
2

Grammar Engineering for Linguistic
Hypothesis Testing
EMILY M. BENDER

2.1 Introduction
In this paper, I argue that the tools and techniques of grammar engineering
provide a means to take the development and evaluation of syntactic hypoth-
esis testing to a new level. Grammar engineering is the process of creating
machine-readable implementations of formal grammars. Traditionally, lin-
guistic hypotheses are encoded as statements within a grammatical theory and
tested by collecting relevant examples and manually verifying that the gram-
mars correctly predict the grammaticality and linguistic structure of those
examples. Computerized implementations of their grammars allow linguists
to more efficiently and effectively test hypotheses, for two reasons: First, lan-
guages are made up of many subsystems with complex interactions. Linguists
generally focus on just one subsystem at a time, yet the predictions of any
particular analysis cannot be calculated independently of the interacting sub-
systems. With implemented grammars, the computer can track the effects of
all aspects of the implementationwhile the linguist focuses on developing just
one. Second, automated application of grammars to test suites and naturally
occurring data allows for muchmore thorough testing of linguistic analyses—
against thousands as opposed to tens of examples and including examples not
anticipated by the linguist.
This work is situated within the Montagovian tradition of the “method

of fragments” (Montague, 1974, Partee, 1979, Gazdar et al., 1985). In this
methodology, theoretical ideas are validated (and extended) through the de-
velopment of explicit grammars which can relate strings from some fragment

16

Texas Linguistics Society 10: Computational Linguistics for Less-Studied Languages.
Nicholas Gaylord, Stephen Hilderbrand, Heeyoung Lyu, Alexis Palmer and Elias Ponvert eds.
Copyright c© 2008, CSLI Publications.



GRAMMAR ENGINEERING FOR LINGUISTIC HYPOTHESIS TESTING / 17

of the language under study to semantic representations. This is useful be-
cause, as Partee puts it, “otherwise it is extremely easy to think that you have
a solution to a problem when in fact you don’t.” (1979:95) In the remainder
of this section, I provide some further background on why this is the case,
working from three observations.
Observation 1: There is no ultimate answer to the ultimate question of syntax,
phonology and morphology.1

Despite this, muchwork in theoretical and computational linguistics seems
focused on finding simple, elegant answers which, even if they don’t explain
the whole language, nonetheless have far-reaching consequences. This search
is not entirely with fruit: Important big-picture results in computational lin-
guistics can change the way we approach certain tasks (e.g., the application of
the noisy-channelmodel to machine translation (Brown et al., 1993)). In theo-
retical linguistics, analyses (or reanalyses) of particular phenomena can moti-
vate the development of new formal theories (Bresnan, 1978, Gazdar, 1981).
And yet, it is a mistake to focus only on such big picture results. Practical
working systems as well as thorough scientific analysis both require attention
to the details of language. The strong performance of NLP systems typically
depends on language-specific parameter-tuning and/or rich linguistic annota-
tion of training data, though these aspects are usually de-emphasized in pre-
sentations of such work. At the same time, there exists no formal grammar
that approaches comprehensive description of a language. 2 The field of docu-
mentary and descriptive linguistics provides an exception to the general trend,
reflecting an interest in whole-picture descriptions of languages, including as
many details of as many subsystems as possible.
Observations 2: “. . . que chaque langage forme un système où tout se tient”
(. . . that each language forms a system where everything hangs together)3

For the structuralists, this dictumwas meant to indicate that the structure of
language—the object of study of grammarians—is all in the contrasts. From
the point of view of generative grammar, this observation can be taken to
mean that all of the parts of the system (phonology, morphology, syntax, se-
mantics, etc.) and all of the subparts (e.g., case, agreement, word-order) have
to work together in the production and interpretation of every utterance. As
as consequence, it is not possible to test a syntactic hypothesis in one subdo-
main without simultaneously building a model of many intersecting subdo-
mains. Furthermore, it is not possible to test a syntactic hypothesis without

1Not even 42. For discussion, see Adams, 1979.
2Those that come closest are without exception computer implementations, for reasons that

should become clear below.
3The text here is taken from Meillet 1903, but the original observation is variously attributed

to Meillet, de Saussure, and von der Gabelentz; translation mine.



18 / EMILY M. BENDER

considering a wide variety of sufficiently complex sentences, to illustrate the
interaction of subdomains.
Observation 3: Explanatory adequacy depends on descriptive adequacy.

A grammar is descriptively adequate if it accepts (and assigns the correct
structure to) the right set of strings (Chomsky, 1965). However, the same set
of strings (or string-meaning pairs) can be described by many different gram-
mars.4 Thus, according to Chomsky’s 1965 definitions of the terms, to have
‘explanatory adequacy’ a theory of grammar must provide a way to choose
among grammars describing the same string set only on the basis of the data
that a human language learner would be exposed to.
Much work in theoretical linguistics has thus focused on trying to achieve

explanatory adequacy, unfortunately at the expense of the logically prior de-
scriptive adequacy. No matter how interesting or elegant the analysis, it re-
mains a conjecture unless its descriptive adequacy can be verified. At a min-
imum, one would wish to verify that the analysis correctly accounts for the
data that motivated it. More broadly, analyses should be verified in the con-
texts of larger test suites which illustrate their interactions with intersecting
phenomena. In the early days of generative grammar, such verification was
prohibitively expensive.5 With modern computing and computational linguis-
tic technology, however, it is within reach.
The remainder of this paper is structured as follows: §2.2 provides some

background on hypothesis testing in the field of syntax. §2.3 gives some gen-
eral information about grammar engineering. §2.4 presents the LinGOGram-
mar Matrix and describes how it can reduce the overhead costs of developing
grammars. §2.5 presents the Montage vision of how grammar engineering
can contribute to the documentation of under-described languages.

2.2 Syntactic Hypothesis Testing
2.2.1 Preliminaries
For the purposes of this paper, I take syntax to be the means by which nat-
ural languages relate strings of words to their meanings, over an unbounded
set of strings of words (cf. Montague, 1974; Gazdar et al., 1985). 6 Secon-
darily, syntax is a system which models a kind of well-formedness. From a
(human or computer) processing perspective, modeling well-formedness is

4This is believed to be true in principle, and seems likely given current evidence. However, as
noted above, there are no complete formal grammars for any language, so it hasn’t been shown
in practice.

