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Foreword

)

In the enormous literature on the foundations of geometry, Ernest Adams
Surfaces and Superposition occupies a unique position. Using standard
mathematical concepts and theorems from point set topology, as well
as psychological theories and results from experiments on perception,
Adams presents an extended philosophical analysis of applications of
topology to our ordinary experience of surfaces in this insightful work.
It is the use of results from mathematics and psychology, while remain-
ing strictly philosophical in method and style, that accounts for this
book’s remarkable depth.

From another standpoint, the present work constitutes an extended
commentary on certain essential features of Euclidean geometry, espe-
cially as systematized in Euclid’s Elements. Using Euclid’s controversial
concept of the superposition of two figures, Adams—with his natural
empirical bent—rightly points out that, although superposition can be
avoided in axiomatic developments of geometry, it is an essential as-
pect of the standard use of measuring instruments in geometry. What
he has to say here is just as important and original as his application of
topological concepts.

There is much else to be remarked on, but I will restrict myself to an-
other major thread of the book. This is the detailed analysis in Chapter
4 of the concept of physical abstraction and the many interwoven re-
marks in later chapters on the problems of giving a proper philosophical
account of the nature of abstraction. I am not sure I fully understand all
aspects of his viewpoint, but I certainly agree with Adams’ criticisms of
what Russell, Whitehead and some other prominent philosophers have
had to say on this difficult subject.

Many readers, not just philosophers, will find much of interest to
think about and reflect on in Surfaces and Superposition. The unsolved
problems that are carefully delineated in numerous passages constitute

xiii
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xiv / SURFACES AND SUPERPOSITION

a worthy challenge to those interested in deepening the foundations of
geometry.

I have known Ernest Adams for more than forty years, in fact since
we were young men together at Stanford in the 1950s. We are separated
by only a few years in age. Almost from the beginning, when he was
writing his dissertation and I was his thesis advisor, I really thought of
him as a younger colleague rather than a student. He listened intently
to comments and suggestions, always holding on to his own independent
and original ways of dealing with philosophical ideas.

Over the years he has contributed to a surprisingly wide range of
topics in philosophy. His doctoral thesis, a contribution to the philosophy
of physics, was on the foundations of rigid body mechanics, remnants of
which appear in the chapter on rigid frames and in other parts of the
book. Beginning in 1956, a year after he completed his thesis, and over
the next decade or so, he wrote a number of papers on utility theory and
game theory. Utility theory, especially, is close to the general theory of
measurement, and already by the mid 1960s he was publishing in this
area as well. Some of his skepticism about overly formal approaches to
conceptual problems came out early in his criticisms of representational
theories of measurement, and echoes are to be found in the present
work. This interest in measurement theory has persisted through the
decades and may be found in his 1992 book, Archaeological Typology
and Practical Reality, on the problems of classification in archeology,
written with his brother William.

Still another important strand of Adams’ philosophical work began in
the 1960s. This is his probabilistic approach to the analysis of conditional
sentences in ordinary language, summarized in his 1975 book on the logic
of conditionals. It is the body of work, to which he is still contributing,
that is probably best known among philosophers.

During the same decade, in 1961, Adams published his first article
on geometry whose title, “The Empirical Foundations of Elementary
Geometry,” already announces the overall theme of the present work.
The many long and substantive articles he has published since on the
foundations of geometry attest to the permanence of his interest. What
is special about the current book is that it has the feeling of a work on
which the author has been reflecting for much of his career. The many
details and leisurely asides, often as historical footnotes, provide the
signs to those of us who know him well that surfaces and superposition
engages him at the deepest level.

PATRICK SUPPES
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Preface

The originally planned subtitle of this work, “Field notes on some ge-
ometrical excavations,” now seems too flippant for so august a produc-
tion as a book. Nevertheless, an archaeological metaphor is in some ways
more fitting for this book’s origins, aims, and methods than the ‘foun-
dational” or ‘architectural’ metaphor that is common for studies in the
‘conceptual underpinnings’ of scientific disciplines. Let us contrast these
metaphors, beginning with the architectural one.

There has been a tendency in the past half century to picture theo-
ries, and geometrical theories in particular, as formal structures whose
superstructures of ‘theorems’ are based on—deduced from—‘primitive’
postulates and concepts that are not themselves deduced from or de-
fined in terms of anything else within the structure. The mathematician
concerned with deductive structure generally ignores the non-deductive,
‘primitive’ side of his subject, but the epistemologist seeking justifica-
tions for its postulates and the meaning of the concepts in terms of which
they are formulated looks for an ‘interpretation’, total or otherwise, that
as it were ‘bolts them to a foundation in the world of facts’.

There are important disagreements as to the nature of the founda-
tions, as to the facts and the bolts that tie theories to them, but in
most cases they seem to have been pictured somewhat like the flat ce-
ment slabs that commonly serve as foundations for small structures. Still
metaphorically, they are formed of undifferentiated ‘matter’, or perhaps
Tractarian ‘objects’ all having the same properties and among which
the same relations apply. Moreover, the discovery that Geometry has an
empirical element makes it natural to suppose that the facts underlying
it have sensory components—sense data, appearances, or the like. Thus,
Russell’s wonderful “The relation of sense data to physics,” in which
the ‘bolts’ that connect the sense data, first to Geometry and then to
Physics, are set-theoretical constructions. Reichenbach’s ‘coordinating
definitions’ are less radical but nevertheless related efforts to connect

XV
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xvi / SURFACES AND SUPERPOSITION

geometrical concepts to concrete things, which in his case were rigid
rods. In each case there was just one kind of concrete ‘fact’, part of an
‘experiential foundation’ secure enough to bear the weight of the theory
built upon it, and entities of the theory are bolted to it by connections of
specified kinds—constructions in one case and coordinative definitions
in the other.

This ‘concrete slab picture’ was the way I conceived things when I
first began these studies, now some 40 years ago. This guided my first
efforts to arrive at an understanding of the role of Geometry in our
dealings with the world, but through repeated efforts to work out the
details I came to regard this as misguided, and to adopt a rather different
attitude, one that is associated with a different metaphor, namely an
archaeological one. This has something in common with the architectural
metaphor.

An architectural foundation supports the building that is built on
it, but it is hidden below or perhaps around the superstructure, which
is naked to the eye. And, the fact that the substructure, the ‘underpin-
ning’, is hidden makes it difficult to map or ‘reconstruct’. It must be
‘unearthed’; as it were, and doing that requires an effort quite unlike
that involved in building its superstructure. And here is the important
point: one should not begin by assuming that the underpinning is like
one kind of common architectural foundation, much less that it has a
single level with a well defined outline. Conceivably it could be like the
roots of a mountain, that stretch down to an indeterminate depth and
outward an indeterminate distance. Or it could be like an archaeological
site that has been occupied and built and rebuilt over for centuries or
millennia. In any case, the archaeologist must excavate, perhaps layer by
layer, perhaps by ‘trenching’, and he cannot predict with any certainty
in advance what he will find. Moreover, what he will find is not likely to
have the order and completeness that is found in the buildings that are
above ground, since even if the buildings that were there in earlier times
had this order, their crumbled remains may only consist of fragments
piled up helter-skelter. Then the archaeologist will begin by compiling
field notes, noting the locations of the fragments, their forms, probable
uses, etc., which may provide the raw materials on which will be based
the report that he eventually hopes to write.

