5

Solutionsfor Handling
Non-concatenative Processesin Bantu
L anguages

ARVI HURSKAINEN

The paper discusses the description of non-concatenative processes in word
formation by using examples from Bantu languages. The focal point is es-
pecialy the verb, which may have up to fifteen morpheme slots. Because
of space restrictions, only reduplication and non-cumulative morpheme con-
catenation will be discussed and solutionsfor implementation will be demon-
strated. Some solutions require the use of such environments as provided by
the Xerox tool package and Koskenniemi’s Two-level morphology.

5.1 Introduction

Bantu languages display a number of features that cannot be effectively han-
dled by using the basic finite state processing. Examples of such featuresin-
clude, for example, the full-stem reduplication of verbs, the non-cumulative
sequence of verb morphemes, and the disjoining writing system.

Bantu languages exhibit a productive process of verb stem reduplication.
Reduplicated forms cannot be described simply by adding reduplicated stems
into the dictionary, because it is not the verb root but the full, possibly ex-
tended, stem of the verb that is reduplicated. When a verb may have up to
20 different extended stems, and each stem has at |east three different surface
forms, thelisting of al of these formsin the lexiconis not practical.

Verb structures in Bantu languages are complex, comprising up to fifteen
morpheme dlots. There are a number of rules that restrict the co-occurrence

Inquiriesinto Words, Constraints and Contexts.
Antti Arppe et a. (Eds.)
Copyright (©) 2005, by individual authors.

45

46 / ARVI HURSKAINEN

of certain morphemes. For the morphemes that precede the verb stem, it is
possible to construct separate routes through the morpheme dots, allowing
some, and disallowing others, from occurring in the sequence of morphemes.
When the constraining morpheme is after the verb root, the problem cannot
be solved by constructing separate routes, because thiswould require also the
multiplication, perhaps several times, of the verb stemsin the lexicon.

Some Bantu languages have adopted a writing system where verb mor-
phemes, especially those preceding the stem, are written as separate words,
while other languages, closely related to these, use a conjoining writing sys-
tem. The problem in computational processing is how to keep these mor-
phemes separate from similar morphemes which are not part of the verb and
constitute grammatical words in themselves. Because of space restrictions,
this problem is not discussed here.

The problems of implementing reduplication and the non-cumulative se-
quence of verb morphemeswill be discussed below and solutionsto them will
be demonstrated. Some of the solutions have been implemented with general -
purposetools, and othersrequire the use of such environmentsas provided by
the Xerox tool package and Koskenniemi’s Two-level morphology, licensed
by Lingsoft.

Acknowledgements

| wish to thank Kimmo Koskenniemi for his advice in the early phases of de-
veloping the Swahili morphological parser in the 1980s, and Lauri Karttunen
for introducing the solutionsfor solving the types of problemsdiscussed here.

5.2 Reduplication

The extensive use of reduplication for grammatical and semantic purposes
is a distinctive feature in most African languages. Part of reduplication is
fairly easy to describe in the lexicon. Some types of reduplication, however,
can hardly be described in a satisfactory way by simply concatenating mor-
phemes. Below | shall describe two methods for handling reduplication.

5.2.1 Using basic finite state methods

In SALAMA, Swahili Language Manager (Hurskainen 2004b), reduplication
was implemented by using the basic finite state concatenation. This led to
a somewhat strange situation because, although the extended forms of verb
stems were described with the help of continuation classes and corresponding
sub-lexicons, each reduplicated verb stem had to be written in full. Thus the
same basic verb may occur in the lexicon several times in different forms.
Reduplicated forms were added to the lexicon if they occurred in texts. The
verbs of the corpus of 15 million words have so far been included and new
reduplicated forms are added when they are found in new texts. An example