5Though some did try: cf. Friedman et al., 1971.
6In fact, there’s more to linguistic form than strings of words (conceived of as orthography

or phonology), and the form side of this equation should include such things as intonation. For
present purposes, however, I will continue to refer to the linguistic form of an utterance as a
string of words.



GRAMMAR ENGINEERING FOR LINGUISTIC HYPOTHESIS TESTING / 19

potentially useful because it constrains the set of possible structures assigned
to sentences, which in turn reduces the problem of ambiguity resolution. In
contrast to much theoretical work on syntax, I take the string-meaning map-
ping to be primary and the modeling of well-formedness to be secondary.
A syntactic hypothesis is a hypothesis about the structures assigned to a

class of sentences or more broadly about constraints on possible grammars.

2.2.2 Some examples
In this section, I illustrate the notion of a syntactic hypothesis by means of a
number of examples. I will concentrate here mostly on the very broad-brush
kind of hypotheses which can only be validated in principle by building very
large models, in some cases, models of many languages.

Principles and Parameters The Principles and Parameters conceptualiza-
tion of Universal Grammar (Chomsky, 1981) holds that particular grammars
are composed of universal principles and settings for particular parameters.
Each parameter has a small number of possible values, and controls a range of
(often apparently unrelated) surface phenomena. This approach has inspired
a lot of work exploring connections between different phenomena and sim-
ilarities across languages. To validate the overall approach, however, would
require building a system which could create grammars for (substantial frag-
ments of) various languages on the basis of parametric descriptions of those
languages.

Semantic Compositionality Another example is semantic compositionality,
or the hypothesis that the meaning of an expression is computable from the
meaning of its parts (constituent morphemes) and how they are put together.
This hypothesis (or alternatively, principle) has appeared in many different
guises (see e.g., Montague (1970), Szabó (2005), Partee (1984); for its man-
ifestation within the Grammar Matrix, see Flickinger and Bender (2003)).
Semantic compositionality has often been supported by an appeal to the ar-
gument from productivity (as far back as Frege, 1914): if it didn’t hold, how
could we manage to produce and understand novel utterances? Szabó (2005)
As argued by Reddy (1993), however, it is misleading to see natural lan-

guage utterances as a conduit through which speakers convey their precise
intended meanings to hearers. Rather, natural language utterances serve as
clues to speakers’ intentions, which hearers interpret together with whatever
other information is at their disposal. Thus for any given utterance that we
understand, novel or not, we are using much more than the words and the
way they are put together. I do not wish to deny that there is something sys-
tematic about how the meaning of an expression is created from the meaning
of its parts. My purpose here is to point out that semantic compositional-
ity falls into the class of ideas which can be fruitfully explored through the



20 / EMILY M. BENDER

method of fragments: There is much that can be learned about which aspects
of meaning are handled compositionally and how by attempting to model the
relationship between strings and meanings (or meaning representations) for
expanding fragments of natural languages.

Natural Languages as Context-Free Languages An example of a linguis-
tic hypothesis which has been disproven through careful investigation is the
claim that natural languages (as sets of strings) belong to the class of context-
free languages. Early arguments against this hypothesis were shown to be
spurious by Pullum and Gazdar (1982). Gazdar et al. (1985) then went on to
try to develop a grammatical formalism (illustrated through a grammar for
a fragment of English) which was context-free in its generative capacity yet
allowed for the expression of linguistic generalizations (in contrast to naive
applications of context-free grammars to natural language). Shieber (1986)
subsequently was able to prove the non-context-freeness of Swiss German
(and by extension, the class of natural languages). Nonetheless, the gram-
matical theory worked out in Gazdar et al. (1985) remained useful as a point
of departure for the development of additional precise frameworks (namely,
HPSG in its various versions). A single counterexample was enough to show
that natural languages (in general) are not context free. It would not have been
possible in principle to show conclusively that they are (as a counterexample
might always be lurking). However, the hypothesis could have been supported
by building models of ever-increasing coverage, all within a context-free for-
malism.
Similarly, the only way to show that the analysis of natural language does

not require theoretical constructs such as empty categories or movement is
to build working grammars which handle all phenomena purported to require
these devices, and then continue to extend the grammars from there to larger
fragments of the language. But how does one discover phenomena which
have not yet been analyzed? Baldwin et al. (2005) propose a method of using
an existing implemented grammar to systematically sift through a corpus for
phenomena not yet handled by the grammar (and exceptions to analyses of
phenomena that have been incorporated).

Core and periphery Another pair of broad-brush syntactic hypotheses con-
cern the distinction between “core” and “peripheral” syntactic phenomena.
Some approaches to syntax delineate a set of “core” phenomena, leaving the
remainder (the “periphery”) outside the scope of syntactic theory. In contrast,
Construction Grammar (Kay and Fillmore, 1999) and related frameworks
take the stance that there is no sharp line between “core” and “periphery”,
that natural language syntax involves both broad generalizations and specific
idiosyncrasies, and that these should be stored together in one formally con-
sistent system. Bender and Flickinger (1999) further argue that in building



GRAMMAR ENGINEERING FOR LINGUISTIC HYPOTHESIS TESTING / 21

grammars which countenance both core and peripheral phenomena, handling
the exigencies of the latter (e.g., English tag questions) provides a means of
selecting among competing analyses of the former (e.g., agreement).

2.2.3 Testing hypotheses
As a general rule, one cannot test a syntactic hypothesis merely by looking
at surface strings. These properties typically aren’t apparent in that fashion,
nor are they directly accessible to introspection. Instead, syntacticians build
models and test the predictions about grammaticality and paraphrase relations
made by the model against judgments of acceptability provided by native
speakers.
Such syntactic models vary in their explicitness. At one end, we find gen-

eral arguments for or against particular properties of models. When such ar-
guments are made in the absence of a worked-out grammar for a fragment
of the language, it is typically not possible to fully calculate the predictions
they make about any particular string. At the other end of the scale are elab-
orated models which are detailed enough that one can process test examples
with them and arrive at predictions of string-meaning mappings as well as
grammaticality. By building elaborated models (and implementing them in
machine-readable form so that computers can handle the testing), we can
validate that the assumptions at least work together as intended. More im-
portantly, since the goal is to ultimately build one model that accounts for all
of the known data pertaining to linguistic competence, we can use elaborated
models to track how well various analyses work together.

