
Copyright notice: Excerpted from Implementing Typed Feature Structure
Grammars by Ann Copestake, published by CSLI Publications. ©2001 by CSLI

Publications. All rights reserved. This text may be used and shared in accordance
with the fair-use provisions of U.S. copyright law, and it may be archived and

redistributed in electronic form, provided that this entire notice, including
copyright information, is carried and provided that CSLI Publications is notified

and no fee is charged for access. Archiving, redistribution, or republication of this
text on other terms, in any medium, requires the consent of CSLI Publications.

LKB User Manual
(excerpted from Implementing Typed Feature Structure Grammars)

Ann Copestake

ISBN: 1-57586-260-3

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

6

LKB user interface

In this chapter, I will go through the details of the menu commands
and other aspects of the graphical user interface. The default LKB top
menu window has six main menus: Quit, Load, View, Parse, Debug
and Options. If you select Options / Expand menu, you will obtain
a menu which has nine main menus: Quit, Load, View, Parse, MRS,
Generate, Debug, Advanced and Options. The expanded menu also
makes more submenus available, and makes minor changes to one or
two of the basic submenus. You can revert to the basic LKB top menu
window with Options / Shrink menu.

The first section in this chapter describes the commands available
from the LKB top menu, while subsequent sections describe the windows
which display different classes of LKB data structure, which have their
own associated commands. Specifically, the sections are as follows:

1. Top level commands. Describes the commands associated with
the menus and submenus in the order in which they appear in the
expanded LKB top menu window. Items which are only in the
expanded menu are marked by ∗.

2. Type hierarchy display
3. Typed feature structure display
4. Parse output display
5. Parse tree display
6. Chart display

All the data structure windows have three buttons in common: Close,
Close all and Print. Close will close the individual window, Close all
will close all windows of that class — e.g., all type hierarchy windows etc.
Print produces a dialog that allows a Postscript file to be output which
can then be printed. Printing directly to a printer is not implemented
yet.

163

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

164 / Implementing Typed Feature Structure Grammars

Most commands that produce some output do so by displaying a
new window. A few commands output short messages to the LKB in-
teraction window. A small number of less frequently used commands
send output to the standard Lisp output, which is generally the emacs
common-lisp or *shell* buffer, if the LKB is being run from emacs,
and the window from which the LKB was started, if emacs is not being
used. These commands are all ones from which a large amount of text
may be produced and the reason for outputting the text to an emacs
buffer is that the results can be searched (it is also considerably faster
than generating a new window).

Very occasionally it is useful to be able to run a command from the
Lisp command line (i.e., the window where prompts such as LKB(1):
appear, which will be the same window as the one displaying the stan-
dard Lisp output). This is easier to do using emacs, since commands
can be edited.

Because the LKB system is under active development, some minor
changes may be made to the commands described here and additional
functionality will probably appear. Documentation for any major mod-
ifications will be available from the website.

6.1 Top level commands
The top level command window is displayed when the LKB is started
up. In this section the LKB menu commands will be briefly described in
the order in which they appear in the expanded interface. Commands
which are only in the expanded menu are indicated by ∗. To switch
between versions, use the Shrink menu or Expand menu commands
under Options.

6.1.1 Quit
Prompts the user to check if they really do want to quit. If so, it shuts
down the LKB.

6.1.2 Load
The commands allow the loading of a script file (see §4.5.1 and §8.2)
and the reloading of the same file (normally this would be done after
some editing). A script is used initially to load a set of files, and can be
reloaded as necessary after editing.
Complete grammar This prompts for a script file to load, and then
loads the grammar. Messages appear in the LKB interaction window.
Reload grammar This reloads the last loaded script file. Messages
appear in the LKB interaction window.

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

LKB user interface / 165

Other reload commands∗ The other reload commands are for reload-
ing parts of the grammar — they should not be used by the inexperi-
enced, since under some conditions they will not give the correct be-
haviour. If something unexpected happens after using one of these com-
mands, always reload the complete grammar.

6.1.3 View
These commands all concern the display of various entities in the gram-
mar. Many of these commands prompt for the name of a type or entry.
If there are a relatively small number of possibilities, these will be dis-
played in a menu.
Type hierarchy Displays a type hierarchy window.

Prompts for the highest node to be displayed. If the type hierarchy
under this node is very large, the system will double-check that you want
to continue (generally, large hierarchies won’t be very readable, so it’s
probably not worth the wait). The check box allows ‘invisible’ types,
such as glbtypes, to be displayed if set. Details of the type hierarchy
window are in §6.2.
Type definition Shows the definition of a type constraint plus the
type’s parents.

Prompts for the name of a type. If the type hierarchy window is
displayed, scrolls the type hierarchy window so that the chosen type is
centered and highlighted. Displays the type’s parents and the constraint
specification in a TFS window: details of TFS windows are in §6.3.
Expanded type Shows the fully expanded constraint of a type.

Prompts for the name of a type. If the type hierarchy window is
displayed, scrolls the type hierarchy window so that the chosen type
is centered and highlighted. Displays the type’s parents and the full
constraint on the type.
Lex entry The expanded TFS associated with a lexical entry (or parse
node label or start structure etc). The command is used for entries other
than lexical entries to avoid having a very long menu.

Prompts for the identifier of a lexical entry (or a parse node label or
start structure). Displays the associated TFS.
Word entries All the expanded TFSs associated with a particular or-
thographic form.

Prompts for a word stem. Displays the TFSs corresponding to lexical
entries which have this stem.
Grammar rule Displays a grammar rule.

Prompts for the name of a grammar rule (if there are sufficiently few
rules, they are displayed in a menu from which the name can be chosen),

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

166 / Implementing Typed Feature Structure Grammars

displays it in a TFS window.
Lexical rule Displays a lexical or morphological rule.

Prompts for the name of a lexical rule (if there are sufficiently few
rules, they are displayed in a menu from which the name can be chosen),
displays its TFS in a window.
All words∗ Displays a list of all the words defined in the lexicon, in
the emacs *common-lisp* buffer (if emacs is being used), otherwise in
the window from which the LKB was launched.

6.1.4 Parse
Parse input This command prompts the user for a sentence (or any
string), and calls the parser (tokenizing the input according to the
user-defined function preprocess-sentence-string, see §9.3). A valid
parse is defined as a structure which spans the entire input and which
will unify with the TFS(s) identified by the value of the parameter
start-symbol, if specified (i.e., the start structure(s), see §4.5.6 and
§4.2). (Note that *start-symbol* may be set interactively.) If there
is a valid parse, a single window with the parse tree(s) is displayed (see
§6.4).

It is sometimes more useful to run the parser from the Lisp com-
mand line interface, since this means that any results generated by post-
processing will appear in an editor buffer and can be searched, edited
and so on. It may also be useful to do this if you have to use emacs to
enter diacritics. The command do-parse-tty is therefore available —
it takes a string as an argument. For example:

(do-parse-tty "Kim sleeps")

The normal graphical parse output is produced.
Redisplay parse Shows the tree(s) from the last parse again.
Show parse chart Shows the parse chart for the last parse (see §6.6).
Batch parse This prompts for the name of a file which contains sen-
tences on which you wish to check the operation of the parser, one
sentence per line (see the file test.items in the sample grammars). It
then prompts for the name of a new file to which the results will be
output. The output tells you the number of parses found (if any) for
each sentence in the input file and the number of passive edges, and
gives a time for the whole set at the end. This is a very simple form
of test suite: vastly more functionality is available from the [incr tsdb()]
machinery which can be run in conjunction with the LKB (see §8.13).
Compare∗ This is a tool for treebanking: it displays the results of the
last parse, together with a dialog that allows selection / rejection of rule

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

LKB user interface / 167

applications which differ between the parses. It thus allows comparison
of parses according to the rules applied. It is intended for collection of
data on preferences but can also be useful for distinguishing between a
large set of parse results. Specifying that a particular phrase is in/out
will cause the relevant parse trees to be indicated as possible/impossible
and the other phrases to be marked in/out, to the extent that this can
be determined. The parameter *discriminant-path* can be set to
identify a useful discriminating position in a structure: the default value
corresponds to the location of the key relation in the semantic structure
used by the LinGO ERG.

The treebanking tool is under active development at the time of
writing, and so a full description is not given here. Documentation will
be made available via the LKB webpage.

6.1.5 MRS∗
The MRS commands relate to semantic representation, but they assume
a particular style of semantic encoding, as is used in the LinGO ERG.
The grammars discussed in this book use a simplified version of MRS.
MRS is briefly discussed in §5.4 and §8.11. MRS output can be displayed
in various ways by clicking on the result of a parse in the compact parse
tree representation (see §6.4) or displayed in the main editor window
(*common-lisp* buffer or Listener), as controlled by the Output level
command below. The parameterisation for MRS is controlled by various
MRS-specific files, discussed in §8.11.
Load munger The term munger refers to a set of rules which manip-
ulate the MRS in application-specific ways. Loading a new set of rules
will overwrite the previously loaded set. Most users should ignore this.
Clear munger Deletes the munger rules.
Output level Allows the user to control the MRS output which is sent
to the standard Lisp output (an emacs buffer, if emacs is being used).
This command is provided since with large structures it is often more
convenient to look at MRS output in emacs rather than in the MRS
windows displayed by clicking on a tree in the parse output window.
The default output level is NONE, but this may be changed by the
grammar-specific MRS globals files.

• NONE
• BASE: a bracketed representation of the tree, plus an underspeci-

fied MRS, generally quite similar to the TFS representation.
• SCOPED: the scoped forms corresponding to the underspecified

structure produced by the grammar. If no scoped forms can be
produced, warning messages are output. If there are a large num-

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

168 / Implementing Typed Feature Structure Grammars

ber of scoped forms, only a limited number are shown, by de-
fault. Because scoping can be computationally expensive, there
is a limit on the search space for scopes: this is controlled by
mrs::*scoping-call-limit*.

6.1.6 Generate∗
The generator was described in §5.4 and a few more details are given
in §8.12, but is currently in a fairly early stage of development. It
operates in a very similar manner to the parser but relies on the use
of flat semantics such as MRS, thus it will only work with grammars
that produce such semantics. Before the generator can be used, the
command Index must be run from this menu. Alternatively, the script
can include the command:

(index-for-generator)

At the moment, there is no interactive way of entering an MRS input
for the generator other than by parsing a sentence which produces that
MRS and then choosing Generate from the appropriate parse window.
Redisplay realisation Redisplays the results from the last sentence
generated.
Show gen chart Displays a window showing a chart from the genera-
tion process (see §6.6). Note that the ordering of items on the chart is
controlled by their semantic indices.
Load heuristics Prompts for a file which should contain a set of heuris-
tics for determining null semantics lexical items (see §8.12).
Clear heuristics Clears a set of heuristics, loaded as above.
Index Indexes the lexicon and the rules for the generator. This has
to be run before anything can be generated. Any error messages are
displayed in the LKB top window.

6.1.7 Debug
Check lexicon Expands all entries in the lexicon, notifying the user
of any entries which fail to expand (via error messages in the LKB top
window). This will take a few minutes for a large lexicon. An alternative
for small grammars is to have the command

(batch-check-lexicon)

in the script file.
Find features’ type∗ Used to find the maximal type (if any) for a list
of features (see §3.5.8 for a discussion of maximal types). Prompts for
a list of features. Displays the maximum type in the LKB interaction
window. Warns if feature is not known.

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

LKB user interface / 169

Print chart / Print parser chart∗ Displays the chart (crudely) to
the standard Lisp output (e.g., the emacs buffer). This can be useful as
an alternative display to the parse chart window, especially with very
large charts.
Print generator chart∗ As above, but for the generator.

6.1.8 Advanced∗
Tidy up This command clears expanded lexical entries which are stored
in memory. If accessed again they will be read from file and expanded
again.

Expansion of a large number of word senses will tend to fill up mem-
ory with a large number of TFSs. Most commands which are likely
to do this to excess, such as the batch parser, actually clear the TFSs
themselves, but if a lot of sentences have been parsed interactively and
memory is becoming restricted this option may be useful.
Create quick check file The check path mechanism constructs a filter
which improves efficiency by processing a set of example sentences. It is
discussed in more detail in §8.3.1.

