(t) and hunger H(t) are decremented 
by a fixed amount rw and rf, respectively, and fixed feedback delay l 
after food or water choices are made, according to the following  
equations:
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rw and rf correspond to the reward size given to the mouse and approxi-
mate the incremental changes in needs upon reward collection; we 
set these values based on high initial thirst T0 and hunger H0 values 
such that simulated behaviour in Buridan’s assay resulted in similar 
numbers of cumulative rewards collected until satiation (predomi-
nantly ‘miss’ outcomes) as experimental behaviour. We set the feed-
back delay l to 2 min in simulation time based on a rough review of 
the literature7 but did not fine-tune the value based on experimental 
data. For simplicity, we did not include any hysteresis in the update to 
the thirst and hunger magnitudes, excepting a fixed delay time in the 
update. We note that a more detailed model may include hysteresis, 
accounting, for instance, for the rate at which rewards are collected or 
characteristic dynamics to the rate at which the landscape can change; 
possible anticipatory dynamics in the sensation of homeostatic defi-
cits; and more complex interactions between the rewards and needs 
(for example, if a reward decreases one need but increases the other 
on longer timescales, as may be the case for the salted ensure). All 
visualizations or measurements of simulated activity along the goal 
dimension use the projection of the current position onto the unit  
vector given by
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which in the case of our parameters is simply 0
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Model fitting and derivations
The mathematical model described above has several interrelated 
fixed parameters whose values alter the system behaviour across a 
simulated behavioural session. We sought a set of parameters whose 
values best produce simulations with summary statistics matching 
those of the behavioural experiments. We chose to fit the model to 
the behavioural data, rather than the neural data, for two reasons: 
(1) so that we could evaluate the extent to which the model matches 
and predicts behavioural results, independent of the constraints of 
the neural data (Fig. 3); and (2) so that we could evaluate the extent 
to which this class of model, tuned to the behavioural outcomes, 
would anticipate aspects of the neural data (Fig. 4). Since the model 
we present is an equation of motion that enables a discretized, sto-
chastic forward simulation of behavioural sessions from an initial 
position and initial thirst and hunger magnitudes, and any given 
session simulation for a set of parameters will differ across repeated 
simulation runs, the output of the model cannot be directly tuned to 
match the trajectories of behavioural sessions. Fitting is addition-
ally complicated from a computational perspective by the fact that 
the model is discretized to a fine temporal time step (1/100th of a 
second), so that ~1,000 model steps are evaluated between every 
simulated trial.
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An optimal model fitting procedure maximizes the likelihood of the 

observed data given predictions from the model and its parameters, 
subject to any constraints. To perform this optimization, we exploited 
several aspects of the experimental data and model:

First, recognizing that the behavioural sessions exhibited a strong 
Markov property (conditional independence), we transformed behav-
ioural sessions (chains of 100 s of trials) into a collection of pairs of 
sequential rewarded trial outcomes, for example, food-to-food, 
food-to-water, water-to-food, and water-to-water, and we tagged 
each trial by their current thirst and hunger magnitudes and the time 
elapsed between reward choices. We then considered each pair of trials 
independent from all other pairs of trials. The problem of optimizing 
the model parameters then becomes a problem of jointly optimizing 
the probability of each trial pair given the model and parameter set.

Second, while the stochastic differential equation described above 
does not give a probability estimate for this trial-pair data, results from 
the field of non-equilibrium statistical mechanics and transition state 
theory give approximate equations related to the transition prob-
ability rate between states for Langevin equations with a form similar 
to what we describe above. Specifically, we adapted Kramers’ first 
passage problem33,34, which describes the escape rate over an energy 
barrier for a diffusive particle in a harmonic well, to give a theoretical 
expression for the transition probabilities between choices as a func-
tion of thirst, hunger, and time between trials. This theoretical expres-
sion utilizes the same model parameters and energy landscape as the 
forward equation of motion and thus links the model parameters to the 
observed behavioural events. We additionally exploited equilibrium 
relationships between the landscape and noise to constrain the fitting. 
We provide the derivation of these theoretical expressions as follows.

Derivation of the state transition probability equation. Following  
transition state theory, we can write down a set of general time- 
dependent differential equations for the probability that the system 
will be in one state or another (in our case, the zone around the food 
well or the zone around the water well):

t
P t P ω P ω
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d

( ) = × − × (6)w f fw w wf

t
P t P ω P ω

d
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( ) = × − × (7)f w wf f fw

where Pw is the probability of being in the water zone; Pf is the prob-
ability of being in the food zone; ωfw is a transition probability rate from 
the food zone to the water zone; and ωwf is a transition probability rate 
from the water zone to the food zone. As a simplifying assumption we 
ignore transitions to the ‘other needs’ zone and will consider only trials 
with no misses between rewards. Therefore,

t
P

t
P t

d
d

(t) = −
d

d
( ), (8)w f

and

P t P t( ) + ( ) = 1 (9)w f

Conditioning on an observation of a previous food or water choice 
as time t = 0 gives the boundary conditions:

P P(0) = 1 and (0) = 0 (previous choice of water) (10)w f

P P(0) = 0 and (0) = 1 (previous choice of food) (11)w f

and therefore Pw(t) becomes a self-transition probability Pww(t), the 
probability of being in the water zone at time t following being in the 

water zone at time t = 0, and equivalently for Pf (t) as self-transition 
probability Pff(t) for the probability of being in the food zone at time t 
following being in the food zone at time t = 0. Using equation (9) and 
substituting yields:
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( ) = (1 − ( )) × − × (13)ff ff wf ff fw

and the transition probabilities for switching are:

P t P t( ) = 1 − ( ) for a water to food transition, (14)wf ww

and

P t P t( ) = 1 − ( ) for a food to water transition. (15)fw ff

Integrating equations (12) and (13) and solving the initial value prob-
lem gives:
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This yields the full time-dependent transition matrix:

P t
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To evaluate these probability expressions, we need to specify the rate 
equations for ωfw and ωwf. Kramers’ first passage problem describes the 
average time it takes for a particle residing within a harmonic poten-
tial well to first escape over an energy barrier; if the other side of the 
barrier is a second potential well with high barriers34, then the inverse 
of this first escape time is approximately the transition rate ω. For a 
one-dimensional Smoluchowski equation satisfying the fluctuation 
dissipation theorem34, this transition rate from state A to B has the form:

ω
ν ν

π γ

×

2 × ×
e , (19)

U U
KAB

A ‡ − −
T

‡ A

b








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where U ‡ is the potential evaluated at the transition state (saddle 
between wells); U A is the potential evaluated at the minimum (well 
centre) of the source state; KbT is the Boltzmann constant multiplied 
by temperature, γ is the friction term, νA is the approximated frequency 
of the harmonic well at its centre, and νt is the approximated frequency 
of the transition state. To utilize this equation, we construe the equa-
tion of motion of our model as a one-dimensional Smoluchowski equa-
tion along the y axis (line between food and water wells). We set the 
friction term γ = 1, the noise term n K≈ Tb , and we consider the gradi-
ent scale g as a scale factor on the energy landscape, rather than a scale 
factor on the gradient of the landscape in the equation of motion 
(yielding an equivalent effect on the gradient as it would have in the 
equation of motion, but avoiding construing it with γ in the Smolu-
chowski equation). Thus, we take the needs landscape as the potential, 
with U ‡ and U A becoming functions of thirst and hunger evaluated at 
the time of the previous reward collection t t U T H g s= : ( , | , )0

‡  and 
U T H g s( , | , )A , where the landscape U(x) specified in equation (1) 



depends internally on s and is scaled by multiplication with g. Follow-
ing the harmonic approximation in (19) we approximate the well cen-
tres of our landscape as the log of the probability density function of 
the Gaussian at its mean (μw or μf) and take the second derivative to 
get the frequencies ν:

ν
σ

≈
1

(20)A 2

and

ν
σ

≈
2

(21)‡ 2

(note that we approximate the frequency of the transition state as 
double that of the source state well, a value approximately consistent 
with numerical evaluations).