2.3 Grammar Engineering
Grammar engineering is the practice of building elaborated linguistic models
on computers. Grammar engineering has been used for many years now for
practical purposes (e.g., Microsoft’s grammar checker, Boeing’s Simplified
English grammar checker). Here we are concerned with its scientific uses.
On the one hand, implemented grammars allow the computer to keep track of
interactions between analyses. For example, if I add an analysis of case to a
grammar which includes coordination, the computer can calculate the com-
bined predictions of the two analyses regarding the grammaticality of coor-
dinated noun phrases with different cases, or coordinated verb phrases with
different requirements on the case of their (shared) subject. On the other hand,
implementing a grammar allows the hypotheses encoded in that grammar to
be tested against thousands of examples. Both of these tasks—calculating
how analyses of separate phenomena interact and crunching through thou-
sands of examples to calculate the grammar’s predictions and how they differ
from some previous state of the grammar—are well-suited to computers and
ill-suited to humans.



22 / EMILY M. BENDER

Software support for creating implemented grammars has been around
since the early days of generative grammar (Petrick, 1965, Zwicky et al.,
1965, Friedman et al., 1971). As recently as 10 years ago, however, the tech-
nological state-of-the-art made grammar engineering quite tedious: parsers
using the complex grammars required for deep linguistic analysis ran so
slowly that running a thousand-sentence test-suite was an overnight affair.
Over the past 10 years, however, advances in parsing technology (see e.g.,
Oepen et al., 2002) combined with Moore’s Law7 have changed the equation:
it is now possible to run a substantial test suite quickly enough that such
testing can be intimately integrated into the development cycle, allowing the
grammar engineer to explore the consequences of each minor change to the
grammar. Furthermore, since the processing of any given example is inde-
pendent of the processing of all the others, it is easy to take advantage of
computer clusters to process multiple examples in parallel, further reducing
the time it takes to run a test suite.
The basic requirements for grammar engineering include:

1. A reasonably stable grammar formalism, typically with enough flexi-
bility to encode a variety of theories. This in turn entails a distinction
between the formalism (the language in which analyses or theories are
encoded), the theory (a set of analyses) and the framework (a set of
general guiding principles for syntactic inquiry).
It is important for the formalism to be stable rather than rapidly evolv-
ing, because the formalism is interpreted by software which uses the
grammars to parse and generate sentences. Creating such software re-
quires defining (and refining) a particular version of the formalism.
Subsequent changes to the formalism require changes to the software,
which can be expensive. As a consequence, it is prudent to define a
fairly flexible formalism, such that multiple theories can be explored
without having to reimplement the associated software.

2. Algorithms for parsing (and ideally also generation). These algorithms,
implemented as software, apply the grammars written by the linguist
for processing. A parsing algorithm takes strings as input, and produces
syntactic and/or semantic structures as output. A generation algorithm
takes semantic structures (in an appropriate form) as input, and pro-
duces strings as output.

3. Grammar development tools. Using a grammar to parse and generate
provides a wealth of valuable information. Nonetheless, in order to ef-
ficiently develop (and debug) such a grammar, it is useful to be able
to manipulate it in various ways, including visualizing the components

7The tendency of the processing power of computers to double every two years.



GRAMMAR ENGINEERING FOR LINGUISTIC HYPOTHESIS TESTING / 23

of the grammar and interactively stepping through derivations of prob-
lematic examples. A grammar development environment accordingly
provides a suite of grammar visualization and debugging aides.

4. Test suite management software. Such software facilitates the batch
processing of test examples and the comparison of results across dif-
ferent grammar versions.

Parsers and related tools are available for a variety of frameworks, in-
cluding HPSG (Copestake, 2002, Meurers et al., 2002), LFG (Maxwell and
Kaplan, 1996), CCG (Baldridge and Kruijff, 2003), and Minimalism (Sta-
bler, 2001).8 Unlike parsers and generators, test suite management tools (e.g.,
Oepen 2002) need not be committed to any particular formalism. As a result,
a single test suite management tool can be integrated with parsers/generators
from different frameworks, facilitating comparative analysis.

2.4 The LinGO Grammar Matrix
Despite the technological advances described above, it may seem like a daunt-
ing amount of work to implement a grammar large enough to begin to explore
the particular phenomena a linguist is interested in. The LinGOGrammarMa-
trix (Bender et al., 2002, Flickinger and Bender, 2003, Drellishak and Bender,
2005, Bender and Flickinger, 2005) is designed to reduce this start-up cost by
providing a substantial jump-start to the development of new grammars. The
Grammar Matrix consists of a cross-linguistic core grammar (code shared
by all grammars) and a set of phenomenon-specific ‘libraries’ which provide
implementations for alternative realizations of phenomena such as basic word
order, coordination, and negation.
The Grammar Matrix can be accessed through a web form which elicits

information about the syntactic structures in the language to be modeled and
the outputs a customized grammar ‘start’.9 The web form is arranged into
phenomenon-specific sections. For example, the section on sentential nega-
tion asks whether sentential negation is expressed through verbal inflection,
an adverb or both. For verbal inflection, the user further specifies whether the
affix in question attaches to auxiliaries only, main verbs only, or any finite
verb; whether it is a prefix or a suffix; and how it is spelled. For adverbial
negation, the user can specify an independent adverb (appearing to the left
or right of V, VP or S) or a selected adverb (cf. Kim, 2000) (selected by

8As noted, the development of such software requires a commitment to a particular formal-
ism. The formalisms defined by the software may be more or less closely related to the for-
malisms assumed in theoretical work.

9The Grammar Matrix customization and download page can be found here:
http://www.delph-in.net/matrix/customize/matrix.cgi



24 / EMILY M. BENDER

main verbs, auxiliaries, or any finite verb). If a language uses both the inflec-
tional and adverbial strategies for expressing negation, the user is asked to
specify how they may or may not co-occur. The options are: complementary
distribution, both inflection and adverb required, both optional, inflection re-
quired/adverb optional, and adverb required/inflection optional. On the basis
of the user’s answers to these questions, and with reference to their answers to
other parts of the questionnaire, the customization system outputs the appro-
priate rules and constraints for associating the meaning of sentential negation
with its form, as specified.

