
Approaches to scope islands in
LFG+Glue

Matthew Gotham
University of Oxford

Proceedings of the LFG’21 Conference

On-Line

Miriam Butt, Jamie Y. Findlay, Ida Toivonen (Editors)

2021

CSLI Publications

pages 146–166

http://csli-publications.stanford.edu/LFG/2021

Keywords: scope, scope islands, quantification, Glue semantics, type logic

Gotham, Matthew. 2021. Approaches to scope islands in LFG+Glue. In Butt,
Miriam, Findlay, Jamie Y., & Toivonen, Ida (Eds.), Proceedings of the LFG’21
Conference, On-Line, 146–166. Stanford, CA: CSLI Publications.

http://csli-publications.stanford.edu/LFG/2021
http://creativecommons.org/licenses/by/4.0/

Abstract

In this paper I examine two possible approaches to scope islands in LFG
with Glue semantics: one in which constraints on scope level are imposed by
means of constraints off the path of an inside-out functional uncertainty, and
one in which they are imposed through the structural rules of the fragment
of linear logic used for meaning composition, by making the fragment multi-
modal. For each approach, I show how it could be made to account for novel
empirical arguments made by Barker (2021), and go on to argue in favour of
the multi-modal Glue approach.

1 Introduction

At the outset of theory design in formal linguistics, the theorist is faced with a
fundamental choice. Do you start with something relatively constrained, and then
find ways to loosen it as the evidence demands? Or do you start with something
relatively unconstrained, and then find ways to constrain it as required? As a theory
of the syntax/semantics interface, Glue semantics is towards the unconstrained end
of the spectrum. This paper is addressed at the need to constrain Glue with respect
to the phenomenon of quantifier scope, in particular the (non-)ability of a quantified
noun phrase to take scope outside of its minimal clause.

1.1 Background

It is a feature of the Glue approach to semantic composition that many instances
of quantifier scope ambiguity are resolved purely at the level of linear logic proofs.
For example, the two interpretations of (1) shown below, surface scope and inverse
scope respectively, can both be derived from the same f-structure and the same
associated meaning constructors, as shown in (2) and (3) respectively.1

(1) Someone sees everything.
⇒ someone(λx.everything(λy.see(x, y)))
⇒ everything(λy.someone(λx.see(x, y)))

†I thank the audience of LFG’21 for helpful and encouraging feedback. This research is funded
by an Early Career Fellowship from the Leverhulme Trust.

1The subscripts e (entities) and p (propositions) represent types. Semantically, we can think of p
as equivalent to s � t. I use n and n interchangeably for f-structure labels / linear logic formulae.
We have the following logical constants on the meaning side:

every, some :: ((e � p)× (e � p)) � p

everything, something, someone :: (e � p) � p

not :: p � p

147

someone :
(1e⊸ 0p)⊸ 0p

everything :
(2e⊸ 0p)⊸ 0p

λv.λu.see(u, v) :
2e⊸ (1e⊸ 0p) [y : 2e]

1

λu.see(u, y) : 1e⊸ 0p [x : 1e]
2

see(x, y) : 0p
λy.see(x, y) : 2e⊸ 0p

⊸ I1

everything(λy.see(x, y)) : 0p
λx.everything(λy.see(x, y)) : 1e⊸ 0p

⊸ I2

someone(λx.everything(λy.see(x, y))) : 0p

Figure 1: Derivation of the surface scope interpretation of (1) from (3)

everything :
(2e⊸ 0p)⊸ 0p

someone :
(1e⊸ 0p)⊸ 0p

λv.λx.see(x, v) :
2e⊸ (1e⊸ 0p) [y : 2e]

1

λx.see(x, y) : 1e⊸ 0p

someone(λx.see(x, y)) : 0p
λy.someone(λx.see(x, y)) : 2e⊸ 0p

⊸ I1

everything(λy.someone(λx.see(x, y))) : 0p

Figure 2: Derivation of the inverse scope interpretation of (1) from (3)

(2)

0

PRED ‘see⟨ 1 , 2 ⟩’
TENSE PRES

SUBJ 1

[
PRED ‘someone’

]
OBJ 2

[
PRED ‘everything’

]

(3) someone : (1e⊸ 0p)⊸ 0p

λy.λx.see(x, y) : 2e⊸ (1e⊸ 0p)

everything : (2e⊸ 0p)⊸ 0p

The proofs deriving these interpretations are shown in Figures 1 and 2, respec-
tively.2 However, not all instances of scope ambiguity can be handled quite as
simply as this.

1.2 Scope level

Consider (4), which has the surface scope and inverse linking interpretations shown
below, and has the (simplified) f-structure shown in (5).

(4) A member of every board resigned.
⇒ some(λx.every(board, λy.member-of(x, y)), resign)

2Throughout this paper, un-annotated steps of inference should be read as instances of⊸ elimi-
nation, to save space.

148

‘Someone who is a member of every board resigned.’
⇒ every(board, λy.some(λx.member-of(x, y), resign))
‘For every board, someone member of that board resigned.’

(5)

0

PRED ‘resign⟨ 1 ⟩’

SUBJ 1

PRED ‘member⟨ 2 ⟩’

SPEC
[

PRED ‘a’
]

OBJ 2

[
“every board”

]

Unlike (1), the difference between the two interpretations of (4) does depend

on a difference in meaning constructors. Specifically, the meaning constructor
associated with every board in (5) is as shown schematically in (6), where □ is a
placeholder.

