
Challenges in Interpreting Spoken Military

Commands and Tutoring Session

Responses

Elizabeth Owen Bratt, Karl Schultz, and

Stanley Peters

Stanford University CSLI

Proceedings of the GEAF 2007 Workshop

Tracy Holloway King and Emily M. Bender

(Editors)

CSLI Studies in Computational Linguistics

ONLINE

Ann Copestake (Series Editor)

2007

CSLI Publications

http://csli-publications.stanford.edu/

Abstract

Various challenges have emerged over several years of grammar

engineering for the spoken dialogue interface to the Navy damage

control simulator DC-Train and the Spoken Conversational Tutor

SCoT-DC, which reviews DC-Train performance. The systems use two

methods for finding interpretations for student utterances from the

recognized string. First, a Gemini grammar interprets full strings

into a complex, structured logical form. A successful Gemini logical

form is the preferred interpretation. Next, a robust Nuance natural language

grammar looks for any interpretable phrases in the utterances which Gemini

could not interpret, and uses heuristics to determine the best set of

slots and values. Voice-Enabled DC-Train and SCoT-DC face challenges

due to speech recognition errors, disfluent speech, underspecified

responses requiring dialogue context for disambiguation, students'

varying levels of familiarity and skill at using the preferred

military terminology, and the need for coordination with the dialogue

manager's strategies for clarification, confirmation and modeling of

student uncertainty.

1 Introduction

We examine various types of challenges faced during the grammar

development for the spoken language interfaces to the DC-Train Navy dam-

age control simulator (Bulitko & Wilkins 1999) and to the Spoken Conversa-

tional Tutor (SCoT-DC) (Schultz et al. 2003), which reviews a student’s DC-

Train performance. First, we describe the task of damage control and the

types of utterances which require coverage. Next, we present an overview of

the spoken natural language architecture and systems used. Finally, we re-

view various categories of spoken input that required special strategies, con-

straints or decisions during grammar engineering.

2 Spoken Commands and Discussion in the Dam-

age Control Domain

Voice-enabled DC-Train (VE-DCT) provides a student the opportu-

nity to play the role of the Damage Control Assistant (DCA) on a DDG-51

destroyer. As DCA, the student is responsible for receiving messages from

others on the ship and making decisions about which personnel should take

which actions to combat adverse events like fires, flooding, and smoke in any

of the 484 compartments on the ship.

Figure 1. DC-Train Information Windows

The simpler forms of speech to VE-DCT include brief acknowl-

edgements of incoming messages (affirmative or DCA aye) and brief cancel-

lations of incorrect commands (cancel that or negative).

In their full form, commands to personnel always involve identifica-

tion of the addressee. Full commands also identify either the speaker (DCA)

or the method of communication to the addressee (e.g. NET80, for broadcast

throughout the ship). Next, full commands contain the desired action and any

required parameters, such as a boundary (e.g. primary aft 97), a compartment

number (e.g. 2-126-2-C) or a compartment name (e.g. Combat System

Equipment Room Number 2). This results in commands such as NET80 to

Repair Two electrically and mechanically isolate compartment 1-126-0-C

and Repair Two, DCA, set smoke boundaries primary forward 42 primary aft

78 secondary forward 18 secondary aft 97 above 1 below 3. Requests for

permission (EOOW, DCA, request permission to start fire pump number two)

and informative communication (NET80 to CO, all stations are manned and

ready, zebra is set) are similar in form to commands.

VE-DCT also allows the student to omit the addressee (along with

the speaker or method of communication) and any parameters of a command,

as long as the student fills in the required parameters in response to system

queries. This multi-turn method of issuing commands takes place as seen in

Figure 2.

Student: set smoke boundaries

VE-DCT: DCA interrogative for repair team and boundary bulkheads

Student: repair three

VE-DCT: DCA interrogative for boundary bulkheads

Student: primary forward 42, primary aft 78

VE-DCT: DCA interrogative for secondary boundaries

Student: secondary forward 18, secondary aft 97

VE-DCT: To Repair Locker 3, set smoke boundaries as follows: 97, 78, 42,

18, Aye

Figure 2. Interrogative Dialogue in VE-DCT

In SCoT, the student reviews events from the VE-DCT session with

an automated tutor, discussing in particular areas where the student did not

take required actions in the correct order, the correct selection of repair team

by region of the ship, the correct selection of bulkheads to set boundaries for

preventing the spread of fire, smoke or flooding, and how to prioritize actions

by the type and location of compartments affected.

