
CORRECTIONS TO THE TEXT

• p. vii: Section 5 of Chapter 1 should be called "Narrowing the Definition of
Language Further".

• p. 5: The colon in the fifth line after the box should be in normal font, not in
Courier New.

• p. 6: "find a lot about the known languages" should read "find out a lot about the
known languages".

• p. 7, line –9: Change "Either by its designers or by its users" to "Either by their
designers or by their users".

• p. 12, line 16: italicize "antecedent".
• p. 25: Section 5 should be called "Narrowing the Definition of Language Further".
• p. 26, line -3: "grew so quickly that" should read "grew so quickly with rank that".
• p. 27, footnote 7, line 3: italicize the exponent x.
• p. 28, line -6: Change "to measure of the difficulty" to "to measure the difficulty".
• p. 36, line 2: Decapitalize "Spanish" to "spanish".
• p. 36, line -1: change the first occurrence of "eve" to "eva" (the second one should

remain as is).
• p. 41, the last paragraph of section 9 should read as follows: The grammars we

have been developing can also deal comfortably with these issues. The reason for
this is that grammatical statements may differ with respect to sound without
having to differ with respect to meaning (and, at the same time, may differ with
respect to meaning without having to differ with respect to sound). In other words,
grammatical statements may specify sounds and meanings independently of each
other (they are independent parameters of the language relation), thus providing
modular accounts of each. Sample statements that may deal with synonymy and
homonymy can be found in (23) and (24), respectively.

• p. 43, line –7: Italicize grammar.
• p. 48, line -2: "niñas alto" should read "niñas, alto"
• p. 51, line -10: Delete the second occurrence of "only".
• p. 60, line 17: It should say "Program 6" rather than "Program 5".
• p. 64: Delete the second occurrence of "j" in the parenthesis in R2. This is the one

between the upside-down "r" and the "w".
• p. 66, l. 4: The colon should be followed by a dash (as all the other colons on this

page).
• p. 69: The second sentence of footnote 10 should read: "If so, enter the following

(at the prompt):"
• p. 73, Problem 2: add "(if any)" after "give the instantiation of the variables". Also

change "instantiation" to "instantiations".
• p. 74, Problem 4: Replace the beginning of the prompt as follows: "Use your

understanding of the [Head|Tail] representation of lists to explain why the
following PROLOG procedure defines…"

• p. 74: After revising Problem 4 as indicated above, reorder problems 3 and 4 [and
reflect this reordering in the Answer Key that is to accompany the textbook].

• p. 81, fn. 3: Invert the order of the sentences (the second one should be first and
the first, second).

• p. 83, line -13: change "number.swipl" to "num.swipl"
• p. 86, line 2: change "111" to "97".
• p. 89, line -2: The line is not right-justified (it does not end flush right).
• p. 90, line -9: Change "derived from" to "broken down into".
• p. 101, line 13: Replace "shares" by "has".
• p. 115: The sentence under (71) should be split in two so as to read "According to

the received view, (70) evaluates a situation in positive terms while (71) casts it in
a negative light instead. Yet, both are saying the same thing."

• p. 116, line 10: Replace "mentioned in lecture" by "mentioned in the preceding
text".

• p. 116, Problem 6, between "If so, which?" and "You may assume that…": Add
"Can you argue for your decompositions by appealing to semantic intuitions like
redundancy, contradiction, or entailment?"

• p. 118, line 15: Replace "Second, that both words and meanings" by "Second, that
both words and phrases"

• p. 130, line 12: Change "thus program" to "this program".
• p. 132, line 20: An underscore is missing between the stroke and the right bracket.