The command prompts for a file of test sentences and an output
file to which the resulting paths should be written. This file should
subsequently be read in by the script. Note that constructing the check
paths is fairly time-consuming, but it is not necessary to use a very large
set of sentences. The mechanism is mildly grammar-specific in that it
assumes the style of encoding where the daughters of a rule are given by
an args list — see §8.3.1 for details.

6.1.9 Options
Expand/Shrink menu Changes the LKB top menu so that the ad-
vanced commands are added/removed.
Set options Allows interactive setting of some system parameters.
Note that the values of the boolean parameters are specified in the stan-
dard way for Common Lisp: that is, t indicates true and nil indicates
false. I will not go through the parameters here: Chapter 9 gives full
details of all parameters, including those that cannot be altered interac-
tively.

If a parameter file has been read in by the script (using the load
function load-lkb-preferences) the parameter settings are saved in
the same file. Otherwise the user is prompted for the name of a file to
save any preference changes to. This file would then have to be specified
in the script if the changes are to be reloaded in a subsequent session.

Usually the preferences file is loaded by the script so that any pref-
erences which are set in one session will be automatically saved for a

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

170 / Implementing Typed Feature Structure Grammars

subsequent session with that grammar. (In the cases of ‘families’ of
grammars, the user-prefs file may be shared by all the grammars in the
family.) The user should not need to look at this file and should not edit
it, since any changes may be overwritten.
Save display settings Save shrunkenness of TFSs (see the description
of Shrink/Expand in §6.3).
Load display options Load pre-saved display setting file.

6.2 Type hierarchy display
By default, a type hierarchy is displayed automatically after a grammar
is loaded (though this default must be turned off for grammars that use
very large numbers of types, see §9.1.1). The type hierarchy can also
be accessed via the top level command Type hierarchy in the View
menu, as discussed above in §6.1.3.

The top of the hierarchy, that is the most general type, is displayed
at the left of the window. The window is scrollable by the user and is
automatically scrolled by various View options. Nodes in the window
are active; clicking on a type node will give a menu with the following
options:

Shrink/Expand Shrinking a type node results in the type hierarchy
being redisplayed without the part of the hierarchy which appears
under that type being shown. The shrunk type is indicated by
an outline box. Any subtypes of a shrunk type which are also
subtypes of an unshrunk type will still be displayed. Selecting this
option on a shrunk type reverses the process.

Type definition Display the definition for the constraint on that type
(see §6.1.3, above).

Expanded type Display the expanded constraint for that type (see
§6.1.3, above).

New hierarchy Displays the type hierarchy under the clicked-on node
in a new window, via the same dialog as the top-level menu com-
mand. This is useful for complex hierarchies.

6.3 Typed feature structure display
Most of the view options display TFSs in a window. The usual ortho-
graphic conventions for drawing TFSs are followed; types are lowercased
bold, features are uppercased. The order in which features are displayed
in the TFS window is determined according to their order when intro-
duced in the type specification file. For example, assume we have the
following fragment of a type file:

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

LKB user interface / 171

sign := feat-struc &
[SYN *top*,
SEM *top*].

word := sign &
[ORTH string].

then when a TFS of type sign is displayed, the features will be displayed
in the order syn, sem; when a word is displayed the order will be
syn, sem, orth. This ordering can be changed or further specified by
means of the parameter *feature-ordering*, which consists of a list
of features in the desired order (see §9.1.2).

The bar at the bottom of the TFS display window shows the path
to the node the cursor is currently at.

Typed feature structure windows are active - currently the following
operations are supported:

1. Clicking on the window identifier (i.e., the first item in the window)
will display a menu of options which apply to the whole window.
Output TeX Outputs the FS as LaTeX macros to a file selected

by the user. The LaTeX macros are defined in avmmacros in
the data directory.

Apply lex rule Only available if the identifier points to some-
thing that might be a lexical entry. It prompts for a lexical
or morphological rule and applies the rule to the entry. The
result is displayed if application succeeds.

Apply all lex rules This option is only available if the identifier
points to something that might be a lexical entry. This tries
to apply all the defined lexical and morphological rules to the
entry, and to any results of the application and so on. (To pre-
vent infinite recursion on inappropriately specified rules the
number of applications is limited.) The results are displayed
in summary form, for instance:
dog + SG-NOUN_IRULE

dog + PL-NOUN_IRULE

Clicking on one of these summaries will display the resulting
TFS.

Show source Shows the source code for this structure if the sys-
tem is being used with emacs with the LKB extensions. This
is not available with all structures: it is not available for any
entries which have been read in from a cached file.

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

172 / Implementing Typed Feature Structure Grammars

2. Clicking on a reentrancy marker gives the following sub-menu:
Find value Shows the value of this node, if it is not displayed at

this point, scrolling as necessary.
Find next Shows the next place in the display where there is a

pointer to the node, scrolling as necessary.
3. Clicking on a type (either a parent, or a type in the TFS itself)

will give a sub-menu with the following options:
Hierarchy Scroll the type hierarchy window so that the type is

centered. If the type hierarchy window is not visible, it will
be redisplayed.

Shrink/Expand Shrinking means that the TFS will be redis-
played without the TFS which follows the type being shown.
The existence of further undisplayed structure is indicated
by a box round the type. Atomic TFSs may not be shrunk.
Shrinking persists, so that if the window is closed, and subse-
quently a new window opened onto that TFS, the shrunken
status will be retained. Furthermore, if the shrunken struc-
ture is a type constraint, any TFSs which inherit from this
constraint will also be displayed with equivalent parts hidden.
For instance, if the constraint on a type has parts shrunk, any
lexical entry which involves that type will also be displayed
with parts hidden.
If this option is chosen on an already shrunken TFS then the
TFS will be expanded. Again this can affect the display of
other structures.
The shrunkenness state may be saved via and loaded via the
Save/Load display settings commands on the Options
menu (see §6.1.9).

Show source Shows the source code for this structure if running
from emacs with the LKB connection (not available with all
structures).

Type definition Display the definition for that type.
Expanded type Display the expanded definition for that type.
Select Selects the TFS rooted at the clicked node in order to test

unification.
Unify Attempts to unify the previously selected TFS with the se-

lected node. Success or (detailed) failure messages are shown
in the LKB Top window. See §6.3.1 for further details.

Clicking on a type which is in fact a string, and thus has no defi-
nition etc, will result in the warning beep, and no display.

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

LKB user interface / 173

6.3.1 Unification checks
The unification check mechanism operates on TFSs that are displayed
in windows. You can temporarily select any TFS or part of a TFS
by clicking on the relevant node in a displayed window and choosing
Select from the menu. Then to check whether this structure unifies
with another, and to get detailed messages if unification fails, find the
node corresponding to the second structure, click on that, and choose
Unify. If the unification fails, failure messages will be shown in the top
level LKB window. If it succeeds, a new TFS window will be displayed.
This can in turn be used to check further unifications.

A detailed description of how to use this mechanism is in §7.4.1.

6.4 Parse output display
The parse output display is intended to give an easily readable overview
of the results of a parse, even if there are several analyses. The display
shows a parse tree for each separate parse, using a very small font to get
as many trees as possible on the screen. Besides the standard Close and
Close all buttons, the parse output display window has a button for
Show chart: this has the same effect as the top-level menu command,
it is just repeated here for convenience.

Clicking on a tree gives several options:

Show enlarged tree produces a full size parse tree window, as de-
scribed in §6.5, with clickable nodes.

Highlight chart nodes will highlight the nodes on the parse chart
corresponding to this tree. If the parse chart is not currently dis-
played, this option will bring up a new window (see §6.6 for details
of the chart display).

Generate Tries to generate from the MRS for this parse. Note that
in order to run the generator, the Generate / Index command
must have been run. If generation succeeds, the strings generated
are shown in a new window — clicking on the strings gives two
options:
Edge displays the tree associated with that realization,
Feature structure displays the TFS associated with that real-

ization.
If generation fails, the message ‘No strings generated’ will appear
in the LKB interaction window.

MRS Displays an MRS in the feature structure style representation.
Prolog MRS Displays an MRS in a Prolog compatible notation (de-

signed for full MRSs, rather than simplified MRSs).

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

174 / Implementing Typed Feature Structure Grammars

Indexed MRS Displays an MRS using the alternative linear notation.
Scoped MRS Displays all the scopes that can be constructed from the

MRS: warning messages will be output if the MRS does not scope.

6.5 Parse tree display
Parse trees are convenient abbreviations for TFSs representing phrases
and their daughters. When a sentence is successfully parsed, the trees
which display valid parses are automatically shown, but parse trees may
also be displayed by clicking on any edge in a parse chart (see §6.6). The
nodes in the parse tree are labelled with the name of the (first) parse
node label which has a TFS which matches the TFS associated with the
node, if such a label is present. The matching criteria are detailed in
§4.5.7 and §8.14.

The input words are indicated in bold below the terminal parse tree
nodes — if any morphological rules have been applied, these are indi-
cated by nodes beneath the words if the parameter *show-morphology*
is t, but not shown otherwise. Similarly, there is a parameter
show-lex-rules which controls whether or not the lexical rule appli-
cations are displayed. Both these parameters may be set interactively,
via the Options / Set options menu command.

Clicking on a node in the parse tree will give the following options:

Feature structure - Edge X (where X is the edge number in the
parse chart) displays the TFS associated with a node. Note that
if the parameter *deleted-daughter-features* is set, the tree
will still display the full structure (it is reconstructed after pars-
ing). See §8.3.3.

Show edge in chart Highlights the node in the chart corresponding
to the edge. The chart will be redisplayed if necessary. Currently
not available for a tree produced by the generator.

Rule X (where X is the name of the rule used to form the node) displays
the TFS associated with the rule.

Generate from edge This attempts to generate a string from the MRS
associated with this node. Behaves as the Generate command
from the parse output display. Can give strange results if the node
is not the uppermost one in the tree. Currently not available with
a tree produced by the generator. Note that in order to run the
generator, the Generate / Index command must have been run.

Lex ids This isn’t a selectable option - it’s just here as a way of listing
the identifiers of the lexical entries under the node.

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

LKB user interface / 175

6.6 Chart display
The chart is a record of the structures that the LKB system has built
in the course of attempting to find a valid parse or parses (see §4.2).
A structure built by the parser and put on the chart is called an edge:
edges are identified by an integer (edge number). By default, all edges
that are displayed on the chart represent complete rule applications.

The chart window shows the words of the sentence to the left, with
lines indicating how the structures corresponding to these words are
combined to form phrases. Each node in the chart display corresponds
to an edge in the chart. A node label shows the following information:

1. The nodes of the input that this edge covers (where the first node
is notionally to the left of the first word and is numbered 0, just
to show we’re doing real computer science here).

2. The edge number (in square brackets).
3. The name of the rule used to construct the edge (or the type of

the lexical item).

For instance, in the chart for the sentence the dogs chased the cats, the
nodes for the input are numbered

.0 the .1 dogs .2 chased .3 the .4 cats .5
In the chart display resulting from parsing this sentence in the g8gap
grammar, one edge is specified as:

2-5 [19] HEAD-COMPLEMENT-RULE-1

Thus this edge is edge number 19, it covers chased the cats, and was
formed by applying the head-complement-rule-1.

The chart display is sensitive to the parameters *show-morphology*
and *show-lex-rules* in a similar way to the tree display.

Moving the cursor over an edge in the chart displays the yield of the
edge at the bottom of the window. Clicking on a word node (i.e., one of
the nodes at the leftmost side of the chart which just show orthography)
will select it. When at least one word is selected, all the edges that cover
all the selected words are highlighted. Clicking on a word node again
deselects it.

Clicking on an edge node results in the following menu:

Highlight nodes Highlights all the nodes in the chart for which the
chosen node is an ancestor or a descendant. This option also se-
lects the node so that it can be compared with another node (see
Compare, below).