SOLUTIONS FOR HANDLING NON-CONCATENATIVE PROCESSES / 47

of how the reduplicated forms of the verb kata (to cut) are described in this
systemisin (1).
D Lexicon VRoot

katAkat redup/V "katakat ’‘cut’ SV SvVO ";
katikAkatik redup/V "katakat ‘cut’ SV STAT ";
katishakatish redup/V "katakat ’cut’ SVO CAUS ";
katizAkatiz redup/V "katakat ’‘cut’ SVO CAUS ";
katizwAkatizw redup/V "katakat ‘cut’ SV CAUS PASS ";
katwAkatw redup/V "katakat ’‘cut’ SV PASS ";
Lexicon Redup/V
A End;
A GenRel;
Lexicon GenRel
ye End;

Notethat the use of two-level rulesreducesthe need of listing verb entries,
because the rules handle the surface realisation of the verb-final A. Without
the use of rules, each entry should be written three times, one for A > aas
default, another for A > i in present tense negative, and another for A > ein
subjunctive. The rules convert the A in the middle and at the end of the verb
asrequired.

In addition to verbs, reduplication occurs frequently in pronouns and ad-
verbs, and to alimited extent in adjectives. Reduplication hasin these contexts
mainly asemantic role, which hasto be taken into considerationin abilingual
lexicon (Hurskainen 20044). If reduplicated words, which do not inflect, are
written as a single word without a space in between, they are easy to describe
in the lexicon. There are, however, reduplicated adjectives with an alternat-
ing prefix defined by the noun class, written together as a single word. Some
examples of theword zuri (good) arein (2).

2 mzurimzuri End "zuri Adj 1/2-SG ' good '";
wazuriwazuri End "zuri Adj 1/2-PL ' good '";
mizurimizuri End "zuri Adj 3/4-PL ’ good '";
kizurikizuri End "zuri Adj 7/8-SG ' good '";
zurizuri End "zuri Adj 9/10-SG ’ good '";
pazuripazuri End "zuri Adj 16-LOC '’ good '™",;

A more elegant way of describing reduplicated adjectives is to formulate
them as regular expressions. In this method, each of the basic stemsis listed
only once. The stem receives its prefixes from the sub-lexicon of prefixes,
and the concatenated word is optionally reduplicated. This will be described
in more detail in (11-12).

48 / ARVI HURSKAINEN

In sum, the method of describing the reduplicated stems directly in the
lexicon has disadvantages, but also advantages. One disadvantage is that it
is rather tedious to keep track of all real instantiations of reduplicated verbs.
The method also requires continuing follow up becauseit is based on corpus
occurrences and not on the grammatical word formation rules. On the posi-
tive side we can see the accuracy of the system because no potential verbsare
there which do not occur in text. This saves the system from testing unneces-
sary paths, and also eliminates the risk of unnecessary additional ambiguity.

5.2.2 Solution based on regular expressions

It iswell known that if a string or a sequence of strings can be expressed in
the form of a regular expression, it can be repeated. Limited reduplication,
repetition of strings, can be achieved even with two-level rules, although the
power of this method is not sufficient for handling full scale applicationssuch
as Swahili and other Bantu languages.

The Xerox tool package contains a compile-replace algorithm, which
makes it possible to include finite state operations other than concatenation
into the morphotactic description (Beesley and Karttunen 2003: 379-380).
In this method of describing non-concatenative phenomena, the initial lexi-
cal description is made by concatenating partial strings, usually morphemes,
into well-formed words through a finite state lexicon structure. This partly
abstract lexical description is mapped to the surface strings by applying mor-
phophonological aternation rules. While in the usual description, following
the terminology of Xerox, the lower language represents the orthographically
correct word forms, in the compile-replace algorithm the initial network (i.e.
the composition of the lexicon and the rules) is left abstract for including
meta-morphotactic descriptions of non-concatenative phenomena.

When processing this kind of description, the morphophonological rules
and lexicon, which are in the form of regular expressions, are first read
and composed into a network. This network contains strings which also in-
clude meta-morphotactic descriptionsin the form of regular expressions. The
compile-replace command is applied to the lower side of the initial network,
where it finds the meta-morphotactic descriptions, compiles them as regular
expressions and replaces them in the lexicon network with the new network
resulting from the compilation (Beesley and Karttunen 2003: 381-382).

The examplein (3) illuminates how the above description isimplemented
with the Swahili verb sema (to say).