In other words, it should read "[person | _]" rather than "[person |]"
• p. 139, line -4: Place "append" in Courier New font (or in the "Typewriter-looking

font" code is placed in).
• p. 146, line 15: Change "maybe" to "may be".
• p. 152, line -13: Replace "forms a noun out of a verb" by "forms a verb out of a

noun".
• p. 152, line 9: Replace "devoicing" by "voicing".
• p. 167: There is a spurious line within (5).
• p. 173, line -3: Replace "acoustic parameters" by "articulatory parameters".
• p. 176, line -7: Add the following sentence to the paragraph ending in this line: To

make matters more perspicuous, enter

 english([X,Y]), nas(Y).
 english([X,Y]), name(X, [_,771]).

 The first query asks what vowels X can precede a nasal Y; the second asks what
 consonants Y can follow a nasal vowel X.
• p. 182, lines 14 and 18: The second apostrophe of ‘X' should to be curved rather

than straight.
• p. 182, line -5: Replace "T" by "Y'.
• p. 182, line -6: This line should end in a period.
• p. 184, lines 5-7: Replace "S=" by "E="
• p. 198, line 9: Replace "over sets of elements of X that are big relative to X" by

"over subsets of those sets of things (namely those subsets that consist of things
that are big as far as the things in those sets are concerned)."

• p. 199, line –2: Replace "singular/feminine" by "singular/plural").

• p. 207: The paragraph that begins "To gather the effect" fails to indent. Moreover,
a line is needlessly skipped between this paragraph and the preceding one.

• p. 208: Ditto for the paragraph that begins "For starters, notice that".
• p. 219, line 4: Replace "(2)" by "(3)".
• p. 221: Center the root of the tree (relative to the tree).
• p. 222, l. 6: Change "an variable" to "an unnamed variable".
• p. 225, l. –13: Change "mean relative to a" to "refer relative to any".
• p. 233, line -13: Change "refer relative to any" to "refer to relative to any".
• p. 238: indent as usual lines two, three, and four of (3).
• p. 257, Exercise 2, line 2: Replace y'all by yall.
• p. 258, lines1 and 2: Replace a walk on the park by a walk in the park.
• p. 262, Footnote 3: Change We will improve to You will have a chance to improve.
• p. 297, Exercise 4, line 3: Change are wont do to are wont to do.
• p. 297, line –8: Change "passive.swipl" to "voice.swipl"
• pp. 301-302, Figures 1, 2, 4: Match their fonts to those of the rest of figures in this

chapter.
• p. 337 (Appendix F): The chart is missing the last 6 columns (see attached file;

these columns were cut when the page setup was shifted from landscape to
portrait).

• p. 345: Add the following between lines 9 and 10 (and skip a line before and after
this material):

 spanish([adan], [nounphrase], [adam],
 [entity]).

• p. 355: The first two statements of PROGRAM 2 should be switched (so that the
first four lines of code of this program should be):

	
 	
 spanish([adan], [nounphrase], [adam],	

[entity]).	

	

spanish([eva], [nounphrase], [eve],	

[entity]).	

• p. 433, between MONTLEY and NIDA: Add the following reference:

Moschovakis, Yiannis (1993) "Sense and denotation as algorithm and value".
 In Oikkonen, J. & Väänänen, J. (Eds.) Logic Colloquium 90. Berlin,
 Springer-Verlag. pp. 210-249.

ADDITIONS TO THE TEXT

[The material below should replace the third paragraph from the end of Section 6,
Chapter 2. To make the passage easier to identify, the old and the new paragraph begin
and end the same way; the addition is in the middle]

To count how many syllables are in this list, we may issue a complex query consisting of
this findall query and a length query:

findall(Syllable, syllable(Syllable), List), length(List,Length).

Upon entering this query, PROLOG will again list all the syllables for us. But now it will
go on to tell us how many there are. To have PROLOG just count the syllables without
listing them we can enter the following query instead:

aggregate_all(count, syllable(_), Count).

Either way, PROLOG will respond by telling us that syllable.swipl can generate
20,608 syllables. Yet, it can efficiently accept well-formed syllables like [s, p, I, n] and
reject ill-formed ones like [p, s, I, n]. To verify this, enter the following:

syllable([s, p, I, n]).

syllable([p, s, I, n]).