2.4.1 Assumptions
The jump start provided by any such system comes at the cost of accept-
ing the assumptions of the system. The assumptions encoded in the Gram-
mar Matrix come from three sources: the typed-feature structure formalism
that we have adopted (called ‘type description language’ or ‘tdl’ and recog-
nized by the LKB Grammar Development Environment (Copestake, 2002)),
the general theoretical assumptions of Head-Driven Phrase Structure Gram-
mar (HPSG, Pollard and Sag 1994), and particular implementation decisions
we have made in the Matrix itself.
Some examples of assumptions or constraints that we inherit from the tdl

formalism include: (i) no relational constraints; if the value of one feature
depends on the value of another, the relationship is simply one of identity,
(ii) any given phrase structure rule has a fixed number of daughters, (iii) tec-
togrammatic/phenogrammatic equivalence: the yield of the tree gives the sur-
face string order.
Some examples of assumptions of hypotheses we adopt from HPSG in-

clude: (i) Monostratal approach: input strings are associated with a single,
elaborated structure, rather than a sequence of such structures. (ii) No empty
elements. (iii) Hierarchical organization: grammars consist of rich collections
of constructions, which are arranged into hierarchies in order to capture the
similarities across them. (iv) Local compositionality (cf. Szabó, 2005): the
semantic representation associated with any particular constituent is a func-
tion of the semantic representation of its immediate subconstituents and the
identity of the rule licensing the constituent. (v) X ′ theory: most phrases are
headed; heads select for complements, subjects, and/or specifiers; the ‘cate-
gory’ of the mother is determined by the category of the head daughter and
the remaining valence requirements. (vi) Selection of heads by modifiers and
reciprocal selection of heads by specifiers. 10
We adopt a particular precise formalism (tdl) so that we can implement the

grammars, and therefore adopt the assumptions associated with that formal-
10These assumptions are not uniformly held within the HPSG community, and variants of the

framework may reject one or more of them.



GRAMMAR ENGINEERING FOR LINGUISTIC HYPOTHESIS TESTING / 25

S

NP

Kim

VP

V

V

handed

NP

Sandy

NP

a book

S

NP

NP

Kim

NP-C

NP

Sandy

NP-C

C

and

NP

Pat

VP

left

FIGURE 1 Recursive binary branching in head-complement and coordination
constructions

ism. We adopt a particular framework (HPSG), for theoretical grounding as
well as inspiration for particular analyses.11 These two commitments narrow
the space of possible grammars somewhat, but there are still a large number of
possibilities remaining. In order to build working grammars, we must adopt
many more working hypotheses. Some of the working hypotheses presently
encoded in the Matrix include binary branching structure, a distinction be-
tween subjects and specifiers, the flat, surface-oriented semantic representa-
tions of Minimal Recursion Semantics (Copestake et al., 2005), and semantic
monotonicity. Each of these is discussed briefly below.

Extensive use of binary branching structure For constructions with an
unbounded or variable number of dependents, we posit recursive binary-
branching rules rather than rules with varying number of daughters. In the
case of adjuncts, this is not controversial. In the case of head-complement
structures and coordination, it is somewhat more unusual. Nonetheless, we
find the structures schematized in Figure 1 preferable to flatter structures be-
cause the rule systems required to produce the former (and associate them
with appropriate semantic representations) are simpler.
The Grammar Matrix also allows for unary and ternary rules. The latter

are a recent addition motivated by Hausa, which expresses negation through
a pair of particles, one on either end of the clause, as illustrated in (1), (from
Newman, 2000:363):
(1) bàà rashı̀n nāmàà (nē) zâi kashè mùtûm ba

NEG lack.of meat (focus marker) FUT kill person NEG
‘It is not that lack of meat will kill a person.’

11This relationship is symbiotic: Results from grammar engineering have informed theoretical
work in HPSG as well.



26 / EMILY M. BENDER

Treatment of valence features In the GrammarMatrix, we distinguish three
kinds of arguments selected by heads: subjects, complements and specifiers.
This classification encodes three primary syntactic hypotheses: (i) subjects
and specifiers are distinguished from complements as external arguments, (ii)
there are no further grammatical function distinctions among complements,
and (iii) subjects of verbs and other predicates require different treatment
than specifiers of noun phrases and degree specifiers of modifiers. This last
distinction is motivated by a semantic difference: In order to build semantic
representations compositionally, each constituent ‘publishes’ information that
constituents higher in the tree can use (cf. Copestake et al., 2001). In head-
subject constructions, the syntactic head (e.g., a VP) controls which semantic
information is published. In head-specifier constructions, it is the specifier
(non-head) daughter which does so.

Minimal Recursion Semantics We adopt the system of Minimal Recursion
Semantics (MRS, Copestake et al., 2001; Copestake et al. 2005) for our se-
mantic representations. MRS was designed to meet the competing demands
of computational tractability and linguistic adequacy. It achieves this through
flat, underspecified structures which are hypothesized to be able to capture
all linguistically relevant, syntactically marked semantic information while
deferring disambiguation of distinctions like quantifier scope (to the extent
that these are not constrained by the syntax). Minimal Recursion Semantics
provides a general definition of well-formed semantic representations.Within
this general definition, however, this is much room for specific realizations.
In the Grammar Matrix, we adopt several design principles:
1. Semantic distinctions which are not syntactically marked in a language
should be left underspecified. A possible example is sequential versus
non sequential readings of VP and S coordination in English:
(2) a. Kim entered the room and saw Sandy.

b. Kim studied Latin and wrote books.
Rather than produce two analyses for each of the sentences (with two
different interpretations of and), we simply leave the distinction under-
specified at the level of MRS. As long as any information internal to
the sentence relevant to the disambiguation (such as the order of the
conjuncts, the lexical predicates involved, and the tense/aspect infor-
mation associated with each predicate) is reflected in the MRS, such
disambiguation can be left to further processing steps.

2. Semantic representations should be closely tied to the surface string
and surface syntactic relations. This is required by the combination of
local compositionality and the monostratal theory we adopt. It is also
useful in facilitating comparison (for practical applications) with the
even more underspecified semantic representations gleaned from shal-



GRAMMAR ENGINEERING FOR LINGUISTIC HYPOTHESIS TESTING / 27

low processing techniques (e.g., Callmeier et al., 2004).

3. Semantic representations should be harmonized across languages to the
extent possible. This facilitates the creation of language-independent
software applications which can be specialized for a particular lan-
guage by plugging in the right grammar. In addition, it is interesting in
the context of machine translation. At the same time, we are not treat-
ing MRS as an interlingua, as this design principle is often in tension
with the second one. Languages differ, and so it will not be possible to
completely harmonize “surfacy” semantic representations across lan-
guages.

Semantic monotonicity Lexical rules and phrase structure rules can add se-
mantic information, but they cannot remove or alter information provided by
their constituents.12 For example, consider the causative-inchoative alterna-
tion illustrated in (3):

(3) a. The door opened.

b. Kim opened the door.