Figure 3. SCoT Display

Since SCoT takes the initiative in leading the tutoring session, the

student’s utterances are generally responses to tutoring questions, such as

Assuming you have a fire report, there are 2 other things you should have

done before ordering fire fighting. Lets begin with the first 1. What is it?

The student responses can be very brief (e.g. investigate) or take a longer

form (e.g. I guess I should um set fire boundaries first.) SCoT also permits

gestural input in response to some questions, such as clicking on a compart-

ment or circling it on the ship display. SCoT does not have any tutorial dis-

cussions in which it would be natural for the student to speak and click or

circle compartments at the same time, so natural language interpretation has

not had to support gestural constraints, though this capability would be sup-

ported by the CSLI dialogue manager architecture (Lemon et al. 2001,

Schultz et al. 2003).

In addition to the questions to which students often answer with a

short, simple verb or noun phrase, SCoT also asks more open-ended ques-

tions, requesting definitions for terms (e.g. First of all can you tell me what

primary boundaries are?) and reasons for actions (e.g. Why is it necessary to

isolate when you have a report of fire?). Answers to these questions gener-

ally are syntactically more complex, such as First two bulkheads around the

crisis, To see if it's a false fire, and Prevent smoke from spreading to other

compartments.

VE-DCT and SCoT have been used in a number of experiments and

data collections, which have given results for the experimental conditions

studied, but also on the range of possible user input and ways it can support

student modeling (Jones, Bratt & Schultz 2007).

Theme # of Sub-

jects

Type of Subject Year Results

Different Tutoring

Topics at Different

Times

30 Stanford students 2004 Pon-Barry

et al. 2004,

Peters et al.

2004

Natural Language-

based Tutoring Strate-

gies

40 Stanford students 2004 Pon-Barry

et al. 2006

Multimodality and

Active/Passive Tutor-

ing

210 U.S. Naval

Academy mid-

shipmen

2005 Bratt et al.

2005

Human Coaching with

DC-Train and SCoT

5 Stanford students 2005 Bratt et al.

2005

Human Coaching with

DC-Train and SCoT

10 Surface Warfare

Officers’ School

students

2006 No paper

yet

Figure 4. Experiments with DC-Train and SCoT

3 Architecture of the Natural Language Interface

After the spoken input into VE-DCT and SCoT is transformed into a

string of words by Nuance speech recognition, the natural language under-

standing takes place in one of two components, as shown in Fig-

ure 5.

If the string is well-formed in our Gemini unification-based grammar

(Dowding et al. 1993), then it receives a Gemini logical form, from which the

Dialogue Manager will extract relevant information. If Gemini cannot inter-

pret the string, perhaps because it has disfluencies or previously unencoun-

tered phrasings, then a robust slot-filling Nuance grammar will look for the

maximum number of words it can interpret with the minimum number of

grammar rules, and return slot-value pairs for its best interpretation.

Our model for these two forms of interpretation is that Gemini is in-

tended to be a linguistically motivated grammar, which uses phrases like NP

(noun phrase) and VP (verb phrase), and builds a logical form (LF) capable

of representing embedding and other complex relationships. The Nuance

slots are intended as a fallback mechanism, which capture partial meaning

that is helpful when we cannot understand the entire utterance. The Nuance

slots are mainly a flat representation, though certain items, such as bounda-

ries do involve nesting of a single level of structure (rank, direction and frame

number for each boundary). Because the Nuance slots involve filling slots

from phrases, in sentences which did not parse in Gemini, the emphasis is on

Figure 5. Paths of Interpretation

very local interpretation. This means that very particular, idiosyncratic pat-

terns are easy to include in Nuance, since there is less chance of their affect-

ing rules elsewhere, than in a more interconnected, richer system like Gemini.