[The paragraph below should go in Chapter 3, Section 3. There it should go between the
paragraph that discusses example (12) and the paragraph that begins "Fortunately, we
do not"]

One interesting argument for the metalinguistic version of indirect referentialism comes
from the fact that a sentence like A Robert Jones is here to see you does not mean that
someone with the identity of Robert Jones is here to see you. Or even that one of several
individuals with identities similar to him is here to see you. It only means that someone
named Robert Jones is here to see you. Or that a bearer of the name Robert Jones is here
to see you. But this is exactly what one would expect from the metalinguistic version of
indirect referentialism (and the opposite of what one would expect from direct
referentialism).

[The material below should appear as Section 12 of Chapter 3. This is an entirely new
section. All subsequent sections of that chapter should of course be renumbered
accordingly. And the Table of Contents (and its page numbers) should be updated to
reflect all of these changes as well. References to all the affected sections should be
changed as well. Fortunately, there is only one such reference. It is in the first footnote of
Chapter 6, which should now mention Section 13 rather than 12]

12. The High Resolving Power of Procedural Semantics

So the procedural theory of meaning is grained even more finely than possible-world
semantics. So much so, in fact, that it can draw semantic distinctions which have largely
escaped notice in the literature. Consider for example the difference between English
grandfather and Spanish abuelo. While the English kinterm conveys the notion of parent
father (58), its Spanish counterpart conveys the notion of male grandparent instead (59).

 (58) parentfather(A,B):- (59) malegrandparent(A,B):-
 father(A,C), male(A),
 parent(C,B). grandparent(A,B).

These concepts would be incorporated in the respective referential queries of grandfather
and abuelo as follows:

(60) R :: findall([A,B], parentfather(A, B), R).
(61) R :: findall([A,B], malegrandparent(A, B), R).

And these queries—or rather the referential procedures they trigger—would be assigned
as meanings to our two kinterms. Since the procedures triggered by (60) and (61) are
different, our two kinterms would be assigned—sight unseen—different meanings.
Notice that this is a welcome result, as the two sentences below have different cognitive
values.

(62) A father of a parent is a father of a parent.
(63) A father of a parent is a male grandparent.

Interestingly, however, although grandfather and abuelo have different meanings, they
will always have the same reference (and this might explain why their semantic
difference has hitherto escaped notice).

To prove that grandfather and abuelo will always have the same reference, let us
decompose them all the way down to the primes they involve. Since father decomposes
into male parent and grandparent into parent of a parent, we have that

(58') fatherparent(A,B):- (59') malegrandparent(A,B):-
 male(A), male(A),
 parent(A,C), parent(A,C),
 parent(C,B). parent(C,B).

What these prime decompositions show is that the two relations hold if (and only if) the
same three conditions hold in each case. And that the only diference between said
relations is that (58) conjoins the first two of these conditions while (59) conjoins the last
two. But since conjunction is associative, the two concepts will hold under exactly the
same circumstances (i.e. in the same models).

We will say that two expressions are semantically equivalent if and only if they will have
the same reference in every model. We will say that they are semantically identical (or
synonymous) if they are assigned the same referential query. Grandfather and abuelo
would therefore be semantically equivalent without being semantically identical.

Similar situations arise with grandmother and Spanish abuela; with grandson and
Spanish nieto; and with granddaughter and Spanish nieta. Beyond kinterms, semantic
distinctions have also escaped notice for numerals. Take for instance English eighty and
French quatre-vingts. They would convey the concepts eighttens and
fourtwenties defined below.

 (64) eighttens(A):- (65) fourtwenties(A):-
 A is 8 * 10. A is 4 * 20.

And these concepts would be incorporated in the respective referential queries of eighty
and quatre-vingts as follows:

(66) R :: eighttens(R).
(67) R :: fourtwenties(R).