My ‘conceptual excavations’ have not been unlike archaeological ones.
I dug and trenched in ways that initially seemed plausible, and found
myself sifting through ‘conceptual debris’ that I thought might be rele-
vant to my inquiry. I might even have proceeded a la Foucault or Derrida,
and dug into purely linguistic materials, were it not that a hint from Eu-
clid pointed me in another direction. That is the relation of geometrical
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PREFACE / xvii

concepts and propositions to practical procedures. Thus, Proposition 1
of Book I, which is the first demonstrated proposition in The Elements,
is “On a given finite straight line to construct an equilateral triangle”
(Heath, 1925, p. 241), which sounds and is like a culinary recipe. More-
over, the very concepts in terms of which geometrical propositions are
stated are characterized in constructive terms, e.g., parallel lines are
defined as “ ...lines ...that do not meet when they are produced ...”
(Definition 23 of Book I). Of course, following Plato, modern mathe-
maticians reject constructibility in the concrete realm and replace it by
existence in an abstract or ‘ideal’ one, but when we seek ‘Geometry’s
application to the world’ we may not be ill-advised to examine its tech-
nological origins. This seems to me to have enormous implications.

One is that if ‘the facts underlying Geometry’ have to do with how
to do things, then they transcend the static realm of ‘eternal existents’
to which it is generally thought that its truths should correspond. The
other has to do with the things that Geometry instructs us how to
construct. What are those? Take the equilateral triangle of Proposition
1. It is something that is drawn on a plane surface. And what can be
drawn on a surface but a drawing? It is true that this brings us face to
face with the traditional question concerning the function of geometrical
drawings. Are they as Plato had it, only ‘reminders’ of the things that
Geometry is really about, which are in a timeless, ideal realm which has
no necessary connection to the realm of the senses (and is this really so
different from current popular mathematical philosophies)? I think that
if there is any truth in this, it is only in a special sense.

I am going to suppose that while geometrical theory can be regarded
as being about idealized drawings on idealized surfaces, its propositions
inform us about real drawings on real surfaces in somewhat the same way
that the proposition that adding 1 gallon to 1 gallon of water yields 2
gallons of water informs us concerning the result of pouring the contents
of a 1 gallon can of water into a container already containing 1 gallon
of it, even though neither container contains exactly 1 gallon, and what
they contain isn’t pure HyO. Of course, even granting that Geometry
can be used to inform us about practical drawings (e.g., Euclid’s direc-
tions do tell us how to draw real triangles on fairly flat surfaces that
are fair approximations of ideal equilateral triangles), the obvious ques-
tion is: how is it that this discipline plays such an important role in
modern science? Well, at present that lies close to the horizon in my
‘excavations’. What lies more immediately to hand is at a lower and
possibly more primitive level: what are real diagrams, which idealized
geometrical theory supposedly informs us of 7 This question is especially
acute because our findings suggest that real diagrams are not the ‘stuff
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xviii / SURFACES AND SUPERPOSITION

of physical theory’. But I am going to suggest that being clearer about
the ‘stuff of diagrams’ helps to clarify their relation not only to geo-
metrical theory but to physical theory as well. And, we also find more
order than one might expect at this primitive level, that links it first to
applied topology, and via that to Geometry. A brief word about that is
suitable to this preface, if only as a word of warning.

Take a triangle drawn on a flattish surface, perhaps following the
directions given in the demonstration of Proposition 1. A similar triangle
appears below, though, significantly, what

C

actually lies before the reader was printed and not drawn. In any case
it is a figure that itself has features: three solid and fairly straight sides,
and an inside and an outside. Moreover the sides have inner and outer
edges that are themselves fairly straight, and the edges meet at points,
or ‘vertices’. Even putting aside the geometrical idea of straightness
that this brief inventory includes, note the essentially ‘proto-geometrical’
ideas it involves: of edges, of insides and outsides, and of edges meeting
at points. If the ideas of sides and edges enter seriously into geometrical
theory, as they did in The Elements (cf. Proposition 7 of Book I), we
must examine them in the same way Euclid did the crucial concept of
parallelism. And that leads us to Topology, which at least in its origins
as Analysis Situs (Leibniz, 1956, pp. 254-258) aimed to systematize and
examine the logical interconnections among intuitions that underlie our
‘ordinary usages’ of terms like ‘inside’, ‘outside’, ‘boundary’, and so on.
Two points of fundamental importance are connected with this.

One is that an intermediate objective of the theory to be developed
here is to ‘bolt’ topological theory to a foundation in empirical facts and
phenomena, beginning with the most fundamental concepts of Topology,
that of an open space, or an open set. But the distinction between open
and closed spaces, or at least open and non-open spaces, is problematic.
The most obvious fact is that the distinction is not a metrical one, still
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less a geometrical one. For example, the distance between the space
inside the above triangle, which is naturally regarded as an open space,
and the boundary of the triangle, which must be added to it in order to
create a closed space, cannot be measured, nor can it be discerned by
the eye or any other organ of sense. And yet the distinction is crucial to
applied Topology.

This brings us to a rather radical speculation. To make the distinction
in the case of the triangle, we imagine how it was drawn or otherwise
came into being. For instance, if it was drawn or printed on white paper,
then we conceive it to include its boundary points or edges, while its
interior is ‘background’, whose boundary belongs properly to the triangle
and not to the interior. On the other hand, if the paper had originally
been black, and the white ‘interior’ had been printed on that, it would
have included its boundary, and it would have individuated a closed
set. Nor is the distinction between foreground and field entirely ad hoc,
which brings us to the deepest level so far reached in our ‘excavation’.

Take the sides of the triangle that are labelled ‘A’ and ‘B’. How do
we know that they come together at the top of the triangle; in fact, how
do we ‘identify’ them at all? How do we know that the ‘A’ and the ‘B’
label distinct ‘things’, and are not placed adjacent to just one thing: the
whole triangle? Our tentative answer is that we conceive the triangle
as having been formed in a particular way, namely by drawing what
we have been calling its ‘sides’ separately. Moreover, these imagined
‘acts of construction’ not only identify the things constructed, they also
determine their relations of incidence, of touching or being separate. The
details, some of which are discussed in section 2.3, are messy, but they
bring out something of great importance. That is that not only are the
fundamental concepts of applied Topology defined ‘genetically’, but so
are the identities of the very objects to which they apply.!

Summing up what was said above, three levels have so far been
encountered in our excavations, aspects of which will be discussed in
what follows. These are: (1) that of diagrams, which Geometry provides
‘recipes’ for creating and about which it provides idealized information;
(2) the analysis of topological aspects of the diagrams such as interiors
and edges; and (3) ‘genetic’ characterizations of fundamental topologi-
cal concepts, which are linked to the very idea of concrete ‘thing’. Now,
in what follows the discussions of (1) and (3), the diagram and genetic
characterization levels, will remain largely at the ‘field note’ stage. The
discussion of level (2), the analysis of topological aspects of diagrams,

IThe fundamental link between Topology and physical identity should come as
no surprise, given the connection of the latter to continuity, which is a topological
concept.
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will be more systematic. It will set forth a deductive theory whereby,
starting from intersection relations among parts of diagrams like the
sides of the triangle above, one arrives first at points of intersection,
then at open spaces, and then at boundary concepts, dimension, and
linearity, in each case describing ‘operational tests’ for determining, e.g.,
that the surfaces on which diagrams are produced are two-dimensional.
This is the part of the discussion already mentioned, that aims to ‘bolt
abstract topological theory to a world of diagrammatic facts’. However,
the reader is warned that this ‘operational’ theory turns out to be any-
thing but ‘elementary’, and, like topological theory in its early days, it is
still only partially worked out. Our excavation is anything but complete,
even at its most carefully studied level.