The Nuance slots are close to the domain representation used by the dialogue

manager, so they allow for a quick development cycle, with little effort spent

compared to the effort needed for any new complexities in a Gemini logical

form.

One characteristic of the Nuance slots which can severely limit their

utility for certain kinds of discussions is that they permit only one instance of

a slot to be filled per sentence. If there are multiple items of the same kind in

the same utterance, Nuance natural language rules must provide separate slots

for each item so that all of them can be interpreted individually. Without this

provision, the information in the slot would be overwritten by each new

phrase that matched the Nuance rule, and the only slot information provided

to the dialogue manager would be that of the final eligible phrase. We en-

countered this situation with boundaries, and we defined slots for the usual

number of up to four boundaries within an utterance to account for it. But we

do at times run into problems with actions, since usually there is only one per

utterance, and if there are two, the later one will overwrite the information

from the earlier one. Another area where Nuance’s behavior of overwriting

later slots gives us trouble is when students issue commands with conjunc-

tions, such as Set fire and smoke boundaries, Fight fire in compartments 1-

174-01-L and 3-116-1-T, or Set flooding boundaries and electrically and me-

chanically isolate compartment 3-310-2-L. Students rarely use conjunctions,

so this is not a frequent problem, but it has happened at times. The main

place students use conjunctions is for pairs of related boundaries, such as

both primary boundaries or the above and below decks for vertical bounda-

ries, and our robust interpretation treats these conjunctions the same as the

list of boundaries we expect.

The two layers of interpretation for robustness and confidence, i.e.,

Gemini first, then Nuance, have served our system fairly well. In recent error

analysis, we have considered the possible utility of an additional layer of less

reliable Nuance slots, so that a complete Gemini LF would be preferred, then

the Nuance slot-values which seem fairly reliable, then if there are none of

these, we could use the less reliable Nuance slots to start a clarification dia-

logue with the user, rather than simply asking the user to repeat the utterance.

Our current model of interpreting Nuance slots requires an “action”

slot to be filled, indicating what kind of command is intended, and allows the

parameters to be filled in later. However, if a set of parameters slots are

filled, but the action is not, we might consider clarifying with the user if a

particular action was intended. One reason for our current requirement of an

“action” slot is that many parameters can involve numbers as values, and

many numbers are short words (e.g. two or eight) which can result from mis-

recognitions. Thus it is very easy to have a misrecognized sentence which

appears to have parameter values of short numbers, when this is not actually

the case. If we had less reliable, back-off Nuance slots, we might have those

slots only filled by numbers with identifiers such as frame number, pump

number, etc., as opposed to the numbers which occur in a more standard, full

command.

The perspective of what the dialogue manager will do with an inter-

pretation is important to keep in mind. If the dialogue manager requires an

“action” slot to be able to clarify a partially understood command, it is par-

ticularly important to make the interpretation rules yielding action slots ro-

bust, such as making sure they work if there are filled pauses in likely places,

or other possible word variations.

Our Gemini grammar currently includes 183 grammar rules, 949 one-

word lexical entries, and 2991 multi-word lexical entries. The vocabulary

includes 51 action verbs (some synonymous), 36 lexical items for ship per-

sonnel, 396 compartment names, 2152 frame numbers (for compartments,

bulkheads, valves, etc.), and 23 synonyms for yes. In earlier versions of our

system, we compiled the Gemini grammar into a language model for Nuance

speech recognition (Moore 1998). This kept our coverage for speech recog-

nition and natural language understanding tightly synchronized, and allowed

development for the natural language understanding to automatically produce

speech recognition results; however, as our system coverage grew, we ex-

perienced various problems which led us to abandon this approach. Specifi-

cally, compiling the Gemini grammar into a Nuance grammar took a long

time, as long as a day, which made it difficult to address bugs or test out al-

ternate options rapidly. Also, as the grammar grew more complex, speech

recognition began to get significantly slower than real time, which made it

less practical for a dialogue system. Finally, certain Gemini grammars would

produce Nuance grammar files that would fail either at Nuance compile time

or Nuance run time without explanation.