Feature structure Shows the TFS for the edge. Unlike the parse
tree display, this represents the TFS which is actually used by

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

176 / Implementing Typed Feature Structure Grammars

the parser, see the discussion in §4.2. It is not reconstructed if
deleted-daughter-features is used (see §8.3.3).

Rule X Shows the TFS for the rule that was used to create this edge
New chart Displays a new chart which only contains nodes for which

the chosen node is an ancestor or a descendant (i.e., those that
would be highlighted). This is useful for isolating structures when
the chart contains hundreds of edges.

Tree Shows the tree headed by the phrase corresponding to this edge
Compare This option is only available if another node has been pre-

viously selected (using Highlight Nodes). The two nodes are
compared using the parse tree comparison tool described in §6.1.4.

Unify This is only shown if a TFS is currently Selected for the unifi-
cation test — see §6.3.1.

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

7

Error messages and debugging

techniques

This chapter is intended to help with debugging. There are two sorts
of problems which arise when writing grammars in the LKB. In the
first class, the system doesn’t accept your grammars files and generates
error messages. This type of problem is very irritating when you are
learning how to use the system, but with experience, such problems
generally become easy to fix. In this chapter, the error messages are
explained in detail with references back to the chapters discussing the
LKB formalism. The second type of problems are more difficult: the
system doesn’t give explicit error messages, but doesn’t do what you
want it to. Some debugging tools that can be used in this situation are
described in §7.4.

7.1 Error messages
The formal conditions on the type hierarchy and the syntax of the lan-
guage were detailed in Chapters 3 and 4. Here we will go through those
conditions informally, and discuss what happens when you try and load
a file in which they are violated. If you do not understand the terminol-
ogy, please refer back to the earlier chapters.

Many examples of errors are given below: these all assume that we
have made the minimal change to the g8gap grammar to make it match
the structures shown. The errors are not supposed to be particularly
realistic!

IMPORTANT NOTE: Look at all the messages in the LKB Top
window when you load a grammar and always look at the first error
message first! Error messages may scroll off the screen, so you may need
to scroll up in order to do this. Sometimes errors propagate, causing
other errors, so it’s a good idea to reload the grammar after you have

177

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

178 / Implementing Typed Feature Structure Grammars

fixed the first error, rather than try and fix several at once, at least until
you have gained familiarity with the system.

7.1.1 Type loading errors: Syntactic well-formedness
If the syntax of the constraint specifications in the type file is not correct,
according to the definition in §4.4.6, then error messages will be gener-
ated. The system tries to make a partial recovery from syntactic errors,
either by skipping to the end of a definition or inserting the character it
expected, and then continuing to read the file. This recovery does not
always work: sometimes the inserted character is not the intended one
and sometimes an error recovery affects a subsequent definition. Thus
you may get multiple error messages from a single error. The system
will not try to do any further well-formedness checking on files with any
syntactic errors. In the examples below, an incorrect definition is shown
followed by the error message that is generated. All the definitions are
based on g8gap/types.tdl.
Example 1: missing character

agr : *top*.

Syntax error at position 132:
Syntax error following type name AGR
Ignoring (part of) entry for AGR
Error: Syntax error(s) in type file

The error is caused by the missing = following the :. The error message
indicates the position of the error (using emacs you can use the command
goto-char to go to this position in the file). The number given will not
always indicate the exact position of the problem, since the LKB’s TDL
description reader may not be able to detect the problem immediately,
but is likely to be quite close. The system then says what it is doing to
try and recover from the error (in this case, ignore the rest of the entry)
and finally stops processing with the error message Syntax error(s)
in type file (I will omit this in the rest of the examples).
Example 2: missing character

semantics := *top* &
[INDEX index,
RELS *dlist* .

Syntax error:] expected and not found in SEMANTICS
at position 403
Inserting]

In this example, the system tries to recover by inserting the character it
thinks is missing, correctly here.

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

Error messages and debugging techniques / 179

Example 3: missing character

semantics := *top* &
[INDEX index
RELS *dlist*] .

Syntax error:] expected and not found in SEMANTICS
at position 389
Inserting]
Syntax error: . expected and not found in SEMANTICS
at position 389
Inserting .
Syntax error at position 394
Incorrect syntax following type name RELS
Ignoring (part of) entry for RELS

Here the system diagnosed the error incorrectly, since in fact a comma
was missing rather than a ‘]’. The system’s recovery attempt doesn’t
work, and the error propagates. This illustrates why you should reload
the grammar after fixing the first error unless you are reasonably sure
the error messages are independent.
Example 4: coreference tag misspelled

unary-rule := phrase &
[ORTH #orth,
SEM #cont,
ARGS < [ORTH #orth, SEM #comt] >].

Syntax error at position 821: Coreference COMT
only used once

In this example, the system warns that the coreference was only used
once: it is assumed that this would only be due to an error on the part
of the user.
Other syntax errors You may also get syntax errors such as the fol-
lowing:

Unexpected eof when reading X

eof stands for end of file — this sort of message is usually caused by a
missing character.

7.1.2 Conditions on the type hierarchy
After a syntactically valid type file (or series of type files) is read in,
the hierarchy of types is constructed and checked to ensure it meets the
conditions specified in §3.2.

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

180 / Implementing Typed Feature Structure Grammars

All types must be defined If a type is specified to have a parent
which is not defined anywhere in the loaded files, an error message such
as the following is generated:

AGR specified to have non-existent parent *TOPTYPE*

Although it is conventional to define parent types before their daughters
in the file, this is not required, and order of type definition in general
has no significance for the system. Note however that it is possible to
redefine types, and if this is done, the actual definition will be the last
one the system reads. If two definitions for types of the same name
occur, a warning message will be generated, for instance:

Type AGR redefined

Connectedness / unique top type There must be a single hierarchy
containing all the types. Thus it is an error for a type to be defined
without any parents, for example:

sign :=
[ORTH *dlist*,
HEAD pos,
SPR *list*,
COMPS *list*,
SEM semantics,
GAP *dlist*,
ARGS *list*].

Omitting the parent(s) of a type will cause an error message such as the
following:

Error: Two top types *TOP* and SIGN have been defined

To fix this, define a parent for the type which is not intended to be the
top type (i.e., sign in this example).

If a type is defined with a single parent which was specified to be
its descendant, the connectedness check will give error messages such as
the following for every descendant of the type:

NOUN not connected to top

(This situation is also invalid because cycles are not allowed in the hi-
erarchy, but because of the way cycles are checked for, the error will be
found by the connectedness check rather than the cyclicity check).
No cycles It is an error for a descendant of a type to be one of that
type’s ancestors. This causes an error message to be generated such as:

Cycle involving TERNARY-HEAD-INITIAL

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

Error messages and debugging techniques / 181

The actual type specified in the messages may not be the one that needs
to be changed, because the system cannot determine which link in the
cycle is incorrect.
Redundant links This is the situation where a type is specified to be
both an immediate and a non-immediate descendant of another type.
For instance, suppose g8gap/types.tdl is changed so that phrase is
specified as a parent of unary-head-initial even though it is already
a parent of head-initial (and also a parent of unary-rule which is a
parent of unary-rule-passgap):

unary-head-initial := unary-rule-passgap & head-initial
& phrase.

Then the error messages are:

Redundancy involving UNARY-HEAD-INITIAL
UNARY-HEAD-INITIAL: PHRASE is redundant
- it is an ancestor of UNARY-RULE-PASSGAP
UNARY-HEAD-INITIAL: PHRASE is redundant
- it is an ancestor of HEAD-INITIAL

The assumption is that this would only happen because of a user error.
The condition is checked for because it could cause problems with the
greatest lower bound code (see §4.5.3). After finding this error, the
system checks for any other redundancies and reports them all.

7.1.3 Constraints
Once the type hierarchy is successfully computed, the constraint descrip-
tions associated with types are checked, and inheritance and typing are
performed to give expanded constraints on types (see §3.5).
Valid constraint description The check for syntactic well-formedness
of the constraint description is performed as the files are loaded, but er-
rors such as missing types which prevent a valid TFS being constructed
are detected when the constraint description is expanded. For example,
suppose the following was in the g8gap type file, but the type foobar
was not defined.

sign := *top* &
[ORTH *dlist*,
HEAD foobar,
SPR *list*,
COMPS *list*,
SEM semantics,
GAP *dlist*,
ARGS *list*].

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

182 / Implementing Typed Feature Structure Grammars

The first error messages are as follows:

Invalid type FOOBAR
Unifications specified are invalid or do not unify
Type SIGN has an invalid constraint specification
Type PHRASE’s constraint specification clashes with
its parents’

Note that the error propagates because the descendants’ constraints can-
not be constructed either.

Another similar error is to declare two nodes to be reentrant which
have incompatible values. For example:

sign := *top* &
[ORTH *dlist*,
HEAD pos & #1,
SPR *list*,
COMPS *list* & #1,
SEM semantics,
GAP *dlist*,
ARGS *list*].

The error messages would be very similar to the case above:

Unifications specified are invalid or do not unify
Type SIGN has an invalid constraint specification
Type PHRASE’s constraint specification clashes with
its parents’

No Cycles TFSs are required to be acyclic in the LKB system (see
§3.3): if a cycle is constructed during unification, then unification fails.
In the case of construction of constraints, this sort of failure is indicated
explicitly. For example, suppose the following is a type definition

wrong := binary-rule &
[ARGS < #1 & [GAP < #1 >], *top* >] .

The following error is generated:

Cyclic check found cycle at < GAP : FIRST >
Unification failed - cyclic result
Unification failed: unifier found cycle at

< ARGS : FIRST >
Type WRONG has an invalid constraint specification

Consistent inheritance Constraints are constructed by monotonic in-
heritance from the parents’ constraints. If the parental constraints do
not unify with the constraint specification, or, in the case of multiple

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

Error messages and debugging techniques / 183

parents, if the parents’ constraints are not mutually compatible, then
the following error message is generated:

Type X’s constraint specification clashes with its parents’

Maximal introduction of features As described in §3.5, there is a
condition on the type system that any feature must be introduced at a
single point in the hierarchy. That is, if a feature, f, is mentioned at the
top level of a constraint on a type, t, and not on any of the constraints
of ancestors of t, then all types where f is used in the constraint must be
descendants of t. For example, the following would be an error because
numagr is a top level feature on both the constraint for agr-cat and
pos but not on the constraints of any of their ancestors:

pos := *top* & [MOD *list*].

nominal := pos & [NUMAGR agr].

pseudonom := pos & [NUMAGR agr].

The error message is as follows:

Feature NUMAGR is introduced at multiple types
(POS PSEUDONOM)

To fix this, it is necessary to introduce another type on which to locate
the feature. For example:

pos := *top* & [MOD *list*].

numintro := pos & [NUMAGR agr].

nominal := numintro.

pseudonom := numintro.

No infinite structures It is an error for a constraint on a type to
mention that type inside the constraint. For example, the following is
invalid.

ne-list := *list* &
[FIRST *top*,
REST *ne-list*].

The reason for this is that expansion of the constraint description would
create an infinite structure (as discussed in §3.5.8). The following error
message is produced:

Error in *NE-LIST*:

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

184 / Implementing Typed Feature Structure Grammars

Type *NE-LIST* occurs in constraint for type
NE-LIST at (REST)

Similarly it is an error to mention a daughter of a type in its con-
straint. It is also an error to make two types mutually recursive:

foo := *top* &
[F bar].

bar := *top* &
[G foo].

The error message in this case is:

BAR is used in expanding its own constraint
expansion sequence: (FOO BAR)

Note that it is possible to define recursive constraints on types as
long as they specify an ancestor of their type. For example, a correct
definition of list is:

list := *top*.

ne-list := *list* &
[FIRST *top*,
REST *list*].

null := *list*.

Type inference — features There are two cases where typing may
fail due to the feature introduction condition. The first is illustrated by
the following example:

noun-lxm := lexeme &
[HEAD [NUMAGR #agr,

INDEX *top*],
SPR < [HEAD det & [NUMAGR #agr],

SEM.INDEX #index] >,
COMPS < >,
SEM [INDEX object & #index]].