And what about levels as yet hardly touched, including connections
with physical geometry—i.e., with the geometrical concepts that enter
into current physical theories? Obviously these theories are not con-
cerned with diagrams; at best diagrams appear as ‘representations’ in
physical papers and treatises. Well, a first, tentative step in that direc-
tion is taken by extending the account of diagrams and figures on the
surfaces of bodies to superpositions of these bodies that result when the
they are fitted together. This in turn leads in two directions: (1) to an
account of spatial measurement carried out with the use of measuring
rods that must be superimposed on objects in order to measure them,
and (2) to an account of the spaces associated with actual and possible
frameworks of fitted together bodies. However, simple as the idea of su-
perposition may seem, the fact that superimposing one body on another
may conceal the very diagrams that were ‘unearthed’ at a lower level
gives rise to new difficulties not unlike ones that result when one level
in an archaeological site has to be disturbed in order to get at a another
one. Given this and other difficulties, our discussion of superposition and
things that one might hope to account for in terms of it, such as spatial
measurement and spaces, remains at the field note level. Still more so
possible connections with geometrical concepts of physical theories, dis-
cussions of which, except for very cursory comments on the relation of
‘superficial signs’ to matter, are dismissed here as being peculiar to the
theories in question.?

2In any event, given the state of modern Physics, it would seem unthinkable to
attempt to account for the geometrical concepts that enter into its theories indepen-
dently of the conceptions of light that they presuppose. And light is a very difficult
concept, as one recognizes in the too often forgotten fact that we do not see images
on the retinas of our eyes, much less the light that falls on them, and in Einstein’s
insight that we cannot follow a light signal. Given this and other difficulties, light
and its properties are left entirely out of consideration here.
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Concluding, I wish to acknowledge the invaluable help and encour-
agement in carrying out the studies reported here that I have received
from individuals and institutions. My greatest debt is to Professor David
Shwayder, who, in the early stages of this work, conducted with me sem-
inars on Space and Time, during which views that evolved in one form or
another into the leitmotifs that inform this study began to take shape.
Moreover, Professor Shwayder has over the years rendered me the most
valuable help that one writer can offer another, namely that of detailed,
careful reading and criticism of the latter’s efforts. Chapters 16-21 of
Professor Shwayder’s Statement and Referent, 1992, sketch his own views
on topics treated here. More detailed expositions have still to appear,
which, together with increasing divergence from my own views, is why
these ideas are not discussed in this book. Professor Vann McGee is an-
other with whom I have had profitable discussions ranging over a very
wide range of topics, including ones touching on space and time. And,
I cannot fail to mention my debt to Professor Patrick Suppes who has
helped and encouraged me in almost all my efforts ever since graduate
school. I should also like to express my deepest appreciation to Dikran
Karagueuzian, the Director of CSLI Publications, as well as members
of his staff who helped in the preparation of this book, Christine Sosa,
Lauri Kanerva, and Max Etchemendy, who prepared the book’s many
diagrams.

As to institutional assistance, I am grateful to the Guggenheim Foun-
dation, the Institute for Advanced Study in the Behavioral Sciences, and
the National Science Foundation for grants and fellowships in support
of the present studies. The present volume is the too long delayed and
all too partial recompense for this assistance.
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Preliminaries
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1

Characteristics of the Approach:
The Case of Points

1.1 Introduction

This study takes some first steps towards the development of a the-
ory of applied Geometry. The goal of such a theory should be to give
‘empirical definitions’ of the fundamental concepts of Geometry such as
“point”, “straight line”. and so on. However, we will make only limited
and probably disappointingly little progress towards that goal, namely
to account for applications of the concepts of point set topology to the
surfaces of material bodies, and the extension of that to superpositions
of these surfaces.

It may seem strange that in order to reach Geometry we should
detour by way of point set topology, given that Geometry is generally
regarded as an elementary mathematical subject and point set topology
uses the full resources of higher-order set theory. But there are com-
pelling reasons for taking this course. In some ways Geometry stands to
its foundation as Arithmetic stands to its foundation, involving as that
does concepts of cardinal numbers and one-one correspondences. The
superstructure, ‘the mechanics of Arithmetic’, is among the first things
learned in school while its ‘underpinning’ in one-one correspondences and
cardinal numbers is learned later, if at all (and it is significant that the
latter science was developed much later than elementary Arithmetic).
So too, ‘probing’ or ‘excavating’ the foundation of elementary Geometry
uncovers ideas that are less elementary than those of the subject for
which they serve as foundation. These include the topological concepts
of a boundary, an interior, a line, of dimension, and so on. But it has
proved to be an arduous enterprise even to relate these ideas to concrete
application, and that, together with ideas relating to superposition, will
be our enterprise in this essay.
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As the reader may already imagine, the way we undertake this en-
terprise will be quite unorthodox, at least in relation to recent trends in
the foundations of Geometry, and this chapter will comment on differ-
ences between it and other works on the foundations of Geometry with
which the reader may be familiar. The following section will note cer-
tain themes that are characteristic of our approach, and contrast them
with more orthodox ideas, and succeeding sections will illustrate them
by giving a brief sketch of their application to the case of points.

1.2 Characteristics of the Approach

Beyond the topological focus, the most basic difference between our
approach to the foundations Geometry and others is that even though
our approach is not specifically Euclidean, it follows Euclid in placing the
theory of the plane (more exactly, the surface) before that of Space and
solids.! In the present case, however, Space with a capital ‘S’ never enters
the picture, and while bodies and their changing relations do, it is by
way of their possible superpositions and fittings together. This allows us
to treat superposition in a Euclidean way, which is more realistic than
Helmholtz’s, and which marks our approach’s most radical departure
from orthodoxy. Let us comment on that at more length.

Euclid has been criticized for giving superposition a role in his theory
e.g., in the proof of the all-important Proposition 4 of Book I of The
Elements, that triangles with two sides and included angle are congruent.
Thus, Russell wrote:

The fourth proposition is the first in which Euclid employs
the method of superposition—a method which, since he will
make any detour to avoid it, he evidently dislikes, and rightly,
since it has no logical validity, and strikes every intelligent
child as a juggle. (The Principles of Mathematics, Second
Edition, p. 405.)

and Hilbert and other modern writers on the foundations of Geometry
prove essentially the same proposition without reference to superposition
(Chapter 11 will return to these points). The author would agree with
Russell on this matter, but at the same time insist on the following point
made by Euclid’s great translator:

11t is notable that concepts of space only enter the picture in Books XI-XIII
of Euclid’s Elements (Heath, 1956, Vol. III). As will be noted below, the theory
developed in this work is restricted mainly to topological aspects of the foundations
of geometry, and its two-dimensional part is compatible with all of the standard
two-dimensional geometries.
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In the note on Common Notion 4 1 have already mentioned
that Euclid obviously used the method of superposition with
reluctance, and I have given, after Veronese for the most part,
the reason for holding that the method is not admissible as
a theoretical means of proving equality, although it may be
of use as a practical test, and thus may furnish an empirical
basis on which to found a postulate. (Heath, 1956, Vol. I, p.
249).