One way to represent the difference in meaning between these two uses of
opened is to have opened in (3b) contribute a ‘causative’ relation in addition to
the ‘open’ relation. If we wish to model this alternation via a lexical rule, the
constraint of semantic monotonicity requires that the input be the inchoative
open (3a) and the output the causative variant in (3b). In this way, the rule is
adding the ‘causative’ relation, rather than taking it away.
A second example comes from languages which overtly mark definiteness

but give unmarked NPs an indefinite interpretation. The situation is particu-
larly interesting in Hebrew, where demonstrative adjectives can combine with
either definite or bare nouns. An NP is interpreted as indefinite (i.e., a dis-
course status of ‘type identifiable’ in Gundel et al.’s (1993) system) if it con-
tains neither the definiteness inflection nor any demonstrative adjectives. 13

12This constraint is motivated by the goal of making our grammars bidirectional (useful in
generation as well as parsing), as it significantly simplifies the search problem faced by the
generator.
13Thanks for Margalit Zabludowski for drawing my attention to this phenomenon and provid-

ing the examples. The first line in each example gives a transliteration from standard orthography.
The second is a transcription line representing the pronunciation. There is a subtle difference in
meaning between (4b) and (4d) not indicated in the English glosses.



28 / EMILY M. BENDER

(4) a. klb ien b. klb zh ien
kelev yashan kelev ze yashan
dog slept dog this slept
‘A dog slept.’ ‘This dog slept.’

c. h-klb ien d. h-klb h-zh ien
ha-kelev yashan ha-kelev ha-ze yashan
DEF-dog slept DEF-dog DEF-this slept
‘The dog slept.’ ‘This dog slept.’

The interpretation of (4a) is not underspecified, but rather stands in contrast to
the other three. One way to handle this would be to create a (phonologically
inert) lexical rule for indefinites parallel to the lexical rule which adds the
definite prefix. However, given examples like (4b), this approach runs afoul
of semantic monotonicity: We cannot remove the information that a phrase
gets an indefinite interpretation once it has been added. Thus instead we delay
the introduction of this information until the level of NP, where we introduce
it just in case no demonstrative adjectives have been attached.

I have been alternately referring to these propositions as assumptions and
hypotheses. This is because, given the current state of the art and the modes of
inquiry available, we can only test linguistic hypotheses relative to the rest of
the model. Thus at any given point, a constraint (or grammar rule, or other as-
pect of the model) may be the hypothesis being directly considered or a back-
ground assumption in the testing of another hypothesis. When one conceives
of generative grammar in model-theoretic terms, there are two possible can-
didates for the modeling domain: the first is the set of acceptable sentences of
the language in question, and the second is the actual knowledge of language
encoded in the brains of speakers. The analysis (i.e., mapping of surface form
to semantics and verification of well-formedness) of any particular string de-
pends on multiple parts of a grammar. Thus under the first alternative, it is
not generally possible to conclusively support or refute any particular part of
a grammar independently of the grammar that embeds it. Even if we take the
object of study to be the actual linguistic knowledge encoded in the brains of
speakers, we are still typically checking the validity of our model by compar-
ing its predictions with judgments provided by speakers. 14

14Psycholinguistics and neurolinguistics can provide more direct information about what peo-
ple know about language and how they use that knowledge, and such information should inform
the design of models of grammar (Sag et al., 2003, Ch. 9). Such investigations are expensive
(in time and money), however, and cannot be used to test every single constraint of a model of
syntax. It is far more efficient to narrow down the possibilities first on the basis of acceptability
judgments. Furthermore, psycholinguistic and neurolinguistic studies are completely infeasible
in the case of moribund or extinct languages.



GRAMMAR ENGINEERING FOR LINGUISTIC HYPOTHESIS TESTING / 29

It should be noted that this relativity of theoretical results is common
across syntactic frameworks, and is furthermore not limited to implemented
models. Proposals in theoretical syntax always contain ancillary assumptions
(explicit or implicit), and arguments for or against particular properties of
grammatical models are typically only valid relative to those assumptions
(Bender, 2002). This might seem to be more of a problem for grammar en-
gineering than pen-and-paper syntax: Once an implemented grammar is built
around certain assumptions, those assumptions take on a kind of inertia, as
great effort can be required to revise away from them. When the model only
exists in its descriptions in theoretical work, it would appear easier to revise
any piece of it. I would argue, however, that this is actually an advantage,
rather than a disadvantage, of grammar engineering. Without building a sin-
gle model which integrates all of the analyses so far, and without testing that
model against test suites representing all of the phenomena analyzed, it can
be hard to tell when current assumptions are subtly incompatible with those
required by previous analyses. If the goal is ultimately a model of linguis-
tic competence, rather than separate models for separate aspects of linguistic
competence, then the extra work required to maintain earlier analyses over
time is beneficial. It is not a matter of slowing down theoretical progress so
much as making theoretical results more durable.

2.4.2 Cross-linguistic hypothesis testing
The Grammar Matrix core contains constraints which are expected to be use-
ful in all languages. These include the implementation of semantic compo-
sitionality, a large menu of valence patterns defined in semantic terms (i.e.,
abstracting away from the part-of-speech of the arguments, but specifying
their semantic type as individuals, propositions/questions, or expletives), and
a superset of part of speech types, arranged into a powerset of disjunctive
types.
Limiting the Matrix to cross-linguistically valid constraints, however,

would significantly limit its usefulness. There are recurring structures across
languages which are not universal. To the extent that there are known analyses
for these structures, the Matrix should be able to provide them. We have be-
gun to do so by developing the phenomena libraries mentioned above. Work
is presently underway on the expansion of existing libraries (for basic word
order, coordination, sentential negation and yes-no questions) as well as on
new libraries for case, agreement, tense, and aspect.
The core grammar and the libraries together allow us to take the hypothesis-

testing benefits of grammar engineering to the level of crosslinguistic hy-
potheses, forming a kind of computational linguistic typology. In developing
the libraries, we attempt to handle all known variants of each phenomenon
(and document those which we are not yet able to account for) while harmo-



30 / EMILY M. BENDER

nizing semantic representations across different language types. We further-
more aim for cross-compatibility of the libraries, such that each option in the
word order library could in principle be paired with each option in the co-
ordination library. Where cross-compatibility fails, we explore why: is there
a logical incompatibility between the choices or a specific incompatibility
in our analyses? Do the analyses of each particular option (e.g., VSO word
order, or negation through verbal affixation) apply equally to all languages
evincing that phenomenon?
Another approach to using grammar engineering for crosslinguistic hy-

pothesis testing is represented by the ParGram project (see e.g., King et al.,
2005). The ParGram project involves many grammar engineers at many sites
creating broad coverage grammars for a variety of languages, while working
to keep the analyses and representations used by the grammars parallel. In
this way, data from many languages can inform the analyses they develop.
The MetaGramamr (Kinyon et al., 2006) and KPML (Bateman et al., 2005)
projects take yet another tack creating grammar resources in which each piece
is tagged for which languages it applies to. Kinyon et al. have used this ap-
proach to explore the similarities and differences in V2 phenomena across a
handful of V2 languages.