Currently, we train a trigram model on a corpus of utterances from

our past experiments, using Nuance’s standard tools to create a probabilistic

finite state grammar. The entire process is much faster, and can be completed

in under 15 minutes, so we have a more responsive development cycle. Us-

ing trigram recognition has improved our speech performance by making us

more robust to unanticipated phrasings and out of vocabulary words. We

currently train a DC-Train language model on a corpus with 11,551 utter-

ances, containing 390 unique words, and a SCoT language model on a corpus

with 19,123 utterances, containing 1780 unique words. The SCoT corpus has

more unique words than the DCT corpus because in addition to the words for

the basic commands to the simulator, SCoT involves discussion of why to

take certain actions, definitions for terms, and discussion of which kinds of

compartments should be prioritized over others.

3.2 Tools to Support Grammar Development

In order to support grammar development, as well as speech recogni-

tion language model development, we have developed a number of tools.

Our most powerful tool is our Nuance Batchrec Analysis Tool, batchdb.
1

Batchdb reads in results of a Nuance batch recognition run, calculates per-

formance metrics (such as word error rate), and stores the results in a MySQL

database. With batchdb, we can use SQL queries to compare data from batch

runs with different language models or different Nuance parameter settings.

We look to optimize for the lowest word error rate, the most accurate seman-

tic slots, and recognition run-time under real time.

Batchdb enters various different views of the data automatically into

the database, so that it is easy to work with the exact representation needed

for the task at hand. For example, our transcriptions include annotations

within square brackets such as [annoyed] or [pause]. For some data analysis,

we are interested in those annotations; for others, we only want to see the

transcribed words. Similarly, in some data views we use expletives tran-

scribed as they were spoken, but when we use data with expletives in the lan-

guage model we sanitized them all into the single word expletive, which we

give all its various possible pronunciations, so that users of the system will

not see any actual expletives on the system display, though our capability to

recognize them helps us deal with the full range of military speech!

Batchdb also automatically standardizes the spelling in the transcrip-

tions. We have set forth policies on how transcribers are to enter words, but

we have found that it can be hard for transcribers to keep them in mind, so it

is good to have automatic processing to eliminate spurious distinctions such

as ok vs. okay, and versions of Navy words with the individual letters treated

as distinct words, e.g. d. c. c. o. (for Damage Control Console Operator), vs.

our preferred treatment of them as a single word, e.g. dcco.

Batchdb also pre-processes the data before running the sclite speech

recognition scoring program. Sclite allows variant words to be scored as

equivalent. We have instances of homophones which are sometimes able to

be disambiguated by sentence context and other times not. For example, two

four is right, while two fore is wrong, but fore vs. four in an isolated utterance

are equivalent. We keep the versions of the word distinct in our transcript,

where the dialogue context can distinguish them, but when we score our

speech recognition using a single language model for all contexts, we are able

to penalize errors that the language model could detect while overlooking

cases of homophone mismatch that speech recognition has no capability to

deal with. (Our dialogue manager can automatically correct for these cases.)

1
 Available to the public under the GPL open-source license at

http://sourceforge.net/projects/nuance-batchrec .

Other tools we use to support our development are a Transcriber

Wavefile Preparation Tool, a perl script which takes individual wavefiles

from a dialogue and creates a session wavefile and transcript file for Tran-

scriber software (Barras et al. 2000). We use a Transcript Tracker web appli-

cation to manage transcription file status and coordinate between transcribers,

so that they do not duplicate effort, and to provide us a means for automati-

cally standardizing variants or calling the transcriber’s attention to items that

should be fixed before the transcription is complete.

Figure 6: Transcript Tracker

We also use a Transcript Preparation Tool, which combines the

automatically logged system transcript with transcriptions from Transcriber

.trs files for html viewing, to help us review system performance at a dia-

logue level. Figure 7 shows an example of the XML-based transcripts pro-

duced.