Following Heath, the author would suggest that superposition can be
regarded as a fundamental physical test of geometrical equality, i.e., of
congruence. However, and this is the cardinal point, it cannot serve as the
basis of an empirical theory if it is interpreted in the way Helmholtz does
in his celebrated memoir “On the fact underlying Geometry” (1868),
where it is a relation between three dimensional physical bodies and re-
gions of space. That is both because regions of space are not empirical
observables,?, and because things like material bodies that can be ob-
served cannot be superimposed on one another is such a way as to be
totally congruent, i.e., fill exactly the same space.® But no such objec-
tion applies to coincidences that arise when surfaces are superimposed
and concrete things on them are brought together face-to-face, so long
as those things are not themselves three dimensional physical bodies.
However, the crucial point is that if this is to be possible it requires us
to recognize the existence of certain concrete observables in the external
world that are not physical bodies—certain ‘quiddities’ that transcend
the traditional empiricist mind-body dualism.

Concreta that can fill this role are what we will call surface features,
examples of which include bumps, dents, scratches, sticky spots, and,
preeminently, visible marks and figures like the letter ‘S’ and the hollow
triangle, ‘X’. These are undeniably publicly observable things in the
external world; in fact, they are on the page’s surface, although they are
not parts of it. That they might be material, or collections of material
particles, and therefore be three dimensional, will be considered and
rejected in section 2.2. But the point to make here is that the properties

2That is why we cannot accept Whitehead’s theory of points as arrived at by
processes of extensive abstraction, starting with spatial regions. Analogous objections
apply to mereological theories of spatial ‘structure’; at least so long as they take the
‘parts’ that they deal with to be parts of something like three-dimensional continua.

3The same point was made by Rudolf Hertz in commenting on Helmholtz’s paper,
cf. Helmholtz, 1868, Lowe translation, in Cohen and Elkana, 1977, pp. 43 and 62. But
as stated, Chapter 4 will characterize the physical abstraction relations that subsist
between certain physical observables and abstract spacelike regions with which they
coincide.
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and relations of surface features like these will be the foundation on
which the theory of surface topology to be developed in Parts II and III
of this work rests. As such they will be of fundamental importance for
us, and all of Chapter 2 will be devoted to this metaphysically unfamiliar
kind of ‘thing’, which, because it has no place in the world outlook of
modern science, the reader may be uninclined to take seriously. But it
is hoped that she or he will at least accord them provisional acceptance,
if only to see what this may explain.

Let us then note certain immediate consequences of taking them to
be the fundamental objects of geometrical application.

One is that Geometry is not treated as the science of space 4 la New-
ton, Kant, and innumerable others, and we are led to a relativism that
is even more radical than that of Leibniz. Moreover, the fact that we
treat Geometry as a science of concrete, two-dimensional, and immate-
rial objects implies that we do not treat it as a branch of Physics. In fact,
the problem of characterizing the geometrical concepts that are presup-
posed in the formulations of this or that physical theory, Newtonian,
Einsteinian, or whatever, is regarded as peculiar to that theory.

More generally, not only is our theory non-physical, but we do not
regard Geometry as empirical in the ordinary sense at all. Although
we hold that the primary concrete observables that Geometry applies
to are two dimensional, non-material features of bodies’ surfaces,® we
will also hold that those are not geometrical objects ‘proper’, i.e., they
are not what the variables of geometrical theory range over. Rather,
the relation between geometrical entities and these concrete observables
will be held to be one of abstraction, which is more like the relation
between universals and the particulars that fall under them.® In a way
the relation of Geometry to application is better modeled on that of
Arithmetic to the concrete, as analyzed in Cantor’s work, where natural
numbers are arrived at by a process of abstraction, starting with concrete
objects and moving first to classes that have those objects as members,

4The reader may reasonably ask what relevance this study might have to the
philosopher of Physics who seeks to illuminate the geometrical presuppositions of the
theories that concern her or him. This will be returned to briefly and inconclusively in
Chapter 16, but here it may be said that the present study seeks to make explicit and
analyze things that are part of our common heritage, which are presumably assumed,
possibly unconsciously, in all geometrical thinking, including that of physicists.

5To be sure, it will be held that geometrical entities like points stand in well
defined relations to objects that can be discriminated by the senses, but it will not
be held that they are such objects, or that they are physical in the ordinary sense.

STt follows that on this view, while Geometry can be applied, and accounting
for its applications is one of our principle objectives, applied Geometry is not an
‘interpreted formal system’ after the fashion of Nagel, 1961, Chapter 8, and others.
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but which are not themselves objects in the ordinary sense.

The ‘Cantorian model’ of the relation between abstract mathemati-
cal entities—classes in particular—and concrete particulars is significant
both for the similarity of this relation to the relation between abstract
geometrical entities and concrete ‘sensibilia’; and for important dissimi-
larities. Perhaps the most important similarity resides in the existential
presuppositions of theories of classes and theories of geometrical enti-
ties. That entities having the properties affirmed of classes in the theory
of classes derives from the use in everyday speech of expressions like
“the class of persons born in the United States between 1880 and 1890”.
Usually users of these expressions do not ask whether there exist enti-
ties answering to such descriptions, but it is plausible that the ready
acceptance of Cantor’s Postulate of Abstraction depends on the ubiqui-
tousness of this usage. And, while there is a sense in which this makes
the postulate a priori, its grounds lie in the nature of our linguistic,
rather than in that of our perceptual apparatus.

As to geometrical theory, we shall maintain a similar thesis with
respect to certain postulates of existence that are presupposed in it.
For example, we are accustomed to saying things like “He returned the
book to its place on the shelf” without questioning the existence of an
entity denoted by “its place on the shelf,” but it can be argued that
the ubiquitousness in ordinary speech of usages like this underpins the
sort of abstraction that is fundamental to Geometry. That is what gives
certain principles of Geometry an a priori character, which we will argue
is also synthetic—although not Kantian.

Another similarity between the set-theoretical and the Geometrical
cases is related to the fact that while the ready acceptance of the pos-
tulates of Cantor’s theory derives from their underpinning in ordinary
usage, Cantor regimented that usage for his purposes, specifically for
applications to mathematics. For example, he assumed the atemporality
and extensionality of classes, though neither is presupposed in everyday
usage. Thus, modern set theory does not envisage the possibility that a
thing might belong to a class at one time but not at another, in spite
of the fact that it makes good sense in everyday usage to say things like
“Jones joined the class of millionaires in 1990.” And, in spite of the fact
that the classes of unicorns and of golden mountains are both empty,
ordinary usage does not recognize them as identical. As to Geometry, we
will suggest that its existential presuppositions also regiment ordinary
usage, but in a way that differs from that of the theory of classes.