Here, the feature index is only defined for structures of type semantics.
This type clashes with pos which is the value of head specified higher
in the hierarchy. This example generates the following error messages:

Error in NOUN-LXM:
No possible type for features (NUMAGR INDEX) at
path (HEAD)

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

Error messages and debugging techniques / 185

A different error message is generated when a type is specified at a
node which is incompatible with the node’s features. For instance:

test := lex-item &
[ARGS < pos &

[HEAD *top*] >].

Error in TEST:
Type of fs POS at path (ARGS FIRST) is incompatible

with features (HEAD) which have maximal type SIGN

Type inference — type constraints The final class of error is caused
when type inference causes a type to be determined for a node which
then clashes with an existing specification on a path from that node.
For instance:

nominal := pos & [NUMAGR agr,
MOD <>].

test1 := lexeme &
[ARGS < [HEAD [NUMAGR sg,

MOD < *top* >]] >].

Here the feature numarg in test1 means that the node at the end of
the path args.first.head has to be of type nominal, but nominal
specifies that its value for mod is the empty list. The error message is

Unification with constraint of NOMINAL failed at
path (ARGS FIRST HEAD)

The Debug / Find features’ type command on the expanded
menu (§6.1.7) can be useful when trying to fix such problems.

7.2 Lexical entries
When lexicon files are loaded, they are generally only checked for syntac-
tic correctness (as defined in §4.4.3) — entries are only fully expanded
when they are needed during parsing or generation or because of a user
request to view an entry. Thus when loading the lexicon, you may
get syntactic errors similar to those discussed in §7.1.1 above, but not
content errors since the TFSs are not expanded at load time. With a
small lexicon, you can put the command batch-check-lexicon in the
script file, in order to check correctness at load time, as was done with
the example grammars for this book.

Incorrect lexical entries may therefore only be detected when you
view a lexical entry or try to parse with it. The error messages that are
obtained are very similar to some of those discussed for the type loading

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

186 / Implementing Typed Feature Structure Grammars

above, specifically:

Valid constraint description
No Cycles
Consistent inheritance
All types must be defined
Type inference — features
Type inference — type constraints

There is a menu option to do a complete check on a loaded lexicon
for correctness: Check lexicon under Debug. See §6.1.7.

7.3 Grammar rules
Unlike lexical entries, grammar and lexical rules are always expanded
at load time. Therefore you may get error messages similar to those
listed above for lexical entries when the rules are loaded. Rules must
expand out into TFSs which have identifiable paths for the mother and
daughters of the rule (§4.4.4). For the grammars we have been looking
at, the mother path is the empty path and the daughter paths are defined
in terms of the args feature. For example:[

binary-rule

args

[
first sign

rest

[
first sign

]]]

Here the mother is given by the empty path, one daughter by the path
args.first and another by the path args.rest.first. The mother
path and a function which gives the daughters in the correct linear order
must be specified as system parameters in the globals and user-fns
files respectively (see §9.2.3 and §9.3).

7.4 Debugging techniques
If something unexpectedly fails to parse or if too many parses are pro-
duced, then isolating the problem can be quite tricky. The first thing
to look at is usually the parse chart, though you may need to try and
find a simpler sentence that produces the same effect, because the parse
chart is difficult to navigate with long sentences. In extreme cases, the
Debug / Print chart command may be useful (see §6.1.7). Note that
the display at the bottom of the parse chart is extremely helpful in
showing you what node you are looking at. Once the problem is isolated
to a particular phrase, or small set of phrases, the unification checking
mechanism discussed below becomes helpful.

Unfortunately debugging grammars is not a skill that can easily be
described. After a while, a grammar writer becomes sufficiently familiar

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

Error messages and debugging techniques / 187

with a grammar that the likely sources of problems become reasonably
obvious, but this takes practice. Most of the same principles apply as
when debugging computer programs: in fact, the parse chart display can
be thought of as a backtrace mechanism. Because the LKB is a devel-
opment environment, we have kept the amount of grammar compilation
to a minimum, so that the time taken to reload a grammar is fast, even
with the LinGO ERG. For large scale grammars, the more sophisticated
test suite techniques described in §8.13 are an invaluable tool. As soon
as you start working with grammars, you should investigate the use of a
version control system, such as the Concurrent Versions System (CVS):
even if you are working by yourself, the ability to easily recover previous
versions of grammars is extremely useful.

7.4.1 Use of the unification checking mechanism
As mentioned in §6.3.1 there is an interactive mechanism for checking
unification via the TFSs that are displayed in windows. You can tem-
porarily select any TFS or part of a TFS by clicking on the relevant
node in a displayed window and choosing Select from the menu. Then
to check whether this structure unifies with another, and to get detailed
messages if unification fails, find the node corresponding to the second
structure, click on that, and choose Unify. If the unification fails, fail-
ure messages will be shown in the top level LKB window. If it succeeds,
a new TFS window will be displayed. This can in turn be used to check
further unifications. Here we give a detailed example of how to use this.

Consider why the dog chased does not parse in the g8gap grammar.
By looking at the parse chart for the sentence, you can determine that
although the head-specifier-rule applies to give the phrase the dog
chased, this isn’t accepted as a parse. This must be because it fails the
start symbol condition. To verify this:

1. Load the g8gap grammar.
2. Do Parse / Parse input on the dog chased. The parse will fail.
3. Do Parse / Show parse chart. A chart window will appear.
4. Click on the rightmost node in the chart, which is labelled HEAD-

SPECIFIER-RULE and choose Feature structure. A TFS win-
dow will appear.

5. Click on the root node of the TFS (i.e., the node with type binary-
head-second-passgap) and choose Select.

6. Display the TFS for start by choosing Lex entry from the View
menu (start is not actually a lexical entry, but we wanted to avoid
putting too many items on the View menu, so Lex entry is used
as a default for viewing ‘other’ entries too).

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

188 / Implementing Typed Feature Structure Grammars

7. Click on the root node of start (i.e., the node with the type
phrase) and choose Unify from the pop-up menu.

8. Look at the LKB Top window. You should see:

Unification of *NE-LIST* and *NULL* failed at path
< GAP : LIST >

This demonstrates that the parse failed because the phrase con-
tains a gap.

It is instructive to redefine start in g8gap as below, reload the grammar
and retry this experiment:

start := phrase &
[HEAD verb,
SPR <>,
COMPS <>,
GAP <! !>].

To check why a rule does not work, a more complex procedure
is sometimes necessary, because of the need to see whether three (or
more) TFSs can be unified. Suppose we want to check to see why the
head-specifier rule does not apply to the dog bark in g8gap. This is
relatively complex, since both the TFSs for the NP for the dog and
the VP for bark will individually unify with the daughter slots of the
head-specifier-rule. So we need to use the intermediate results from
the unification test mechanism.

The following description details one way to do this.

1. Parse the dog bark. The parse will fail.
2. Select Show chart to show the edges produced during the failed

parse.
3. Bring up the TFS window for the head-specifier-rule (unin-

stantiated), either via the View Rule command in the top window
menu or by choosing Rule HEAD-SPECIFIER-RULE from a
head-specifier-rule node in the chart.

4. Find the node in the head-specifier-rulewindow corresponding
to the specifier (i.e., the node labelled phrase at the end of the
path args.first). Click on it and choose Select.

5. Find the node for the dog in the parse chart window and choose
Unify. (Note that this is a shortcut which is equivalent to dis-
playing the TFS for the phrase via the Feature Structure option
in the chart menu and then selecting Unify from the menu on the
top node of the TFS displayed.) Unification should succeed and a
new TFS window (titled Unification Result) will be displayed.

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

Error messages and debugging techniques / 189

6. Find the node in the new Unification Result window correspond-
ing to the head in the rule, i.e., the node at the end of the path
args.rest.first, click on it and choose Select.

7. Click on the node in the parse chart for the VP for bark (i.e., the
one labelled head-complement-rule-0) and choose Unify.

8. This time unification should fail, with the following message in the
LKB Top window:

Unification of SG and PL failed at path
< SPR : FIRST : HEAD : NUMAGR >

Note that it is important to Select the node in the rule and Unify the
daughters rather than vice versa because the result shown always corre-
sponds to the initially selected TFS. We need this to be the whole rule
so we can try unifying the other daughter into the partially instantiated
result.

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

8

Advanced features

The previous chapters described the main features of the LKB system
which are utilized by most of the distributed grammars. There are a
range of other features which are in some sense advanced: for instance
because they concern facilities for using the LKB with grammars in
frameworks other than the variety of HPSG assumed here, or because
they cover functionality which is less well tested (in particular defaults
and generation), or because the features are primarily used for efficiency.
These features are described in this chapter, which is a series of more or
less polished notes about various aspects of the LKB. The intention is
that the LKB website:

http://cslipublications.stanford.edu/lkb.html

will contain updated information. In any case, this chapter should only
be read after working through the earlier material in the book in some
detail. On the whole, it assumes rather more knowledge of NLP and of
Lisp programming than I have in the earlier chapters.

8.1 Defining a new grammar
If possible, it is best to start from one of the sample grammars rather
than to build a new grammar completely from scratch. However, when
building a grammar in a framework other than HPSG, the existing
sources may not be of much use. These notes are primarily intended
for someone trying to build a grammar almost from scratch.

The first step is to try and decide whether the LKB system is going
to be adequate for your needs. The system is not designed for building
full NLP applications, though it can form part of such a system for
teaching or research purposes, and has some utility for development
of commercial applications. Grammars can be written and debugged
in the LKB and then deployed using more efficient platforms such as
Callmeier’s PET system. There are some limitations imposed by the

190

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

Advanced features / 191

typed feature structure formalism.56 There’s no way of describing any
form of transformation or movement directly, though, as we saw in §5.5,
feature structure formalisms have alternative ways of achieving the same
effects.

Even with respect to other typed feature structure formalisms, the
LKB has some self-imposed limitations. As I have discussed, there is no
way of writing a disjunctive or negated TFS (see §5.3.4). In many cases,
grammars can be reformulated to eliminate disjunction in favour of the
use of types which express generalisations. Occasionally it may be better
to have multiple lexical entries or multiple grammar rules. The LKB
does not support negation, although we do intend to release a version
which incorporates inequalities (Carpenter, 1992) at some point. More
fundamentally for HPSG, the system does not support set operations.
Alternative formalisations are possible for most of the standard uses of
sets. For example, operations which are described as set union in Pollard
and Sag (1994) can be reformulated as a list append. We think we have
good reasons for adopting these limitations, and that the LinGO ERG
shows that a large scale HPSG grammar can be built without these
devices, so the LKB system is unlikely to change in these respects.

There are other limitations which are less fundamental, though they
might require considerable reimplementation. In these cases, it may
be worth considering using the LKB system if you have some Lisp pro-
gramming experience, or can persuade someone else to do some program-
ming for you! For instance, the current system for encoding affixation
is quite restricted. However, the interface to the rest of the system is
well-defined, so it would be relatively easy to replace. As mentioned in
previous chapters, the implementation of the parser has limitations for
languages with relatively free word order. It would be possible to replace
the parsing module to experiment with different algorithms. If you want
to attempt any modifications like this, please feel free to email the LKB
mailing list for advice (see the website for details of how to subscribe).

If you’ve decided you want to use the LKB system, then you should
start by defining a very simple grammar. It will make life simpler if you
copy the definitions for basic types like lists and difference lists from the
existing grammars, so you do not have to redefine the global parameters
unnecessarily. Similarly, if you are happy to use a list feature args to

56The system can be used to build grammars which are Turing equivalent, so these
comments aren’t about formal power. There is a useful contrast between whether a
language supports a technique, which means it supplies the right primitives etc, or
merely enables its use, which means that one can implement the technique if one is
sufficiently devious. What’s of interest here is the techniques the LKB supports or
doesn’t support.

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

192 / Implementing Typed Feature Structure Grammars

indicate the order of daughters in a grammar rule, you will not have to
change the parameters which specify daughters or the ordering function.
There are some basic architectural decisions which have to be taken early
on. For instance, if you decide on an alternative to the lexeme, word,
phrase distinction described in Chapter 5, this will affect how you write
lexical and grammar rules.