(6) λP.every(board, P) : (2e⊸□p)⊸□p

To derive the surface scope interpretation, the formula shown as□ in (6) has to
be 1 , while to derive the inverse linking interpretation, it has to be 0 . I will refer
to this choice as the choice of ‘scope level’ for a meaning constructor. Examples
like (5) differ from those like (2) in that there is a choice of scope level for at least
one quantifier—and this choice moreoever matters.

In the literature, there are essentially two approaches to resolving scope level.
The first, adopted e.g. by Lev (2007), Andrews (2010) and Gotham (2019), is to
treat this an an instance of functional uncertainty. The lexical entry for every could
contain the description shown in (7), where we leave SCOPEPATH unspecified for
now but note that it should at least include OBJ (for 1) and SUBJ OBJ (for 0).3

(7) %A = (SCOPEPATH ↑)
λP.λQ.every(P,Q) : (↑e⊸ ↑p)⊸ ((↑e⊸ %Ap)⊸ %Ap)

The second approach, which is more widely adopted (including in Dalrymple
et al. (2019)), is to use quantification in the linear logic fragment to express the
various possible scope levels. The meaning constructor for every would then look
something like (8).

(8) λP.λQ.every(P,Q) : (↑e⊸ ↑p)⊸ ∀X((↑e⊸ Xp)⊸ Xp)

3In the fragment of second-order linear logic most often assumed for Glue, as described e.g. in
(Dalrymple et al. 2019, Chapter 8), it would be strictly speaking incoherent to have both 2e and 2p,
since the subscripts are supposed to be sort labels and a formula cannot belong to more than one
sort. Nevertheless, you can do this in the XLE+Glue implementation (Dalrymple et al. 2020). I am
not able to speak to what is going on under the hood in the implementation, but one coherent way
to interpret the notation would be to take the subscripts to be unary propositional functions, as in
Gotham and Haug (2018). Another would be to switch from a second-order to a first-order system,
and treat e and p as predicates to which the f-structure labels are arguments (Kokkonidis 2008).

149

In the proof, X can then be instantiated to either 0 or 1, deriving the respective
interpretations, as shown below.

λQ.every(board, Q) :
∀X.(2e⊸ Xp)⊸ Xp

λQ.every(board, Q) :
(2e⊸ 0p)⊸ 0p

∀E or

λQ.every(board, Q) :
∀X.(2e⊸ Xp)⊸ Xp

λQ.every(board, Q) :
(2e⊸ 1p)⊸ 1p

∀E

2 Scope islands

The point of departure for this paper is the fact that this choice of scope level is
not entirely free. Consider, for example, (9), which has the surface scope inter-
pretation, but not the inverse scope interpretation—it can only mean that there is
a particular warden who thinks that every prisoner escaped, and not that for every
prisoner, there is some warden or other who thinks that prisoner escaped.

(9) A warden thinks that every prisoner escaped.
⇒ some(warden, λx.think(x, every(prisoner, escape)))
⇏ every(prisoner, λy.some(warden, λx.think(x, escape(y))))

Given the (simplified) f-structure for (9) shown in (10), that would amount to
saying that the meaning constructor associated with every (or every prisoner) can
take 2 as its scope level, but not 0 .

(10)

0

PRED ‘think⟨ 1 , 2 ⟩’
TENSE PRES

SUBJ 1

[
“a warden”

]

COMP 2

PRED ‘escape⟨ 3 ⟩’
TENSE PAST

SUBJ 3

[
“every prisoner”

]

The received wisdom (May 1977) about examples like these is that the in-

verse scope interpretation is unavailable because finite clauses are ‘scope islands’,
meaning that no quantifier inside of one can take scope out of it. The received
wisdom seems to favour the functional uncertainty approach to scope level, as this
constraint can be imposed by appropriately defining SCOPEPATH from (7), e.g. as
shown in (11). By contrast, it is harder to see how such a constraint could be stated
in the approach using quantification in the linear logic fragment to fix scope level.

(11) SCOPEPATH ≡
(

GF∗ GF

¬(→ TENSE)

)
The well-known fact that indefinites are not so constrained—that they can take

150

‘exceptional scope’ (Charlow 2014), as in (12)—can then be accounted for by al-
lowing their scope level to be fixed by a less constrained path.4

(12) Every warden thinks that a prisoner escaped.
⇒ every(warden, λx.think(x, some(prisoner, escape)))
⇒ some(prisoner, λy.every(warden, λx.think(x, escape(y))))

2.1 Varieties of scope island

However, it is becoming increasingly clear that the received wisdom is too sim-
plistic. As pointed out by Barker (2021), not all finite clauses are scope islands for
all quantifiers. For example, (13) does have an interpretation where every prisoner
takes widest scope, as shown—it can mean that for every prisoner, some accom-
plice or other ensured that that prisoner escaped.

(13) An accomplice ensured that every prisoner escaped.
⇒ some(accomplice, λx.ensure(x, every(prisoner, escape)))
⇒ every(prisoner, λy.some(accomplice, λx.ensure(x, escape(y))))

So, every N can take scope out of a finite clause, provided that clause is embed-
ded by ensured. Note, however, that this does not mean that the clause embedded
by ensured is not a scope island at all. As shown in (14), it is a scope island for
no N. I have marked (14) as questionable because the one interpretation it does
have conflicts with world knowledge about what it means to be an accomplice; it
can only mean (implausibly) that there is a particular accomplice who ensured that
no prisoner escaped, and not (more plausibly) that no prisoner is such that some
accomplice or other ensured that that prisoner escaped.