As said, in our theory geometrical entities will be treated as being
like abstract universals, whose extensions at any one time are Cantorian
classes, more than they are like the classes that are their extensions.
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That points can be regarded as universals arises from the fact that they
are what concrete objects that meet in them have in common. In this
respect they are like abstract colors, which are what objects having
those colors have in common. Furthermore, universals like colors have
both temporal and modal aspects. An object can change color over time,
and an abstract color can exist even if nothing has it, if something could
have it (think of Hume’s imagined shade of blue). Similarly, something
can be at a point at one time but not at another, and there may be
points in space where nothing is; i.e., our spaces are container spaces.

However, our theory of geometrical entities like points will introduce
modality in a special way, namely by way of postulates of constructability
that are closely akin to Euclidean constructability postulates, e.g., that it
is possible to draw a straight line from any point to any point (Postulate
1 of Book I of The Elements, Heath, 1956, Vol. I, p. 195). Note that this
is possibility in this world, and our theory of it will be modeled more
closely on Euclid’s usages than it is on widely known possible worlds
characterizations.

Another important aspect of constructive modality brings us back
to our primary reason for approaching the foundation of Geometry in
a way that allows us to deal realistically with superposition. The most
important use of constructions in Euclid’s theory arises in giving op-
erational tests for geometrical properties, perhaps the most famous of
which is the test for the parallelism of straight lines in the plane, i.e.,
they are defined as lines that do not meet if prolonged (Definition 23
of Euclid’s Elements, Heath, op. cit, p. 154). Thus, we do not tell sim-
ply by looking at them that the lines in the figure ‘~|’ are not parallel;
we demonstrate this by prolonging them, say to form the figure ‘—’, in
which the extended lines do intersect. Similarly, in the proof of the ‘infa-
mous’ Proposition 4 of Book I (Heath, 1956, Vol. I, p. 247), two triangles
are not proved to be congruent by simply inspecting them, but rather
by superimposing one on the other to see whether they coincide. And it
is important that this operation has an empirical side: something has to
be seen, but an active test must be carried out to make that possible.

Finally, returning to the topological theme, we will be concerned with
topological aspects of Euclid’s theory, e.g., as in Definition 3 of Book I
of The Elements, “The extremities of a line are points” (Heath, 1956,
Vol. I, p. 165). With caution, extremities may be equated to boundaries
in the topological sense, but which Euclid left unanalyzed because he
lacked the set-theoretical machinery needed to characterize them in a
precise way. Combined with set-theoretical machinery, which we will
use freely, our constructive approach allows us to do this in the case of
the topologies of surfaces, which also leads to characterizations of other
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topological concepts such as those of an interior, of connectedness (or
continuity), of dimension, and of linearity— though not of straightness,
which is a metric concept. While metrical concepts are discussed at some
length in Chapters 14 and 15, they are not fully dealt with in this work.”

Below we will illustrate the foregoing themes in their application to
points, but let us summarize them first.

First and foremost, because the two-dimensionality of bodies’ sur-
faces makes it possible to characterize their superpositions in a realistic
way, we follow Euclid in taking the surface, rather than the three di-
mensional space, as the point of departure; in fact we never arrive at
a single Space of the kind that philosophies of Physics often seek to
characterize. It follows that the concrete objects of our theory are not
three-dimensional, hence they are not physical in an ordinary sense, and
therefore Geometry, construed as a theory of such objects, cannot be a
branch of Physics. Second, even though applied Geometry may have em-
pirical content it is not an ordinary empirical theory, and it is not even
an interpreted formal system. Rather, geometrical entities like points
are related to concrete observables by abstraction, somewhat as Cantor’s
classes are related to the objects that are their members. However, they
are even more like universals of which classes are extensions than they
are like classes, in that they are temporally variable and non-extensional.
This non-extensionality is related to constructability of the kind that en-
ters into Euclid’s theory, rather than being a possible-worlds concept,
and an empiricist-operationalist program involving it will be returned
to in Chapter 3.

Now we will illustrate the above themes by sketching their application
to the case of points on surfaces.

1.3 Illustrations in the Case of Points on Surfaces

We see that the dot “e” is fairly small, but it is not as small as a single
point; in fact if it were that small it would be too small to be seen. We
also see that the three segments composing the figure X do not meet in
any point while those composing the figure X do. But how do we account
for these things, e.g., for seeing that the segments composing the X have
in common something that is too small to be seen?® For answer, we take

"It will be argued in Chapter 15 that while topologies of bodies’ surfaces and even
of the matter that forms them can be characterized along lines developed in this
work, topologies of spaces cannot be characterized in a similar way.

8The fruitlessness of Euclid’s and others’ attempts to define point, e.g., as “that
which has no part” and as the extremity of a line (Definitions 1 and 3 of Book I of
The Elements, Heath, 1956, Vol. I, p. 153) is suggestive of the difficulties involved in
this concept. Aristotle seems closest to the mark in identifying points with locations
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note of two things: (1) the distinction, emphasized by certain ordinary
language theorists, between seeing and seeing that, and (2) the analogy
between seeing that two segments like those in the figure —| are not
parallel and seeing that the segments in the figure X do not have a point
in common.

In the case of the figure —|, visual observation of the segments forming
it leads to an intellectual conclusion: that carrying out the Euclidean
test for parallelism would establish that the segments are not parallel.
If the horizontal segment were extended it would meet the vertical one,
as in —+. This suggests that we should look for analogous sensory and
intellectual components involved in ‘seeing that’ the segments forming
X do not meet in a common point. But what test might establish this:
that the three segments do not meet in a common point? Euclid did not
describe a test that would be analogous to his test for non-parallelism,’
but we will now describe one, whose properties will be examined at
length in Part II.

Imagine the figure X enlarged as in Figure 1A below:

N

Figure 1A Figure 1B

We still see that the segments in Figure 1A are not coincident, but a
test like the one whose result is pictured in Figure 1B would demonstrate
this. It pictures two ‘auxiliary ovals’ drawn over the left-hand segment,
which cover it in the sense that anything touching the segment would

(“we can make no distinction between a point and the place (76moo) where it is”
(Physics, IV. 1, 299 a 30, quoted from Heath, op. cit, p. 156), but of course location
must still be analyzed. Footnote 9 comments further on this matter.

91t must not be thought that devising such tests is easy. Some writers have re-
garded Euclid’s test for parallelism (Definition 23 of Book I, Heath, op. cit, pp.
191-4), and the associated Postulate 5 (Heath, op. cit., pp. 202-20), as being among
his most important original contributions to geometrical theory. Heath’s discussion
makes it clear that it is by no means self-evident what ‘the right test’ for parallelism
is.
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have to touch one of them,'? while neither oval touches both of the other
segments. Given this, there could not be a point that is common to all
three segments. If such a point existed it would be a point of the left-
hand segment, and therefore it would be a point of one of the ovals that
cover it. But then it couldn’t be a point of both of the other segments,
since neither oval touches both of them. On the other hand, if such a
‘separation test’ were applied to an enlargement of the figure-X, at least
one of the ovals covering the left slanting segment would have to touch
both of the other segments. This would prove the coincidence of the
segments in the same way that failure of the two segments to meet when
extended would demonstrate their parallelism.