Thus, we get the following expressions for the transition rates from 
food and from water, as a function of thirst and hunger:
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Plugging these equations into (18) and its corresponding expressions 
yields an equation for the transition probability of each behavioural 
trial pair, as a function of time, thirst magnitude, hunger magnitude, 
and the model parameters utilized in our equation of motion. This 
equation was used to evaluate theoretical predictions for Fig. 3h and 
Extended Data Fig. 7f. We note that this equation is only approximate 
and requires (1) that the potential well of the source state is deep rela-
tive to the transition state and (2) that the system follows a Boltzmann 
distribution at equilibrium34. Following requirement (2), we constrain 
the optimization by jointly optimizing both the transition probability 
of each reward pair observed in the experimental behavioural dataset, 
as well as the probability of all individual reward-choice trials derived 
from the Boltzmann distribution:
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where xw and xf are the water and food zones of the landscape, respec-
tively. These equations were used to evaluate theoretical predictions 
for Extended Data Fig. 7b,d. Finally, to additionally constrain the for-
aging weight parameter s, which scales the thirst and hunger mag-
nitudes relative to ‘other needs’, we add to the joint optimization 
a Boltzmann-derived equation specifically for trials surrounding 

satiation, including misses (equations (24) and (25) do not consider 
misses and are evaluated on reward trials without flanking misses):
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where the denominator is an integration over the entire landscape 
space and xo is the ‘other needs’ zone of the landscape.

Loss function and model fitting computation. The above derivations 
yielded three sets of expressions for the probability of the experimental 
data as a function of the model and its parameters: (i) an expression 
for the transition probability between two sequential rewarded tri-
als, dependent on time, thirst, hunger, and previous choice identity;  
(ii) an expression for the probability of a given reward, independent  
of time or previous choice but dependent on thirst and hunger; and  
(iii) an expression as in (i) but for trials near or during satiation, includ-
ing misses. We then minimized the negative log-likelihood of the data 
across all experimental sessions under these theoretical model-derived 
equations by fitting the scale parameters n, g and s while leaving as fixed 
parameters the well centres and shapes for simplicity of interpretation 
(well centres are placed on an equilateral triangle and the standard 
deviation of each Gaussian well is the same). The data were partitioned 
into three sets, corresponding to (i), (ii) and (iii): sequential reward trial 
pairs as described above; individual rewarded trial outcomes and the 
thirst and hunger magnitudes at the time of each trial, excluding trials 
adjacent to misses; and individual Go-trial outcomes including misses 
near satiation (thirst and hunger <0.5). We separated the evaluation of 
non-sated (i, ii) and sated (iii) trials to avoid overfitting to early misses, 
which may also be due to errors in the behavioural task, as opposed to 
the mouse’s needs or goal. The joint loss function used was the aver-
age negative log-likelihood per trial in each of the three sets, added 
together. Because computing the Boltzmann-derived expressions 
used in (ii) and (iii) involved more computationally expensive numeri-
cal integrations, the trial data for (ii) and (iii) were batched to 1/50th 
the size of the entire dataset (~8,000 and ~11,000 trials, respectively). 
All equations were expressed using custom Python code utilizing the 
Jax60 library, enabling auto-differentiation, just-in-time compilation, 
auto-vectorization, and use of a corresponding optimization library 
Optax69 and the AdaBelief optimizer70 (with learning rate 10−1), which 
consumed the gradient of the joint loss function calculated with  
respect to n, g and s. Minimization of the loss function was performed 
until convergence.

For Fig. 3 and Extended Data Fig. 7, parameters for all analyses were 
fit using the procedure above on the entire behavioural dataset that 
was analysed in Fig. 1. For the optogenetic simulation experiment, an 
additional scale factor of 3.3 (obtained by grid search) was added to 
the gradient term g for best overlap with the experimental optogenetic 
stimulation results. We note that, since this experiment utilized a small 
subset of mice, the additional tuning of the gradient scale may account 
for animal-to-animal differences in these parameters not accounted 
for in the average values. For Fig. 4 and Extended Data Figs. 9 and 10, 
parameters were fit using the procedure above on the subset of mice 
used for Neuropixels recordings, and these same fit parameters were 
then used for all analyses, excluding the optogenetic analyses, in which 
the additional scaling factor of 3.3 obtained above was used.



Article

Simulations
Simulations of the mathematical model described above were imple-
mented in custom Python code using the Jax library60 for just-in-time 
compilation (expediting simulations) and automatic differentiation 
(for landscape gradient calculations). The following fixed parameter 

set was used for all simulations: 





µ = −8
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, 
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 (a saddle point between thirst 

and hunger wells), dt = 0.01, rw = 0.006, and rf = 0.004. For the analyses 
of Fig. 3c–h and Extended Data Fig. 7a–i, the g, n and s parameters were 
fit as described above to trial data from all behavioural sessions ana-
lysed in Fig. 1 and this single set of parameter values (g = 2.4383774, 
n = 2.74393, and s = 6.4874935) was used. For the behavioural optoge-
netic simulation analyses (Fig. 3j,k and Extended Data Fig. 7j–l), the 
same fit parameter values as above were used, except g was multiplied 
by a factor of 3.3 as described above. For the analyses of Fig. 4d–j and 
Extended Data Fig. 9e,h, parameters g and n were fit to trial data  
from the set of behavioural sessions of the Neuropixels recordings,  
as described above, and the single resulting set of parameters 
(g = 2.5563507, n = 2.807799, and s = 6.4874935) was used. For the 
optogenetic simulation analyses comparing simulated trajectories 
and neural data (Fig. 4m,o and Extended Data Fig. 10f), we used the 
same set of parameters as those used for Fig. 4d–j and Extended Data 
Fig. 9e,h, with g multiplied by a factor of 3.3 as described above. We 
note that in both sets of optogenetic analyses (behavioural and neural), 
qualitatively similar phenomena were observed with the base set of 
parameters (data not shown), but a closer quantitative match was 
observed with the additional scaling factor.

Each simulated run of an experiment with behavioural trials used a 
distinct randomly generated series of Go and No-Go trial times whose 
distribution in time matched the trial time distribution used in the 
actual behavioural assay. Simulations of Buridan’s assay (Fig. 3 and 
Extended Data Fig. 7) were run for 2 h of simulated time (720,000 steps 
with dt = 0.01 s). For visualization, simulations were run until a thresh-
old of consecutive misses were observed, at which point the simulation 
was terminated; this threshold was set variably between 30–50 misses 
for visualization purposes. Simulations were initialized with ‘high thirst’ 
T0 values and ‘high hunger’ H0 values matching the initial values of 
experiment. Simulated sessions were run autonomously according 
to the above dynamics equations, parameters, initial conditions  
(x0, T0, H0) and trial times. A simulated dataset was composed of a set of 
simulated behavioural sessions matching the size of the corresponding 
experimental dataset. For analyses comparing the distribution of sum-
mary statistics in simulation to the summary statistics of experiment 
(Fig. 3), each dataset simulation was repeated 128 times with differ-
ent random number generator keys, such that all simulated sessions 
contained a unique set of trial times and a unique session trajectory. In 
the case of model predictions of neural data, simulations of sessions 
were run for 1.5 h of simulated time (Fig. 4 and Extended Data Fig. 8) 
or 2 h or simulated time (Extended Data Fig. 9). For these analyses of 
model predictions, the number of simulated sessions was matched to 
the number of experimental sessions.