(14) ?An accomplice ensured that no prisoner escaped.
⇒ some(accomplice, λx.ensure(x, not(some(prisoner, escape))))
⇏ not(some(prisoner,

λy.some(accomplice, λx.ensure(x, escape(y)))))

These observations invite the hypotheses that, in some sense, (i) think induces
a stronger scope island than ensure, and (ii) every N is a stronger island-escaper
than no N. The hypotheses are confirmed by filling in the gap in the paradigm:
since the complement of think is a scope island for every N, if every N is a stronger
island-escaper than no N, then we expect the complement of think to be a scope
island for no N as well. This prediction is borne out, as shown in (15).

(15) A warden thinks that no prisoner esaped.
⇒ some(warden, λx.think(x, not(some(prisoner, escape))))
⇏ not(some(prisoner, λy.some(warden, λx.think(x, escape(y)))))

4We ignore the possibility of treating indefinites as something other than quantifiers, semantically.

151

Meanwhile, being a strong enough island-escaper to take scope out of the com-
plement of think, an N can certainly take scope out of the complement of ensure:

(16) Every accomplice ensured that a prisoner escaped.
⇒ every(accomplice, λx.ensure(x, some(prisoner, escape)))
⇒ some(prisoner, λy.every(accomplice, λx.ensure(x, escape(y))))

These data imply an implicational relationship, which Barker (2021) dubs the
‘Scope Island Subset Constraint’ (SISC):

SISC Given any two scope takers, the set of scope islands that trap one is a
subset of the set of scope islands that trap the other.

So far we have only looked at three scope-takers and two clause-embedders,
but a further piece of evidence in favour of the SISC comes from the behaviour of
negative polarity items (NPIs). To be licensed, an NPI must be interpreted within
the scope of an appropriate ‘negative’ licensor—Fry (1999) shows a method for en-
suring this in LFG+Glue. However, as is acknowledged by Fry (1999), this method
has the shortcoming that it does not ensure that an NPI be interpreted in the scope
of its closest relevant licensor. For example, in (17) there are two potential licen-
sors for the NPI anyone—surprised and didn’t—but the NPI has to be interpreted
as scoping under both of them, as shown.

(17) Martha is surprised that Mary didn’t help anyone.
⇒ surprise(not(someone(λx.help(mary, x))),martha)
⇏ surprise(someone(λx.not(help(mary, x))),martha)

That is to say, (17) can mean that Martha is surprised that there’s no-one that
Mary helped, but not that Martha is surprised that there’s someone that Mary didn’t
help (or equivalently, that Martha is surprised that Mary didn’t help everyone). A
natural explanation for this distinction would be that, in addition to being licensors
for NPIs, at least some such expressions—such as overt negation—also induce
scope islands for NPIs.

Meanwhile, like a N but unlike every N and no N, any N can take scope out of
a clause embedded by thinks, as (18) shows.

(18) If Mary thinks anyone is to blame, that person is Bob.
⇒ if(someone(λx.think(mary, blame(x))), think(mary, blame(bob)))

Here, the antecedent of the conditional provides the relevant context for NPI
licensing. The form of the consequent is chosen so as to privilege the interpretation
of the antecedent according to which there is someone that Mary thinks is to blame,
i.e. in which anyone takes scope over thinks (but under if, which licenses it).

So, any N seems to be a weaker island-escaper than a N, but a stronger island-
escaper than every N and no N. The SISC therefore predicts, given the fact that
negation induces a scope island for any N, that it also induces a scope island for

152

quantifier
clause embedder an N any N every N no N island strength

not * * * 3
think * * 2

ensure * 1
escaper strength 3 2 1 0

Table 1: Relative strength of islands and escapers

every N and no N. Once again, the prediction is borne out, as shown in (19) and
(20) respectively.5

(19) Jesus didn’t heal everyone.
⇒ not(everyone(λx.heal(jesus, x)))

≡ someone(λx.not(heal(jesus, x)))
⇏ everyone(λx.not(heal(jesus, x)))

≡ not(someone(λx.heal(jesus, x)))

(20) Simon didn’t receive nothing.
⇒ not(not(something(λx.receive(simon, x))))

≡ something(λx.receive(simon, x))
⇏ not(something(λx.not(receive(simon, x))))

≡ everything(λx.receive(simon, x))

We can summarise the empirical landscape in Table 1, adapted from (Barker
2021, Table 1). An asterisk in a cell means that the relevant scope taker is unable
to take scope out of the island induced by the relevant clause embedder.6 In the
following two sections I will outline and evaluate two possible approaches to these
data.

3 Blocking features and off-path constraints

It is still possible to impose some of the relevant constraints on scope level using the
kind of inside-out functional uncertainty technique exemplified in (11). However,
additional difficulties arise with the attempt. First of all, it is not clear how the
scope island induced by negation can be accounted for, since the mainstream view
of negation in LFG is that it is represented in f-structure either by the value of a
NEG or POL feature, or as a member of the ADJ set, at the matrix level (Dalrymple
et al. 2019, 67–69). The point is that in none of these accounts does negation embed
the f-structure representing the negatum, and so the issue of scope level does not

5In some varieties of English, (20) has a negative concord interpretation, where nothing is inter-
preted as equivalent to the NPI anything. This is a separate issue which does not affect the discussion.

6The table in Barker (2021) is somewhat different, partly because he considers issues that there
is not space to address here, for example the semantics of focus.

153

arise.
For example, take (21), representing a simplified version of the f-structure of

(19) according to the INESS XLE-WEB (Rosén et al. 2012). Since the f-structure
introduced by negation does not lie on the path between the f-structure for everyone
and any possible scope level, it cannot be used to constrain quantifier scope—there
is only one possible scope level for everyone: 0 .