2.4.3 Evaluation
Monolingual grammars (and the hypotheses they represent) are evaluated by
using them to process test suites. Ideally such test suite consist of both hand-
constructed (positive and negative) data as well as naturally occurring corpus
data. Evaluating the grammar against the test suite entails not only checking
its predictions of grammaticality but also verifying that all of the analyses
returned for each string are legitimate and lead to well-formed and appropri-
ate semantic representations.15 Software assistance for this task is available,
in the form of the treebanking software developed by the Redwoods project
(Oepen et al., 2004). This system assists annotators to choose the preferred
analyses for each sentence to be included in the treebank from among those
returned by the grammar. Rather than examining all of the analyses directly,
annotators select among binary ‘discriminants’ for each forest of trees, indi-
cating, e.g., the attachment site of a particular prepositional phrase or the ap-
propriate lexical entry in context for some word. The original purpose for this
system was to create dynamic treebanks which could be updated as the gram-
mar evolved (by re-running the annotator’s choices among discriminants). It
is also very useful for grammar engineers trying to understand how various
analyses of a given string are licensed, and to verify that the analyses are le-
15Verifying that all of the legitimate analyses are found is more subtle. Typical practice is to

rely on the assumption that a grammar that fails to return a valid parse for one item is likely to
fail to return any parse for another item.



GRAMMAR ENGINEERING FOR LINGUISTIC HYPOTHESIS TESTING / 31

gitimate. Furthermore, once a treebank has been annotated in this fashion, it
can serve as a gold standard for regression testing as the grammar continues
to evolve.
Evaluating a cross-linguistic resource such as the Matrix requires doing

such testing repeatedly, against a variety of languages. In order to get interest-
ing coverage over the test suites, however, the grammar starts provided by the
Matrix customization system need to be extended. Thus any such evaluation
is simultaneously evaluating the Matrix and the language-specific extensions
which have been added to it. Nonetheless, the process of creating grammars
on the basis of the Matrix has been extremely informative in terms of high-
lighting errors in the matrix (overly strong assumptions in the cross-linguistic
core) as well as lacunae in the phenomenon libraries. For example, early work
applying the Matrix to Norwegian (Ellingsen, 2004) pointed up the fact that
constraining complements to attach before subjects disallowed VSO word or-
der. More recently, work on Sanskrit and Inupiaq has highlighted additional
coordinationmarking strategies not covered byDrellishak and Bender (2005).
This Matrix has been tested most intensively in the multilingual grammar en-
gineering course at the University of Washington, covering 42 languages in
four years. The Grammar Matrix is also being used as the basis for several
larger grammars undergoing sustained development, including grammars of
Norwegian (Hellan and Haugereid, 2003), Modern Greek (Kordoni and Neu,
2005) and Spanish16. In addition, though the JACY grammar of Japanese
(Siegel and Bender, 2002) predates the Grammar Matrix, JACY has since
been adapted to comply with the Matrix.
A logically prior evaluation step, however, is the verification that the li-

braries are in fact functioning as intended. Because the libraries are not inde-
pendent of each other (tout se tient), they need to be checked for appropriate
interactions. The space of possible grammars is enormous (currently in the
hundreds of thousands, and we’re just getting started). Therefore, we have
taken a strategy (first laid out in Poulson 2006) of creating a test suite of ab-
stract strings over a shared vocabulary (e.g., det n1 det n2 tv). These strings
are associated with gold standard semantic representations. The strings are
then permuted to create new string-semantics pairs. We create a set of regular
expression filters (relative to the semantic identity of the string in question
as well as individual properties of the language type being tested or small
combinations thereof) which allow us to generate appropriate test suites for
randomly-generated grammar starts.

16http://www.upf.edu/pdi/iula/montserrat.marimon/spanish resource grammar.html



32 / EMILY M. BENDER

2.5 The Montage Vision
Since 2003, work on the Grammar Matrix has been situated within the
larger context of exploiting computational tools for language documenta-
tion (dubbed the ‘Montage Project’). On the one hand, we hope to bring
the hypothesis-testing power of grammar engineering to linguists engaged
in primary linguistic documentation. On the other hand, applying the Gram-
mar Matrix to as yet undescribed languages will help expand its typological
coverage and provide an interesting test of its claimed linguistic universals.
The Matrix as it currently exists is not yet ready to be put to use directly

by field linguists. To get there, it will need libraries covering a wider range
of phenomena, as well as interfaces to tools for lexicon and morphological
analyzer development.17 In the meantime, however, the benefits of grammar
engineering can be brought to field linguists by supporting collaborations be-
tween field linguists and grammar engineers.
The potential benefits include hypothesis testing and data exploration, al-

lowing field linguists to ask such question as “Does the grammar account for
the data in the texts?” and “What’s here that we haven’t accounted for?” (cf.
Baldwin et al., 2005). In the longer term, we envision semi-automated an-
notation, where a small grammar together with underspecified lexical entries
can create parses for as yet unanalyzed sentences. Furthermore, the Grammar
Matrix can be a vehicle for bringing natural language technology to low-
density languages. By creating grammars in a consistent format with con-
sistent, though not identical, semantic representations, the Matrix facilitates
the adaptation of software for grammar checkers, computer-assisted language
learning applications and machine translation to new languages.

2.6 Conclusion
The tasks involved in formal linguistic analysis include:
1. inventing possible analyses,
2. calculating/verifying the predictions of the analysis for known data, and
3. determining what further predictions those analyses make, leading to
further relevant data to test.