As described in §4.5, you need to have distinct files for each class of
object. You will have to write a script file to load your grammar files
— the full details of how to do this are given below, but the easiest
technique is to copy an existing script and to change the file names,
then to look at the documentation if you find the behaviour surprising.
To start off with, aim at a grammar which is comparable in scope to
the g5lex grammar: i.e., use fully inflected forms, one or two grammar
rules, a very small number of lexical entries and just enough types to
make the structures well-formed (the g5lex grammar actually has more
types than are strictly speaking needed, because it was designed to be
relatively straightforward to extend using a predefined feature structure
architecture).

There are many practical aspects to grammar engineering, most of
which are similar to good practise in other forms of programming (see
Copestake and Flickinger (2000) for some discussion). One aspect which
is to some extent peculiar to grammar writing is the use of test suites
(see e.g., Oepen and Flickinger, 1998). The LKB system is compatible
with the [incr tsdb()] system, as discussed in §8.13. You should use a
test suite of sentences as soon as you have got anything to parse, to
help you tell quickly when something breaks. You should also adopt
a convention with respect to format of description files right from the
start: e.g., with respect to upper/lower case distinctions, indentation
etc. Needless to say, comments and documentation are very important.
As mentioned in §7.4, using a version control system such as CVS really
does help when developing even moderately complex grammars. You
may find the LKB’s typing regime annoying at first, but we have found
that it catches a large number of bugs quickly which can otherwise go
undetected or be very hard to track down.

At some point, if you develop a moderate size grammar, or have a
slow machine, you will probably start to worry about processing effi-
ciency. Although this is partly a matter of the implementation of the
LKB system, it is very heavily dependent on the grammar. For instance,
the grammar based on Sag and Wasow (1999) (i.e., the ‘textbook’ gram-
mar) is not a good model for anyone concerned with efficient processing,
because it makes use of large numbers of non-branching rules. The LKB
system code has been optimized with respect to the LinGO ERG, so

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

Advanced features / 193

it may well have considerable inefficiencies for other styles of grammar.
For instance, the ERG has about 40 rules — grammars with hundreds
of rules would probably benefit from an improvement in the rule lookup
mechanism. On the other hand, we have put a lot of effort in making
processing efficient with type hierarchies like the ERG’s which contains
thousands of types, with a reasonably high degree of multiple inheri-
tance, and the LKB performs much better in this respect than many
other typed feature structure systems.

8.2 Script files
Here is an example of a complex script file, as used for the CSLI LinGO
ERG:

(lkb-load-lisp (parent-directory) "Version.lisp" t)
(lkb-load-lisp (this-directory) "globals.lsp")
(lkb-load-lisp (this-directory) "user-fns.lsp")
(load-lkb-preferences (this-directory) "user-prefs.lsp")
(lkb-load-lisp (this-directory) "checkpaths.lsp" t)
(lkb-load-lisp (this-directory) "comlex.lsp" t)
(load-irregular-spellings

(lkb-pathname (parent-directory) "irregs.tab"))
(read-tdl-type-files-aux

(list
(lkb-pathname (parent-directory) "fundamentals.tdl")
(lkb-pathname (parent-directory) "lextypes.tdl")
(lkb-pathname (parent-directory) "syntax.tdl")
(lkb-pathname (parent-directory) "lexrules.tdl")
(lkb-pathname (parent-directory) "auxverbs.tdl")
(lkb-pathname (this-directory) "mrsmunge.tdl"))

(lkb-pathname (this-directory) "settings.lsp"))
(read-cached-leaf-types-if-available

(list (lkb-pathname (parent-directory) "letypes.tdl")
(lkb-pathname (parent-directory) "semrels.tdl")))

(read-cached-lex-if-available
(lkb-pathname (parent-directory) "lexicon.tdl"))

(read-tdl-grammar-file-aux
(lkb-pathname (parent-directory) "constructions.tdl"))

(read-morph-file-aux
(lkb-pathname (this-directory) "inflr.tdl"))

(read-tdl-start-file-aux
(lkb-pathname (parent-directory) "roots.tdl"))

(read-tdl-lex-rule-file-aux

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

194 / Implementing Typed Feature Structure Grammars

(lkb-pathname (parent-directory) "lexrinst.tdl"))
(read-tdl-parse-node-file-aux

(lkb-pathname (parent-directory) "parse-nodes.tdl"))
(lkb-load-lisp (this-directory) "mrs-initialization.lsp" t)

I won’t go through this in detail, but note the following:

1. The command to read in the script file is specified to carry out
all the necessary initializations of grammar parameters etc. So
although it might look as though a script file can be read in via
load like a standard Lisp file, this would cause various things to
go wrong.

2. The first load statement looks for a file called Version.lsp in the
directory above the one where the script file itself is located. (As
before, all paths are given relative to the location of the script file,
so the same script will work with different computers, provided
the directory structure is maintained.) The file Version.lsp sets
a variable that records the grammar version. This is used for
record-keeping purposes and also to give names to the cache files
(see §8.8).

3. The user preferences file (user-prefs.lsp) is loaded automati-
cally. It is kept in the same directory as the other globals file,
which allows a user to set up different preferences for different
grammars.

4. The checkpaths.lsp file is loaded to improve efficiency, as dis-
cussed in §8.3.1. The third argument to lkb-load-lisp is t, to
indicate that the file is optional.

5. The comlex.lsp file contains code which provides an interface to
a lexicon constructed automatically from the COMLEX lexicon
which is distributed by the Linguistic Data Consortium. This acts
as a secondary lexicon when the specially built lexicon is missing
a word entry.

6. There is a list of type files read in by read-tdl-type-files-aux
— the second argument to this function is a file for display settings
(see §6.1.9).

7. Two type files are specified as leaf types (see §8.7). The leaf types
are cached so that they can be read in quickly if the files are
unaltered.

8. The lexicon is cached so that it can be read in quickly if it is
unaltered: see §8.8.

9. The final file mrs-initialization.lsp contains code to initialize
the behaviour of the MRS code (if present). This is responsible
for loading the grammar-specific MRS parameters file.

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

Advanced features / 195

8.2.1 Loading functions
The following is a full list of available functions for loading in LKB
source files written using the TDL syntax. All files are specified as full
pathnames. Unless otherwise specified, details of file format etc are
specified in Chapters 4 and 5 and error messages etc are in Chapter 7.
load-lkb-preferences directory file-name

Loads a preferences file and sets *user-params-file* to the name
of that file, so that any preferences the user changes interactively will
be reloaded next session.
read-tdl-type-files-aux file-names &optional settings-file

Reads in a list of type files and processes them. An optional settings
file controls shrunkenness (see §6.1.9). If you wish to split types into
more than one file, they must all be specified in the file name list, since
processing assumes it has all the types (apart from leaf types).
read-tdl-leaf-type-file-aux file-name

Reads in a leaf type file. There may be more than one such command
in a script. See §8.7.
read-cached-leaf-types-if-available file-name(s)

Takes a file or a list of files. Reads in a leaf type cache if available
(WARNING, there is no guarantee that it will correspond to the file(s)
specified). If there is no existing leaf type cache, or it is out of date,
reads in the specified files using read-tdl-leaf-type-file-aux. See
§8.8.
read-tdl-lex-file-aux file-name

Reads in a lexicon file. There may be more than one such command
in a script.
read-cached-lex-if-available file-name(s)

Takes a file or a list of files. Reads in a cached lexicon if available
(WARNING, there is no guarantee that it will correspond to the file(s)
specified). If there is no existing cached lexicon, or it is out of date,
reads in the specified files using read-tdl-lex-file-aux. See §8.8.
read-tdl-grammar-file-aux file-name

Reads in a grammar file. There may be more than one such command
in a script.
read-morph-file-aux file-name

Reads in a lexical rule file with associated affixation information.
Note that the morphology system assumes there will only be one such
file in a grammar, so this command may not occur more than once in a
script, even though it takes a single file as argument.
read-tdl-lex-rule-file-aux file-name

Reads in a lexical rule file where the rules do not have associated

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

196 / Implementing Typed Feature Structure Grammars

affixation information. There may be more than one such command in
a script.
load-irregular-spellings file-name

Reads in a file of irregular forms. It is assumed there is only one such
file in a grammar.
read-tdl-parse-node-file-aux file-name

Reads in a file containing entries which define parse nodes.
read-tdl-start-file-aux file-name

This command simply defines the entries, without giving them any
particular functionality — this works because start symbols are enumer-
ated in the globals file.
read-tdl-psort-file-aux file-name

This is actually defined in the same way as the previous command:
it simply defines the entries, without giving them any particular func-
tionality. It is retained for backward compatibility.

8.2.2 Utility functions
The following functions are defined as useful utilities for script files.
this-directory

Returns the directory which contains the script file (only usable in-
side the script file).
parent-directory

Returns the directory which is contains the directory containing the
script file (only usable inside the script file).
lkb-pathname directory name

Takes a directory as specified by the commands above, and combines
it with a file name to produce a valid full name for the other commands.
lkb-load-lisp directory name &optional boolean

Constructs a file name as with lkb-pathname and loads it as a Lisp
file. If optional is t (i.e., true), ignore the file if it is missing, otherwise
signals a (continuable) error.

8.3 Parsing and generation efficiency techniques
8.3.1 Check paths
The check paths mechanism greatly increases the efficiency of parsing
and generation with large grammars like the LinGO ERG. It relies on the
fact that unification failure during rule application is normally caused
by type incompatibility on one of a relatively small set of paths. These
paths can be checked very efficiently before full unification is attempted,
thus providing a filtering mechanism which considerably improves per-
formance. The paths are constructed automatically by batch parsing a
representative range of sentences.

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

Advanced features / 197

The menu command Create quick check file, described in 6.1.8,
allows a set of check-paths to be created on the basis of a set of test sen-
tences. To do the same thing non-interactively, the macro
with-check-path-list-collection is used. It takes two arguments:
the first is is a call to a batch parsing function. For example:

(with-check-path-list-collection "~aac/checkpaths.lsp"
(parse-sentences "~aac/grammar/lkb/test-sentences"
"~aac/grammar/lkb/results"))

The file of checkpaths created in this way is then read in as part of
the script. For instance:

(lkb-load-lisp (this-directory) "checkpaths.lsp" t)

To maintain filtering efficiency, the checkpaths should be recomputed
whenever there is a major change to the architecture of the TFSs used
in the grammar. However, even if they are out-of-date, the checkpaths
will never affect the result of parsing or generation, only the efficiency.

8.3.2 Key-driven parsing and generation
When the parser or generator attempts to apply a grammar-rule to
two or more daughters, it is often the case that it is more efficient
to check the daughters in a particular order, so that if unification is
going to fail, it will do so as quickly as possible. This mechanism al-
lows the grammar developer to specify a daughter as the key: the key
daughter is checked first. The value of the path *key-daughter-path*
in the daughter structure of the grammar rule should be set to the
value of *key-daughter-type* when that daughter is the key. By de-
fault, the value of *key-daughter-path* is (key-arg) and the value
of *key-daughter-type* is +. So, for instance, if the daughters in
the rule are described as a list which is the value of the feature args

and the first daughter is the key, the value of (args first key-arg)
should be +. A rule is not required to have a specified key and the
key-daughter-path need not be present in this case. Specifying a
key will never affect the result of parsing or generation.

8.3.3 Avoiding copying and tree reconstruction
The HPSG framework is usually described in such a way that phrases are
complete trees: that is, a phrase TFS contains substructures which are
also phrases. This leads to very large structures and computational inef-
ficiency. However, HPSG also has a locality principle, which means that
it is not possible for a phrase to access substructures that are daughters
of its immediate daughters. Any such information has to be carried up
explicitly.

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

198 / Implementing Typed Feature Structure Grammars

The locality principle therefore guarantees that it is possible to re-
move the daughters of a rule after constructing the mother without af-
fecting the result. The LKB system allows the grammar writer to supply
a list of features which will not be passed from daughter to mother when
parsing via the parameter *deleted-daughter-features*. In fact, in
the samples grammars we have looked at in this book,
deleted-daughter-features could have been set to (ARGS) to im-
prove efficiency. This feature must be used with care, since if the gram-
mar writer has not obeyed the locality principle with respect to the
specified features, setting this parameter will cause different results to
be obtained.57

8.3.4 Packing
Simple context free grammars can be parsed in cubic time because not
all derivations need be explicitly computed. For instance, consider a
sentence like:

(8.65) The jack above the ace next to the queen is red.