3 Multichar_Symbols
*["] @U.GENREL.abs@ @U.GENREL.pres@
@U.OBJ.abs@ @U.OBJ.pres@
Lexicon Root
Prefo@; Prefl; AdjStart;

SOLUTIONS FOR HANDLING NON-CONCATENATIVE PROCESSES/ 49

Lexicon Prefo@

@U.GENREL. abs@ Prefo;

Lexicon Prefo

ha=Neg+:ha”™ VStart;

ha=Neg+:ha” Pref4;

a=Subjn+:a! VStart;

a=Sbjn+:a! Pref4;

Lexicon Prefil

< {a=Sp+}:{a} “@U.GENREL.abse” > Pref2e;
a=Sp+:a Pref4;
a=Sp+:a VStart;
Lexicon Pref2@

@U.GENREL.abs@ Pref2;

Lexicon Pref2

na=Pres+:na VStart;

na=Pres+:na Pref3@;

na=Pres+:na Pref4;

Lexicon Pref3e

“@U.GENREL.abs@” Pref3;

Lexicon Pref3

ye=1/2-Sg-Rel+:ye VStart;
ye=1/2-Sg-Rel+:ye Pref4;

Lexicon Pref4

< {ki=7/8-Sg-Obj+}:{ki} “@QU.OBJ.pres@” > VStart;
Lexicon vStart

@:@"[{ VStem;

Lexicon vStem

sem VSuff;

Lexicon VSuff

+esh=Caus:Ish Vsuff2;

+esh=Caus:Ish VFinV ;

vsuff2; VFinV;

Lexicon VSuff2

< {+w=Pass}:{w} “@U.OBJ.abse@” > VFinV;
Lexicon VFinVv

+a:A EndSimple;

+a=Redup:A EndRedup;

Lexicon EndSimple

O:}AlA] End;

O:}AlA] GenRel;

Lexicon EndRedup

0:}172%] #;

0:}%27] GenRel;

Lexicon GenRel

< {+ye=1/2-Sg-GenRel}:{ye} “@U.GENREL.pres@’ > #;

50/ ARVI HURSKAINEN

Lexicon AdjStart

0:0%[{ AdjpPref;

Lexicon AdjPref
m=1/2-SG+:m AdjRoot;
wa=1/2-PL+:wa AdjRoot;
mi=3/4-PL+:mi AdjRoot;
ki=1/2-SG+:ki AdjRoot;
0=9/10-SG+:0 AdjRoot;
pa=16-LOC+:pa AdjRoot;
Lexicon AdjRoot

zuri EndSimple;

zuri EndRedup;

In the lexicon above, the upper-side languageis represented in such away
that it contains a sequence of lexical morphemesand their grammatical flags,
and morpheme boundaries are shown with a plus sign. The lower-side lan-
guageis aso abstract in that it contains charactersin upper case that are sub-
ject to alternation rules for producing correct surface forms. Particularly im-
portant in the lower-side languageis the section of the string that is subject to
reduplication. This section is delimited with special multi-character symbols
* [and *1. Whatever is between these symbols is a regular expression that
can be manipulated accordingly, in this case, repeated. We also see that the ac-
tual string to be defined as aregular expressionisenclosed with curly brackets

{ and } formakingsurethatthestringisinterpreted asaregular expres-
sion. In (4) is an example of how the surface string anasemeshasemesha
(he makes to speak) is represented in the lexicon. Note that the influence of
aternation rulesis here excluded.

(4) upper: a=1/2-Sg-Sp+na=Pr+sem+esh=Caus+a=Redup

lower: a na@” [{sem Ish A}"27]

Themulti-character symbol * 2 in thelower string standsfor repeating, i.e.
the preceding regular expression enclosed between curly brackets { and } is
repeated. The aternation rules rewrite the | and A as needed in the surface
string. In (5) we show in stages how the final network is compiled by using a
script file.