Simulations of behaviour with unbalanced noise to gradient scaling  
ratios. To illustrate the how the scaling terms on the gradient and the 
noise ( g and n) alter behavioural stickiness (Extended Data Fig. 7m,n), 
we ran model simulations with either a ‘too decoherent’ set of param-
eters (g = 2.0, n = 8.0 and s = 6.4874935) or a ‘too persistent’ set of  
parameters (g = 8.0, n = 0.5 and s = 6.4874935).

Simulations of optogenetic perturbation of behaviour. Simulations 
of hungry-only behaviour with optogenetic thirst perturbations were 
performed as described above, with the exception that the initial value 
of hunger H0 was set to 0.5 and the initial value of thirst T0 was set to 

0.05 (Fig. 3i–k and Extended Data Fig. 7j–l). We note that the non-zero 
value of thirst tends to stochastically drive persistent water choices 
long after thirst perturbation as the system is more likely to remain in 
the water zone. Optogenetic thirst perturbations were modelled as a 
transient square wave, increasing the current value of T(t) for the dura-
tion of the perturbation time (10 s, or 1,000 simulation steps) by a fixed 
‘stimulation’ factor of 18 (modelling the detected thirst magnitude 
from optogenetic stimulation of osmotic thirst neurons as 4× that of 
a daily water restriction schedule; note however that hunger, thirst, 
and optogenetic thirst input are logarithmically related to the resulting 
landscape gradient magnitude). The effect of the simulated thirst per-
turbation on the energy landscape along the line between the centre 
of the food and water energy wells is shown in Fig. 3i. Optogenetic thirst 
stimulation in the context of hungry mice was simulated for 25 stimu-
lation epochs across a 1-h-long simulated session with reward feedback 
set to 0 for simplicity of analysis. Simulated sessions were repeated  
to match the number of behavioural sessions in the corresponding 
experimental dataset.

Simulations of optogenetic perturbation prior to behaviour. We 
simulated optogenetic thirst perturbation experiments in hungry and 
thirsty mice in the absence of behaviour (Fig. 4k,m,o and Extended 
Data Fig. 10f). These simulations were performed as described above, 
but with initial values of hunger H0 set to 2.25 and thirst T0 set to 0.8 
with additional optogenetic thirst input at 18 with duration 10 s. These 
simulated optogenetic perturbations were repeated 25 times with the 
same timing as actual experiments (optogenetic pulse onset every 
1 min). The parameters were simulated for 3 simulation runs yielding 
75 simulated thirst stimulation epochs.

Simulations of the forced-transition model. To assess an alternative 
model of choice dynamics (Extended Data Fig. 9) in which switches are 
driven by an external forcing function (as opposed to autonomously 
via the balance between noise and gradient), we preserved the energy 
landscape structure but modified the noise scale such that no switch-
es occurred spontaneously over the duration of the simulation. This 
change has the effect of reducing our model to a multi-stable attractor 
system in which transitions wholly depend on external inputs to the 
system. We then incorporated a randomly occurring input force with 
magnitude sufficient to push the system from one landscape well to 
the other. We did not add noise to this force as it would reduce the 
number of successful transitions below that of the experimental data. 
In general, increasing the noise on the added force requires increasing 
the frequency of external-force events, such that this alternative model 
becomes less distinguishable from the diffusion landscape model we 
seek to compare it to.

Phase portraits. Phase portraits (Extended Data Fig. 9) for all simulated 
or experimental rewarded trials were generated using the current trial 
value of position along the goal dimension (simulated or measured in 
experimental data by projection of baseline activity onto a goal dimen-
sion fit by ridge regression, with regularization alpha parameter = 20) 
and the change in position along the goal dimension from trial to trial 
(which we define to be the velocity of activity along the goal dimension 
over a dt equal to the average time between trials). Trials were assigned 
to either stay or switch categories depending on whether the reward 
choice was the same as the previous reward (stay) or different (switch). 
Densities for stay and switch trials in the transition zone were quanti-
fied as described in the legend for Extended Data Fig. 9 and normalized 
to sum to 1. For model density quantifications, the simulated dataset 
trial data were resampled 1,000 times such that the number of stay 
and switch trials (across all simulated sessions) matched the fraction 
in the experimental dataset. This resampling controls for systematic 
bias in the quantified densities (Extended Data Fig. 9g,h) generated by 
stochastic differences in dataset switch rate.



Statistics and reproducibility
Statistical parameters are described in legends. Box plots span lower 
and upper quartiles; lines indicate median values; whiskers, range of 
values within 1.5 times the interquartile range. Unless otherwise speci-
fied, confidence intervals were generated by bootstrapping.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
The data from this study are available at https://doi.org/10.6084/
m9.figshare.24153348.

Code availability
Our Python code for working with datasets of multiple Neuropixels  
probes, pre-processed as described in the Methods, is available at 
https://github.com/erichamc/brainwide-npix and can be used to 
load the deposited data. Code for the neural landscape diffusion 
model and simulation is available at https://github.com/erichamc/
neural-landscape-diffusion.
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Extended Data Fig. 1 | See next page for caption.



Extended Data Fig. 1 | Quantification of behavior in Buridan’s assay.  
a, Choice selectivity [(water choices – food choices)/(food choices + water 
choices)] in Buridan’s assay under different restriction conditions. b, Cumulative 
food and water rewards collected for each restriction condition. Boxplots in a, 
b show data ranging from the lower quartile to the upper quartile, whiskers 
extend to 1.5-times the inter-quartile range. n = 15 mice, 22 sessions for food 
and water restriction, n = 3 mice, 3 sessions for both water restriction only and 
food restriction only; n = 2 mice, 2 sessions for no restrictions. c, Additional 
example behavior sessions. Each row shows licking behavior (food licks, orange 
dots; water licks, blue dots) during a trial. Grey region, sated non-responses.  
d, Example calculation of behavioral thirst, behavioral hunger, and relative need 
[Thirst – Hunger (norm.) = (thirst – hunger)/(thirst + hunger)] for a behavioral 
session. Behavioral thirst and hunger are normalized by their median values 
across all sessions. e, f, Food choices do not significantly induce water choices 
on the timescale of Buridan’s assay. e, Normalized cross-correlation plot 
indicating lag time between water choices and food choices. The normalized 
cross correlation is not significantly different from a zero lag-time (1-sample 
two-sided T-test, t = –1.45, P = 0.16). A significant positive or negative lag time 
would indicate that food choices induce water choices or water choices induce 
food choices, respectively. Mean ± 95% confidence interval, n = 15 mice,  
22 sessions. f, Number of water rewards collected in a given bout (y-axis) vs. the 
number of food rewards collected in the previous bout (x-axis), both log-scaled. 
Dots, rewards in bout; dashed line, linear fit. No significant (NS) relationship 
was found between water rewards in a bout and the number of food rewards  
in a previous bout (R2 = 0.0063, P = 0.185). g, h, Additional quantification of 
optogenetic thirst stimulation in hungry animals during Buridan’s assay.  