There is another important point to note about the separation test.
Because it is complicated it is not self-evident that it really does provide
necessary and sufficient conditions for coincidence. Therefore it is an
important part of the theory of coincidence to justify this test and ones
like it, in the present case by proving that two or more segments meet
in a common point if and only if none of them can be covered with
figures like the ovals in Figure 1B, in such a way that no one of the
covering figures touches all of the given segments. The proofs of many of
Fuclid’s Propositions have the same function, i.e., of showing that the
constructive methods described in these propositions have the properties
required of them, e.g., showing that a triangle constructed by such and
such a method s equilateral, which is what the proof of Proposition I
of Book I does (Heath, op.cit., p. 241).

Another task of the theory is to explore interconnections between
tests for different things. For example, one way of showing that the dot
“e” isn’t as small as a single point is to draw two lines, each of which
touches it, but which don’t touch each other, as in the figure #. If the
dot were as small as a point and both of the vertical segments touched
it, they would have a point in common and therefore they would have to
touch each other. But here we have a second test involving points, and
we would like to know what its relation is to the first one, which seems
to be utterly different. The theory of coincidence seeks to demonstrate
interconnections between such tests, e.g., that any mark that touched
all of the segments forming the figure could also be touched by lines that
didn’t touch each other, as in the figure .

Another thing that the theory of coincidence seeks to do is explain
various intuitions, e.g., that points might be said to have no parts, or

10Section 2.4 points out that the interiors of regions outlined by visible ovals are in
a sense ‘secondary features’, and ‘observing’ that they stand in topological relations,
like covering, to other visible things requires special analysis. But this will be put off
for now.
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that anything large enough to be seen is too large to be at a single
point—although small dots can ‘approximate’ and ‘represent’ them for
this reason, which is connected to the fact that it is hard to draw separate
lines that both touch a dot like “e”.

Various other aspects of a theory of points can be noted briefly. One
is that it involves postulates of constructability that are analogous in
many respects to Postulates 1-3 of Book I of Euclid’s Elements, e.g.
that it is possible to draw a line from any point to any point. This
postulate guarantees the possibility of carrying out an operation that is
involved in many of the proofs in Geometrical theory, e.g., the proof of
Propostion 5 of Book 1 (that the base angles of isosceles triangles are
equal, and so are their complementary angles; Heath, op. cit., p. 251). An
analogous postulate in the theory of coincidence is needed to guarantee
the possibility of drawing the kinds of ovals or similar figures that are
involved in the separation test described above, which demonstrates the
non-coincidence of lines or other figures. In fact, a general Separation
Postulate will be stated as basic principle 6.3.1 in Chapter 6, where the
theory of coincidence is developed systematically.!!

Another aspect of the theory has to do with the justification for af-
firming the existence of abstract points and other geometrical entities,
especially when they are too small or too ‘thin’ to be seen. What jus-
tifies our saying that the segments forming either of the figures 4+ or
X have points in common? It is here that we follow Cantor’s example
and simply postulate the existence of these entities, thus making explicit
what is presupposed in the ordinary use of expressions like “the point of
intersection of the segments.” 2 The postulate is a principle of ‘classical
physical abstraction’ (Adams, 1993), which is a priori in the sense that
it derives from pre-existing usage, and it is synthetic because it depends
in part on the Separation Postulate.!?

As said, the following chapter will discuss these matters in more

1Tt is to be noted that this postulate only requires the possibility of ‘frechand’
drawings, in contrast to ‘ideal’ geometrical figures, which is in keeping with our
topological, ‘pre-geometrical’ approach.

12The most direct geometrical analogue to Cantor’s axiom would be to postulate
the existence of a place at which any thing is at any time, where the exact place of
the thing is appropriately taken to be coextensive with it. Including points in the
category of places (or at least of locations) is a further step, since they are too small
to be the exact places of any concrete things. Footnote 8 suggests that Aristotle may
have done this, and section 4.6 will comment on extending the range of the abstract
beyond what is instantiated in the concrete.

13By contrast, so far as I am aware the synthetic aspect of Kant’s a priori had to
do with the qualities of ‘phenomena’, and nothing to do with what can or cannot be
constructed in the real, ‘noumenal’ world. But perhaps Kant would have held that
what we are calling surface features are in the phenomenal world.
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detail, but let us turn to other matters first.

1.4 Relevance to Geometry

The reader may wonder what the foregoing considerations and the theory
to be built on them have to do with the science of Geometry. Since Plato
we have been taught that diagrams like Figures la and 1b are mere
‘visual representations’ of real geometrical objects. Thus, in the Meno
Plato held that Geometry is not concerned with visual diagrams, or as
Wedberg put it, he held that “There are no truly Euclidean objects in
the sensible world” (Wedberg, 1955, p. 49). More generally, Plato held
that

...no one who has even a slight acquaintance with geometry
will deny that the nature of this science is in flat contra-
diction with the absurd language used by mathematicians
... They constantly talk of ‘operations’ like ‘squaring’, ‘ap-
plying’, ‘adding’, and so on, as though the object were to
do something, whereas the true purpose of the whole sub-
ject is knowledge—knowledge, moreover, of what eternally
exists, not of anything that comes to be this or that at some
time ... (Chapter XXVI, §2, of The Republic, p. 244 of the
Cornford translation).

Of course, mathematicians no longer use ‘absurd words’ like ‘apply’
in the way that Euclid used them, e.g., in the proof of Proposition 4
of Book I of The Elements, which states that triangles are congruent if
two sides and their included angles are equal (Heath, op. cit., p. 247).14
But the theory developed here will be non-Platonic, and it will be sup-
posed to apply to visible figures, which are not supposed to be mere
representations of something else.®

But even supposing that our theory applies literally to Figures 1a and
1b and others like them, it isn’t clear that they are objects of geometrical
theory. We have already set aside the geometrical aspects of theories of
Physics (e.g., Newtonian or relativistic mechanics) as being special to
those theories, but are these not the empirical applications of Geometry?

14Note that Hilbert took substantially this proposition without proof, as an axiom,
namely Axiom IV.6, on p. 15 of the Townsend translation of The Foundations of
Geometry, 1902. But as will be pointed out in section 11.1, even as late as the middle
of the last century, geometry texts like Legendre’s celebrated Eléments de Géométrie
continued to speak of ‘applying’ figures.

151n fact, in some ways our approach fits in better with Berkeley’s characterization
of abstract ideas as particulars that are ‘rendered universal’ by the fact that we
suppose that certain things that are true of them are true of all figures like them (cf.
section 15 of the Introduction to On the Principles of Human Knowledge).
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It might seem that whatever is left over after those aspects have been set
aside are things of naive, everyday speech such as what might be referred
to as ‘the edge of the field’, to which the rules of thumb of carpenters,
surveyors, and others unversed in modern physical theory (and perhaps
classical geometry as well) apply. But that would be too simple.