So English eighty and French quatre-vingts would not be assigned the same meanings.
Consequently, they would not be semantically identical. Yet, they would still be
semantically equivalent, as the following equations are true in every model.

8 · 10 = (4 · 2) · 10 = 4 · (2 · 10) = 4 · 20

Or at least in every model in which standard arithmetic holds. Again, this is a welcome
result, as (68) and (69) are not equally contentful.

(68) Eight tens is four twenties.
(69) Eight tens is eight tens.

One interesting consequence of the foregoing discussion is that translation is not always
the replacement of an expression in one language by a semantically identical expression
from another; sometimes it cannot be more than the substitution of one expression by a
mere semantic equivalent.

Beyond this, the procedural theory of meaning is able to make subtle distinctions of
connotation and emphasis, distinctions which are generally considered too fine for
denotational semantics to make. Consider for example a familiar contrast in connotation:

(70) The glass is half full.
(71) The glass is half empty.

According to the received view, (70) evaluates a situation in positive terms, (71) casts it
in a negative light instead, but both are saying the same thing. As procedural semantics
would have it, however, the two sentences in question are not saying the same thing, as
they are conveying different procedures for the computation of a truth value. Even if both
procedures end up computing the same one. The reason for this is plain: one of these
procedures involves the concept (or subprocedure) of fullness, while the other one
involves the concept (resp. subprocedure) of emptiness. And these concepts better be
different. Whether procedural semantics will be furthermore able to relate, as desired,
fullness to a constellation of positives and emptiness to one of negatives is something that
remains to be seen.

The reason procedural semantics was able to make the distinction between (70) and (71)
is that a procedure is the sequence of steps followed in the computation of a value. To
convey a procedure is therefore to convey these steps. All of them. This fact also explains
why procedural semantics can account for differences of emphasis. Compare (72) and
(73).

(72) John said so.
(73) John himself said so.

Although the interpretation of reflexives is complex, it is safe to assume that (72)
involves a single reference to John, while (73) involves a double reference to him. If the
number of references to John are retained (as they must in the procedures for the
interpretations of these sentences), then we have a distinction between them. And pretty
much the correct one: (73) is an emphatic version of (72) because (73) refers to John
twice, while (72) does so only once.

[The material below should go right after the last paragraph of current Section 2,
Chapter 4]

For a simpler example of a grammar fragment with referential queries as meanings,
consider the following variation of mandarin.swipl, which we introduced in Chapter
1, Section 6.

:- ['doublecolon.swipl'].

mandarin([yi], numeral, R :: R is 1, [number, unit, first]).
mandarin([er], numeral, R :: R is 2, [number, unit, nonfirst]).
mandarin([san], numeral, R :: R is 3, [number, unit, nonfirst]).
mandarin([si], numeral, R :: R is 4, [number, unit, nonfirst]).

mandarin([wu], numeral, R :: R is 5, [number, unit, nonfirst]).
mandarin([liu], numeral, R :: R is 6, [number, unit, nonfirst]).
mandarin([qi], numeral, R :: R is 7, [number, unit, nonfirst]).
mandarin([ba], numeral, R :: R is 8, [number, unit, nonfirst]).
mandarin([jiu], numeral, R :: R is 9, [number, unit, nonfirst]).
mandarin([shi], numeral, R :: R is 10,[number, ten, first]).

mandarin(A, numeral, R :: R is N1 * N2,[number, ten, nonfirst]):-
 mandarin(C, numeral, R1 :: R1 is N1,[number, unit,nonfirst]),
 mandarin(E, numeral, R2 :: R2 is N2,[number, ten, first]),
 append(C, E, A).

mandarin(A, numeral, R :: R is N1 + N2,[number]):-
 mandarin(C, numeral, R1 :: R1 is N1,[_,ten,_]),
 mandarin(E, numeral, R2 :: R2 is N2,[_,unit,_]),
 append(C, E, A).