g, Probability of water choices before (–20 s to –10 s before stimulation onset), 
during (0.5 s to 10 s after stimulation onset), or after (30 s to 40 s after stimulation 
onset) optogenetic stimulation, plotted for each of the three sessions.  
h, Comparison of the water-choice probability during stimulation for epochs 
following food choices or No-Go trials. No significant influence of previous 
trial outcome is found on the subsequent stimulation epoch water-choice 
probability (two-sided paired t-test, t = 0.37, P = 0.747). Blue and black markers 
indicate data from one animal; the red marker indicates data from a second 
animal. Each session contains 30 optogenetic stimulation epochs. i–k, A freely 
moving version of Buridan’s assay. i, Schematic. Hungry and thirsty mice are 
placed in a behavioral chamber in which incremental salted liquid food or water 
rewards are dispensed from spouts upon pressing of the corresponding food 
or water lever on the opposite wall of the chamber. Rewards must be collected 
from a given spout before subsequent lever presses dispense additional 
rewards. Spouts and their corresponding reward levers are placed diagonally 
across from each other in the chamber, such that the mouse must pass through 
the center of the chamber (equidistant from both food and water levers). There 
are no choice-cues in this assay: the mice are free to initiate or stop lever pressing 
and reward collection at any time. Mice were trained in the arena until proficient 
at collecting corresponding rewards following lever presses. j, Food (orange) 
and water (blue) reward collection sequences for 6 mice across 10 sessions 
(rows). k, Choice persistence length (# repeated rewards of the same kind before 
switching) distribution across the 10 sessions. Dashed red line and shaded 
region, fit geometric distribution corresponding to a sticky Markov process, 
mean shape parameter P = 0.097 ± 95% confidence interval [0.086, 0.108].
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Extended Data Fig. 2 | Unit anatomy and additional data in Neuropixels- 
based extracellular electrophysiological recordings. a, All well-isolated 
single unit locations plotted onto nearby coronal sections of the Allen Institute 
CCF3 2017 reference atlas. Units are color coded by the identity of the region 
they were assigned to according to the Allen Atlas reference colormap 
(Extended Data Table 1; see also panel e, right). b, Well-isolated unit locations 
color-coded by region assignment and plotted onto coronal (top) and horizontal 
(bottom) atlas projections. c, Counts of well-isolated units (passing quality 

control thresholds) that were simultaneously recorded per session. Each 
session is collected from a different mouse. d, Depth of electrodes along the 
insertion axis of an example probe mapped to region (color bars on the left) and 
aligned to local field potential (LFP) data in a 400-ms time window. e, Spiking 
activity from a single session over two 12-s time windows. Panel tops, licking  
for food (orange) and water (blue). Colorbars, region assignments aligned to 
individual neurons. Regions and region labels are color coded according to the 
Allen Brain Atlas colormap.



Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Further analyses of single neuron and neuronal 
population activity. a, Unsupervised agglomerative clustering of task- or 
satiety-modulated neuronal dynamics surrounding Go trials. Clusters are 
manually color-coded approximating the predominant information in the 
cluster: orange, food choice; blue, water choice; gray, satiety states; purple, 
odor; green, food-related action activity; red, water-related action activity. 
Clusters are shown separated by horizontal lines. Neurons are individually 
trial-averaged by condition (Go-odor food choices, Go-odor water choices,  
Go-odor non-responsive/sated) and Z-scored across condition. Vertical dashed 
line, Go-odor onset. s.d., standard deviation. Leftmost column, brain region 
assignments for each neuron, color coded according to the Allen Brain Atlas 
colormap (see Extended Data Table 1). b, Single-cell cluster distribution by 
brain region, with clusters (color coded as in a) plotted as a normalized fraction 
of cells in a given region (parenthesis: total cell numbers per region). Regions 
are ordered by hierarchical clustering of the regional cluster distributions.  
c, Schematic of regression analysis for functional properties of individual 
neurons related to task or satiety. d, Quantification of mixed selectivity per 
neuron with significant information about upcoming choice in baseline 
activity. The histogram shows the distribution of counts of additionally 
significant regressors (described in c) per cell. A cell is counted as significant 
for a given regressor if the firing rate variance explained by the regressor is 
greater than that of a per-cell circularly permuted null distribution, with 
threshold P = 0.05; per-cell P-values are not adjusted for multiple comparisons. 
e, Co-occurrence of regressors for all task- or satiety-modulated cells is shown 
as the pairwise correlation coefficient of variance explained by each regressor, 
sorted for visualization by unsupervised hierarchical clustering. The three 
clusters group regressors for cross-session satiety (regressors 4, 2, 3), Go vs. 
No-Go trial type (regressors 5, 8), and reward choice (regressors 7, 1, 6).  
f–j, Per-cell visualization of pairwise association between goal-information  
(x axes) and other regressors (y axes). Cells are color-coded according to their 
assigned brain region, following the Allen Brain Atlas colormap. Information  
at baseline about upcoming choice tended to co-occur with all regressors 
except Go vs. No-Go regressors. Data in a–j pooled from n = 7 mice, 7 sessions. 
k–n, Video decoding analyses. Decoding analysis from video motion data of 
upcoming choice. Videos of the animal’s face or body were collected at 100 Hz 
and the principal components (PCs) of the video motion energy were used for 
prediction of behavioral choice (Methods). k, Predictiveness (AUC) of choice 
by video data of the body or face (x-axis) during the 1 s pre-odor (blue bars) or 
the response period (1–2 s post-odor onset, green bars). Mean ± 95% confidence 
interval. Dashed lines, session permuted null distribution. Test trials are taken 
from trials flanking behavioral switches (4 trials before the penultimate trial 
prior to each switch, and 4 trials following the 1st trial after a switch) to remove 
any spurious contribution of slow timescale motion covariates with choice.  
l, Face video predictiveness (AUC, y-axis) of upcoming choice during the 1 s  
pre-odor epoch, with variable numbers of motion principal components (PCs) 
used for prediction. Mean ± 95% confidence interval. k, l, n = 7 mice, 7 sessions. 
m, Visualization of the most predictive PC for food and water choices, 
superimposed on the average image of the animal. Pixels with high positive 
weights in the PC are colored red and pixels with high negative weights are 