Even in ancient Greece persons applying Geometry had little use for
theory. As Plato said “...for such purposes a small amount of geome-
try and arithmetic will be enough” (p. 243 of Cornford translation of
The Republic; the purposes that Plato referred to were applications in
‘warlike operations’). But he did hint that theory is useful in attaining
exactitude. For instance, commenting on the place of astronomy in the
education of the Guardians, he wrote:

...we must use the ... heavens as a model to illustrate
our study of those realities, just as one might use diagrams
exquisitely drawn by some artist like Daedalus. An expert
in geometry, meeting with such designs, would admire their
finished workmanship, but he would think it absurd to study
them in all earnest with the expectation of finding in their
proportions the exact ratio of any one number to another.
(p. 248 of Cornford translation, my italics).'6

Exactitude is suggestive. Actual diagrams are not drawn by ideal
artists and they do not exactly conform to Euclidean specifications. Nor
did Euclid attempt to explain how the theory developed in The Elements
applies to things that don’t exactly conform to these specifications. Ap-
plying the theory was largely a matter of following rules of thumb, and
to some extent this is still the case. But the theory developed in the
present essay aims to explain these applications in part, as the example
of geometrical points illustrates. Thus, it explains why small dots are not
geometrical points, but the smaller they are the closer they come to in-
stantiating points because they come closer to satisfying the requirement
that any two things that touch them must touch each other.

In some ways lines furnish a better example. Again, no observable
thing, even a two-dimensional feature on a surface, is thin enough to
be a geometrical line, but it follows from the theory developed in Part
I1, especially in Chapter 10, that the edges of observable things like the
long rectangle below are one-dimensional:

16The ‘realities’ referred to were the general laws of motion, both celestial and
terrestrial, which were little understood in Plato’s time. The author’s article “Ide-
alization in applied first-order logic” (Adams, 1999) discusses a ‘Platonic model’ of
the relation between inexact empirical theories and the idealized models in terms of
which they are often formalized in first-order logic.
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Chapter 10 proves this by developing a Platonic conception of an
‘ideal line’ that a concrete thing may ‘partake of’, which we characterize
here as being topologically homeomorphic to the ideal line. The theory
developed in Part III even goes some way beyond this, in the direction of
characterizing straightedges and straightness (cf. section 14.2), which is
a part of the theory of superposition. This is fundamental to Fuclidean
metrology, and, concluding this section, we will make two comments
concerning its relations both to Geometry and to a branch of modern
science.

To superimpose one figure on another is essentially to ‘apply’ one
to the other in the sense intended, for instance, in the proof mentioned
above of Proposition 4 of Book I of The Elements. Analyzing this oper-
ation is a first step towards a full-scale analysis of the metrical concepts
of Geometry, and while this essay only goes a short way towards doing
this, it does solve certain ‘philosophical’ problems that exercised classi-
cal thinkers, which are beginning to receive attention once again. These
concern the idea of bodies having common boundaries or faces. Ancient
Greek philosophers, e.g., Sextus Empiricus (cf. Mates, 199., p. ) as well
as modern writers (e.g., Stroll, 1988, Zimmerman, 1996) have puzzled
over the question: when two physical bodies are superimposed face-to-
face, do the faces that were separate before they were superimposed
become fused into one? If they do then the whole bodies ‘become one’
by fusing into a single body, while if they do not fuse then they must
still be separate, and therefore they haven’t really been superimposed.
The solutions that are offered to this and related problems in Part III
are given in terms of composite surface topologies which are formed from
the surface topologies of their components when they are superimposed.
This is too complicated to describe at this point, but the essential point
is that the faces that were separate originally, and the features on them,
retain their identities when they are superimposed, but the topological
spaces that are generated as a result of their being superimposed are
somewhat complicated extensions of the component spaces, which are
described in detail in Chapter 12.

Superposition is important for another reason. Theories of visual per-
ception, like those of Locke or of Marr, 1982, tend to suppose that visual
images ‘resemble’ surface features such as the long rectangle pictured
above, and these resemblances provide ‘our knowledge of the external
world’. Typical of the problems that arise in this approach is that of
explaining how, if all we are ‘given’ are two-dimensional visual images,
we arrive at the idea that ‘the world’ is three-dimensional. The fact is
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that what we perceive by sight are features on surfaces, like the long
rectangle, but ‘transferring’ them to mental images leaves out some-
thing crucial. Surfaces and their features can be superimposed, and the
facts of superposition are what actually inform us both of spatial di-
mensionality and of metrical facts, but ‘superpositional facts’ are not
transferred to mental images. This is discussed in Chapter 17, which is
the penultimate chapter of this essay, and it suggests that visual percep-
tion theorists should pay much closer attention to superposition than
they have heretofore.
A final point about our overall program is as follows.

1.5 An Empiricist-Operationalist Program

As said earlier, The Elements develops a largely constructive-operational
program that defines and analyzes interconnections between concepts of
elementary geometry. For instance, Definition 23 of Book I characterizes
parallelism as the property of straight lines of not meeting when they
are extended or ‘produced’ (Heath, 1956, Vol. I, p. 165), and Proposition
1 of Book I describes a method for constructing an equilateral triangle
on a given base (Heath, op. cit., p. 241). The present work applies the
operational approach to the topological concepts that underpin geom-
etry, e.g., that of an extremity, which enters in Definition 3 of Book I
of The Elements, namely “The extremities of a line are points” (Heath,
op. cit., p. 153).

The present work seeks to give operational definitions that link topo-
logical concepts directly to empirical observables, and specifically to the
surface features that were discussed in section 1.2. Hence our program
may be said to be ‘operational’, and it is akin in spirit to P.C. Bridg-
man’s old program for analyzing concepts of Physics.!” This has already
been illustrated in the case of the concept of coincidence, as applied to
the figures X and X, in the first of which the segments meet in a point,
and in the second of which they do not. Figure 1B pictured the result of
carrying out an operation in which one of the segments of Xis covered
by ovals, the upshot of which is to prove that the three segments are
not coincident. This procedure is operational and the ovals that are pro-
duced are surface features that are observed by sight, hence it fits into
an empirico-operationalist program. This work will extend the method
to more properly topological concepts, including ones mentioned earlier,
of a boundary, continuity, dimension, and linearity, as well as the most

17Cf., “...the concept is synonymous with the corresponding set of operations. If
the concept is physical, as of length, the operations are actual physical operations,
namely those by which length is measured ...” (The Logic of Modern Physics, 1927,
p. 5).
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fundamental topological concept, beyond that of a point, namely that of
an open set. Both the operational definitions and their justifications and
interrelations are complicated, and details will be set forth at length in
Part II, which is inspired by if not modeled on the pattern of Euclid’s
Elements.

But we must note a serious limitation.

1.6 The Problem of Appearance and Reality

The triangle in Figure la appears to divide the page on which it appears
into an ‘inside’ and an ‘outside’, and the constructive proof of this is to
verify that any continuous line drawn from one side to the other must
cross at least one of the triangle’s sides.!® Now, a doubtful reader could
try to verify the impossibility of doing this by actually trying to draw
such a line, but would failure to do so after repeated efforts really prove
that that would be impossible? Failure might only show that the reader
was too unskillful, or too clumsy, or be using drawing instruments that
are too crude. Can we ever really prove a physical impossibility—that
something can’t be done? For answer, we will proceed as follows.

What we will take for possibility is the appearance of possibility.
Our ‘datum’ will be the fact that it appears to be impossible to draw a
continuous line from the inside to the outside of the triangle in Figure 1a,
and our theory will concern interconnections between these appearances.
That is what will give it, and we would argue give classical geometry as
well, its empirical aspect.