Program 3bis. mandarin.ii.swipl

Notice that this program incorporates, as it must, doublecolon.swipl. To try out this
new program, consult it and enter the following:

mandarin([jiu,shi,jiu],_, ME,_).

It will respond with

ME = (_G444::_G444 is 9*10+9)

(except that it might display a different number after _G). Underscore G followed by a
numeral is PROLOG's abstruse way of displaying a variable. In this case, our referential
variable R. So what the preceding response is telling us is that the meaning of
[jiu,shi,jiu]is the procedure triggered by the following referential query:

(_G444::_G444 is 9*10+9)

Now, if we were to enter this query (followed by a period), we would get

_G444 = 99.

This tells us that the reference of [jiu, shi, jiu], as opposed to its meaning, is the
number 99.

So mandarin.ii.swipl tells us that the meaning paired with the Mandarin sound
[jiu, shi, jiu] is a procedure for the computation of number 99. It is the
procedure that multiplies 9 by 10 and adds 9 to the result. It should be pointed out that
thus program has exactly the same complexity as the original mandarin program.
	

[In Section 11 of Chapter 4]

• In the NOUNS column: Replace rise by teeth.

• In the VERBS column: Replace rise by teethe.

• In the first box thereafter, line 4: Replace [r,a,j,s] by [t,i,th]

[This is a new section for Chapter 5. It should go right before the Section called
"Conclusion". All subsequent sections in that chapter should be renumbered accordingly.
And corresponding changes are necessary for the Table of Contents, including its page
numbers].

6. Revisiting Homorganicity

We must admit that the definition of homorganicity presented in Section 2 above is
unprincipled. For there we said that two phones were homorganic if they were specified
the same way for labiality, dentality, alveolarity, palatality and velarity. But nowhere was
it said that these features are just the ones that specify point of articulation. So the fact
that they do, must be regarded as an accident.

Here's a better account. First we state that the properties labial, dental, alveolar, palatal,
and velar indeed describe place of articulation. In other words, we state that place
description —or, more simply, place— is a metaproperty of labial, dental, alveolar,
palatal, and velar (see Program 6bis, metaproperties.swipl):

property(lab).
property(dnt).
property(alv).
property(pal).
property(vel).

place(lab).
place(dnt).
place(alv).
place(pal).
place(vel).

Next we say that A and B are congruent relative to C just in case C is a property that
applies to A if and only if it applies to B as well. Now, one might think that this can be
done simply by saying

congruent(A,B,C):-
 property(C),
 C(A) <=> C(B).

Unfortunately, this is not something we can say in PROLOG, as the second condition of
this clause has, inadmissibly, two occurrences of a variable —in this case C— as
predicates. The good news is that this can be repaired. What we can do is rewrite C(A)
and C(B) as lists, and then invoke these lists by appealing to the opaquely-named
universal (or univ) relation. The univ relation is a one-to-one relation that holds
between a statement of the form P(A1, A2, …, AN) and a list of the form [P, A1, A2, …
AN] consisting of the predicate of the statement followed by its arguments. Thus, since
the univ relation is written as the infix operator =.. we have that

X =.. Y holds if and only if X is a statement and Y is a list having the predicate of X
as its head and the arguments of X, in order, as the elements of its tail.

The universal relation allows us to cast the illegitimate condition above into three
legitimate conditions as follows. First we say what it means for two things A and B to be
congruent relative to C:

congruent(A,B,C):-
 property(C),
 E =.. [C,A],
 F =.. [C,B],
 E <=> F.

So two things are congruent relative to a property if both things have the property or if
both things lack the property. We thus exclude the possibility that one thing has the
property and the other one does not.

Next we deem two things congruent relative to a list if and only if the two things in
question are congruent relative to each and every member of the list. This we need to say
in two clauses: one for empty lists of properties (see the first line of code below), and one
for nonempty lists of properties (see the rest of the code):

congruent(_, _, []).

congruent(A, B, [C|D]):-

 congruent(A, B, C),
 congruent(A, B, D).