colored blue. The pattern of PC weights does not indicate any obvious 
distinguishing motion feature of the animal, suggesting that the predictiveness 
of the video motion comes from more subtle “tells” of the animal’s facial motion. 
n, Predictiveness (AUC, y-axis) of the face video motion PCs (gray) or neural 
data (green) as a function of time, with decoders trained on each 10-ms time bin 
across a trial. Mean ± 95% confidence interval (n = 7 mice, 7 sessions). Dashed 
horizontal lines, circular permutation null distributions for bins in the 1 s  
pre-odor period. Vertical dashed line, odor onset. In summary, we can predict 
behavioral choice from pre-odor videos of the animal (indeed, we expect that 
neural activity should be reflected by animal behavior). However, predictiveness 
does not come from one or a few dominant motions, as the decoder requires 
dozens of PCs at least. Moreover, pre-odor prediction from videos of the animal’s 
pose is not as good as prediction from neural population activity. o, Analysis  
of redundancy of information for upcoming choice across simultaneously 
recorded cells. A linear decoder is trained to predict upcoming choice from  
the 1 s of simultaneously recorded population neural activity preceding food  
or water choices. The size of the population used for decoding is randomly 
subsampled to examine the effect on decoder performance of increasing 
numbers of simultaneously recorded cells, agnostic to brain region. Decoding 
performance (receiver operator characteristic area under the curve, AUC) is 
assessed for test trials flanking behavioral transitions, such that test trials  
with different classes occur close to each other in time and the contribution  
of spurious long-timescale correlations are largely removed. Mean ± 95% 
confidence interval (n = 7 mice, 7 sessions). Dashed lines, circularly permuted 
null distribution for each decoder. p, Percentage simultaneously recorded 
population variance explained by coding dimensions across task period. 
Baseline period, 1 s pre-odor activity preceding food or water choices (hit trials). 
Choice period, 1 s to 2 s post-odor during hit trials. Response period, 1 s to 2 s 
post-odor for all trials (including No-Go trials). Coding dimensions are 
calculated as the variance-normalized average firing rate difference between 
periods in trials corresponding to a given regressor (Methods). Goal regressor, 
1 s pre-odor period preceding water vs. food choices. Choice regressor, 1 s to 2 s 
post-odor for water vs. food choices. Response regressor, 1 s to 2 s post-odor for 
Go vs. No-Go trials. Mean ± 95% confidence interval across recording sessions. 
Variance explained by each coding dimension is consistent across mice/sessions  
(n = 7) and largely distinct across regressors and their corresponding task 
periods. The amount of baseline period population variance explained by the 
goal regressor is comparable to the response period variance explained by the 
choice and response regressors. q, r, Cells significant for goal information have 
significantly higher noise covariance (covariance between firing rates in the  
1 s pre-odor, with the average activity before food or water trials removed from 
the trial-by-trial firing rates, and evaluated at a 10-ms temporal resolution) than 
non-goal significant cells, suggesting that goal cells may share a common 
source of fluctuations or tend to influence each other’s activity more frequently 
than non-goal cells. Comparison for cells within the same region, q, and across 
regions, r. ****, two-sided t-test, P ≤ 1 × 10−6 (q, t = 11.52, P = 1.11 × 10−30, n = 7 mice, 
21,496 pairwise correlations; r, t = 52.08, P = 0.0, n = 7 mice, 2,720,269 pairwise 
correlations). Y-axis is truncated. Dashed lines, means.



Extended Data Fig. 4 | Firing patterns of example single neurons whose 
baseline activity correlates with upcoming behavioral choice. Example single 
unit spike rasters and peristimulus spike timing histograms (PSTHs). Spiking is 
plotted over the first 50 food-choice trials (orange, top) and the first 50 water- 
choice trials (blue, middle). PSTHs for food trials (orange line) and water trials 

(blue line) are shown at the bottom. Vertical dashed line, odor onset. Each unit 
is labeled by the region acronym (Extended Data Table 1) to which it was assigned. 
Units are sorted alphabetically according to region acronym to reflect the lack 
of apparent spatial organization for units with specific properties.
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Extended Data Fig. 5 | Regional distribution of regressor information.  
a, Average variance explained per-cell by upcoming choice at baseline  
(1 s pre-odor average) for high-level brain regions. CTXsp, cortical subplate; 
HB, hindbrain; OLF, olfactory areas; STR, striatum; TH, thalamus; HPF, 
hippocampal formation; MB, midbrain; HY, hypothalamus. b, Variance 
explained per-cell by upcoming choice at baseline; each dot represents the 
variance explained for a single cell in a given region. c–j, Average variance 
explained per-cell for regressors described in Extended Data Fig. 3c. For all 

panels, bars are averages across neurons within a given region; black lines give 
the 95% distribution of information per cell in a region. Numbers in parentheses  
are unit counts per region. Color codes are according to the Allen Institute 
Mouse Brain Atlas colormap. Dashed lines indicate the circular permutation 
null distribution for a given regressor and region. Regions are ordered by variance 
explained. Note that Fig. 2e shows a subset (only regions with average variance 
explained significantly greater than the null) of data shown in panel c here.



Extended Data Fig. 6 | Conceptual similarities between molecular Langevin 
dynamics and intermixed neural networks. a, The Langevin equation 
describes the dynamics of a diffusing particle in water by transforming the 
unobserved, deterministic, Newtonian dynamics of water molecule collisions 
(green arrows) with the particle (purple) into a noise contribution to the 
particle’s position (bottom). This results in a stochastic description of the 
Brownian motion of the particle (purple arrow). A key feature of this formalism 
in the study of complex phenomena is the separation of unobserved fast- 
timescale dynamics (for example, the motion of water molecules) from the 
observed slow-timescale dynamics of the much larger particle. b, Conceptual 
application of the Langevin formalism to intermixed neural networks with  
fast and slow dynamics. Neurons involved in a distributed network with slow- 
timescale (for example, need-related) dynamics (purple dots) are embedded 
via mixed functional selectivity into additional networks of neurons (black, 
red, green dots) with ongoing, unobserved fast-timescale dynamics (gray, pink, 
light green cycles). By analogy to the Langevin picture of molecular dynamics, 
the activities of networks with disparate fast time-scale dynamics collide 
within individual mixed-selective need-related neurons to produce a stochastic 
noise influence on the slow-timescale dynamics of the need-related network  
of neurons (bottom), yielding observable diffusive goal dynamics. c, Equation 
of motion for the forward stimulation of the resolution of needs, following 
Langevin dynamics. x t( ), position of neural activity across the needs subspace 
at time t. U x( ), the energy landscape function. The new position is the current 

position plus a small differential contribution by the landscape gradient 
(scaled by the gradient scale g ) and Gaussian white noise (scaled by the noise 
scale n). dt, the discretized time step. d, Graphical depiction of how the n and g  
terms contribute to the dynamics. Left, high noise scale n relative to gradient 
scale g  results in noise-dominated dynamics. Middle, balanced scales and 
dynamics. Right, low noise scale n relative to gradient scale g  results in  
dynamics dominated by the landscape shape. e, Equation for the shape of the 
time-varying needs landscape U x t( , ). The landscape consists of a log-sum of 
scaled Gaussian wells. Gaussian wells, xΦ( ), are defined as the negative of the 
multivariate probability density function. For simplicity, well centers µw,µf , 
and µo corresponding to the wells for water, food, and other needs are set on an 
equilateral triangle, and the Gaussian scale parameter controlling the Gaussian 
widths are set to a common parameter σ. The water and food well depths are 
scaled by the time-varying thirst magnitude T t( ) and hunger magnitude H t( ), 
respectively, as well as by a “foraging” scale factor s that linearly relates the 
experimental normalized need measurements to the model need magnitude 
values. f, U x t( , ) changes across time through changes in thirst and hunger 
magnitudes. Thirst and hunger magnitudes are decremented after a fixed delay 
l by factors rw and rf  upon respective water or food reward collection; reward 
choices are determined upon Go-cue at time t′  by the location x t′( ) within a fixed 
segmentation of the need space into food, water, or other zones. See Methods 
for full implementation details.
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Extended Data Fig. 7 | See next page for caption.