While being able to estimate (2) is an important skill, and actually typ-
ically integrated in (1), doing it with sufficient thoroughness is tedious and
time consuming for people, while well-suited to computers. (3) likewise is
essential, and must be done at least in part by a human linguist. At the same
time, the computer can nicely complement the work a person can do: rele-
vant data may be lurking already in the existing test suite, and furthermore,
17For example, SIL’s Fieldworks (http://fieldworks.sil.org/) or EMELD’s FIELD

(http://emeld.org/tools/fieldinput.cfm).



REFERENCES / 33

processing naturally occurring corpora can turn up example types that the
linguist may never arrive at otherwise.
I have argued that grammar engineering can be useful, though it is expen-

sive and time-consuming. The Grammar Matrix reduces the cost of creating
new grammars, and reduces it more with each library that is added. At the
same time, it increases the benefits of creating implemented grammars by
increasing both interoperability for cross-linguistic hypothesis testing and in-
teroperability for practical applications.

Acknowledgments
This paper reports on work done in collaboration with Dan Flickinger,
Stephan Oepen, Scott Drellishak, Laurie Poulson, Margalit Zabludowski and
Jeff Good. The project has benefited greatly from the time and effort of the
students in four years of multilingual grammar engineering courses at the
University of Washington. I am also grateful for the input of audiences at at
the University of Washington and at Texas Linguistic Society X. The devel-
opment of the Grammar Matrix is supported by NSF Grant BCS-0644097
and a gift to the Turing Center at the University of Washington from the
Utilika Foundation.

References
Adams, Douglas. 1979. The Hitchhiker’s Guide to the Galaxy. Pan Books.
Baldridge, Jason and Geert-Jan Kruijff. 2003. Multi-modal combinatory categorial
grammar. In Proceedings of EACL 2003.

Baldwin, Timothy, John Beavers, Emily M. Bender, Dan Flickinger, Ara Kim, and
Stephan Oepen. 2005. Beauty and the beast: What running a broad-coverage pre-
cision grammar over the BNC taught us about the grammar — and the corpus.
In S. Kepser and M. Reis, eds., Linguistic Evidence: Empirical, Theoretical, and
Computational Perspectives, pages 49–70. Berlin: Mouton de Gruyter.

Bateman, John A., Ivana Kruijff-Korbayová, and Geert-Jan Kruijff. 2005. Multi-
lingual resource sharing across both related and unrelated languages: An imple-
mented, open-source framework for practical natural language generation. Re-
search on Language and Computation, Special Issue on Shared Representations
in Multilingual Grammar Engineering 3(2):191–219.

Bender, Emily and Dan Flickinger. 1999. Peripheral constructions and core phenom-
ena: Agreement in tag questions. In G. Webelhuth, J.-P. Koenig, and A. Kathol,
eds., Lexical and Constructional Aspects of Linguistic Explanation, pages 199–
214. Stanford, CA: CSLI.

Bender, Emily M. 2002. Review of Martin et al (eds) Step by step: Essays on Mini-
malist syntax in honor of Howard Lasnik. Journal of Linguistics 38:432–439.

Bender, Emily M. and Dan Flickinger. 2005. Rapid prototyping of scalable grammars:
Towards modularity in extensions to a language-independent core. In Proceed-



34 / EMILY M. BENDER

ings of the 2nd International Joint Conference on Natural Language Processing
IJCNLP-05 (Posters/Demos). Jeju Island, Korea.

Bender, Emily M., Dan Flickinger, and Stephan Oepen. 2002. The Grammar Matrix:
An open-source starter-kit for the rapid development of cross-linguistically consis-
tent broad-coverage precision grammars. In J. Carroll, N. Oostdijk, and R. Sutcliffe,
eds., Proceedings of the Workshop on Grammar Engineering and Evaluation at the
19th International Conference on Computational Linguistics, pages 8–14. Taipei,
Taiwan.

Bresnan, Joan. 1978. A realistic transformational grammar. In M. Halle, J. Bres-
nan, and G. Miller, eds., Linguistic Theory and Psychological Reality, pages 1–59.
Cambridge, MA: MIT Press.

Brown, Peter F., Stephan A. Della Pietra, Vincent J. Della Pietra, and Robert L. Mer-
cer. 1993. The mathematics of statistical machine translation: Parameter estimation.
Computational Linguistics 19:146–151.

Callmeier, Ulrich, Andreas Eisele, Ulrich Schäfer, and Melanie Siegel. 2004. The
DeepThought core architecture framework. In Proceedings of the 4th International
Conference on Language Resources and Evaluation (LREC), pages 1205–1208.

Chomsky, Noam. 1965. Aspects of the Theory of Syntax. Cambridge, MA: MIT Press.
Chomsky, Noam. 1981. Lectures on Government and Binding. Dordrecht: Foris.
Copestake, Ann. 2002. Implementing Typed Feature Structure Grammars. Stanford,
CA: CSLI Publications.

Copestake, Ann, Dan Flickinger, Carl Pollard, and Ivan A. Sag. 2005. Minimal re-
cursion semantics: An introduction. Research on Language & Computation 3(2–
3):281–332.

Copestake, Ann, Alex Lascarides, and Dan Flickinger. 2001. An algebra for semantic
construction in constraint-based grammars. In Proceedings of the 39th Meeting of
the Association for Computational Linguistics. Toulouse, France.

Drellishak, Scott and Emily M. Bender. 2005. A coordination module for a crosslin-
guistic grammar resource. In S. Müller, ed., The Proceedings of the 12th Inter-
national Conference on Head-Driven Phrase Structure Grammar, Department of
Informatics, University of Lisbon, pages 108–128. Stanford: CSLI Publications.

Ellingsen, Liv. 2004. Norwegian word order in HPSG. In Proceedings of the 11th
International Conference on HSPG. Leuven, Belgium.

Flickinger, Dan and Emily M. Bender. 2003. Compositional semantics in a multilin-
gual grammar resource. In E. M. Bender, D. Flickinger, F. Fouvry, and M. Siegel,
eds., Proceedings of the Workshop on Ideas and Strategies for Multilingual Gram-
mar Devel, ESSLLI 2003opment, pages 33–42. Vienna, Austria.

Frege, Gottlob. 1914. Letter to Jourdain. In G. Gabriel, ed., Philosophical and Math-
ematical Correspondence, pages 78–80. Chicago: Chicago University Press. 1980.

Friedman, Joyce, Thomas H. Bredt, Robert W. Doran, Bary W. Pollack, and
Theodore S. Martner. 1971. A Computer Model of Transformational Grammar.
New York: Elsevier.