It should be clear that the last three lines of code check whether A and B are congruent
relative to a list [C|D]of items by checking whether A and B are congruent with each
item of said list, taken from left to right, one at a time.

Be that as it may, the last three clauses we have discussed constitute
congruence.swipl (see Program 41bis of Appendix H).

We are finally in a position to improve on our definition of homorganicity.
Homorganicity can now be defined, simply, as the congruence of two phones relative to
the list of properties that describe place of articulation. In other words as the congruence
of two phones relative to place of articulation:

homorganic(A,B):-
 phone(A),
 phone(B),
 findall(X, place(X), C),
 congruent(A, B, C).

Interestingly, although principledness has improved dramatically in this definition,
efficiency remains essentially the same as before (it turns out to be quadratic using
append but linear using the stroke notation instead). See Program 33bis of Appendix H
(newhomorganic.swipl), which uses the stroke notation instead of append.

We should add that place is not the only metaproperty we might need. We might also
need metaproperties for manner (for assimilation in manner of articulation), aperture
(stem vowels of second-person Portugese verbs may take on the values for both HI and
LO of deleted theme vowels), and laryngeal (word-final consonants in Korean need to be
negatively marked for two features that describe the state of the larynx: TENSE and
ASPIRATED). See van Oostendorp (2005).

[The paragraph below should go in Chapter 6, Section 6. There it should go between the
paragraph that discusses example (23) and the paragraph that begins "We have included
all our statements"]

In fact, even English allows proper names to be specified. Back in Section 3.3 we
encountered the sentence A Robert Jones is here to see you. There we pointed out that
this sentence means that a bearer of the name Robert Jones is here to see you (as

predicted by the metalinguistic version of indirect referentialism). Here we will point out
that it contains a proper name Robert Jones preceded by the specifier a (as predicted by
its assignment to the category of phrases).

[The material below should be added to Appendix H. It should be ordered as appropriate,
i.e. PROGRAM 3bis should come right after PROGRAM 3; PROGRAM 6bis should come
right after PROGRAM 6, and so on.]

• PROGRAM 3bis: mandarin.ii.swipl

:- ['doublecolon.swipl'].

mandarin([yi], numeral, R :: R is 1, [number, unit, first]).
mandarin([er], numeral, R :: R is 2, [number, unit, nonfirst]).
mandarin([san], numeral, R :: R is 3, [number, unit, nonfirst]).
mandarin([si], numeral, R :: R is 4, [number, unit, nonfirst]).
mandarin([wu], numeral, R :: R is 5, [number, unit, nonfirst]).
mandarin([liu], numeral, R :: R is 6, [number, unit, nonfirst]).
mandarin([qi], numeral, R :: R is 7, [number, unit, nonfirst]).
mandarin([ba], numeral, R :: R is 8, [number, unit, nonfirst]).
mandarin([jiu], numeral, R :: R is 9, [number, unit, nonfirst]).
mandarin([shi], numeral, R :: R is 10,[number, ten, first]).

mandarin(A, numeral, R :: R is N1 * N2,[number, ten, nonfirst]):-
 mandarin(C, numeral, R1 :: R1 is N1,[number, unit,nonfirst]),
 mandarin(E, numeral, R2 :: R2 is N2,[number, ten, first]),
 append(C, E, A).

mandarin(A, numeral, R :: R is N1 + N2,[number]):-
 mandarin(C, numeral, R1 :: R1 is N1,[_,ten,_]),
 mandarin(E, numeral, R2 :: R2 is N2,[_,unit,_]),
 append(C, E, A).

• PROGRAM 6bis: metaproperties.swipl

:- ['fullproperties.swipl'].

property(lab).
property(dnt).
property(alv).
property(pal).
property(vel).
property(cns).
property(cnt).

place(lab).
place(dnt).
place(alv).
place(pal).
place(vel).

manner(cns).
manner(cnt).