The NP, the jack above the ace next to the queen could be analysed as
having either of the following two structures:

(8.66) the ((jack (above the ace)) (next to the queen))
(8.67) the (jack (above (the (ace (next to the queen)))))

These have different semantics: in the first, the jack is above the ace and
also next to the queen, while in the second, it is the ace that is next to the
queen. However, if these structures were being accounted for by simple
CFG rules, both would simply be an NP, and there could be no difference
in how they subsequently interacted with the rest of the grammar. So a
simple CFG parser can assume that there is only one edge for the NP,
even though it can be derived in multiple different ways. In general, in
a chart parser for simple CFGs, once an edge between two nodes n and
m has been constructed, any subsequent edge with the same category
is simply recorded but is not involved in further processing, because it
would simply be duplicating the results from the first edge. This allows
cubic time parsing, even for grammars where an exponential number of
derivations is possible for a sentence.

With unification-based grammars, there are several potential prob-
lems in applying this technique. The first concerns the fact we are
dealing with TFSs rather than simply atomic category symbols. This

57In many ways it would be more logical to define grammar rules with a separate
mother feature, which is supported by the LKB system, but this doesn’t fit in with
the way that HPSG is generally described.

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

Advanced features / 199

means that for maximal packing, the parser has to check for subsumption
rather than equality. An edge which is more specific than an existing
edge spanning the same nodes cannot result in any new parses, but fur-
ther complexity arises because a new edge might be more general than
an existing edge, in which case the new edge has to be checked but the
existing edge could be frozen. This is discussed in detail by Oepen and
Carroll (2000b).

The other problems concern the way the grammars are used. In the
grammars we have seen, the structures that are produced for a node
carry around information about their derivation, because of the args.
In terms of a CFG, it is as though the categories for the NPs above were
not simply NP, but the following structures:

1. (NP (Det the) (N (N (N jack) (PP (P above) (NP (Det the) (N
ace)))) (PP (P next-to) (NP (Det the) (N queen)))))

2. (NP (Det the) (N (N jack) (PP (P above) (NP (Det the) (N (N
ace) (PP (P next-to) (NP (Det the) (N queen))))))))

Obviously these two structures are not the same. However, as we saw in
the previous section, the locality principle of HPSG guarantees that the
derivation information can be ignored because no required information
is in the args without also being coindexed with the rest of the phrase.
Thus we can ignore information under args when packing.

A related problem is that in many grammars, the semantics is built
up in parallel with the syntax. This is convenient, but means that the
two TFSs for 8.66 and 8.67 will be different. However, in the grammars
used in this book and in the ERG, there is also a semantic locality princi-
ple, which guarantees that the internal structure of the list of elementary
predications cannot be relevant to subsequent composition operations.
This means that the semantics can be ignored too, for the purposes of
packing, as long as we are prepared to reconstruct the TFSs when it is
necessary to pass the semantic structures to another system component.

The LKB system contains code that implements packing, but it is
not used by default. For further details and experimental results on the
ERG, see Oepen and Carroll (2000b).

8.4 Irregular morphology
Irregular morphology may be specified in association with a particular
lexical rule, in the way we saw in with g6morph in §5.2.1, but it is often
more convenient to have a separate file for irregular morphemes. In
the LKB, this file has to take the form of a Lisp string (i.e., it begins

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

200 / Implementing Typed Feature Structure Grammars

and ends with ")58 containing irregular form entries, one per line, each
consisting of a triplet:

1. inflected form
2. rule specification
3. stem

For example:

"
dreamt PAST-V_IRULE dream
fell PAST-V_IRULE fall
felt PAST-V_IRULE feel
gave PAST-V_IRULE give
"

The file is loaded with the command load-irregular-spellings in the
script file. For instance:

(load-irregular-spellings
(lkb-pathname (this-directory) "irregs.tab"))

The interpretation of irregular forms is similar to the operation of
the regular morphology: that is, the irregular form is assumed to cor-
respond to the spelling obtained when the specified rule is applied to a
lexical entry with an orthography corresponding to the stem. The rule
specification should be the identifier for a morphology rule.

The default operation of the irregular morphology system is one case
where there may be an asymmetry in system behaviour between parsing
and generation: when parsing, a regularly derived form will be accepted
even if there is also an irregular form if the value of the LKB parameter
irregular-forms-only-p (see §9.2.3) is nil. Thus, for example,
gived will be accepted as well as gave, and dreamed as well as dreamt.
If the value of *irregular-forms-only-p* is t, an irregular form will
block acceptance of a regular form, so only gave would be accepted.
Generation will always produce the irregular form if there is one: with
the current version of the LKB it will simply produce the first form given
in the irregulars file for a particular rule even if there are alternative
spellings. For instance, assume the following is included in the irregulars
file:

dreamed PAST-V_IRULE dream
dreamt PAST-V_IRULE dream

It is a good idea to include both forms for parsing if the parameter
irregular-forms-only-p is true, because it allows both variants to

58This rather clunky format is used for compatibility with other systems.

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

Advanced features / 201

be accepted, but for generation, only dreamed would be produced.

8.5 Multiword lexemes
The LKB system allows lexical items to be specified which have a value
for their orthography which is a list of more than one string. These
items are treated as multiword lexemes and the parser checks that all
the strings are present before putting the lexical entry on the chart.

Multiword lexemes may have at most one affixation site. This is spec-
ified on a per-entry basis, via the user-definable function find-infl-pos
(see §9.3). By default, this allows affixation on the rightmost element:
e.g., ice creams. It can be defined in a more complex way, for instance to
allow attorneys general or kicked the bucket to be treated as multiword
lexemes.

This component of the LKB is under very active development at the
time of writing, so please check the website for possible updates.

8.6 Parse ranking
The current LKB parser supports a simple mechanism for ordering
parses and for returning the first parse only. The application of this
mechanism is controlled by the variable *first-only-p* which may be
set interactively, via the Options / Set options menu command. The
weighting is controlled by two functions, rule-priority and
lex-priority, which may be defined in the grammar-specific file
user-fns.lsp, if desired. Since the mechanism is under active develop-
ment, I don’t propose to document it in detail here, but I suggest that
anyone who wishes to experiment with this capability looks at the def-
initions of rule-priority and lex-priority in the user-fns file for
the LinGO ERG. However, please check the LKB website for updates.

8.7 Leaf types
The notion of a leaf type is defined for efficiency in grammar loading.
A leaf type is a type which is not required for the valid definition or
expansion of any other type or type constraint. Specifically this means
that a leaf type must meet the following criteria:

1. A leaf type has no daughters.
2. A leaf type may not introduce any new features on its constraint.
3. A leaf type may not be used in the constraint of another type.
4. A leaf type only has one ‘real’ parent type — it may have one or

more template parents (see 9.2.1).

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

202 / Implementing Typed Feature Structure Grammars

Under these conditions, much more efficient type checking is possible,
and the type constraint description can be expanded on demand rather
than being expanded when the type file is read in.

In the current version of the LinGO ERG, most of the terminal lex-
ical types (i.e., those from which lexical entries inherit directly) are leaf
types, as are most of the relation types. The latter class is particularly
important, since it means that a lexicon can be of indefinite size and ex-
panded on demand, while still using distinct types to represent semantic
relations.

Various checks are performed on leaf types to ensure they meet the
above criteria. However the tests cannot be completely comprehensive
if the efficiency benefits of leaf types are to be maintained. If a type is
treated as a leaf type when it does not fulfill the criteria above, unex-
pected results will occur. Thus the leaf type facility has the potential for
causing problems which are difficult to diagnose and it should therefore
be used with caution.

8.8 Caches
The cache functionality is provided to speed up reloading a grammar
when leaf types or the lexicon have not changed.
Lexicon cache Whenever a lexicon is read into the LKB, it is stored in
an external file rather than in memory. Lexical entries are pulled in from
this file as required. The caching facility saves this file and an associated
index file so that they do not need to be recreated when the grammar is
read in again if the lexicon has not changed. The location of these files is
set by the user-fns.lsp function set-temporary-lexicon-filenames.
The file names are stored in the parameters *psorts-temp-file* and
psorts-temp-index-file (see §9.3.1). The default function uses the
function lkb-tmp-dir to find a directory and names the files templex
and templex-index respectively. A more complex version of
set-temporary-lexicon-filenames is given in the user-fns.lsp file
in the LinGO ERG: this uses a parameter set by Version.lsp to name
the files.

The script command read-cached-lex-if-available (see §8.2.1),
takes a file or list of files as arguments. If a cached lexicon is available in
the locations specified by *psorts-temp-file* and
psorts-temp-index-file, and is more recent than the file(s) given as
arguments to the function, then it will be used instead of reading in the
specified files from scratch. The code does not check to see whether the
cached lexicon was created from the specified files, and there are other
ways in which the system can be fooled. Thus you should definitely not

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

Advanced features / 203

use this unless you have a sufficiently large lexicon that the reload time
is annoying.
Leaf type cache A similar caching mechanism is provided for leaf
types (§8.7). The parameter storing the name of the file is
leaf-temp-file but like the lexicon cache files this is set by the
function set-temporary-lexicon-filenames.

8.9 Using emacs with the LKB system
We recommend the use of emacs (either gnuemacs or XEmacs) with
the LKB for editing the grammar files. Details of how to obtain emacs
and set it up for use with the LKB are on the LKB website. The LKB
menu command Show source requires that emacs be used as the editor.
The emacs interface also puts some LKB menu commands on the top
menu bar of the emacs window, for convenience, and a TDL editing
mode is available. The LKB website also contains a brief guide to emacs
commands for beginners.

8.10 YADU
The structures used in the LKB system are not actually ordinary TFSs,
but typed default feature structures (TDFSs). So far in this book I
have assumed non-default structures and monotonic unification, but this
is actually just a special case of typed default unification. The full
description of TDFSs and default unification is given in Lascarides and
Copestake (1999) (henceforth L+C). The following notes are intended
to supplement that paper.

Default information is introduced into the description language by
/, followed by an indication of the persistence of the default. In terms
of the current implementation, the supported distinctions in persistence
are between defaults which are fully persistent and those which become
non-default when an entry TFS is constructed (referred to as description
persistence). The value of the description persistence indicator is given
by the parameter *description-persistence* — the default is l (i.e.,
the lowercase letter l, standing for ‘lexical’, not the numeral 1).

The modification to the BNF given for the TDL syntax in §4.4.6 is
as follows:

Conjunction → DefTerm | DefTerm & Conjunction
DefTerm → Term | Term /identifier Term | /identifier Term

It is not legal to have a default inside a default.
As an example, the following definition of verb makes the features

past, pastp and passp indefeasibly coindexed, and pastp and passp

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

204 / Implementing Typed Feature Structure Grammars

defeasibly coindexed. The definition for regverb makes the value of
past be ed, by default.

verb := *top* &
[PAST *top* /l #pp,
PASTP #p /l #pp,
PASSP #p /l #pp].

regverb := verb &
[PAST /l "ed"] .

Any entry using these types will be completely indefeasible, since the
defaults have description persistence. Further examples of the use of de-
faults, following the examples in L+C, are given in the files in
data/yadu test, distributed with the LKB.

You should note that the description language specifies dual TFSs
from which BasicTDFSs are constructed as defined in §3.5 of L+C. See
also the discussion of the encoding of VALP in §4.2 of L+C.

If you view a feature structure which contains defaults, you will see
three parts. The first is the indefeasible structure, the second the ‘win-
ning’ defeasible structure, and the third the tail. (Unfortunately this
is very verbose: a more concise representation will be implemented at
some point.)

Notice that the current implementation assumes that defaults are
only relevant with respect to an inheritance hierarchy: default con-
straints which are specified on types other than the root node of a
structure are ignored when expanding the feature structure.