Extended Data Fig. 7 | Theoretical and simulated behavioral statistics 
generated by the landscape diffusion model. a, Additional examples of 
behavioral simulations from the landscape diffusion model with parameters 
used for the analyses of Fig. 3. Simulated sessions visualized as licking behavior 
(orange dots, food licks; blue dots, water licks) over the course of a session  
until satiation (grey region) from top (session start) to bottom (session end). 
Lick timing and number are drawn from a uniform distribution for visualization 
purposes. Vertical dashed line, odor onset. b–e, Binned probability of choosing 
food (b, c) or water (d, e), independent of previous reward choice, as a function 
of Thirst and Hunger. b, d, Theoretical predictions (Boltzmann equation) 
derived from the model using parameters fit to trial data (Methods). c, e, Binned 
experimental point probability estimates. f, Theoretical prediction of probability 
of repeating previous reward choice (water-to-water, blue; food-to-food, 
orange) as a function of normalized Thirst – Hunger. Solid dark dots and lines, 
binned point estimates of the self-transition probability for normalized Thirst 
– Hunger values, mean ± 95% confidence interval, based on experimental data 
(n = 15 mice, 22 sessions). Light lines, model-derived theoretical prediction of 
self-transition probabilities, using parameters fit to trial data (Methods). The 
derived equations in b, d, and f are used in the forward model parameter fitting 
procedure to maximize the probability of all observed trial outcomes (Methods). 
g, Probability of choosing food on rewarded trials, independent of previous 
reward choice, as a function of observed relative need (normalized Thirst – 
Hunger; Methods), for experimental data (n = 15 mice, 22 sessions) and simulation 
(128 simulations of 22-session datasets). Solid blue dots and vertical lines, data 
mean ± 95% confidence interval, superimposed on open gray dots, means of 
simulated sessions. h, i, Quantitative agreement between simulated session 
statistics and experimental data. Summary statistics quantified from repeatedly 
performing stochastic simulations (128 times) of a 22-session dataset form a 
distribution of summary statistic values (gray bars), against which two-sided 
tail statistics can be calculated using the experimentally-observed summary 
statistic values (red lines). h, Distribution of slope magnitudes given by linear 
fits between the probability of reward choice and normalized relative needs. 
Red line, observed slope magnitude given by linear fit between experimental 
choice probability and normalized relative need (slope magnitude averaged 

between food and water choice probability fits). The experimentally-observed 
slope magnitude is not significantly different from the slopes computed from 
simulated data (gray bars), P = 0.664. i, Distribution of slope magnitudes given 
by linear fits between the probability of repeating the previous choice on the 
subsequent trial (self-transition probabilities) and the normalized relative 
need. Self-transition probabilities as a function of normalized relative need are 
linearized over the range [–1, 0] for food-to-food and [0, 1] for water-to-water, 
where there are greater numbers of experimental observations. Slope 
magnitudes for food-to-food and water-to-water are averaged together. The 
experimentally observed self-transition probability slope magnitude (red line) 
is not significantly different from those observed in repeated simulation  
(gray bars), tail statistic P = 0.734. j–l, Quantitative agreement between the 
simulated optogenetic experiment and the experimental dataset, focusing on 
the decay of water choice probability following the end of thirst stimulation in 
hungry animals. This statistic is not sensitive to the magnitude of thirst added 
during the stimulation epoch in simulations (since the landscape is assumed to 
have returned to its previous shape following the end of thirst stimulation) and 
therefore depends strongly on the diffusion dynamics. j, Probability density of 
water choices following the termination of optogenetic stimulation. Solid blue 
line, water choice probability in hungry animals performing Buridan’s assay 
based on experimental data. Solid black line, median water choice probability 
across repeated simulated optogenetic stimulation sessions with high hunger 
and low thirst. Exponential decay functions (ae c+bx− ) fit to the experimental 
data, red dashed line, or to each simulation of the experimental dataset,  
light gray lines. Each dataset with 3 sessions and 75 stimulation epochs was 
simulated 128 times. k, l, Distribution of exponential decay function parameters 
a (scale, k), and b (decay, l), fit to the simulated water choice probability data 
(gray bars) with the parameter values from experimental fits superimposed in 
red. Scale and decay parameters two-sided fit from experimental data are not 
significantly different from those fit from simulation, tail statistics P = 0.492 
and P = 0.602, respectively. m, n, Additional examples of behavioral simulations 
from the model as above, except the ratio of the scale parameters on noise and 
gradient in the model has been skewed too high (m) or too low (n), resulting in 
disorganized behavior (m) or overly persistent behavior (n).
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Extended Data Fig. 8 | Additional experimental examples on goal activity 
and decoding analyses. a, Activity along the goal dimension in simultaneously 
recorded neural activity for three additional sessions. Measurements (baseline 
population activities projected onto the goal dimension) are shown per-trial 
for 0–1 s prior to water choices (blue dots), food choices (orange dots), and 
No-Go trials (black dots). Projection magnitude shown in arbitrary units (A.U.). 
Maroon line, projection smoothed by a Butterworth filter for visualization. 
Left, session start; right, session end. Top, corresponding cumulative licks per 
trial for food (orange) and water (blue). b, Predictiveness for upcoming choice 
from population neuronal activity in experiments, fit on a 10-ms resolution. 
Mean, solid line; ± s.e.m., gray area. n = 7 mice, 7 sessions. c, Model prediction 
for baseline persistence of population upcoming-choice predictiveness  
(AUC, receiver operator characteristic area under the curve) on a fast timescale 
(10 ms bins, Methods). n = 7 simulated sessions. d, Decoding performance 
(AUC, y-axis) of current reward from average population firing rates 1–2 s 
post-odor onset surrounding hit trials with behavioral switches (x-axis, trial 
position relative to switch-trial labeled 0). AUC values for all trials for each trial 

position relative to switches are averaged within session. n = 7 mice, 7 sessions. 
Boxplots span lower and upper quartiles of distributions; lines indicate median 
values; whiskers indicate the range of values within 1.5 times the interquartile 
range. Firing rates following reward choice remain highly predictive of recent 
reward identity surrounding behavioral switches. This contrasts with Fig. 4e, in 
which decoding performance of the upcoming choice from baseline activity is 
diminished in trials both before, during, and following behavioral switches.  
e, Schematic illustrating the transformation of population goal activity into a 
probability of upcoming switch. Top, schematized population activity along  
the goal dimension (black line) near a switch (dashed vertical line). As observed 
in Fig. 4e, activity along the goal dimension loses discriminability (AUC towards 
0.5) for reward choices near switches. The magnitude of the distance of the 
goal-activity from the center line (purple arrows) is linearly rescaled into a 
probability of upcoming switch (bottom). Thus, upcoming switches become 
more predictable than chance (Fig. 4i) by transforming the degree of 
indeterminacy of the current population activity (regarding whether the 
upcoming choice will be food or water) into a probability that a switch will occur.