• PROGRAM 33bis: newhomorganic.swipl

:- ['congruence.swipl'].

underenglish([P1,P2,P3,P4],[adjective]):-
 phone(P1), not(voi(P1)), not(dnt(P1)), lab(P1),
 phone(P2), mid(P2), not(bck(P2)), not(ctr(P2)),
 phone(P3), snt(P3), not(nas(P3)), not(alv(P3)), pal(P3),
 phone(P4), not(snt(P4)), voi(P4), not(cnt(P4)), alv(P4).

underenglish([P1,P2,P3],[adjective]):-
 phone(P1), not(voi(P1)), dnt(P1), lab(P1),
 phone(P2), mid(P2), not(bck(P2)), not(ctr(P2)),
 phone(P3), not(nas(P3)), alv(P3), pal(P3).

underenglish([P1,P2,P3,P4,P5,P6,P7],[adjective]):-
 phone(P1), not(voi(P1)), cnt(P1), cor(P1), not(sib(P1)),
 phone(P2), hih(P2), not(bck(P2)), not(tns(P2)),
 phone(P3), nas(P3),
 phone(P4), not(voi(P4)), vel(P4),
 phone(P5), not(cns(P5)), not(str(P5)),
 phone(P6), not(snt(P6)), voi(P6), not(cnt(P6)), lab(P6),
 phone(P7), snt(P7), not(nas(P7)), alv(P7), not(pal(P7)).

underenglish([P1,P2,P3,P4,P5,P6],[adjective]):-
 phone(P1), not(voi(P1)), not(cnt(P1)), alv(P1),
 phone(P2), hih(P2), not(bck(P2)), not(tns(P2)),
 phone(P3), not(voi(P3)), not(dnt(P3)), lab(P3),
 phone(P4), hih(P4), not(bck(P4)), not(tns(P4)),
 phone(P5), not(voi(P5)), vel(P5),
 phone(P6), snt(P6), not(nas(P6)), alv(P6), not(pal(P6)).

underenglish([P1,P2,P3,P4,P5,P6,P7,P8], [adjective]):-
 phone(P1), not(nas(P1)), alv(P1), pal(P1),
 phone(P2), not(bck(P2)), tns(P2),
 phone(P3), snt(P3), not(nas(P3)), alv(P3), not(pal(P3)),
 phone(P4), mid(P4), not(bck(P4)), not(ctr(P4)),
 phone(P5), snt(P5), not(nas(P5)), not(alv(P5)), pal(P5),
 phone(P6), not(voi(P6)), not(cnt(P6)), alv(P6),
 phone(P7), hih(P7), not(bck(P7)), not(tns(P7)),
 phone(P8), not(snt(P8)), voi(P8), not(cnt(P8)), alv(P8).

underenglish([P1,P2,P3,P4,P5,P6],[adjective]):-
 phone(P1), not(voi(P1)), not(cnt(P1)), pal(P1),
 phone(P2), mid(P2), not(bck(P2)), not(ctr(P2)),
 phone(P3), snt(P3), not(nas(P3)), not(alv(P3)), pal(P3),
 phone(P4), nas(P4),
 phone(P5), not(snt(P5)), voi(P5), cnt(P5), pal(P5),
 phone(P6), not(snt(P6)), voi(P6), not(cnt(P6)), alv(P6).

underenglish([P1,P2,P3,P4],[adjective]):-
 phone(P1), not(voi(P1)), vel(P1),
 phone(P2), snt(P2), not(nas(P2)), alv(P2), not(pal(P2)),
 phone(P3), not(bck(P3)), tns(P3),
 phone(P4), not(nas(P4)), alv(P4), pal(P4).

underenglish([P1,P2],[affix,negative]):-
 phone(P1),ctr(P1),str(P1),
 phone(P2),nas(P2).

underenglish([A,B|C],[adjective,negative]):-
 underenglish([A,B],[affix,negative]),
 underenglish(C,[adjective]).

english(A,B):-
 underenglish(A,B),
 (nas(N), cns(C), nextto(N,C,A)) => homorganic(N,C).

homorganic(A,B):-
 phone(A),
 phone(B),
 findall(X, place(X), C),
 congruent(A, B, C).