Figure 7: XML Transcript of Session

We use a Transcript Search application, based on our Transcript In-

dexing Tool, which allows a user to search our XML transcripts for instances

of words or regular expressions, in modes which include or exclude items

such as square-bracketed annotations, word fragments, and punctuation. The

search results are displayed as an index web page with links to the dialogues

containing the item searched for, as shown in Figure 8. Searching transcripts

this way is useful for examining dialogue performance for particular ques-

tions, for example.

Figure 8: Transcript Search Tool Result Page

4 Interpretation Challenges for Grammar Engi-

neering

4.1 Issues in Training

Because VE-DCT and SCoT are intended to train students, the spo-

ken interfaces need to permit student mistakes. For VE-DCT, the system

needs to understand nonexistent compartments and boundary locations,

which the student might construct by using the standard format for these

items, because simply not recognizing or not understanding the utterance

would not help the student realize that the compartment did not exist; rather,

it would look like a general system failure. For SCoT, the tutor needs to un-

derstand likely wrong answers as well as the correct, expected answer.

Another aspect of training people with a spoken system is how they

relate to the tutor or spoken system, and how much they treat it as a person

(Nass & Brave 2005, Reeves & Nass 1996). In using our system in a class-

room setting at the U.S. Naval Academy, students produced all of the specific

examples of uncooperative speech shown in Figure 9, and many other exam-

ples besides these. Students who produced uncooperative utterances did not

have significantly different DC-Train performance, overall test scores, or

learning gains. At the time of our experiment, our tutor did not understand

these utterances, and treated them identically to a student utterance of I don’t

know, and moved on. Providing grammar coverage and suitable interpreta-

tions or categorizations of this kind of utterance would be a significant addi-

tional task for the grammar engineer; however, in a training system used in

the real world, this may be a concern worth addressing.

Polite Complaint I can't see what compartment

you're talking about

Swearing F--- you

Insult (to the system) I hate you

Threat (to the system) I ought to pulverize your guts out

Mocking There you go it only took you four

times

Inappropriate Response Have a beer

Reaction to Reprimand I bet you couldn't do any better man

Intentionally Using Another Lan-

guage

Siete

Generally Antagonistic or Unre-

sponsive

This is dumb

4.2 Issues with Military Domain

Another challenge for grammar engineering for a system that in-

volves a simulation of a situation the student may be familiar with in reality is

that the student may use more domain knowledge than the simulator supports.

For example, the student may not only give a desmoke command, which our

system would support, but then go on to specify that box fans should be used

for desmoking, which is beyond the scope of the simulator. Another area

where students familiar with actual ships might use their real world knowl-

edge in ways that make grammar engineering more difficult is to use syno-

nyms in complex compartment names, such as berthing for living space or

Chief for CPO. Dialogue context might also make it natural to omit certain

parts of complex compartment names, such as numerical or directional identi-

fiers, like number one, forward, aft, port, or starboard. The same compart-

ment might be called CPO Berthing, Chief’s Berthing or CPO Living Space

Number One.

Another issue in a training system is how to support standard vs. non-

standard terminology and phrasing. For example, a hyphen written between

numbers in compartment identifiers is pronounced as tac, but a student less

Figure 9. Types of Uncooperativity Encountered by SCoT

familiar with military terms might pronounce it as dash, or omit it. Similarly,

letters used in compartment names are pronounced according to the Navy’s

phonetic alphabet, e.g. Charlie, whereas someone unfamiliar with the con-

vention might just pronounce the letter c. Another Navy pronunciation con-

vention is to spell out each digit of a number individually, to minimize

misunderstandings such as fifty vs. fifteen. Thus, the standard pronunciation

of 220 would be two two zero, not two hundred twenty. For a compartment

number such as 1-126-0-C, in addition to the standard pronunciation of one

tac one two six tac zero tac charlie, there are many possible non-standard

pronunciations, such as one dash one hundred twenty six dash oh dash c, one

tac one twenty six tac zero tac c, and so on. We give users an introduction to

our system which explains how to pronounce these items, and military users

are familiar with these conventions, so most users will produce the standard

pronunciations. However, sometimes they will produce the non-standard

pronunciations. The challenge is to recognize those times correctly, while

not having the non-standard options overwhelm the correct ones, and lead to

misrecognitions. Another challenge is the degree to which to represent the

non-standard choices in the interpretation, as material for the tutor or coach to

comment on.