(5) xfst -e "read regex < rules.txt"
-e "read lexc < redup.lex"
-e "compose"
-e "compile-replace lower"
-e "substitute symbol 0 for Caret"
-e "substitute symbol 0 for !
-e "substitute symbol 0 for @"
-e "save redup.fst"
-stop

SOLUTIONS FOR HANDLING NON-CONCATENATIVE PROCESSES/ 51

Notethat all diacritics needed astriggersin alternation rules are deleted in
the final network. They are substituted with the zero symbol. The command
sequencein (6) shows how the network operates.

(6)

xfst [0] : load redup.fst
Opening ’redup.fst’

Closing ’‘redup.fst’

xfst[1]: up anasema
a=1/2-Sg-Sp+na=Pr+sem+a
xfst[1] : up anasemasema
a=1/2-Sg-Sp+na=Pr+sem+a=Redup

We see that both the simple and reduplicated stems are analysed. Thesim-
ple stem is analysed when the repetition trigger is set to * 1. We can also test
the network in the other direction, as shownin (7).

(7)

xfst[1]: down a=1/2-Sg-Sp+na=Pr+sem+a
anasema

xfst[1]: down a=1/2-Sg-Sp+na=Pr+sem+a=Redup
anasemasema

Asis shown in (8), adding verb affixes does not affect the correct realisa-
tion of the verb stem.

(8)

xfst[1]: up anasemesha
a=1/2-Sg-Sp+na=Pr+sem+esh=Caus+a

xfst[1]: up anasemeshasemesha
a=1/2-Sg-Sp+na=Pr+sem+esh=Caus+a=Redup
xfst[1]: up anayesemeshasemesha
a=1/2-Sg-Sp+na=Pr+ye=1/2-Sg-Rel+sem+esh=Caus+a=Redup
xfst[1] : up anakisemeshasemesha
a=1/2-Sg-Sp+na=Pr+ki=7/8-Sg-0bj+sem+esh=Caus+a=Redup

Thelexicon in (3) shows that the verb stem is not always the last element
in the verb. For example, the marker of the general relative is attached to the
end of the verb stem, and this suffix is not reduplicated. The formalism also
handles such cases, as shown in (9). Ungrammatical concatenations cause a

failure.

(9)

xfst[1]: up asemaye
a=1/2-Sg-Sp+sem+a+ye=1/2-Sg-GenRel

xfst[1]: up asemasemaye
a=1/2-Sg-Sp+sem+a=Redup+ye=1/2-Sg-GenRel
xfst[1] : up akisemasemaye
a=1/2-Sg-Sp+ki=7/8-Sg-0Obj+sem+a=Redup+ye=1/2-Sg-GenRel
xfst[1]: up anasemasemaye

The negative present and subjunctive affect the verb-final vowel, and this

52/ ARVI HURSKAINEN

is implemented with aternation rules as shown in (10). The analysis fails if
thefinal vowel is not correct.

(10)

xfst[1]: up hasemi
ha=Negl/2-SG-SP+sem+a
xfst[1]: up hasemisemi
ha=Negl/2-SG-SP+sem+a=Redup
xfst[1]: up aseme
a=Sbjnl/2-SG-SP+sem+a
xfst[1]: up asemeseme
a=Sbjnl/2-SG-SP+sem+a=Redup
xfst[1]: up hasema

xfst[1]: up hasemasema
xfst[1]: up haseme

5.2.3 Reduplicated adjectives

We saw in (2) that inflecting reduplicated adjectives require multiple listing
inthedictionary if only the basic concatenation method in the system is avail-
able. Here we show that this can be avoided by describing the adjective, to-
gether with its prefix, as aregular expression. In the example lexicon (3) the
solution for adjectivesis also demonstrated. The adjective zuri (good) is de-
scribed, together with a sample of aternative prefixes. Test examplesin (11)
show that both the simple and reduplicated forms are recogni sed and analysed
accordingly.

11

xfst[1]: up mzuri
m=1/2-SG+zuri

xfst[1]: up mzurimzuri
m=1/2-SG+zuri=Redup
xfst[1] : up wazuriwazuri
wa=1/2-PL+zuri=Redup
xfst[1]: up pazuri
pa=16-LOC+zuri

xfst[1] : up pazuripazuri
pa=16-LOC+zuri=Redup

When the upper-side language is applied to the lower-side language, we
get the correct surface forms. When a string with different prefixesin the first
and second part of the reduplicated stem is entered, the test fails.