Extended Data Fig. 9 | Comparison between forced and noise-driven 
transition models. Here, we consider whether state transitions could be 
explained by an alternative landscape model in which transitions are forced by 
external input (e.g., from an unobserved neuronal population with distinct 
dynamics), rather than driven by internally noisy dynamics. Near the decision 
boundary, trajectories of a model with forced transitions are different from 
trajectories of a model with noise-driven transitions; non-transition trajectories 
that approach the boundary should only occur in the noise-driven model but 
not in the forced-transition model. We quantified these trajectories in simulations 
of each model and in the experimental neural data. a, b, Schematics contrasting 
the behavior of goal state trajectories near the boundary of food and water 
zones, under a landscape model with (a) externally-forced transitions or  
(b) noise-driven transitions. Green lines, trajectories resulting in a switch 
between food and water zones; purple lines, trajectories that stay in their initial 
zone. Grey region, zone adjacent to the boundary. c, Schematic illustrating the 
analysis approach to differentiate models. d–f, Phase portraits of simulated or 
experimental neural data. The projection onto the goal dimension (position) is 
plotted on the y-axis and the trial-to-trial difference of the projection onto the 
goal dimension is plotted on the x-axis. The trial-by-trial difference in position 
along the goal dimension can be considered as the rate of change of the position 
across the average interval of time between trials, which we denote the velocity. 
Data is plotted as a joint density (2D histogram) of position and velocity values 

for all trials. Purple marks, density of trials with the same reward choice as the 
previous (stay); green marks, density of trials with a reward choice switch. Blue 
area, kernel density estimate (KDE) for transitions to water; orange area, KDE 
for transitions to food. These areas highlight the phase space in which transition 
dynamics occur. d, Simulation results from the forced-transition landscape 
model. Force magnitude was set to be minimally sufficient to cross the decision 
boundary in the average time between two trials, resulting in a state transition. 
Noise magnitude was set to be insufficient to generate spontaneous transitions. 
e, Simulation results from the noise-driven landscape model. d, e, 21 simulation 
runs for each model. f, Phase portrait generated from experimental neural data 
across all recording sessions (n = 7). g–i, Normalized densities of stay (purple) 
and switch (green) trials were quantified in the transition zones (gray squares 
in d–f) through which switch trajectories pass. These zones were defined as the 
boundary regions in the transition trial phase space, lying between the average 
stay-trial food and water densities (at [–0.5, +0.5] with velocity [–0.5, –1.5] for 
transitions to food; and at [–0.5, +0.5] with velocity [+0.5, +1.5] for transitions 
to water). Normalized density quantification in these regions for the forced- 
transition model (g), noise-driven transition model (h) and experimental data 
(i, n = 7 mice, 7 sessions). Mean density in the zone ± 95% confidence interval. In 
both analyses, experimental data (f, i) are consistent with simulations based on 
the noise-driven transition model (e, h) but not consistent with simulations 
based on the forced transition model (d, g).



Article

Extended Data Fig. 10 | Additional analyses of optogenetic perturbations 
during recording. a, b, Modulation of brain regions by optogenetic stimulation 
of SFO Rxfp1+ osmotic thirst neurons. Neurons were defined as significant if 
their mean firing rates during optogenetic stimulation were different from 
their mean firing rates prior to stimulation, two-sided t-test with significance 
threshold P ≤ 0.05, n = 20 stimulation epochs per cell. a, Fraction of cells within 
each region that were significantly modulated by thirst stimulation. Mean ± 95% 
confidence interval. Region labels are color coded by the Allen Brain Atlas 
colormap. b, Modulation of individual neurons (dots) in each region, neurons 
color coded by significance of modulation across multiple stimulation epochs. 
Y-axis, change in firing rates (z-scored across the entire recording session). c, In 
a complementary analysis of the thirst perturbation prior to Buridan’s assay, 
shown in Fig. 4l–o, a thirst-stim axis (difference between average activity during 
and before optogenetic stimulation) is constructed and neural activity from 
the subsequent behavior period is projected onto it in d and e. d, Projection 
onto the thirst-stim axis of baseline population activity preceding water choices, 
for early rewards (first third), middle rewards (middle third), or late rewards (last 
third) in a session. ***, one-sided t-test; early versus mid, t = 21.47, P = 1.21 × 10−86; 
early versus late, t = 11.82, P = 3.96 × 10−24; n = 674 early trials, 511 mid trials, 103 
late trials. Mean ± 95% confidence intervals. e, Projection onto the thirst stim 
axis of baseline population activity preceding food trials (orange) or water 
trials (blue). **, one-sided t-test, t = −2.33, P = 0.01; mean ± 95% confidence 

intervals. In summary (c–e), neural activity characteristic of thirst stimulation 
correlates with behavioral satiety (d) and increases more before water choices 
than before food choices (e). f, g, Analysis of the variability in neural responses 
along the goal dimension upon simulated (f) or experimental (g) optogenetic 
stimulation epochs, related to Fig. 4n,o. Change in activity along the goal 
dimension was averaged in the last two seconds of each stimulation epoch 
across all simulated or experimental sessions. The distribution of these changes 
in activity were visualized as normalized histograms. f, The statefulness and 
indirect influence of needs in the model predict a bimodal distribution (dashed 
lines, two Gaussians fit by a mixture model) of activity changes along the goal 
dimension, with many simulated stimulation epochs not resulting in significant 
change along the goal dimension (left Gaussian). g, In line with the model 
predictions, activity changes along the goal dimension across all experimental 
epochs (n = 61) also followed a bimodal distribution (dashed lines, Gaussians fit 
by mixture model to the experimental data) with many optogenetic stimulation 
epochs yielding no change in goal dimension activity. Arrowheads indicate the 
mean locations of the Gaussians fit to the simulated data. For both simulated 
and experimental data, model comparison (Bayes’ Information Criteria, BIC) 
favored a bimodal distribution over a unimodal distribution (unimodal Gaussian 
fit to simulated data, BIC = 47.966; bimodal Gaussian mixture fit to simulated 
data, BIC = 13.223; unimodal Gaussian fit to experimental data, BIC = 48.374; 
bimodal Gaussian fit to experimental data, BIC = 45.042).



Extended Data Fig. 11 | See next page for caption.
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Extended Data Fig. 11 | Goal-related activity at baseline influences regional 
choice activity after Go-odor onset. We found that persistent goal-related 
information is widely distributed across the brain and precedes external cues 
of reward availability. However, after odor onset, distinct population activity 
patterns arise that further differentiate Go vs. No-Go odors and choices of food 
vs. water (Extended Data Fig. 3). Here, we explore the relationship between 
distributed goal-related neural activity and regional odor-evoked activity 
dynamics by 1) examining activity that distinguishes food vs. water choices 
after Go-odor onset (we term hereafter as “current choice activity”) across 
different brain regions and 2) interrogating whether current choice activity 
might be influenced by the baseline goal-related activity prior to odor onset.  
a, Performance of baseline-subtracted regional population activity for predicting 
choice after Go-odor onset, evaluated per time-bin (AUC). Brain regions are 
sorted according to the first time-bin in which AUC reached half-max (0.75). 
Top, average lick rate across all trials and sessions post-odor onset. Mean, solid 
line; ± 95% confidence interval, shaded area. Region labels are color-coded 
according to the Allen Brain Atlas regional taxonomy and colormap (Extended 
Data Table 1). Note that we used baseline-subtracted regional population 
activity to predict choice after Go-odor onset in order to remove the influence 
caused by the fact that baseline population activities in different regions 
contain different amount of information about upcoming choice (Fig. 2e).  
The earliest regions gained increased predictiveness over baseline at least 
100 ms before the average onset of licking; these regions could play a functional 
role in finalizing behavioral choices or in initiating choice-specific motor plans. 
Some of the earliest regions, including the orbital frontal cortex (OFC) and 
caudoputamen (CP), have been previously described as playing roles in  
value-guided decision making71–73. Cell numbers are in parentheses. Regions 
with fewer than 15 cells were excluded from the analysis. b, Because individual 
cells have mixed selectivity between goal-, odor-, and action-related factors 
(Extended Data Fig. 3), we hypothesized that population variation along the 
goal axis at baseline (pre-odor) could predict variation in baseline-subtracted 
current choice activity dynamics. We therefore analyzed within choice variation 
in the projection of baseline-subtracted population neural activity onto a 
dimension that separates food from water choices in the response period  
(1–2 s post-odor), as a function of the magnitude of the population projection 
along the goal axis (1 s pre-odor epoch, predictive of upcoming choice). 
Projections for water choices (blue lines) and food choices (orange lines) are 
binned into percentile subsets based on per-trial baseline variation along the 