But the appearance is itself an idealization that may not correspond
to reality, and this is closely connected with another kind of idealization.
Although it looks as though it would be impossible to draw a continuous
line from the inside to the outside of the triangle, closer inspection—say
under a magnifying glass—might reveal that the lines forming the tri-
angle’s sides were nothing but closely packed dots—‘pixels’. Still closer
inspection would certainly reveal that the dots themselves were assem-
blages of smaller particles whose light-reflecting properties created the
appearance of continuity. In any case, though, it should be possible to
‘thread ones’ way’ among the particles from inside to outside in such a
way as to avoid touching any of them. The ‘reality’ would conflict with
the appearance, and how are we to deal with that? The answer is to
stick resolutely with the appearance, while admitting that to speak of
‘the’ appearance is a gross oversimplification. And, we would suggest

18 This topological version of Pasch’s Axiom can be regarded as a special case of the
Jordan Curve Theorem (Courant and Robbins, 1941, pp. 244-246). It is also closely
related to the test for a one surface feature to cover the boundary of another that is
described in Theorem 8.2.2 of section 8.2 of the present essay.
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that the practical application of classical geometrical theory also deals
with simplified appearances, e.g., that it should be possible to draw a
straight line from any point to any point. These and similar claims are
idealizations, but the very fact that they are about appearances is part
of what gives geometrical theory an empirical aspect. However, we can
always ask: what is their relation to reality?

This question has plagued philosophers and philosophically inclined
physicists from ancient times to the present. Plato held that the objects
of science, and especially of geometry, are accessible only to thought, and
not accessible to sensory observation. Descartes held that the senses are
only guaranteed to yield veridical information about the external world
when they consist of clear and distinct ideas, whose validity is guaranteed
by a benevolent deity whose own existence must be inferred by pure
reason. Leibniz held that geometry is not the science of absolute Space,
but rather of relations between material entities (4 62 of the Fifth Letter
to Clarke), but he neglected their surfaces. Berkeley and others following
him (e.g., Reid, Mach) hold that the proper entities of science are ‘ideas’
that are directly accessible to observation, but are not material. And,
Kant held that the geometrical content of our ideas conforms to laws of
our own perceptual apparatus that have no counterpart in the external
world. None of these views accords a place to the ‘appearances’ that
concern us here, of bodies’ surfaces and their features, so it appears that
learned opinion is against us. On the other hand, the diversity of these
opinions suggests that the door may be open to other approaches, and
in particular to one that is inspired by the status of diagrams like Figure
la, or those that appear in the planar books of Euclid’s Elements.

But of course, treating diagrams as appearances does not resolve
the old appearance and reality problems that Plato et. al. attempted to
solve. Appearances are appearances, and how can we claim that surface
features like Figure la are publicly observable if they only appear to
certain people under certain circumstances? How can we claim that they
are ‘out in the external world’, in the same places as bodies are, if they
are mere appearances and bodies are ‘really there’? To hold this seems to
start down Berkeley’s slippery slope towards holding that appearances
are all that we have knowledge of, and bodies are mere congeries of them.

Well, any epistemologist knows that these are tremendous questions,
and the author does not pretend to be an epistemologist. He can only
forthrightly admit that these difficulties lie on the road ahead. But that
is far ahead, and they will only be reverted to in the last two chapters
of this essay. In the meantime we will simply ignore them, and pretend
that we can all ‘see’ Figure 1, and that it lies on a particular page of
this essay.
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The following chapters turn to details, but let us first briefly sum-
marize the themes to be dealt with in them.

1.7 Summary of Themes of Following Chapters

The remaining chapters of Part I will develop the ideas just discussed
in more detail, but still informally. Part II presents a deductive theory
of the topologies of the surfaces of bodies, which defines abstract points
and open sets in these spaces in such a way as to ‘coordinate’ them
with concrete observables on these surfaces, and in terms of this it ar-
gues for the surfaces’ two-dimensionality, the one-dimensionality of the
observables’ boundaries, and other intuitive surface properties.

Part IIT extends the discussion to consider properties of the ‘compos-
ite topologies’ that result when one surface is superimposed on another,
or several surfaces are ‘fitted together’. Classical paradoxes of superpo-
sition like the ‘fusion problem’ described above are resolved, and new
concepts like orientability are brought into the picture. A static and rela-
tional concept of rigidity is introduced, that holds between bodies if they
can only be fitted together in ‘minimum’ numbers of ways. Although the
development is informal and not worked out in detail, this suggests a
way of building on the theory developed in Part I, to define topologies
of ‘frameworks’ consisting of bodies that are rigidly fitted together.

Part IV consists of unsystematic remarks on two further ramifica-
tions of the present investigation. Chapter 16 is concerned with rela-
tions between the present theory and modern physical theory, which
are difficult to define because of the fact that even Newtonian physics
deals with material bodies in ‘absolute space’, whereas the present in-
vestigation is primarily concerned with non-material features of bodies’
surfaces, and certain relative spaces that are defined by rigid frame-
works that these features define. Nevertheless, it is suggested that there
are at least two important connections between these realms. One has
to do with measurement, which is essential to the application of physical
theory, but which at its simplest must be carried out by ‘applying’—
superimposing—measuring rods to the bodies with which physical the-
ory is concerned. The other has to do with matter, which is the ‘sub-
strate’ of which bodies are formed, but which can be ‘recognized within
the bodies’ by the kinds of marks that appear on their surfaces.

Chapter 17 discusses very briefly connections between the present
theory and certain theories of perception, both in philosophy and psy-
chology, that derive from the fact that the visual images that figure in
these theories closely resemble surface features like the star ¢ X ’, which
we argue are ‘in the external world’. In fact, we very tentatively suggest

Copyright © 2001 CSLI Publications. To purchase, click here.



http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/00/14394.ctl

20 / SURFACES AND SUPERPOSITION

that adding non-material but external and publicly observable surface
features to traditional empiricism’s mind-body dualism may contribute
to solving skeptical difficulties associated with this dualism. Chapter 18,
the final chapter, gives a still briefer résumé of the aims and claims of this
work, followed by inconclusive comments on six important objections to
its principal themes.

Concluding, it must be emphasized that the only systematic, in fact
deductively organized, part of this work is Part II, which describes
an ‘empirico-operational foundation’ for an application of present day
mathematical topology (especially point-set topology) to the surfaces of
material bodies. Part I deals informally and unsystematically with var-
ious ‘leitmotifs’ that guide the deductive theory in Part II, especially
its foundation in an unfamiliar ontological category of ‘objects’, namely
two-dimensional and non-material ‘features’ of the surfaces of bodies,
and principles of abstraction analogous to those of Cantor’s theory of
sets, which are presupposed in moving from the level of concrete sur-
face features to abstract entities, especially points, that are instantiated
in them. Part III is a largely informal sketch of how the theory devel-
oped in Part IT might be extended to describe the ‘composite surface
topologies’ that are formed when the surfaces of two or more bodies are
superimposed, which, arguably, makes it possible to account for metrical
concepts of ‘geometry proper’, such as length and distance. Part IV con-
sists of still more informal reflections on ‘applications and implications’
of the ideas developed in Parts I-III for modern science, specifically
Physics and theories of perception in Psychology. These remarks can at
most provide ‘food for thought’ to students whose primary interests are
in these subjects, and the author can only say in his own defense for
including them is that these are the topics in which he was originally
interested, and it was by prolonged reflection on them that he was led
to the views expounded here.
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