(12)

xfst[1]: down m=1/2-SG+zuri=Redup
mzurimzuri

xfst[1] : down pa=16-LOC+zuri=Redup
pazuripazuri

xfst[1]: up kizurizuri

xfst[1]: up zurikizuri

xfst[1]: up kizuripazuri

SOLUTIONS FOR HANDLING NON-CONCATENATIVE PROCESSES/ 53

5.3 Non-concatenative dependencies

In the lexicon in (3) there are so-called flag diacritics, the purpose of which
is to congstrain the occurrence of incompatible features in the same string.
The relative marker after the verb stem blocks the occurrence of the relative
marker in Pref3, and also a number of other prefixes. Another similar caseis
that the object prefix cannot co-occur with the passive marker. The triggers
for both types of constraints are located on different sides of the verb stem,
and this calls for the use of flag diacritics (Beesley and Karttunen 2003: 339-
373). The unification flag diacritics are used in the lexicon for preventing the
co-occurrence of unwanted featuresin the same string. In the current example
lexicon (3), the flag diacritics are made visible on the upper and lower side of
the transducer, so that they function correctly in analysis and production.
Another possibility for constraining the unwanted combination of mor-
phemes here would be to use pairs of P-type (positive) and R-type (require)
diacritics for defining the correct strings, where both of the types of the same
flag with the same value must co-occur. Space does not allow the demonstra-
tion of this alternative. Examples in (13) show how the constraints with the
U-type (unification) flag diacritics work.
(13 xfst[1]: up anayesema

a=1/2-Sg-Sp+na=Pr+ye=1/2-Sg-Rel+sem+a

xfst[1] : up asemaye

a=1/2-Sg-Sp+sem+a+ye=1/2-Sg-GenRel

xfst[1] : up anayesemasema

a=1/2-Sg-Sp+na=Pr+ye=1/2-Sg-Rel+sem+a=Redup

xfst[1]: up asemasemaye

a=1/2-Sg-Sp+sem+a+Redup+ye=1/2-Sg-GenRel

xfst[1]: up anayesemaye

xfst[1] : up asemayesemaye

Note that if the verb stem with the general relative suffix is reduplicated,
theanalysisfails. Only the verb stem, simple or extended, isreduplicated, and
the relative marker is attached to the end of the reduplicated stem.

5.4 Conclusion

We have discussed non-concatenative processes that take place in Bantu lan-
guages on the word level and tested methods for solving them. Our conclu-
sion on the basis of the testsis that the environment offered by the Xerox tool
package offers el egant solutions to the problems discussed. The reduplication
of verbs and adjectives and constraining the co-occurrence of non-contiguous
morphemes can be described simultaneously and compiled into a network.
Reduplication can be handled also in the basic finite state lexicon, but this
ismorelabor-intensive than with Xerox tools. The number of variousredupli-

54/ ARVI HURSKAINEN

cated extended verb stems is in practice much more limited than the number
of extended non-duplicated verb stems. The number of extralistings required
by reduplicated verbsin Swahili for handling normal text islessthan 300. The
reduplicated adjectives can be listed as such if they occur in real language.

References

Beedley, Kenneth and Karttunen, Lauri. 2003. Finite Sate Morphology. Series: CSLI
Studies in Computational Linguistics. Stanford: Center for the Study of Language
and Information.

Hurskainen A. 2004a. Optimizing Disambiguation in Swahili. In Proceedings of
COLING-04, The 20th International Conference on Computational Linguistics,
Geneva 23-27.8. 2004. Pp. 254-260.

Hurskainen, A. 2004b. Swahili Language Manager: A Storehouse for Developing
Multiple Computational Applications. Nordic Journal of African Sudies, 13(3):
363-397. www.njas.helsinki.fi

Koskenniemi, Kimmo 1983. Two-level morphology: A general computational model
for word-formrecognition and production. Publications No.11. Department of Gen-
eral Linguistics, University of Helsinki.