(21)

0

PRED ‘heal⟨ 1 , 2 ⟩’

SUBJ 1

[
PRED ‘Jesus’

]
OBJ 2

[
PRED ‘everyone’

]
ADJ

{
3

[
PRED ‘not’

]}

In fact, we could view this issue with negation as an instance of a more general

question, namely what the connection is between extra- and intra-clausal scope
rigidity phenomena: ‘scope islands’ and ‘scope freezing’, respectively. If we
use features in f-structure to impose constraints on scope level and thus account
for scope islands, we need a completely different account of scope freezing. In
many languages simple two-quantifier sentences like (1) are not ambiguous, for
instance—an empirical fact that needs accounting for given Glue’s general uncon-
strainedness. In Gotham (2019) I proposed an account of scope freezing for exam-
ples like this, which could certainly be combined with a blocking features-based
account of scope islands (as I suggested there), but perhaps it would be preferable
to account for both kinds of scope rigidity within the same framework. I will return
to this issue in Section 5.

With respect to the difference between think and ensure-type verbs, we can
impose the relevant constraints by introducing different types of blocking fea-
ture. One way of doing so is exemplified in Figure 3, where we have sentence-
embedding verbs projecting a SCOPEISLAND feature into their complement f-
structure, and scope-takers sensitive to those features.

If we leave aside negation, the feature specifications in Figure 3 capture the
facts in Table 1. But even so, problems remain. For one thing, it remains an
open question as to whether or not the SCOPEISLAND feature can be independently
motivated. Verbs of attitude and perception seem to pattern with think, so one could
argue that there is a semantic generalization, but at the moment the only thing for
this feature to do would be to enforce scope-islandhood.

Another potential problem relates to the SISC. Given the setup in Figure 3,
there is nothing about the theory that prevents us from giving a lexical entry for a
quantifier nunone that can take scope out of a clause embedded by think but not

154

thinks V

(↑ COMP SCOPEISLAND) = 2

ensured V

(↑ COMP SCOPEISLAND) = 1

someone N

%X = (GF∗ GF ↑)
someone : (↑e⊸ %Xp)⊸ %Xp

everyone N

%Y =

(
GF∗ GF ↑

(→ SCOPEISLAND) ̸= 2

)
everyone : (↑e⊸ %Yp)⊸ %Yp

no-one N

%Z =

(
GF∗ GF ↑

(→ SCOPEISLAND) ̸= {1 | 2}

)
λP.not(someone(P)) : (↑e⊸ %Zp)⊸ %Zp

Figure 3: Possible lexical constraints on scope

out of a clause embedded by ensure, as shown in (22).

(22) nunone N

%C =

(
GF∗ GF ↑

(→ SCOPEISLAND) ̸= 1

)
nunone : (↑e⊸ %Cp)⊸ %Cp

If we wanted to state the SISC as a grammar-wide constraint, then, we would
have to do so by stating a constraint on the form of possible descriptions, to rule out
lexical entries like (22). This is not impossible, but the relevant constraint would in
all likelihood be quite messy and it is an open question exactly what form it would
take. In view of these limitations, it is worth considering an alternative.

4 Multi-modal Glue semantics

An alternative approach is to impose the relevant constraints within Glue semantics
itself. This requires some complication of the linear logic fragment used in Glue,
but it can be argued on the basis of the data we have seen that the complication is
linguistically motivated.

155

LP

L

commutativity
>>

NLP

associativity
cc

NL
associativity

``

commutativity

;;

Figure 4: Substructural type logics (Moot and Retoré 2012, 111)

Within the family of substructural type logics, the base fragment7 of linear
logic used in Glue is equivalent to the Lambek calculus with permutation LP. It
is thus both commutative and associative, and so relates to the others as shown in
Figure 4. Commutativity means that the premises in a proof have no particular
order (or, equivalently, can be freely reordered), as shown schematically in (23),
and associativity means that the premises in a proof have no particular grouping
(or, equivalently, can be freely regrouped), as shown schematically in (24).

(23)
(Γ,∆) ⊢ A

(∆,Γ) ⊢ A

(24)
((Γ,∆),Σ) ⊢ A

(Γ, (∆,Σ)) ⊢ A

So far, LP has been a good choice of logic for Glue: unlike in categorial gram-
mar, the logic is not meant to account for word order and so it makes sense for
it to be commutative. So far it has also made sense for the logic to be associa-
tive, but scope islands may actually give us a reason to care about how premises
are grouped, and so restrict associativity. We can do so selectively by combining
elements of LP (as before) and NLP (which is non-associative) in a multimodal
system, where the modes correspond to the island/escaper strengths outlined in Ta-
ble 1. An implementation of these ideas is given by the rules of inference shown in
Figure 5, in combination with the lexical entries shown in Figure 6.8 In the lexical
entries,⊸ (without a mode index) is shorthand for⊸↿0, and⊸i means the choice
of index is free (so these can be seen as parameterized lexical entries).

The idea behind the rules in Figure 5 is that the ⇃modes show blocking strength,
and the ↿ modes show escaping strength. Note that now, because we no longer as-
sume generalized associativity, there is bracketing on the left hand side of sequents.
The mode indices on those brackets correspond to mode indices on occurrences of
⊸. Commutativity is ensured by the structural rule P (for permutation), and we
have restricted associativity thanks to the rule MA (mixed associativity). The modes

7By ‘base fragment’ I mean without quantification such as was discussed in connection with (8).
8The meaning constructor given for not is of type (e � p) � (e � p) rather than p � p in

order to allow (and in fact, require) a quantifier in subject position to take scope over negation. An
alternative way of achieving this aim will be explored in Section 5. Note that we are now able to fix
scope level with linear logic quantification, although the IOFU method is also still available.

156

x : A ⊢ x : A
axiom

For modes i, j ∈ {↿0, ↿1, ↿2, ↿3, ⇃1, ⇃2, ⇃3} :
Γ ⊢ x : A ∆ ⊢ f : A⊸i B

(Γ,∆)i ⊢ f(x) : B
⊸i E

(x : A,Γ)i ⊢ y : B

Γ ⊢ λx.y : A⊸i B
⊸i I

(Γ,∆)i ⊢ x : A

(∆,Γ)i ⊢ x : A
P

((Γ,∆)i,Σ)j ⊢ x : A

(Γ, (∆,Σ)j)i ⊢ x : A
MA

← provided
that j does
not block i

j blocks i⇔ j = ⇃m, i = ↿n and m > n

Figure 5: Proposed rules of inference for multi-modal Glue

not Adv
%A = (ADJ ∈ ↑)
λP.λx.not(P (x)) : ((%A SUBJ)e⊸i %Ap)⊸⇃3 ((%A SUBJ)e⊸i %Ap)

thinks V
λp.λx.think(x, p) : (↑ COMP)p⊸⇃2 ((↑ SUBJ)e⊸i ↑p)

ensured V
λp.λx.ensure(x, p) : (↑ COMP)p⊸⇃1 ((↑ SUBJ)e⊸i ↑p)

a D
λP.λQ.some(P,Q) : (↑e⊸ ↑p)⊸ ∀X((↑e⊸↿3 Xp)⊸ Xp)

any D
λP.λQ.some(P,Q) : (↑e⊸ ↑p)⊸ ∀X((↑e⊸↿2 Xp)⊸ Xp)

every D
λP.λQ.every(P,Q) : (↑e⊸ ↑p)⊸ ∀X((↑e⊸↿1 Xp)⊸ Xp)

no D
λP.λQ.not(some(P,Q)) : (↑e⊸ ↑p)⊸ ∀X((↑e⊸ Xp)⊸ Xp)

Figure 6: Some partial lexical entries for the fragment

157

[escaped] ⊢
escape :
3e⊸↿1 2p

....
[every prisoner] ⊢

λP.every(prisoner, P) :
(3e⊸↿1 2p)⊸ 2p

([escaped], [every prisoner]) ⊢
every(prisoner, escape) : 2p

[ensured] ⊢
λp.λx.ensure(x, p) :
2p⊸⇃1 (1e⊸↿3 0p)

(([escaped], [every prisoner]), [ensured])⇃1 ⊢
λx.ensure(x, every(prisoner, escape)) : 1e⊸⇃3 0p

....
[an accomplice] ⊢

λP.some(accomplice,

P) :

(1e⊸↿3 0p)⊸ 0p

((([escaped], [every prisoner]), [ensured])⇃1, [an accomplice]) ⊢
some(accomplice, λx.ensure(x, every(prisoner, escape))) : 0p

Figure 7: Surface scope interpretation of (13)

interact in the MA rule in such a way that, in combination with the lexicon shown
in Figure 6, just the right scope takers are able to escape from just the right islands.

4.1 Multi-modal Glue in action

The time has come to look at some examples. We have the space to go through
two: (13), which permits an inverse scope interpretation, and (9), which does not.
Given the (simplified) f-structure of (13) shown in (25) and the appropriately in-
stantiated meaning constructors shown in (26), both the surface scope and inverse
scope interpretations are available, as shown in Figures 7 and 8 respectively.

(13) An accomplice ensured that every prisoner escaped.

(25)

0

PRED ‘ensure⟨ 1 , 2 ⟩’

SUBJ 1

[
“an accomplice”

]
COMP 2

PRED ‘escape⟨ 3 ⟩’

SUBJ 3

[
“every prisoner”

]

(26) [an accomplice] := λP.some(accomplice, P) : (1e⊸↿3 0p)⊸ 0p

[ensured] := λp.λx.think(x, p) : 2p⊸⇃2 (1e⊸↿3 0p)

[every prisoner] := λP.every(prisoner, P) : ∀X((3e⊸↿1 Xp)⊸ Xp)

[escaped] := escape : 3e⊸↿1 2p

The proof in Figure 8 depends on two instances of mixed associativity in order
to ‘move’ the variable y to the outside of the premise structure so that it can be
abstracted at the step of ⊸↿1 introduction. The crucial MA step is the first one,
having the schematic form shown in (27).

(27)
((Γ,∆)↿1,Σ)⇃1 ⊢ . . .

(Γ, (∆,Σ)⇃1)↿1 ⊢ . . .
MA

158

y : 3e ⊢
y : 3e

[escaped] ⊢
escape :
3e⊸↿1 2p

(y : 3e, [escaped])↿1 ⊢
escape(y) : 2p

[ensured] ⊢
λp.λx.ensure(x, p) :
2p⊸⇃1 (1e⊸↿3 0p)

((y : 3e, [escaped])↿1, [ensured])⇃1 ⊢
λx.ensure(x, escape(y)) : 1e⊸↿3 0p

(y : 3e, ([escaped], [ensured])⇃1)↿1 ⊢
λx.ensure(x, escape(y)) : 1e⊸↿3 0p

MA

....
[an accomplice] ⊢

λP.some(accomplice, P) :
(1e⊸↿3 0p)⊸ 0p

((y : 3e, ([escaped], [ensured])⇃1)↿1, [an accomplice]) ⊢
some(accomplice, λx.ensure(x, escape(y))) : 0p

(y : 3e, (([escaped], [ensured])⇃1, [an accomplice]))↿1 ⊢
some(accomplice, λx.ensure(x, escape(y))) : 0p

MA

...
⊸↿1 I

⧸
↙

(([escaped], [ensured])⇃1, [an accomplice]) ⊢
λy.some(accomplice, λx.ensure(x, escape(y))) :

3e⊸↿1 0p

....
[every prisoner] ⊢

λP.every(prisoner, P) :
(3e⊸↿1 0p)⊸ 0p

((([escaped], [ensured])⇃1, [an accomplice]), [every prisoner]) ⊢
every(prisoner, λy.some(accomplice, λx.ensure(x, escape(y)))) : 0p

Figure 8: Inverse scope interpretation of (13)

159

y : 3e ⊢
y : 3e

[escaped] ⊢
escape :
3e⊸↿1 2p

(y : 3e, [escaped])↿1 ⊢
escape(y) : 2p

[thinks] ⊢
λp.λx.think(x, p) :
2p⊸⇃2 (1e⊸3 0p)

((y : 3e, [escaped])↿1, [thinks])⇃2 ⊢
λx.think(x, escape(y)) : 1e⊸3 0p

[a warden] ⊢
λP.some(warden, P) :
(1e⊸3 0p)⊸ 0p

(((y : 3e, [escaped])↿1, [thinks])⇃2, [a warden]) ⊢
some(warden, λx.think(x, escape(y))) : 0p

Figure 9: Failed attempt to derive an inverse scope interpretation for (9)

This step of MA is licit because ⇃1, representing the blocking strength of en-
sured, does not block ↿1, representing the escaping strength of every prisoner.
Thus, the inverse scope interpretation is possible.

By contrast, consider (9), with the (simplified) f-structure shown in (10) and
the appropriately instantiated meaning constructors shown in (28).

(9) A warden thinks that every prisoner escaped.

(10)

0

PRED ‘think⟨ 1 , 2 ⟩’

SUBJ 1

[
“a warden”

]
COMP 2

PRED ‘escape⟨ 3 ⟩’

SUBJ 3

[
“every prisoner”

]

(28) [a warden] := λP.some(warden, P) : (1e⊸↿3 0p)⊸ 0p

[thinks] := λp.λx.think(x, p) : 2p⊸⇃2 (1e⊸↿3 0p)

[every prisoner] := λP.every(prisoner, P) : ∀X.(3e⊸↿1 Xp)⊸ Xp

[escaped] := escape : 3e⊸↿1 2p

The surface scope interpretation is derived in an entirely analogous manner to
the surface scope interpretation of (13) as shown in Figure 7, with⊸ elimination
the only rule of inference used. In order to derive an inverse scope interpretation,
one would have to proceed as shown in Figure 9, introducing an auxiliary assump-
tion early in order to be abstracted later. However, if you do that then at some
point the derivation cannot proceed, as shown. In order to get an inverse scope
interpretation, y would have to be moved to the outside of the premise structure so
that it can be abstracted. But this is not possible because the relevant portion of the
structure has the schematic form shown in (29).

(29) ((Γ,∆)↿1,Σ)⇃2

Mixed associativity cannot apply because ⇃2, the blocking strength of thinks,

160

blocks ↿1, the escaping strength of every prisoner. Thus, no inverse scope inter-
pretation is possible.

It should be clear from these examples how the rules round out the SISC: nei-
ther any N, every N nor no N can take scope over negation because MA cannot
apply to a structure of the form shown in (30), and in fact no N cannot take scope
from out of the complement of think or ensure either because MA cannot apply to
a structure of the form shown in (31).

(30) ((Γ,∆)↿0/1/2,Σ)⇃3

(31) ((Γ,∆),Σ)⇃1/2

4.2 Reflections

The choice of available modes in this multi-modal Glue system, and the way they
interact in the MA rule, are obviously ad-hoc to an extent. As with the SCOPEIS-
LAND features considered in Section 3, these modes can be viewed as placeholders
for whatever the comparative strengths of various scope island inducers and esca-
pers turn out to be. I intend to leave open the possibility, for example, that there
could be an island inducer stronger than ensure but weaker than think, or an is-
land escaper stronger than every N but weaker than any N; I am also open to the
possibility that these modes could be predictable from some syntactic or semantic
feature.9

As a choice of formal system, however, multi-modal Glue has one major ad-
vantage: given the MA rule and a natural order on the modes (here represented by
<), the scope island subset constraint follows automatically. Unlike in the sys-
tem outlined in Section 3, there is no way to give a lexical entry like (22) for a
quantifier which can take scope out of the complement of thinks but not out of the
complement of ensured, for example.

On the other hand, it does complicate the underlying logic considerably to
move to a multi-modal system, whereas the blocking features-based approach only
makes use of established LFG+Glue technology. In the following section we will
look at some potential additional motivations for adopting a multi-modal approach.

5 Possible extensions

As alluded to in Section 3, it is an open question what the connection is between the
explanations for scope islands and scope freezing. As an example of the latter in
English, consider (32), which has a surface scope interpretation but not an inverse
scope interpretation, as shown.

(32) Every warden checked no prisoner(s).
⇒ every(warden, λx.not(some(prisoner, λy.check(x, y))))

9My thanks to a reviewer for pressing this point.

161

y : 2e ⊢
y : 2e

[checked] ⊢
λv.λu.check(u, v) : 2e⊸ (1e⊸↿1 0p)

(y : 2e, [checked]) ⊢
λu.check(u, y) : 1e⊸↿1 0p

....
[every warden] ⊢

λP.every(warden, P) :
(1e⊸↿1 0p)⊸⇃1 0p

((y : 2e, [checked]), [every warden])⇃1 ⊢
every(warden, λu.check(u, y)) : 0p

Figure 10: Failed attempt to derive an inverse scope interpretation of (32)

⇏ not(some(prisoner, λy.every(warden, λx.check(x, y))))

Because there is no embedded clausal f-structure in the f-structure of (32),
shown in (33), there is no choice of scope level and hence no way to account for
scope freezing in the blocking features-based approach. Both every warden and no
prisoner have to take 0 as their scope level.

(33)

0

PRED ‘check⟨ 1 , 2 ⟩’

SUBJ 1

[
“every warden”

]
OBJ 2

[
“no prisoner”

]

In Gotham (2019) I proposed an account of scope freezing in Glue but, as I
mentioned in Section 3, it requires yet another complication of the linear logic
fragment used, of a different kind to that discussed in Section 4. Perhaps more
seriously, it is not ideally suited to the kind of quantifier-determined scope rigidity
exhibited by (32). What I mean by that is that it is not the case in general that direct
objects cannot scope over subjects in English—unlike in e.g. German main clauses
with canonical SVO order, which is more the point of Gotham (2019). Rather, it
seems to be the case that downward-monotonic objects (such as no N) cannot scope
over upward-monotonic subjects (such as every N).

Multi-modal Glue suggests a way we could approach this issue. Look at the
proposed meaning constructors for every and no below, and compare them with
those given in Figure 6.

every⇝ λP.λQ.every(P,Q) : (↑e⊸ ↑p)⊸ ∀X((↑e⊸↿1 Xp)⊸⇃1 Xp)

no⇝ λP.λQ.not(some(P,Q)) : (↑e⊸ ↑p)⊸ ∀X((↑e⊸ Xp)⊸ Xp)

In the meaning constructor shown above, every has been given a blocking mode
index on its final⊸. This makes an inverse scope interpretation of (32) unavail-
able, as shown by the failed attempt to derive one in Figure 10. A premise structure
of the general form shown in (34) is created, meaning that MA cannot apply.

(34) ((Γ,∆),Σ)⇃1

However, this strategy for explaining the non-ambiguity of (32)—of effectively

162

making every N induce a scope island from which no N cannot escape—quickly
runs into problems. The same structure as (34) would be created in any attempt to
derive a surface scope interpretation of (35), for example.

(35) No warden checked every prisoner.

The modes in our fragment effectively have two parameters:10 ↿ vs. ⇃ to express
blocking vs. escaping, and 0–3 to express strength thereof. In order to differentiate
between (32) and (35), and allow the no > every scope order in the latter but not
the former, there would need to be an additional parameter keeping track of some
relevant property, presumably either argument structure, linear order or c-structure
embeddedness.

5.1 Extending the fragment further

Suppose that we have the linear logic fragment as defined in Figure 5, except that
we have the expanded list of modes shown in (36), and the definition of blocking
for the MA rule is as shown in (37).11 Once again, the use of i or j in a mode index
means that choice of parameter is free.

(36) a↿0, b↿0, c↿0, d↿0,a↿1, b↿1, c↿1, d↿1, a↿2, b↿2, c↿2, d↿2, a↿3, b↿3, c↿3, d↿3,

a⇃1, b⇃1, c⇃1, d⇃1, a⇃2, b⇃2, c⇃2, d⇃2, a⇃3, b⇃3, c⇃3, d⇃3

(37) j blocks i⇔ j = x⇃m, i = y↿n,m > n and x < y.

The idea is to use a/b/c/d to encode in the lexical entry for a verb the relative
prominence of its arguments. The definition in (37) stipulates that for blocking
to occur, the prospective blocker must (in the relevant sense) outrank the relevant
escaper on both the alphabetical and numerical parameters. That means we can
account for the contrast between (32) and (35) by means of the lexicon shown in
Figure 11.12,13

No N then can take scope over every N when that corresponds to a surface
scope interpretation, e.g. of (35). The crucial inferential step is as shown in (38).

10This talk of parameters need not be taken literally. In reality, the modes can be simple, with a
blocking order defined on them directly. But the notational use of parameters helps with exposition.

11For the purposes of (37), a < b < c < d, since alphabetical order is ‘ascending’.
12To retain the account of scope islands from Section 4, it follows that the complement argument

must be given an alphabetical parameter that outranks every other, as shown in the lexical entry for
thinks in Figure 11. Therefore, this is not quite the same notion of syntactic rank as expressed in
LFG binding theory, although perhaps the definitions could be changed to bring the two notions into
line.

13The lexical entry given for not in Figure 11 is now of type p � p, and permits, but does not re-
quire, a quantifier in subject position to take scope over negation. This can be seen as an improvement
over the treatment of negation given in Figure 6.

163

checked V
λy.λx.check(x, y) : (↑ OBJ)e⊸c↿i ((↑ SUBJ)e⊸b↿j ↑p)

every D
λP.λQ.every(P,Q) : (↑e⊸ ↑p)⊸ ∀X((↑e⊸i↿1 Xp)⊸i⇃1 Xp)

no D
λP.λQ.not(some(P,Q)) : (↑e⊸ ↑p)⊸ ∀X((↑e⊸i↿0 Xp)⊸i⇃1 Xp)

warden N
warden : ↑e⊸ ↑p

prisoner N
prisoner : ↑e⊸ ↑p

thinks V
λp.λx.think(x, p) : (↑ COMP)p⊸a⇃2 ((↑ SUBJ)e⊸b↿i ↑p)

not Adv
not : (ADJ ∈ ↑)p⊸b⇃3 (ADJ ∈ ↑)p

Figure 11: Partial lexical entries for scope freezing

(38)

((x : 1e, [checked])b↿0, [every prisoner])c⇃1

every(prisoner, λy.check(x, y)) : 0p ⊢
(x : 1e, ([checked], [every prisoner])c⇃1)b↿0 ⊢

every(prisoner, λy.check(x, y)) : 0p

MA

Mixed associativity is applicable in (38) because c ̸< b and so blocking does
not occur according to the revised definition in (37). By contrast, if we attempt
to derive an inverse scope interpretation of (32) then we end up with a premise
structure of the form shown in (39), to which MA cannot apply.

(39) ((x : 1e, [checked])c↿0, [every prisoner])b⇃1 ⊢
every(prisoner, λy.check(x, y)) : 0p

Since every N outranks no N both according to strength (1 > 0) and, in this
case, according to argument position (b < c), MA is blocked.

6 Discussion

The previous section has shown that it is at least feasible for scope islands and
scope freezing to both be accounted for using the same formal tools, but it remains
to be seen whether or not this is the best approach. It also remains to be seen what
the predictions of any specific implementation of this idea might be. For example,
languages that are scope rigid in the sense that inverse scope interpretations are dis-
allowed in general, and not just based on the particular quantifiers involved, could
be accommodated within the particular formulation of the modes and structural

164

rules given in (36)–(37) by assigning to every quantifier a meaning constructor of
the general form shown in (40).

(40) quant : ∀X((↑e⊸i↿0 Xp)⊸j⇃1 Xp)

This will ensure that the blocking strength of any quantifier will always be
greater than the escaping strength of any other, meaning that the argument position
parameter alone will be decisive. But it remains to be seen what the implications
of this assumption would be for the kind of extra-clausal scope interactions that
our discussion began with (‘scope islands’), and whether or not they are borne
out.14 For learnability reasons, our default assumption really ought to be that every
language uses the same fragment of linear logic for meaning composition, which
makes it crucial to push these kinds of questions early on if we decide that multi-
modal Glue is the way to go.

As became progressively clear from Sections 4–5, analysing the data using
multi-modal Glue involves incorporating a significant amount of syntactic infor-
mation into meaning constructors, to the point where many LFG practitioners may
feel that we are doing too much categorial grammar within LFG. What I would say
to that is that the data force us to do so to some degree, because in Glue meaning
constructors are standardly defined based on either f- or s-structure: levels at which
certain properties that seem to be crucial for scope possibilities are not defined.

It is still an open question what the best way to account for scope islands in
LFG+Glue is, partly because the empirical landscape is not entirely clear, despite
decades of work from researchers working in a variety of frameworks. That said,
it seems highly likely that the proper explanation for at least some forms of scope
rigidity will require a complication of the fragment of linear logic used in Glue be-
yond simply LP (with or without quantification to fix scope level), for the reasons
discussed in Section 3 and in Gotham (2019). Just what form that complication
should take, though, and what data it should cover, are also open questions.

References

Andrews, Avery D. 2010. Propositional glue and the projection architecture of
LFG. Linguistics and Philosophy 33, 141–170.

Barker, Chris. 2021. Rethinking Scope Islands. Linguistic Inquiry Advance publi-
cation.

Charlow, Simon. 2014. On the semantics of exceptional scope. Ph. D.thesis, New
York University.
14There is also the issue of how argument position, which this paper has focussed on, conspires

with other factors, such as word order and c-structure prominence, to determine what constitutes
‘inverse scope’. In (Gotham 2019, §4.1) this issue was addressed for German by means of a template
allowing particular word order configurations to ‘reset’ the scope constraints. Such an approach
could be added to multi-modal Glue as well. My thanks to a reviewer for picking up on this.

165

Dalrymple, Mary, Lowe, John J. and Mycock, Louise. 2019. The Oxford Reference
Guide to Lexical Functional Grammar. Oxford: Oxford University Press.

Dalrymple, Mary, Patejuk, Agnieszka and Zymla, Mark-Matthias. 2020.
XLE+Glue – A new tool for integrating semantic analysis in XLE. In Miriam
Butt and Ida Toivonen (eds.), Proceedings of the LFG’20 Conference, On-Line,
pages 89–108, Stanford, CA: CSLI Publications.

Fry, John. 1999. Proof Nets and Negative Polarity Licensing. In Mary Dalrym-
ple (ed.), Semantics and Syntax in Lexical Functional Grammar, pages 91–116,
Cambridge, MA: MIT Press.

Gotham, Matthew. 2019. Constraining Scope Ambiguity in LFG+Glue. In Miriam
Butt, Tracy Holloway King and Ida Toivonen (eds.), Proceedings of the LFG’19
Conference, Australian National University, pages 111–129, Stanford, CA:
CSLI Publications.

Gotham, Matthew and Haug, Dag Trygve Truslew. 2018. Glue semantics for Uni-
versal Dependencies. In Miriam Butt and Tracy Holloway King (eds.), Proceed-
ings of the LFG’18 Conference, University of Vienna, pages 208–226, Stanford,
CA: CSLI Publications.

Kokkonidis, Miltiadis. 2008. First-Order Glue. Journal of Logic, Language and
Information 17(1), 43–68.

Lev, Iddo. 2007. Packed Computation of Exact Meaning Representations.
Ph. D.thesis, Stanford University.

May, Robert. 1977. The Grammar of Quantification. Ph. D.thesis, Massachusetts
Institute of Technology.

Moot, Richard and Retoré, Christian. 2012. The Logic of Categorial Grammars.
Lecture Notes in Computer Science, No. 6850, Berlin/Heidelberg: Springer.

Rosén, Victoria, De Smedt, Koenraad, Meurer, Paul and Dyvik, Helge. 2012. An
open infrastructure for advanced treebanking. In Jan Hajič, Koenraad De Smedt,
Marko Tadić and António Branco (eds.), META-RESEARCH Workshop on Ad-
vanced Treebanking at LREC2012, pages 22–29, Istanbul.

166