goal dimension. Bin mean, solid line; ± 95% confidence interval, shaded area. 
Vertical dashed line, odor onset. c, Per-reward-trial relationship between 
condition mean-subtracted, baseline goal-related activity and baseline-
subtracted current choice activity magnitudes. Baseline-subtracted activity 
projected along the current choice dimension is summed from 100 ms – 900 ms 
after odor onset (y-axis). Dots, individual trials. Dashed red line, linear fit, 
indicating a significant correlation between fluctuations along the goal 
dimension at baseline and subsequent choice dynamics. d, e, Unlike the current 
choice activity, within-choice variation in baseline goal activity had no effect 
on the timing or intensity of licking towards food or water. This suggests that, 
while variation in the baseline goal-activity within choices may alter odor-evoked 
neural dynamics in the brain, the behavior that ultimately results is categorical 
and has consistent timing regardless of variation in population goal activity. 
n = 7 mice, 7 sessions (b–e). Since different brain regions have different upcoming 
and current choice activity time-courses and dynamics (a), we next analyzed 
whether individual regions might exhibit distinct patterns of modulation by 
baseline goal activity. f, Projections of baseline-subtracted neural activity onto 
the current choice dimension following odor onset (vertical dashed line) for 8 
selected regions, analyzed and visualized as in (b). Top row, example regions 
whose baseline-subtracted current choice activity has faster onset dynamics 
for either food or water choices with high baseline goal activity magnitude vs. 
trials with low baseline goal activity magnitude. Notably, these regions had 
some of the earliest onset of choice predictiveness beyond baseline (a). Bottom 
row, example regions whose baseline-subtracted current choice activity is 
modulated by baseline goal activity late in the response period. Regions with 
fewer than 10 recorded cells per session were excluded from the analysis. The 
different time courses of modulation of regional current choice activities 
suggest that baseline goal-related information may influence distinct brain 
functions related to choice—for instance, combining goal state with information 
about reward availability to finalize response selection (occurring rapidly after 
odor onset), or adding goal context to execution and reward-related activities 
(occurring during licking and reward collection). g, In summary, ongoing 
baseline goal-related population activity (top) may function as an initial 
condition that shapes odor-evoked dynamics (bottom left), coordinating 
regional dynamics such that appropriate behaviors emerge (bottom right) 
despite conflicting needs. For all regional analyses (a, f), see Extended Data 
Table 1 for number of animals and sessions used.



Extended Data Table 1 | Allen Brain Atlas colors/abbreviations of brain regions and cell count for Neuropixels recordings
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Data analysis Data preprocessing: CatGT 3.3, TPrime 1.7,  C_Waves 2.0, Kilosort 3.0, ecephys_spike_sorting 0.2, Phy2. Data analysis: Python code including 
the following open source libraries: Jupyter (1.0.0), IPython (8.9.0), Numpy (1.23.5), Scipy (1.10.0), Pandas (1.5.3), Scikit-learn (1.2.1), Jax 
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Custom Python code related to the neural landscape diffusion model and simulation is available at https://github.com/erichamc/neural-
landscape-diffusion.
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The data from this study are available at https://doi.org/10.6084/m9.figshare.24153348.
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Sample size No sample-size calculation was used to pre-determine sample sizes. Sample sizes were chosen based on prior experience in our labs.

Data exclusions The following criteria were used to determine whether an animal was included in the analysis: (1) The behavioral task was learned adequately, 
with >90% responses withheld during No-Go odors; >90% responses withheld during the 1s before odor onset; and at least 30 rewards 
collected for each of food and water when the behavioral assay was conducted following food and water restriction; (2) Electrophysiological 
recordings had minimal electrical artifacts or other sources of noise; (3) In the case of optogenetic manipulations, animals were pre-screened 
for responsiveness to thirst stimulation when sated in their homecage (in some animals, inadequate viral expression in the target region 
resulted in non-responsiveness to thirst stimulation in homecage and thus led to subject exclusion).

Replication Each animal in the study is an independent experimental replicate performed separately. Results were consistent across animals. Efforts to 
replicate the main phenomena described in this work using a freely moving version of the behavioral assay also succeeded (see Extended Data 
Figure 1).

Randomization Subject randomization by genotype was not applicable, as there was only a single experimental genotype group for each experiment.

Blinding Experimenters were not blinded to experimental conditions during data collection, though data collection was performed automatically. 
Experimenters were blinded to experimental conditions during data analysis.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Animals and other research organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 
Research

Laboratory animals C57BL/6J mice aged 6-24 weeks; C57BL/6J mice aged 6-24 weeks; Rxfp1 em1(cre)Ngai (Rxfp1-2A-Cre) mice aged 6-24 weeks. Animals 
were maintained on a reverse light-dark cycle and standard housing conditions (18-23ºC, 40-60% humidity).

Wild animals The study did not involve wild animals.

Reporting on sex Only female mice were used in this study.

Field-collected samples The study did not involve samples collected in the field.

Ethics oversight All procedures involving mice followed the animal care guidelines approved by Stanford University’s Administrative Panel on 
Laboratory Animal Care.

Note that full information on the approval of the study protocol must also be provided in the manuscript.


	Neural landscape diffusion resolves conflicts between needs across time

	Choice assay for conflicting needs

	Persistent, stochastic choice behaviour

	Large-scale recording during behaviour

	Neural activity predicts upcoming choice

	Forward model for the resolution of needs

	Model recapitulates behavioural data

	Model predicts transition dynamics

	Causal test of model predictions

	Discussion

	Online content

	Fig. 1 Reward choice under conflicting needs is structured by persistent behavioural states with stochastic transitions.
	Fig. 2 Single-unit and population neural correlates of upcoming behavioural choice.
	Fig. 3 Forward model for resolving conflicting needs recapitulates behaviour.
	Fig. 4 Model predicts neural state transition dynamics during natural behaviour and optogenetic thirst induction.
	Fig. 5 Neural landscape diffusion as a framework for the continuous organization of brain states across time.
	﻿Extended Data Fig. 1 Quantification of behavior in Buridan’s assay.
	Extended Data Fig. 2 Unit anatomy and additional data in Neuropixels-based extracellular electrophysiological recordings.
	﻿Extended Data Fig. 3 Further analyses of single neuron and neuronal population activity.
	﻿Extended Data Fig. 4 Firing patterns of example single neurons whose baseline activity correlates with upcoming behavioral choice.
	Extended Data Fig. 5 Regional distribution of regressor information.
	﻿Extended Data Fig. 6 Conceptual similarities between molecular Langevin dynamics and intermixed neural networks.
	﻿Extended Data Fig. 7 Theoretical and simulated behavioral statistics generated by the landscape diffusion model.
	﻿Extended Data Fig. 8 Additional experimental examples on goal activity and decoding analyses.
	﻿Extended Data Fig. 9 Comparison between forced and noise-driven transition models.
	﻿Extended Data Fig. 10 Additional analyses of optogenetic perturbations during recording.
	﻿Extended Data Fig. 11 Goal-related activity at baseline influences regional choice activity after Go-odor onset.
	Extended Data Table 1 Allen Brain Atlas colors/abbreviations of brain regions and cell count for Neuropixels recordings.