8.11 MRS
MRS (minimal recursion semantics) is a framework for computational
semantics which is intended to simplify the design of algorithms for gen-
eration and semantic transfer, and to allow the representation of under-
specified scope while being fully integrated with a typed feature struc-
ture representation. It is decribed in detail in Copestake et al (1999).
The LKB system supports MRS in providing various procedures for
processing MRS structures (for printing, checking correctness, scoping,
translation to other formalisms etc). The LKB generation component
(described in §5.4.4 and §8.12) assumes an MRS style of representation.
The LinGO grammar produces MRS structures, but the example gram-
mars discussed in this book produce a form of simplified MRS which
is not adequate to support scope resolution, though it can be used for
generation. The MRS menu commands are described in §6.1.5 and §6.4.
Further documentation will become available via the LKB webpage.

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

Advanced features / 205

8.12 Generation
The generator requires a grammar which is using MRS or a relatively
similar formalism The generator is described in Carroll et al (1999). A
few remarks may be helpful to supplement §5.4.4.

1. The grammars that use MRS contain a file defining some necessary
global parameters. This is called mrsglobals.lsp for the example
grammars and mrsglobals-eng.lsp for the LinGO ERG.

2. Before generating, the lexicon and lexical and grammar rules must
be indexed. The function which does this, index-for-generator,
can be run with the Index command from the Generate menu,
or it can be directly run from the script file as in §5.4.4.

3. If the grammar uses lexical entries which do not have any relations,
warning messages will be issued by the indexing process. A set of
grammar-specific heuristics can be defined which will determine
which such lexical entries might be required for a given semantics.
These are loaded via the Load Heuristics command on the Gen-
erate menu. If no such heuristics are defined, the system attempts
to use all null semantics items, which can be very slow.

4. The generator supports a special treatment of intersective modi-
fication, discussed in Carroll et al (1999). The LKB parameters
which control this are listed in §9.2.5.

5. There is a spellout component to the generator, which currently
simply looks after the a/an alternatives.

6. A LKB parameter, *duplicate-lex-ids*, is used to specify lex-
ical entry identifiers which should be ignored, because they are
simply alternative spellings of another lexical entry. This mecha-
nism is expected to be refined in the near future.

8.13 Testing and Diagnosis
The batch parsing support which is distributed with the LKB is very
simple. For extensive grammar development, much more sophisticated
tools are available through the [incr tsdb()] package that can be used
with the LKB. The following description is by Stephan Oepen (to whom
all comments should be directed: see the website below for contact in-
formation).

The [incr tsdb()] package combines the following components and
modules:

• test and reference data stored with annotations in a structured
database; annotations can range from minimal information (unique

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

206 / Implementing Typed Feature Structure Grammars

test item identifier, item origin, length et al.) to fine-grained lin-
guistic classifications (e.g., regarding grammaticality and linguistic
phenomena presented in an item) as represented by the TSNLP
test suites (Oepen et al, 1997).

• tools to browse the available data, identify suitable subsets and
feed them through the analysis component of a processing system
like the LKB or PAGE;

• the ability to gather a multitude of precise and fine-grained system
performance measures (like the number of readings obtained per
test item, various time and memory usage metrics, ambiguity and
non-determinism parameters, and salient properties of the result
structures) and store them as a competence and performance profile
in the database;

• graphical facilities to inspect the resulting profiles, analyze sys-
tem competence (i.e., grammatical coverage and overgeneration)
and performance at highly variable granularities, aggregate, cor-
relate, and visualize the data, and compare profiles obtained from
previous grammar or system versions or other platforms.

• a universal pronounciation rule: tee ess dee bee plus plus is the
name of the game.

Please see:

http://www.coli.uni-sb.de/itsdb/

for links to more information about the [incr tsdb()] package and details
of how to get it.

8.14 Parse tree labels
The grammars in this book use a simple node labelling scheme in parse
trees, as described in 4.5.7. However, if *simple-tree-display* is set
to nil rather than t, the parse tree labelling is more complex, and this
more complex scheme is outlined here.

There are two classes of templates: label and meta structures (see
§9.1.3 for the parameters). Each label TFS specifies a single string at a
fixed path in its TFS: label-name in the ERG and textbook grammars.
For instance, the following is a label from the textbook grammar.

np := label &
[SYN [HEAD noun,

SPR < >],
LABEL-NAME "NP"].

Meta templates are used for things such as / (e.g., to produce the label
S/NP). If meta templates are specified, each meta template TFS must

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

Advanced features / 207

specify a prefix string and a suffix string (by default, at the paths meta-

prefix and meta-suffix). For instance, the following is specified as a
meta template in the textbook grammar:

slash := meta &
[SYN [GAP [LIST ne-list]],
META-PREFIX "/",
META-SUFFIX ""].

To calculate the label for a node, the label templates are first checked
to find a match. Matching is tested by unification of the template feature
structure, excluding the label path, with the TFS on the parse tree node.
For instance, if a parse tree node had the following description:

[SYN [HEAD *top*,
SPR < >]].

it would unify with

[SYN [HEAD noun,
SPR < >]].

and could thus be labelled NP, given the structure above. There is a
parameter, *label-fs-path*, which allows templates to be checked on
only the substructure of the node TFS which follows that path, but this
parameter is set to the empty path in the textbook grammar.

If meta templates are specified, the TFS at the end of the path
specified by the parameter *recursive-path* ((syn gap list first)
in the textbook grammar) is checked to see whether it matches a meta
template. If it does, the meta structure is checked against the label tem-
plates (the parameter *local-path* allows them to be checked against a
substructure of the meta structure). The final node label is constructed
as the concatenation of the first label name, the meta prefix, the label
of the meta structure, and the meta suffix.

8.15 Linking the LKB to other systems
The LKB has a non-graphical user interface which can be used by people
who for whatever reason can’t run the graphical user interface. Apart
from the graphical user interface, the LKB system mostly uses ANSI-
standard Common Lisp. The tty interface is also useful when using the
LKB in conjunction with another system. I won’t list the tty commands
here (though see 6.1.4 for do-parse-tty, which is the most generally
used). Some information on the tty commands is given on the LKB
website.

The easiest way to hook up the output of the LKB parser to another
system is to use a semantic representation compatible with MRS. A

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

208 / Implementing Typed Feature Structure Grammars

range of different output options are available for MRS, and writing
alternative output formats is reasonably straightforward. Code which
links MRS output to a canonical form representation suitable for use
with theorem provers is in the LKB source directory tproving.

A lower-level interface is available via user-defined functions which
are specified as the value of the parameter *do-something-with-parse*.
This allows access to the parser output in the form of TFSs, which can
be manipulated via the interface functions defined in the LKB source
code file mrs/lkbmrs.lisp.

Further details of interfacing to the LKB will be given on the website,
as time permits!

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

9

Details of system parameters

Various parameters control the operation of the LKB and some feature
and type names are regarded as special in various ways. The system
provides default settings but typically, each grammar will have its own
files which set these parameters, redefining some of the default settings,
though a set of closely related grammars may share parameter files. Each
script must load the grammar-specific parameter files before loading any
of the other grammar files (see §4.5.1 and §8.2). Other parameters con-
trol aspects of the system which are not grammar specific, but which
concern things such as font size, which are more a matter of an individ-
ual user’s preferences. This class of parameters can mostly be set via
the Options menu (described in §6.1.9). Changing parameters in the
Options menu results in a file being automatically generated with the
preferences: this shouldn’t be manually edited, since any changes may
be overridden. There’s nothing to prevent global variables which affect
user preferences being specified in the grammar-specific globals files, but
it is better to avoid doing this, since it could be confusing.

There are also some functions which can be (re)defined by the gram-
mar writer to control some aspects of system behavior.

This chapter describes all the parameters and functions that the LKB
system allows the user/grammar writer to set, including both grammar
specific and user preference parameters. We sometimes refer to the pa-
rameters as globals, since they correspond to Common Lisp global vari-
ables. Note that the parameters in the grammar-specific globals files are
all specified as either:

(def-lkb-parameter global-variable value comment)

or

(defparameter global-variable value comment)

where the comment is optional. Thus only a very basic knowledge of

209

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

210 / Implementing Typed Feature Structure Grammars

Common Lisp is required to edit a globals file: the main thing to re-
member is that symbols have to be preceded by a quote, for instance:

(def-lkb-parameter *string-type* ’string)

See §4.5.2 for a lightening introduction to Common Lisp syntax.
The descriptions below give the default values for the variables and

functions (as they are set in the LKB source files main/globals and
main/user-fns). The description of the global variables is divided into
sections based on the function of the variables: these distinctions do not
correspond to any difference in the implementation with the exception
that the globals which can be set via the Options/ Set options menu
are nearly all ones that are specified as being grammar independent.
(Not all grammar independent variables are available under Options,
since some are too complex to set interactively, or are rarely used.)

To set a value interactively, use the Options/ Set options command
on the parameter.

9.1 Grammar independent global variables
9.1.1 System behaviour
gc-before-reload, nil — This boolean parameter controls whether
or not a full garbage collection is triggered before a grammar is reloaded.
It is best set to t for large grammars, to avoid image size increasing, but
it is nil by default, since it slows down reloading.
sense-unif-fn, nil — If set, this must correspond to a function.
See make-sense-unifications in §9.3, below.
maximum-number-of-edges, 500 — A limit on the number of
edges that can be created in a chart, to avoid runaway grammars taking
over multi-user machines. If this limit is exceeded, the following error
message is generated:

Error: Probable runaway rule: parse/generate aborted
(see documentation of *maximum-number-of-edges*)

When parsing a short sentence with a small grammar, this message is
likely to indicate a rule which is applying circularly (that is, applying
to its own output in a way that will not terminate). But this value
must be increased to at least 2000 for large scale grammars with a lot
of ambiguity such as the LinGO ERG. May be set interactively.
maximum-number-of-tasks, 50000 — A limit on the number
of tasks that can be put on the agenda. This limit is only likely to be
exceeded because of an error such as a circularly applicable rule.

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

Details of system parameters / 211

chart-limit, 100 — The limit on the number of words (actually
tokens as constructed by the tokenizer function) in a sentence which
can be parsed. Whether the system can actually parse sentences of this
length depends on the grammar!
maximal-lex-rule-applications, 7 — The number of lexical rule
applications which may be made before it is assumed that some rules
are applying circularly and the system signals an error.
display-type-hierarchy-on-load, t — A boolean variable, which
controls whether the type hierarchy is displayed on loading or not. This
must be set to nil for grammars with large numbers of types, because
the type hierarchy display becomes too slow (and if the type hierarchy
involves much multiple inheritance, the results are not very readable
anyway). May be changed interactively.

9.1.2 Display parameters
feature-ordering, nil — A list which is interpreted as a partial
order of features for setting the display ordering when TFSs are displayed
or printed. See §6.3.
show-morphology, t — A boolean variable. If set, the mor-
phological derivations are shown in parse trees (see §6.5). May be set
interactively.
show-lex-rules, t — A boolean variable. If set, applications of
lexical rules are shown in parse trees (see §6.5). May be set interactively.
simple-tree-display, nil — A boolean variable which can be set
in order to use the simple node labelling scheme in parse trees. See
§4.5.7 and §8.14.
substantive-roots-p, nil — A boolean variable which can be set
to allow the structures constructed when checking the start conditions
to be regarded as real edges for the purposes of chart display.
display-type-hierarchy-on-load, t — see §9.1.1 above. May be
set interactively.
parse-tree-font-size, 12 — The font size for parse tree nodes.
May be set interactively.
fs-type-font-size, 12 — The font size for nodes in AVM windows.
May be set interactively.
fs-title-font-size, 12 — The font size for titles in AVM windows.
May be set interactively.
type-tree-font-size, 12 — The font size for the nodes in the type
hierarchy. May be set interactively.

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

212 / Implementing Typed Feature Structure Grammars

dialog-font-size, 12 — The font size used in dialogue windows.
May be set interactively.
maximum-list-pane-items, 50 — The maximum number of rules,
lexical entries etc that will be offered as choices in menus that allow se-
lection of such entities.