A similar issue in interpretation in a training dialogue system is how

much to assume from the student’s wording, how much to clarify, and how to

convey to the student that a wording is not ideal. For certain commands, the

correct method of delivering them is to include specifications of exactly the

relevant areas the commands apply to, or the precise type of action they

mean. For example, in the context of the DC-Train simulator, students

should be giving the command electrically and mechanically isolate, not just

the command isolate. Similarly, they should give one of the commands Set

fire boundaries, Set smoke boundaries, or Set flooding boundaries, not the

command Set boundaries without specifying which kind. Again, it becomes

a question of how much to support the non-standard variants, which do occur,

without biasing the system to accept them too much, and how to let the stu-

dent know not to use them. The simple answer of having the system not un-

derstand non-standard variants generally just leads to frustration and the

perception of the system as failing, rather than calling attention to the fine

points of difference in the student’s answer.

Another area of interaction of requiring the student to give a proper

full specification and what might in reality be identifiable from dialogue con-

text is the military doctrine that commands should identify the addressee and

speaker, or communications system to be used for the addressee. Thus, a

proper, full command with the addressee repair three and speaker DCA

would be Repair three, DCA, investigate compartment two tac two two zero

tac oh one tac lima. A proper full command instructing a phone talker

(communications assistant in damage control central) to use the Net-80 com-

munications system, which broadcasts throughout the ship, rather than a lim-

ited radio address only to the specific addressee (in this case the CO, or ship’s

captain), would be Net eighty to CO, all stations manned and ready, zebra is

set.

A rich domain can also produce a wide range of possible answers if

questions are open-ended. In our experiments at Stanford, USNA, and

SWOS, we asked students to provide definitions of terms and to explain why

certain actions should be taken. Fortunately for us, the answers students gave

ended up being reasonably tractable for interpretation. In the Stanford confi-

dence-sensitivity experiment (2004) and the USNA experiment (2005), the

mean utterance length for the 725 answers to open-ended questions was 5.17

words.

4.3 Issues with Spoken Dialogue Context

Because VE-DCT and SCoT involve a system using natural language

for its interactions with the student, specifically, speaking to the student in a

synthesized voice (Festival for VE-DCT, Taylor et al. 1998, and FestVox

limited domain voice for SCoT, Black and Lenzo 2003), grammar develop-

ment has to account for the possibility that the student is likely to use vocabu-

lary or phrases used by the system. Development of system output must be

coordinated with development of the speech recognition language model and

the interpretation grammar.

In a system with various numerical parameters, and a series of com-

mands and spoken interactions that create a dialogue context, it becomes

natural for the student to use numbers without modifiers or units. The repre-

sentation of the meaning of these numbers has to allow for their ultimate in-

terpretation by the dialogue manager as specifying the correct kind of item,

and not specifying something incorrect. When our system involves the dia-

logue context of the system issuing an “interrogative” request to the user for

missing parameters, we have interpreted the numbers as filling the specific

parameters we need, and have ignored the possibility of their filling other

parameters. The grammar produces multiple interpretations for bare num-

bers, such as two, which can be interpreted as a pump number, a repair party

identifier, a frame number or a deck number. The dialogue manager decides

which type of number is likely, and interprets the number accordingly. An

alternate method of this would be to have distinct grammars which the system

switches between based on dialogue context. In either approach, the dialogue

manager must control the interpretation, either by choosing a narrower

grammar or by choosing from information provided by the grammar. The

complex logical form constructed by Gemini lends itself more naturally to the

approach where the dialogue manager chooses the grammar in advance, or an

approach where the grammar provides an underspecified number which the

dialogue manager adds type information to. The Nuance slot approach can

give an underspecified number, but it can also give a series of unrelated slots,

which provide more information than can possibly all be true at the same

time. This approach allows the grammar to use any constraints from wording

that might be possible to give the dialogue manager an exact set of possible

ways to interpret the underspecified utterance. Our Gemini grammar cur-

rently gives a set of different interpretations, of which only one is provided to

the dialogue manager. If that one does not match the kind of information ex-

pected in the dialogue context, the dialogue manager checks the Nuance in-

terpretation for a slot matching the information it expected. It ignores all

slots present that are not what it is looking for. The Nuance interpretations

involve several different slots, and the dialogue manager adds in several pos-

sible slots through reasoning.