Gazdar, Gerald. 1981. Unbounded dependencies and coordinate structure. Linguistic
Inquiry 12(2):155–184.



REFERENCES / 35

Gazdar, Gerald, Ewan Klein, Geoffrey Pullum, and Ivan Sag. 1985. Generalized
Phrase Structure Grammar. Cambridge, MA: Harvard Univrsity Press.

Gundel, J.K., N. Hedberg, and R. Zacharski. 1993. Cognitive status and the from of
referring expressions in discourse. Language 69:274–307.

Hellan, Lars and Petter Haugereid. 2003. Norsource: An exercise in matrix grammar-
building design. In E. M. Bender, D. Flickinger, F. Fouvry, and M. Siegel, eds.,
Proceedings of the Workshop on Ideas and Strategies for Multilingual Grammar
Development, ESSLLI 2003, pages 41–48. Vienna, Austria.

Kay, Paul and Charles J. Fillmore. 1999. The what’s x doing y construction. Language
75(1):1–33.

Kim, Jong-Bok. 2000. The Grammar of Negation: A Constraint-Based Approach.
Stanford, CA: CSLI.

King, Tracy Holloway, Martin Forst, Jonas Kuhn, and Miriam Butt. 2005. The fea-
ture space in parallel grammar writing. Research on Language and Computation,
Special Issue on Shared Representations in Multilingual Grammar Engineering
3(2):139–163.

Kinyon, Alexandra, Owen Rambow, Tatjana Scheffler, SinWon Yoon, and Aravind K.
Joshi. 2006. The metagrammar goes multilingual: A cross-linguistic look at the
V2-phenomenon. In In Proceedings of the Eighth International Workshop on Tree
Adjoining Grammar and Related Formalisms (TAG+8). Sydney, Australia.

Kordoni, Valia and Julia Neu. 2005. Deep analysis of Modern Greek. In K.-Y. Su,
J. Tsujii, and J.-H. Lee, eds., Lecture Notes in Computer Science, vol. 3248, pages
674–683. Berlin: Springer-Verlag.

Maxwell, John and Ron Kaplan. 1996. An efficient parse for LFG. In Proceedings of
the First LFG Conference. Grenoble, France.

Meillet, Antoine. 1903. Introduction à l’étude comparative des languges indo-
européennes. Paris: Hachette.

Meurers, Detmar W., Gerald Penn, and Frank Richter. 2002. A web-based instruc-
tional platform for constraint-based grammar foramlisms and parsing. In D. Radev
and C. Brew, eds., Effective Tools and Methodologies for Teaching NLP and CL,
pages 18–25. New Brunswick, NJ: Association for Computational Linguistics.

Montague, Richard. 1970. English as a formal language. In B. Visentini, ed., Lin-
guaggi nella Società e nella Tecnica, pages 189–224. Milan: Edizioni di Commu-
nità. Reprinted in Montague (1974).

Montague, Richard. 1974. Formal Philosophy: Selected Papers of Richard Montague,
edited and with an introduction by Richmond Thomason. New Haven CT: Yale
University Press.

Newman, Paul. 2000. The Hausa Language: an Encyclopedic Reference Grammar.
New Haven: Yale University Press.

Oepen, Stephan. 2002. Competence and Performance Profiling for Constraint-based
Grammars: A New Methodology, Toolkit, and Applications. Ph.D. thesis, Univer-
sität des Saarlandes.



36 / EMILY M. BENDER

Oepen, Stephan, Daniel Flickinger, Kristina Toutanova, and Christopher D. Manning.
2004. LinGO Redwoods. A rich and dynamic treebank for HPSG. Journal of
Research on Language and Computation 2(4):575–596.

Oepen, Stephan, Daniel Flickinger, J. Tsujii, and Hans Uszkoreit, eds. 2002. Collab-
orative Language Engineering. A Case Study in Efficient Grammar-based Process-
ing. Stanford, CA: CSLI Publications. forthcoming.

Partee, Barbara. 1979. Constraining Montague grammar: A framework and a frag-
ment. In S. Davis and M. Mithun, eds., Linguistics, Philosophy, and Montague
Grammar, pages 51–101. Austin TX: University of Texas Press.

Partee, Barbara H. 1984. Compositionality. In F. Landman and S. Veltman, eds.,
Varieties of Formal Semantics: Proceedings of the 4th Amsterdam Colloquim, Sept.
1982, pages 281–311. Dordrecht: Foris Publications.

Petrick, Stanley R. 1965. A Recognition Procedure for Transformational Grammars.
Ph.D. thesis, MIT.

Pollard, Carl and Ivan A. Sag. 1994. Head-Driven Phrase Structure Grammar. Studies
in Contemporary Linguistics. Chicago, IL and Stanford, CA: The University of
Chicago Press and CSLI Publications.

Poulson, Laurie. 2006. Evaluating a cross-linguistic grammar model: Methodology
and test-suite resource development. MA thesis, University of Washington.

Pullum, Geoffrey K. and Gerald Gazdar. 1982. Natural languages and context free
languages. Linguistics and Philosophy 4:471–504.

Reddy, Michael. 1993. The conduit metaphor: A case of frame conflict in our language
about language. In A. Ortony, ed., Metaphor and Thought, pages 164–201. New
York: Cambridge University Press, 2nd edn.

Sag, Ivan A., Thomas Wasow, and Emily M. Bender. 2003. Syntactic Theory: A For-
mal Introduction. Stanford, CA: CSLI, 2nd edn.

Shieber, Stuart M. 1986. Evidence against the context-freeness of natural language.
Linguistics and Philosophy 8:333–343.

Siegel, Melanie and Emily M. Bender. 2002. Efficient deep processing of Japanese. In
Proceedings of the 3rd Workshop on Asian Language Resources and International
Standardization at the 19th International Conference on Computational Linguis-
tics. Taipei, Taiwan.

Stabler, Edward. 2001. Minimalist grammars and recognition. In C. Rohrer, A. Ross-
deutscher, and H. Kamp, eds., Linguistic form and its computation, pages 327–352.
Stanford, CA: CSLI.

Szabó, Zoltán Gendler. 2005. Compositionality. In E. N. Zalta, ed., The Stanford
Encyclopedia of Philosophy. Spring 2005 edn.

Zwicky, A.M., Joyce Friedman, Barbara C. Hall, and D.E. Walker. 1965. The MITRE
syntactic analysis procedure for transformational grammars. In Proc. Fall Joint
Computer Conference, vol. 67, Pt 1, pages 317–326.