• PROGRAM 41bis: congruence.swipl

:- ['metaproperties.swipl'].
:- ['entailment.swipl'].

congruent(A, B, [C|D]):-
 congruent(A, B, C),
 congruent(A, B, D).

congruent(A,B,C):-
 property(C),
 E =.. [C,A],
 F =.. [C,B],
 E <=> F.

congruent(_, _, []).

• PROGRAM 26: replace english([r,a,j,s], noun) by english([t,i,th], noun)

[The material below should be added to the References section in its correct alphabetical
position]

van Oostendorp, Marc (unpublished manuscript) "Feature Geometry". October 4, 2005.

T

H
E

 F
U

N
D

A
M

E
N

T
A

L
 P

R
O

PE
R

T
IE

S
O

F
E

N
G

L
IS

H
 P

H
O

N
E

S

p

b

m

t

d

n

k

g

N

f
v

T

D

s

z

S

Z

c
&

æÛ
l

®
j

w

h

i

I
e

Q

u

U

o

a

´

√

cn
s

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

–
–

–
 –

 –

–

–
–

–
–

sn
t

–
–

+
–

–
+

–
–

+
–

–
–

–
–

–
–

–
–

–
+

+
+

+
–

+
+

+
 +

 +

+

+
+

+
+

na
s

–
–

+
–

–
+

–
–

+
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
 –

 –

–

–
–

–
–

vo
i

–
+

+
–

+
+

–
+

+
–

+
–

+
–

+
–

+
–

+
+

+
+

+
–

+
+

+
 +

 +

+

+
+

+
+

cn
t

–
–

–
–

–
–

–
–

–
+

+
+

+
+

+
+

+
–

–
+

+
+

+
+

+
+

+
 +

 +

+

+
+

+
+

la
b

+
+

+
–

–
–

–
–

–
+

+
–

–
–

–
–

–
–

–
–

–
–

+
–

–
–

–
 –

 –

–

–
–

–
–

al
v

–
–

–
+

+
+

–
–

–
–

–
–

–
+

+
–

–
–

–
+

+
–

–
–

–
–

–
 –

 –

–

–
–

–
–

pa
l

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
+

+
+

+
–

+
+

–
–

–
–

–
 –

 –

–

–
–

–
–

an
t

+
+

+
+

+
+

–
–

–
+

+
+

+
+

+
–

–
–

–
+

+
–

–
–

–
–

–
 –

 –

–

–
–

–
–

ve
l

–
–

–
–

–
–

+
+

+
–

–
–

–
–

–
–

–
–

–
–

–
–

+
–

–
–

–
 –

 –

–

–
–

–
–

co
r

–
–

–
+

+
+

–
–

–
–

–
+

+
+

+
+

+
+

+
+

+
+

–
–

–
–

–
 –

 –

–

–
–

–
–

si
b

–
–

–
–

–
–

–
–

–
–

–
–

–
+

+
+

+
+

+
–

–
–

–
–

–
–

–
 –

 –

–

–
–

–
–

hi
h

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

+
+

–
 –

 +

+

–
–

–
–

m
id

–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
+

 –

 –

–
+

–
+

+
lo

w

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
 +

 –

–

–
+

–
–

bc
k

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
 –

 +

+

+
+

–
–

ct
r

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
 –

 –

–

–
–

+
+

tn
s

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

+
–

–
 –

 +

–

–
–

–
–

st
r

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

+
+

+
 +

 +

+

+
+

–
+

pubs
Typewritten Text

pubs
Typewritten Text
Appendix F

pubs
Typewritten Text

	errata
	additionstotext
	AppendixFweb