9.1.3 Parse tree node labels
These parameters are only used when *simple-tree-display* is nil.
For details of how this operates, see §8.14.
label-path, (LABEL-NAME) — The path where the name string
is stored.
prefix-path, (META-PREFIX) — The path for the meta prefix
symbol.
suffix-path, (META-SUFFIX) — The path for the meta suffix
symbol.
recursive-path, (NON-LOCAL SLASH LIST FIRST) —
The path for the recursive category.
local-path, (LOCAL) — The path inside the node to be unified
with the recursive node.
label-fs-path, (SYNSEM) — The path inside the node to be
unified with the label node.
label-template-type, label — The type for all label templates.

9.1.4 Defaults
See §8.10.
description-persistence, l — The symbol used to indicate that
a default should be made hard (if possible) when an entry is expanded
into a complete TFS.

9.2 Grammar specific parameters
9.2.1 Type hierarchy
toptype, top — This should be set to the value of the top type:
top in the example grammars. See §3.2.
string-type, string — The name of the type which is special, in
that all Lisp strings are recognised as valid subtypes of it. See §3.2.

9.2.2 Orthography and lists
orth-path, (orth lst) — The path into a sign, specified as a list
of features, which leads to the orthographic specification. See §4.1 and
also the functions make-sense-unifications and make-orth-tdfs in

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

Details of system parameters / 213

§9.3.
list-head, (hd) — The path for the first element of a list. See
§4.4.2.
list-tail, (tl) — The path for the rest of a list. See §4.4.2.
list-type, *list* — The type of a list. See §4.4.2.
empty-list-type, *null* — The type of an empty list — it must
be a subtype of *list-type*. See §4.4.2.
diff-list-type, *diff-list* — The type of a difference list (see
§4.4.2).
diff-list-list, list — The feature for the list portion of a difference
list. See §4.4.2.
diff-list-last, last — The feature for the last element of a difference
list. See §4.4.2.

9.2.3 Morphology and parsing
lex-rule-suffix, nil — If set, this is appended to the string as-
sociated with an irregular form in the irregs file in order to construct
the appropriate inflectional rule name. See §8.4. Required for PAGE
compatibility in the LinGO ERG.
mother-feature, 0 — The feature specifying the mother in a rule.
May be NIL (is nil with all grammars discussed in this book).
start-symbol, sign — A type which specifies the type of any valid
parse. Can be used to allow relatively complex start conditions. See
§4.5.6. Unlike most grammar specific parameters, this can be set inter-
actively to allow a switch between parsing fragments and only allowing
full sentences, for instance.
deleted-daughter-features, nil — A list of features which will
not be passed from daughter to mother when parsing. This should be set
if efficiency is a consideration in order to avoid copying parts of the TFS
that can never be (directly) referenced from rules pertaining to higher
nodes in the parse tree. This will include daughter features in HPSG,
since it is never the case that a structure can be directly selected on the
basis of its daughters. See §8.3.3.
key-daughter-path, (key-arg) — A path into a daughter in a
rule which should have its value set to *key-daughter-type* if that
daughter is to be treated as the key. See §8.3.2.
key-daughter-type, + — . See above.
check-paths, nil — An association list in which the keys are fea-
ture paths that often fail — these are checked first before attempting
unification to improve efficiency. See §8.3.1. The value of this parameter

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

214 / Implementing Typed Feature Structure Grammars

could be set in the globals file, but since the list of paths is automatically
generated, it is normally kept in a distinct file. The parameter should
ideally be set to nil in the globals file for grammars which do not use
check paths, in case the grammar is read in after a previous grammar
which does set the paths.
check-path-count, 30 — The number of check paths which are
actually used when parsing (see above): set empirically to give maximum
performance.
irregular-forms-only-p, nil — If set, the parser will not invoke
the morphological analyzer on a form which has an irregular spelling.
This prevents the system analyzing words such as mouses. Note that this
means that if the grammar writer wants to be able to analyze dreamed
as well as dreamt, both entries have to be in the irregular morphology
file. Also note that we currently assume (incorrectly) that spelling is
not affected by sense. For instance, the system cannot handle the usage
where the plural of mouse is mouses when referring to computers. Note
that this flag does not affect generation, which always treats an irregular
form as blocking a regular spelling. See §8.4.
first-only-p, nil — If set, only one parse will be returned, where
any preferences must be defined as specified in §8.6. May be set inter-
actively.

9.2.4 Compare parameters
discriminant-path, (synsem local cont key) — A path used
by the Compare display to identify a useful discriminating position in a
structure — see §6.1.4.

9.2.5 Generator parameters
gen-first-only-p, nil — If set only one realization will be returned,
where any preferences must be defined as specified in §8.6. May be set
interactively.
semantics-index-path, (synsem local cont index) — The path
used by the generator to index the chart. See §5.4.4.
intersective-rule-names, (adjh i nadj i hadj i uns) — The
names of rules that introduce intersective modifiers. Used by the gener-
ator to improve efficiency. Default value is appropriate for the LinGO
grammar. It should be set to NIL for grammars where the intersective
modifier rules do not meet the necessary conditions for adjunction. See
§8.12 and also the function intersective-modifier-dag-p in §9.3.
duplicate-lex-ids, (an) — Used in grammars which do not have
any way of representing alternative spellings, this is a list of lexical iden-

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

Details of system parameters / 215

tifiers that should be ignored by the generator. (The a/an alternatives
are chosen by a post-generation spelling realization step.) See §8.12.

9.2.6 MRS parameters
I will not go through most of the MRS parameters here because they
are currently frequently being revised. Documentation will be available
on the website. They are stored in a separate file from the other globals
(the file is called mrsglobals.lsp for the grammars in this book and
mrsglobals-eng.lisp for the LinGO grammar).
mrs::*scoping-call-limit*, 10000 — Controls the search space for
scoping.

9.3 User definable functions
make-sense-unifications — If this function is defined, it takes three
arguments so that the orthographic form of a lexical entry, its id and
the language are recorded in an appropriate place in the TFS. The value
of *sense-unif-fn* must be set to this function, if it is defined. The
function is not defined by default.

The idea is that this function can be used to specify paths (such as
ORTH.LIST.FIRST) which will have their values set to the orthographic
form of a lexical entry. This allows the lexicon files to be more succinct.
It is assumed to be exactly equivalent to specifying that the paths take
particular atomic values in the lexical entry. For example, instead of
writing:

teacher_1 := noun-lxm &
[ORTH.LIST.FIRST "teacher",
SEM.RELS.LIST.FIRST.PRED teacher1_rel] .

the function could be defined so it was only necessary to write:

teacher_1 := noun-lxm.

since the value of the orthography string and the semantic relation name
are predictable from the identifying material.
make-orth-tdfs — A function used by the parser which takes a string
and returns a TFS which corresponds to the orthographic part of a sign
corresponding to that string. The default version assumes that the string
may have spaces, and that the TFS will contain a list representation with
each element corresponding to one word (i.e., sequence of characters
separated by a space). For instance, the string "ice cream" would give
rise to the structure

[ORTH [LST [HD ice
TL [HD cream]]]]

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

216 / Implementing Typed Feature Structure Grammars

establish-linear-precedence — A function which takes a rule TFS
and returns the top level features in a list structures so that the ordering
corresponds to mother, daughter 1, daughter 2 ... daughter n. The
default version assumes that the daughters of a rule are indicated by the
features 1 through n. See §4.1.
spelling-change-rule-p — A function which takes a rule structure
and checks whether the rule has an effect on spelling. It is used to prevent
the parser trying to apply a rule which affects spelling and which ought
therefore only be applied by the morphology. The current value of this
function checks for the value of needs-affix being true. If this matches
a rule, the parser will not attempt to apply this rule. (Note that the
function will return false if the value of needs-affix is anything other
than true, since the test is equality, not unifiability.) See §5.2.1.
redundancy-rule-p — Takes a rule as input and checks whether it is
a redundancy rule, defined as one which is only used in descriptions and
is not intended to be applied productively. See §5.2.1. For instance, the
prefix step-, as in stepfather, has a regular meaning, but only applies to
a small, fixed set of words. A redundancy rule for step- prefixation can
be specified to capture the regularity and avoid redundancy, but it can
only be used in the lexical descriptions of stepfather etc, and not applied
productively. (There is nothing to prevent productive lexical rules being
used in descriptions.)

The default value of this function checks for the value of produc-

tive being false. If this matches a rule, the parser will not attempt to
apply that rule. (Note that the function will return false if the value of
productive is anything other than false, since the test is equality, not
unifiability.)
preprocess-sentence-string — The function takes an input string
and preprocesses it for the parser. The result of this function should be
a single string which is passed to a simple word identifier which splits
the string into words (defined as things with a space between them). So
minimally this function could be simply return its input string. However,
by default some more complex processing is carried out here, in order to
strip punctuation and separate ’s. Thus, in effect, this function controls
the tokenizer: see §4.1.
find-infl-poss — This function is called when a lexical item is read
in, but only for lexical items which have more than one item in their
orth value (i.e., multiword lexemes). It must be defined to take three
arguments: a set of unifications (in the internal data structures), an
orthography value (a list of strings) and a sense identifier. It should
return an integer, indicating which element in a multi-word lexeme may

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

Details of system parameters / 217

be inflected (counting left to right, leftmost is 1) or nil, which indicates
that no item may be inflected. The default value for the function allows
inflection on the rightmost element. See §8.5.
hide-in-type-hierarchy-p — Can be defined so that certain types
are not shown when a hierarchy is displayed (useful for hierarchies where
there are a very large number of similar leaf types, for instance repre-
senting semantic relations).
rule-priority — See §8.6. The default function assigns a priority of
1 to all rules.
lex-priority — See §8.6. The default function assigns a priority of 1
to all lexical items.
intersective-modifier-dag-p — Used by the generator to test whether
a structure is an intersective modifier. Default value is applicable for the
LinGO grammar. It should be set to NIL in grammars where intersective
modifiers do not meet the conditions the generator requires for adjunc-
tion. See also the parameter *intersective-rule-names* in §9.2.5.

9.3.1 System files
There are two user definable functions which control two system files.
The file names are associated with two global variables — these are
initially set to nil and are then instantiated by the functions. The
global variables are described below, but should not be changed by the
user. The functions which instantiate them may need to be changed for
different systems.
lkb-tmp-dir — This function attempts to find a sensible directory
for the temporary files needed by the LKB. The default value for this
on Unix is a directory tmp in the user’s home directory: on a Macintosh
it is Macintosh HD:tmp. The function should be redefined as neces-
sary to give a valid path. It is currently only called by the function
set-temporary-lexicon-filenames (below).
set-temporary-lexicon-filenames — This function is called in or-
der to set the temporary files. It uses lkb-tmp-dir, as defined above.
It is useful to change the file names in this function if one is working
with multiple grammars and using caching to ensure that the lexicon file
associated with a grammar has a unique name which avoids overriding
another lexicon (see §8.8).

The files are defined by the following variables:

psorts-temp-file This file is constructed by the system and used
to store the unexpanded lexical entries, in order to save memory.
Once a lexical entry is used, it will be cached until either a new

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

218 / Implementing Typed Feature Structure Grammars

lexicon is read in, or until the Tidy up command is used (§6.1.8).
If the temporary lexicon file is deleted or modified while the LKB is
running, it will not be possible to correctly access lexical entries.
The file is retained after the LKB is exited so that it may be
reused if the lexicon has not been modified (see §8.8, §8.2.1 and
the description of *psorts-temp-index-file*, below).
The pathname is actually specified as:

(make-pathname :name "templex"
:directory (lkb-tmp-dir))

psorts-temp-index-file This file is used to store an index for the
temporary lexicon file. If the option is taken to read in a cached
lexicon (see §8.8 and §8.2.1), then the lexicon index is recon-
structed from this file. If this file has been deleted, or is apparently
outdated, the lexicon will be reconstructed from the source file.

leaf-temp-file This file is used to store cached leaf types.

http://www.press.uchicago.edu/cgi-bin/sc_add_query.cgi/7900/14698.ctl

	Copyright:

