
Constraining Scope Ambiguity in
LFG+Glue

Matthew Gotham
University of Oxford

Proceedings of the LFG’19 Conference

Australian National University

Miriam Butt, Tracy Holloway King, Ida Toivonen (Editors)

2019

CSLI Publications

pages 111–129

http://csli-publications.stanford.edu/LFG/2019

Keywords: scope, quantification, Glue semantics

Gotham, Matthew. 2019. Constraining Scope Ambiguity in LFG+Glue. In Butt,
Miriam, King, Tracy Holloway, & Toivonen, Ida (Eds.), Proceedings of the LFG’19
Conference, Australian National University, 111–129. Stanford, CA: CSLI Publi-
cations.

http://csli-publications.stanford.edu/LFG/2019
http://creativecommons.org/licenses/by/4.0/

Abstract

A major strength of the Glue approach to semantic composition for LFG
is that it accounts for quantifier scope ambiguity without the need for ad-
ditional assumptions. However, quantifier scope is more rigid in some lan-
guages and constructions than Glue would lead us to expect. I propose a
mechanism for constraining scope ambiguity in LFG+Glue, based on ideas
taken from Abstract Categorial Grammar. Unlike existing proposals, this ac-
count does not depend on representational constraints on linear logic deriva-
tions or meaning representations.

1 Introduction

1.1 Scope ambiguity

Famously, sentences like (1) are ambiguous in English between a ‘surface scope’
and an ‘inverse scope’ interpretation.

(1) A police officer guards every exit.

The surface scope interpretation can be paraphrased as ‘there is a police officer
who guards every exit’, and is represented logically in (2-a). The inverse scope
interpretation can be paraphrased as ‘every exit is guarded by a police officer’, and
is represented logically in (2-b).

(2) a. ∃x.officer′x ∧ ∀y.exit′y → guard′xy
b. ∀y.exit′y → ∃x.officer′x ∧ guard′xy

Pre-theoretically, we can refer to the ambiguity of (1) under consideration as
‘scope ambiguity’. The surface scope interpretation is so called because the order
of quantificational expressions on the surface matches the order of quantifers in
the interpretation, and mutatis mutandis for the inverse scope interpretation. A
question that immediately arises is whether or not this ambiguity corresponds to
any distinction in possible syntactic representations or derivations of (1), or, more
generally and succinctly:

Q Is quantifier scope ambiguity syntactic ambiguity?

Montague (1973) famously answered ‘yes’ to Q, as indeed the categorial gram-
mar perspective forces one to. Cooper (1983) answered ‘no’, and explicitly crit-
icized Montague on those grounds. Since May (1985), mainstream Chomskyan
syntacticians and semanticists have tended to side with Montague (on this issue!),
viewing (1) as having two different representations at a level of syntax known as

†Thanks to Mary Dalrymple, Jamie Findlay, John Payne, Adam Przepiórkowski and the audiences
at LFG’19 and SE-LFG28 for helpful comments and discussion. This research is supported by an
Early Career Fellowship from the Leverhulme Trust.

112

Logical Form (LF), each corresponding to one of the interpretations in (2). But
note that the question of the existence of LF, and the connected debate over ‘direct
compositionality’ (Jacobson, 2002; Barker & Jacobson, 2007), is not the same as
Q. The systems for handling quantifier scope ambiguity outlined by Barker & Shan
(2014) and Jacobson (2014) are both directly compositional, and yet they postulate
a difference in syntactic derivation to account for the two different interpretations
of (1).

Whenever Q has been asked in an LFG context, it has been answered in the
negative. For example, the difference between interpretations (2-a) and (2-b) is not
taken to correspond to any difference in the structure of (1) at any syntactic level
of description. Instead, in the framework of Glue semantics, lexical and syntactic
information from a sentence contribute a collection of linear logic premises, and
every interpretation the sentence has corresponds to a different proof constructible
from those premises.

In the case of (1), the premises contributed are shown in (3), both before and
after instantiation based on its f-structure as shown in Figure 1.1,2

f :

PRED ‘guard’

SUBJ g :

PRED ‘police officer’

SPEC i :
[

PRED ‘a’
]

OBJ h :

PRED ‘exit’

SPEC j :
[

PRED ‘every’
]

Figure 1: F-structure of (1)

(3) a λP.λQ.∃x.Px ∧Qx : ((SPEC ↑)(↑)(
(((SPEC ↑)(%A)(%A)

%A = ((PATH ↑) SPEC*)

⇒ λP.λQ.∃x.Px ∧Qx : (g(i)(((g(%A)(%A)

police officer officer′ : ↑((↑ SPEC)

⇒ officer′ : g(i

guards guard′ : (↑ SUBJ)(((↑ OBJ)(↑)
⇒ guard′ : g((h(f)

1I have chosen to define meaning constructors based on f-structure instead of s-structure, which
is more common in the Glue literature. This choice has been made for simplicity of exposition and
does not affect the argument at any point.

2Throughout this paper, expressions of the lambda calculus are given in βη-normal form. So for
example, officer′ ≡η λx.officer′x and guard′ ≡η λx.λy.guard′xy.

113

every λP.λQ.∀y.Py → Qy : ((SPEC ↑)(↑)(
(((SPEC ↑)(%B)(%B)

%B = ((PATH ↑) SPEC*)

⇒ λP.λQ.∀y.Py → Qy : (h(j)(((h(%B)(%B)

exit exit′ : ↑((↑ SPEC)

⇒ exit′ : h(j

The proofs corresponding to surface scope and inverse scope interpretations
are then shown in Figures 2 and 3 respectively.3 Note that the lexical entries for
the two determiners include local names (%A and %B respectively) specified by
an inside-out functional uncertainty (IOFU) PATH.4 For the time being we can take
PATH to be maximally unconstrained, i.e. GF*. In any case, the only sensible value
for either %A or %B in Figure 1 is f , and this is reflected in the two proofs.

[x :
g
]1 guard′ :

g((h(f)

guard′x : h(f

exit′ :
h(j

every′ :
(h(j)(

((h(f)(f)

every′exit′ : (h(f)(f

every′exit′(guard′x) : f
λx.every′exit′(guard′x) : g(f

1

officer′ :
g(i

a′ :
(g(i)(

((g(f)(f)

a′officer′ : (g(f)(f

a′officer′(λx.every′exit′(guard′x)) : f
≡ ∃x.officer′x ∧ ∀y.exit′y → guard′xy : f

Figure 2: Proof for the surface scope interpretation of (1)

It is a major attraction of the Glue approach to semantic composition that it
accounts for scope ambiguity like this, without the need for any additional assump-
tions such as are required by all the other theories already mentioned. However,
that advantage can be seen as a disadvantage in cases where we do not see the same
scope ambiguity as in (1).

3These proofs have been pared down in two ways to save space:

• The meaning representations of the two quantifiers have been written as a′ and every′, and
only expanded in the final step.

• The inferential steps are not fully annotated. No annotation at all means that(elimination
has been applied, and the number nmeans that(introduction has been applied, discharging
the hypothesis numbered n.

4 I follow the suggestion of Andrews (2010) and use IOFU, rather than quantification in the
linear logic fragment, to specify scope level. The reason is mainly for cleanness of presentation,
given that quantification will be introduced for other reasons later, although a potential advantage of
this approach emerges in Section 1.3.

114

[
y :
h

]2 [x :
g
]1 guard′ :

g((h(f)

guard′x : h(f

guard′xy : f

λx.guard′xy : g(f
1

officer′ :
g(i

a′ :
(g(i)(

((g(f)(f)

a′officer′ : (g(f)(f

a′officer′(λx.guard′xy) : f
λy.a′officer′(λx.guard′xy) : h(f

2

exit′ :
h(j

every′ :
(h(j)(

((h(f)(f)

every′exit′ : (h(f)(f

every′exit′(λy.a′officer′(λx.guard′xy)) : f
≡ ∀y.exit′y → ∃x.officer′x ∧ guard′xy : f

Figure 3: Proof for the inverse scope interpretation of (1)

1.2 Scope rigidity

To take just one example, the German translation of (1) given in (4) does not show
the same ambiguity as (1). Specifically, it only has the surface scope interpretation
(2-a).

(4) Ein
a.NOM

Polizist
police officer

bewacht
guards

jeden
every.ACC

Ausgang.
exit

This is a general property of German transitive clauses where the subject pre-
cedes the object, although not of clauses where the object scrambles over the sub-
ject. For example, (5) constrasts with (4) in not being scope-rigid. The argument
structure is the same (in particular, exits are still being guarded) but both the surface
scope (2-a) and the inverse scope (2-b) interpretation are possible again.

(5) Jeden
every.ACC

Ausgang
exit

bewacht
guards

ein
a.NOM

Polizist.
police officer

For reference, partial c-to-f-structure mappings for (4) and (5) are shown in Figures
4 and 5 respectively.

In fact, we do not have to go outside English to find cases where quantifier
scope is more rigid than Glue would lead us to expect. For example, quantifier
scope is ‘frozen’ in double object constructions: (6) only has the interpretation
represented in (6-a), not that represented in (6-b).

(6) Hilary gave a student every grade.
a. ⇒ ∃y.student′y ∧ ∀x.grade′x→ give′hilary′xy
b. ; ∀x.grade′x→ ∃y.student′y ∧ give′hilary′xy

The purpose of this paper is to describe an extension to Glue semantics that
will enable us to account both for the ambiguity of sentences like (1) and (5), and
for the non-ambiguity of sentences like (4) and (6). But first, I need to set aside a
potential red herring.

115

CP

C

DP

N

Ausgang

D

jeden

V

bewacht

DP

N

Polizist

D

ein

f :

PRED ‘guard’

TOPIC g :

PRED ‘police officer’

SPEC i :
[

PRED ‘a’
]

SUBJ

OBJ h :

PRED ‘exit’

SPEC j :
[

PRED ‘every’
]

Figure 4: C- to f-structure of (4)

CP

C

DP

N

Polizist

D

ein

V

bewacht

DP

N

Ausgang

D

jeden

f :

PRED ‘guard’

TOPIC h :

PRED ‘exit’

SPEC i :
[

PRED ‘every’
]

SUBJ g :

PRED ‘police officer’

SPEC j :
[

PRED ‘a’
]

OBJ

Figure 5: C- to f-structure of (5)

116

1.3 Not scope ‘islands’

There are other examples of scope non-ambiguity that are not so hard to account
for in Glue. For example, (7) only has the interpretation shown in (7-a), not that
given in (7-b).

(7) If every student passes, the lecturer will be happy.
a. ⇒ (∀y.student′y → pass′y)→ happy′(ιx.lecturer′x)
b. ; ∀y.student′y → (pass′y → happy′(ιx.lecturer′x))

That is to say, in the interpretation of (7), ‘every’ cannot take wider scope than ‘if’.

f :

PRED ‘happy’
SUBJ [“the lecturer”]

ADJ

g :

PRED ‘pass’
COMPFORM if

SUBJ h :

PRED ‘student’

SPEC i :
[

PRED ‘every’
]

Figure 6: F-structure of (7)

An explanation of this datum becomes obvious once we inspect the f-structure
of (7) given in Figure 6 in combination with the lexical semantics of every as as-
sumed in (3). To get the unavailable interpretation (7-b), the local name %B would
have to resolve to f . This can be ruled out by making PATH suitably constrained—
by not allowing it to pass through ADJ, for example.5 %B would then have to
resolve to g, which would allow for the derivation of (7-a) but not (7-b), as desired.

However, this kind of explanation is not available in the cases we’re interested
in. Take (4), the f-structure of which is shown in Figure 4, and assume that the
meaning constructor for jeden is the same as for every. In Figure 4, as in Figure
1, the only way to get an interpretation of either the surface or (empirically un-
available) inverse scope interpretation is for %B to resolve to f . (4) and (6) are
both examples of intra-clausal scope rigidity, and so in these cases the unwanted
readings cannot be ruled out by constraining IOFU paths.

2 Previous work

I am aware of two existing proposals for constraining scope ambiguity in LFG+Glue:
Crouch & van Genabith (1999) and Cook & Payne (2006).

5As hinted in Footnote 4, this explanation depends on the use of IOFU, rather than linear logic
quantification, to fix scope level. If quantification is preferred for this purpose, an alternative expla-
nation of scope islands could be to use extra modalities in the linear logic fragment, as in Gotham
(2017).

117

2.1 Node orderings

According to Crouch & van Genabith (1999), in addition to meaning constructors,
the linguistic system may also contribute certain admissibility conditions on linear
logic proofs. Proofs failing to meet those conditions would then in some sense be
filtered out. For example, the unavailable inverse scope interpretation of (4) could
be ruled out by giving the main verb the (partial) lexical entry shown in (8).6

(8) bewacht V
(↑ PRED) = ‘guard’
guard′ : (↑ SUBJ)(((↑ OBJ)(↑)
(↑ SUBJ) <f (↑ OBJ)⇒ (↑ SUBJ) � (↑ OBJ)

The consequent of the boxed constraint in (8) is a node ordering. The in-
tended interpretation of it is that in every licit linear logic derivation, the node
labelled (↑ SUBJ) must be ordered higher than that labelled (↑ OBJ). Simplifying
somewhat, for a linear logic formula x to be ordered higher than another y in a
derivation d means that no instance of y occurs strictly lower down in d than every
instance of x (Crouch & van Genabith, 1999, 132). So for example, if we apply (8)
to Figure 4 or 5, we end up with

g <f h⇒ g � h

Since g f-precedes h in Figure 4, we then look at the candidate derivations in
Figures 2 and 3.7 We then see that the derivation in Figure 3 violates the constraint:
there is an instance of h occurring strictly lower down than every instance of g.
Therefore, this derivation is ruled out by the node ordering, and scope rigidity in
enforced.

2.2 Objections to node orderings

2.2.1 Reifying representations?

As mentioned above, node orderings are constraints on derivations. But what,
exactly, is a derivation? To inspect (8), in which the node ordering appears in a
constraining equation, it seems that derivations have to be treated as levels in the
projection architecture like c- or f-structure and that, just as with c- or f-structure,
we can impose properly linguistic constraints on that structure:

A derivation is a tree-like structure of sequents [. . .] Represent deriva-
tions D as triples 〈S,>S , $〉 where S is the set of points in the tree,

6I have had to slightly reconstruct the proposal of Crouch & van Genabith (1999) around other
assumptions made in this paper. I do believe that this is a fair representation of their proposal.

7These are candidate derivations for (4) just as much as for (1) because the f-structure of (4)
(Figure 4) does not differ from that of (1) (Figure 1) in any way that affects the contribution of
meaning constructors.

118

>S is a transitive , asymmetric ordering over them, and $ is a function
mapping the points onto their corresponding sequents. (Crouch & van
Genabith, 1999, 131)

But from a logical and conceptual perspective this is deeply unsatisfactory,
since it ties our use of the logic to a particular format for writing proofs out: namely,
one with this kind of ‘tree-like structure’. But, as Corbalán & Morrill (2016, fn. 4,
emphasis mine) put it,

Gentzen calculus, labelled and unlabelled natural deductions, proof
nets, categorical calculus, etc. are all of repute, all have their respec-
tive advantages and disadvantages, and are all notations for the same
theory.

Put differently, natural deduction derivations are representations of proofs, not
the proofs themselves. The definition that Crouch & van Genabith (1999) provide
requires us to write out proofs in a particular natural deduction format and not, for
example, in sequent calculus or with proof nets.

Now, it should be pointed out that in all likelihood an equivalent notion of
node ordering could be defined for all these other proof formats.8 The real issue,
though, is that if we have properly linguistic constraints on the form of derivations,
we are not really working with proofs and therefore not doing logic any more. This
clashes with an appealing (to me at least) picture according to which linear logic
inference takes linguistic input and then operates entirely on its own terms, without
the linguistic system needing to see the internal structure of any inferences.

2.2.2 Generate and filter?

Even if one sees no problem with treating derivations as linguistic objects in this
way, one might well view node orderings with with some suspicion. The boxed
clause in (8), for example, does not function like a normal constraining equation.
There is no minimal linear logic derivation against which it has to be checked, on
pain of failure—if there were, there would be no scope ambiguity! Instead, as men-
tioned above, the picture is that all logically-acceptable derivations are produced,
but then (potentially) some are discarded.

What we need for a Glue-based theory of scope rigidity is a method for assign-
ing linear logic formulae to lexical items such that all and only the desired inter-
pretations of a sentence have a corresponding proof, rather that filtering out proofs
by non-logical means based on derivations. Section 3 presents such a method.

8In fact, I have done just this in that the proof format used in this paper is not exactly that used
by Crouch & van Genabith (1999).

119

2.3 Partition of meaning representations

In the theory of Cook & Payne (2006), topicality is not a grammatical func-
tion but rather a binary-valued f-structure attribute ±T. Along with ±N(ew) and
±C(ontrastive), it constitutes the presence of information structure in f-structure.
Word order in German is determined by the interaction of Optimality-Theoretic
constraints referencing this information structure, as well as the GF hierarchy. The
upshot of those constraints for a transitive clause is that, if the subject is +T and the
object is −T then either of (4) or (5) is a possible word order, depending on other
factors. But if the object is +T and the subject is −T, then only the scrambled
order in (5) is possible. On the side of interpretation, there is a constraint to the
effect that +T constituents must take scope over −T constituents; together, these
constraints predict that (5) is scopally ambiguous but (4) is scope-rigid.

When we look at the implementation of that constraint on interpretation, we
see that it is similar in spirit to Crouch & van Genabith’s (1999) proposal. Instead
of a constraint on the form of derivations, it is a constraint on the form of meaning
representations. The constraint, called a partition, is shown in (9).

(9) +T(−T)

This states that, in the final meaning representation of the clause, the meaning
of any −T constituent must be contained in something that the meaning of a +T
constituent is applied to. Given that the word order produced in (4) requires that
a′officer′ be associated with +T and every′exit′ with −T, this predicts that (10-a)
(≡ (2-a)) is a permitted meaning representation, but (10-b) (≡ (2-b)) is not.9

(10) a. a′officer′(λx.every′exit′(guard′x))
b. every′exit′(λy.a′officer′(λx.guard′xy))

2.4 Objections

While Crouch & van Genabith’s (1999) proposal reifies representations of proofs,
Cook & Payne’s (2006) proposal reifies representations of meanings. As Montague
(1973) stressed, the step of translating natural language into a logical language like
the lambda calculus, which in turn is interpreted in a model, should in principle be
dispensable. The model-theoretic interpretations of (10-a) and (10-b) do not have
any internal structure that could be used to distinguish them in the way envisaged
in (9).

An alternative interpretation of Cook & Payne’s (2006) proposal is as a con-
straint not on meaning representations but on the final step of how they are put to-
gether, given that application corresponds to(elimination by the Curry-Howard
correspondence. Interpreted like that, it would amount to essentially the same thing
as Crouch & van Genabith’s (1999) proposal, as it would tie us to a proof format

9Cook & Payne (2006) in fact use quite different meaning representations, but that does not affect
the substance of the argument.

120

that uses introduction and elimination rules (like natural deduction) rather than,
say, left and right rules like sequent calculus.

3 A theory of scope rigidity

In general terms, the proposed account of scope rigidity proceeds as follow. First,
we expand the fragment of linear logic used such that f-structure nodes are linear
logic predicates (not formulae). We then use the arguments to those predicates to
keep track of the order of application of quantifiers. Finally, in the lexicon, we set
things up so that only by applying quantifiers in the desired order can a valid proof
be constructed. This approach is inspired by work in Abstract Categorial Grammar
(Pogodalla & Pompigne, 2012; Kanazawa, 2015).

3.1 Linear logic fragment

Given a set P of predicates (f-structure nodes) and a set V of variables (for which I
wil use Greek letters), the fragment of linear logic used is as defined in (11).

(11) n ::= V | 0 | sn (terms)
φ, ψ ::= Pn | φ(ψ | ∀V.φ (formulae)

Formally, for much of what we want this fragment to do s can be an unanalyzed
function symbol. However, for readability, in what follows we will treat it as the
successor function and represent s0 as 1, s(s0) as 2 etc.

3.2 Lexicon

We can now enforce scope rigidity for (4) by means of the mini German lexicon
shown in (12), assuming the f-structure in Figure 4. In order to save space and im-
prove readability, I have written arguments to linear logic predicates and functions
in subscript, e.g. instead of writing g0 I write g0.

(12) ein λP.λQ.∃x.Px ∧Qx : ∀ι.((SPEC ↑)0(↑0)(
(((SPEC ↑)sι(%Asι)(%Aι)

%A = ((PATH ↑) SPEC*)

⇒ λP.λQ.∃x.Px ∧Qx : ∀ι.(g0(i0)(

((gsι(%Asι)(%Aι)

Polizist officer′ : ↑0((↑ SPEC)0

⇒ officer′ : g0(i0

bewacht guard′ : ∀ι.∀η.(↑ SUBJ)ι(((↑ OBJ)η (↑η)
⇒ guard′ : ∀ι.∀η.gι((hη (fη)

121

jeden λP.λQ.∃x.Px ∧Qx : ∀ι.((SPEC ↑)0(↑0)(
(((SPEC ↑)sι(%Bsι)(%Bι)

%B = ((PATH ↑) SPEC*)

⇒ λP.λQ.∀y.Py → Qy : ∀ι.(h0(j0)(

((hsι(%Bsι)(%Bι)

Ausgang exit′ : ↑0((↑ SPEC)0

⇒ exit′ : h0(j0

3.3 Derivations

With the lexicon shown in (12), the surface scope interpretation can be derived,
as shown in Figure 7, but the inverse scope interpretation cannot. Figure 8 shows
one failed attempt to do so. Intuitively, the effect of the lexicon is to introduce
a ‘counter’ as the argument to linear logic predicates, which forces quantifiers to
apply in a particular order.

[x : g1]
1

guard′ :
∀ι.∀η.gι((hη (fη)

guard′ :
g1((h2(f2)

∀E

guard′x : h2(f2

jeden Ausgang....
every′exit′ :

(h2(f2)(f1

every′exit′(guard′x) : f1
λx.(every′exit′(guard′x)) : g1(f1

1

Ein Polizist....
a′officer′ :

(g1(f1)(f0

a′officer′(λx.(every′exit′(guard′x))) : f0

Figure 7: Proof for the (surface scope) interpretation of (4)

[y : h1]
2

[x : g2]
1

guard′ :
∀ι.∀η.gι((hη (fη)

guard′ :
g2((h1(f1)

∀E

guard′x : h1(f1

guard′xy : f1

λx.guard′xy : g2(f1
1

ein Polizist....
a′officer′ :

(g2(f2)(f1 ∗

Figure 8: Failed attempt to derive an inverse scope interpretation for (4)

The lexical entries for the determiners mean that applying a quantifier reduces
the counter by one (from sι to ι). It follows that for quantifier Q1 to immediately
outscope quantifier Q2 (apply immediately after it), you have to set the counter for
Q1 to one lower than for Q2. Therefore, to get the inverse scope reading of (4), you

122

would have to set the counter for the subject position one higher than for the object
position; this is how the failed attempt in Figure 8 starts. However, the lexical
entry for the verb guarantees that if you do that, no proof can be constructed: it
sets the counter for the clause to the same as for the object position, which makes
it impossible to apply the subject quantifier first.

4 Loosening the restrictions

In the above example, scope rigidity is enforced by a combination of the lexical
entries for the determiners and the verb. The restriction could, therefore, be re-
laxed by tweaking either lexical entry. For instance, assuming that English uses the
same fragment of linear logic for its syntax-semantics interface as German (which
seems reasonable), the English data can be accounted for by assigning to guards
the meaning constructor shown in (13), and otherwise importing the translation of
the German lexicon.

(13) guard′ : ∀ι.∀η.∀κ.(↑ SUBJ)ι(((↑ OBJ)η (↑κ)

The meaning constructor assigned to guards in (13) differs from that assigned
to bewacht in (12) in that in (13) the counter for the clause is not tied to the same
value as either argument position. It could be instantiated with the same value as
the object, enabling a surface scope interpretation, or to the subject, enabling an
inverse scope interpretation.

However, in many instances we want the flexibility we allow for to be more
fine-grained than this.

4.1 German scrambling

So far, the theory in Section 3 does not distinguish between (4) and (5); they are
predicted to both only have the interpretation (2-a). What it seems that we would
like to have is conditional introduction of meaning constructors: some statement to
the effect that bewacht introduces the meaning constructor given in (12) if its sub-
ject precedes its object, and the English-style meaning constructor (13) otherwise.
I do not see a way to do that directly in the formal architecture of LFG+Glue, but
there is a workaround: give a German transitive verb the lexical entry shown in
(14),

(14) bewacht V
(↑ PRED) = ‘guard’
guard′ : ∀ι.∀η.(↑ SUBJ)ι(((↑ OBJ)η (↑η)
(@ RESET)

where RESET is the template defined in (15).

123

(15) RESET := (↑ OBJ) <f (↑ SUBJ)

λp.p : ∀ι.∀η. ↑ι(↑η

The RESET template is so called because it can be used to reset the counter. As
specified in (14), the introduction of this template is optional. Clearly, if the subject
f-precedes the object, as in Figure 4, then calling RESET would cause failure. So in
the case of (4) RESET cannot be called, and scope rigidity is enforced as described
in Section 3.

However, if the object f-precedes the subject, as in Figure (5), then RESET may
or may not be called. If it is called, then both scope orderings are possible since
the counter can be changed. Figure 9 shows a derivation of the (2-b) interpretation
of (5) based on Figure 5, picking up from a decision point in the failed attempt for
(4) shown in Figure 8.

(see figure 8)[y :
h1

]2
,
[x :
g2
]1
, bewacht

....
guard′xy : f1

(RESET)
λp.p :

∀ι.∀η.fι(fη
λp.p :
f1(f2

∀E

guard′xy : f2

λx.guard′xy : g2(f2
1

ein Polizist....
a′officer′ :

(g2(f2)(f1

a′officer′(λx.guard′xy) : f1
λy.a′officer′(λx.guard′xy) : h1(f1

2

jeden Ausgang....
every′exit′ :

(h1(f1)(f0

every′exit′(λy.a′officer′(λx.guard′xy)) : f0
≡ ∀y.exit′y → ∃x.officer′x ∧ guard′xy : f0

Figure 9: An interpretation of (5) that is not available for (4)

4.2 English double object constructions

In order to analyze scope freezing in English double object constructions, we have
to generalize from the example in (6) by seeing what interpretations are available
when there is a quantifier in subject position too, as in (16).

(16) A teacher gave most students every grade.

Judgements get a little unclear for examples like this, but Bruening (2001)
reports the results shown in (17), and I will proceed on that basis. In summary, the
secondary object may not take wider scope than the primary object, but otherwise
the relative scope of the three quantifiers is free.10

(17) a. (16)⇒ ∃x.teacher′x ∧most′student′(λz.∀y.grade′y → give′xyz)

10Just to be clear: give′xyz should be interpreted as saying that x gives y to z (or equivalently, the
x gives z y).

124

b. (16)⇒ most′student′(λz.∃x.teacher′x ∧ ∀y.grade′y → give′xyz)
c. (16)⇒ most′student′(λz.∀y.grade′y → ∃x.teacher′x ∧ give′xyz)
d. (16) ; ∃x.teacher′x ∧ ∀y.grade′y → most′student′(λz.give′xyz)
e. (16) ; ∀y.grade′y → ∃x.teacher′x ∧most′student′(λz.give′xyz)
f. (16) ; ∀y.grade′y → most′student′(λz.∃x.teacher′x ∧ give′xyz)

An attempt to account for the data in (17), which undergenerates slightly, is to
assign to gave the meaning constructor shown in (18).

(18) give′ : ∀ι.∀η.∀κ.(↑ SUBJ)ι(((↑ OBJθ)η (((↑ OBJ)κ(↑η))

Using (18) forces the secondary object to take narrowest scope, and otherwise
leaves the relative scope of the quantifiers free. That correctly rules out the unavail-
able readings of (16), and predicts two of the three available ones, but incorrectly
rules out the interpretation shown in (17-c).

There are, of course, various ways of tackling this shortcoming.11 The one I
will present here involves once more expanding the fragment of linear logic used,
by adding to the language defined in Section 3.1 a ternary function symbol c, to be
interpreted as shown in (19).12

(19) cmno =
{
m if m > n > o
n otherwise

We can now capture the data in (17) by assigning gave the meaning constructor
shown in (20).

(20) give′ : ∀ι.∀η.∀κ.(↑ SUBJ)ι(((↑ OBJθ)η (((↑ OBJ)κ(↑cιηκ))

For illustration, derivations of the interpretations (17-b) and (17-c) are shown in
Figures 11 and 12, respectively, based on the f-structure in Figure 10. By contrast,
a failed attempt to derive (17-d) is shown in Figure 13.

f :

PRED ‘give’

SUBJ g :
[
“a teacher”

]
OBJ h :

[
“most students”

]
OBJθ i :

[
“every grade”

]

Figure 10: F-structure of (16)

11Some will be hinted at in Section 5.
12We now have to take seriously that s is the successor function, since we have> at the meta-level.

125

[
z :
h1

]3 [y :
i3

]2 [x :
g2
]1

gave.... c231 = 3

g2((i3(
(h1(f3))

give′xyz : f3
λy.give′xyz : i3(f3

2

every grade....
(i3(f3)(f2

∀y.grade′y → give′xyz : f2
λx.∀y.grade′y → give′xyz : g2(f2

1

a teacher....
(g2(f2)(f1

∃x.teacher′x ∧ ∀y.grade′y → give′xyz : f1
λz.∃x.teacher′x ∧ ∀y.grade′y → give′xyz : h1(f1

3

most students....
(h1(f1)(f0

most′student′(λz.∃x.teacher′x ∧ ∀y.grade′y → give′xyz) : f0

Figure 11: Proof of (17-b)

[
z :
h1

]3 [y :
i2

]2 [x :
g3
]1

gave.... c321 = 3

g3((i2(
(h1(f3))

give′xyz : f3
λx.give′xyz : g3(f3

2

a teacher....
(g3(f3)(f2

∃x.teacher′x ∧ give′xyz : f2
λy.∃x.teacher′x ∧ give′xyz : f2 : i2(f2

1

every grade....
(i2(f2)(f1

∀y.grade′y → ∃x.teacher′x ∧ give′xyz : f1
λz.∀y.grade′y → ∃x.teacher′x ∧ give′xyz : h1(f1

3

most students....
(h1(f1)(f0

most′student′(λz.∃x.teacher′x ∧ ∀y.grade′y → give′xyz) : f0

Figure 12: Proof of (17-c)

[
z :
h3

]3 [y :
i2

]2 [x :
g1
]1

gave.... c123 = 2

g1((i2((h3(f2))

give′xyz : f2
λz.give′xyz : h3(f2

3

most students....
(h3(f3)(f2 ∗

Figure 13: A failed attempt to derive (17-d)

5 Discussion

This has primarily been a theoretical paper, describing and applying certain formal
tools for constraining scope ambiguity in LFG+Glue. I have argued that those tools
are conceptually preferable to the ones previously put forward in the literature. In
a nutshell, the account of scope rigidity presented in this paper is that a verb may

126

specify, in its lexical entry, which of its arguments must or may take narrowest
scope. Ideally, at least for the cases considered in this paper, we would like the
specifications to be more general than that, such that they would apply to every
transitive (for German) or ditransitive (for English) verb in the language. Presum-
ably the desired effect can be achieved, at least at the descriptive level, with the use
of templates (Dalrymple et al., 2004).

Of course, this paper has not even scratched the surface of the empirical data
to be accounted for in a theory of scope rigidity. One major limitation is that
we have only considered cases where the constraints on scope ordering can be
described purely in terms of grammatical functions. But there are cases where
the possibility of scope ambiguity seems to depend on precisely which quantifiers
occupy which of a verb’s argument positions. For example, while English generally
allows inverse scope in simple transitive sentences, it is not clear that this is always
possible when there is a monotone-decreasing quantifier in object position, as in
(21).

(21) Most students completed fewer than three assignments.

The right approach to this datum (if it is one) may be to treat English more like
German, only with a less constrained RESET-like template for loosening restric-
tions. Or alternatively, it may be more profitable to treat the quantifiers themselves
as contributing the necessary restrictions, as in Fry’s (1999) account of NPI licens-
ing. Many details would need to be worked out, though: as Fry (1999) acknowl-
edges, his theory has the power to force certain items (NPIs) to take scope under
other items (licensors), but no power to require licensors to be more prominent than
licensees at any level of grammatical description.

There are other possible alternatives that could be explored. For example, an
account of the kind given for scope islands in Section 1.3 could be extended to
scope rigidity, but it would require some quite drastic foundational changes to the
LFG+Glue architecture: either by providing f-/s-structure with more internal struc-
ture (cf. Andrews (2018) on the relative scope of adjectives), or by having linear
logic formulae read off c-structure instead. I cannot seen either of these options
being popular.

References

Andrews, Avery D. 2010. Propositional glue and the projection architecture of
LFG. Linguistics and Philosophy 33. 141–170. doi:10.1007/s10988-010-9079-
9.

Andrews, Avery D. 2018. Sets, heads, and spreading in LFG. Journal of Language
Modelling 6(1). 131–174. doi:10.15398/jlm.v6i1.175.

Barker, Chris & Pauline Jacobson (eds.). 2007. Direct compositionality (Oxford
Studies in Theoretical Linguistics 14). Oxford: Oxford University Press.

127

Barker, Chris & Chung-chieh Shan. 2014. Continuations and natural language
(Oxford Studies in Theoretical Linguistics 53). Oxford: Oxford University
Press.

Bruening, Benjamin. 2001. QR obeys superiority: Frozen scope and ACD. Lin-
guistic Inquiry 32(2). 233–273. doi:10.1162/00243890152001762.

Cook, Philippa & John Payne. 2006. Information structure and scope in German.
In Miriam Butt & Tracy Holloway King (eds.), Proceedings of the LFG’06 con-
ference, University of Konstanz, Stanford, CA: CSLI Publications.

Cooper, Robin. 1983. Quantification and syntactic theory (Studies in Linguistics
and Philosophy 21). Dordrecht: D. Reidel.

Corbalán, Marı́a Inés & Glyn Morrill. 2016. Overtly anaphoric control in type
logical grammar. In Annie Foret, Glyn Morrill, Reinhard Muskens, Rainer Oss-
wald & Sylvain Pogodalla (eds.), Formal grammar (Lecture Notes in Computer
Science 9804), 183–199. Berlin, Heidelberg: Springer. doi:10.1007/978-3-662-
53042-9 11.

Crouch, Richard & Josef van Genabith. 1999. Context change, underspecification
and the structure of Glue language derivations. In Mary Dalrymple (ed.), Se-
mantics and syntax in Lexical Functional Grammar, 117–189. Cambridge, MA:
MIT Press.

Dalrymple, Mary, Ronald M. Kaplan & Tracy Holloway King. 2004. Linguis-
tic generalizations over descriptions. In Miriam Butt & Tracy Holloway King
(eds.), Proceedings of the LFG’04 conference, University of Canterbury, 199–
208. Stanford, CA: CSLI Publications.

Fry, John. 1999. Proof nets and negative polarity licensing. In Mary Dalrym-
ple (ed.), Semantics and syntax in Lexical Functional Grammar, 91–116. Cam-
bridge, MA: MIT Press.

Gotham, Matthew. 2017. Glue semantics and locality. In Miriam Butt & Tracy Hol-
loway King (eds.), Proceedings of the LFG’17 conference, University of Kon-
stanz, 230–242. Stanford, CA: CSLI Publications.

Jacobson, Pauline. 2002. The (dis)organization of the grammar. Linguistics and
Philosophy 25. 601–626. doi:10.1023/A:1020851413268.

Jacobson, Pauline. 2014. Compositional semantics. Oxford: Oxford University
Press.

Kanazawa, Makoto. 2015. Syntactic features for regular constraints and an ap-
proximation of directional slashes in abstract categorial grammars. In Yusuke
Kubota & Robert Levine (eds.), Empirical advances in categorial grammar, 34–
70. https://web.archive.org/web/20170705131723/https://www.u.tsukuba.ac.jp/
∼kubota.yusuke.fn/cg2015-proceedings.pdf. Last accessed 2019-10-07.

128

May, Robert. 1985. Logical form (Linguistic Inquiry Monographs 12). Cambridge,
MA: MIT Press.

Montague, Richard. 1973. The proper treatment of quantification in ordinary En-
glish. In Patrick Suppes, Julius Moravcsik & Jaakko Hintikka (eds.), Approaches
to natural language, 221–242. Dordrecht: D. Reidel.

Pogodalla, Sylvain & Florent Pompigne. 2012. Controlling extraction in abstract
categorial grammars. In Philippe de Groote & Mark-Jan Nederhof (eds.), Formal
grammar (Lecture Notes in Computer Science 7395), 162–177. Berlin, Heidel-
berg: Springer. doi:10.1007/978-3-642-32024-8 11.

129