4.4 Issues with Speech Input
Our speech recognition word error rate has tended to be around 8% in

most of our experiments, though it varies by speaker. Our rejection rate, i.e.

the percentage of sentences which our recognizer cannot produce a hypothe-

sized string of words it is sufficiently confident in, is around 4%.

Spoken input can lead to a number of challenges for a grammar, as

long as the recognition possibilities are more than what is covered by the

grammar. If the utterances involve disfluencies or out of vocabulary items,

the recognized string will be an unsuccessful attempt to match what the

speaker actually said, so the various places where the grammar backs off to

acoustically similar items might produce unexpected results. Acoustic simi-

larity between words can also produce unanticipated strings for the grammar

writer to capture, such as blue being misrecognized for below in our data, as

well as other confusion pairs such as l and alpha, or set and send. Thus, in-

terpretation rules are more robust when they allow for these.

A general issue for all grammar coverage is dealing with unexpected

phrases, though in spoken input the fact that the phrases pass through a

speech recognizer first may introduce additional problems if the resulting

string does not match what the speaker says.

A disfluency involving repeated words or filled pauses (um, uh)

might present difficulties for a grammar expecting particular phrases with

particular constituents without interruptions. Incomplete sentences present

another variant of this problem, when a student either is cut off by the speech

recognizer endpointer by pausing too long, or the student actually stops

speaking part-way through a command. For example, 8% of utterances in the

USNA corpus that involve a student beginning to give a compartment num-

ber are broken off before the compartment number is complete, and 13% of

utterances with a repair party identified break off before giving the repair

team their command. It would be desirable to interpret the material actually

said, but the phrases will not be complete. Noting where the student breaks

off may also help model that this kind of information may be difficult for the

student to figure out (Jones, Bratt & Schultz 2007).

Another area in which the spoken input interacts with the grammar

interpretation is when setting the word transition weight parameter for the

speech recognizer. This parameter can be set so that the speech recognizer is

discouraged from hypothesizing short words to match the acoustics of the

speech signal in favor of interpreting the same material as part of existing

words. This can interact with grammar interpretation of variant formulations

of utterances. In our 2006 data collection at SWOS, a student said to the sys-

tem Repair repair five send investigators to engine room number two, which

we recognized as Repair five investigate niner two engine room number two.

Our grammar covered investigate, but not send investigators to, so we were

fortunate that the speech recognition chose a hypothesis that caught the main

word and not the more verbose variant form of the command.

Another point about spoken input is that the speech channel allows

the user to provide more information than just the straight content of the

words (Pon-Barry et al. 2006), as they would if they were choosing a com-

mand or an item from a menu. Locations of pauses before items (Jones,

Bratt, & Schultz 2007), or the fact that nonstandard vocabulary has been

used, can signal additional information that a tutoring system can use to bet-

ter model what the student knows well and what the student may be strug-

gling with. The interpretation of an utterance given by a grammar can either

contain this kind of information, e.g. for nonstandard phrasing, or provide a

representation which helps support information from separate processing, as

in pause detection.

5 Conclusions

Data from users of VE-DCT and SCoT over the course of multiple

experiments provide us with challenges for grammar engineering in various

of the complex aspects of our training system: training, representing a com-

plex military domain, recognizing speech, and interpreting speech in dialogue

context. Our system architecture provides a preference for canonical input

that can be given a complete, structured interpretation, but allows a fallback

to robust interpretation of phrases providing partial information. Various sys-

tem development tools help us detect problems and gauge the success of the

solutions we implement.

Acknowledgements

This work is supported by the Department of the Navy under re-

search grant N000140010660, a multidisciplinary university research initia-

tive on natural language interaction with intelligent tutoring systems and

research grant N000140510144, on Spoken Language Coaching During Dy-

namic Problem Solving. We are grateful to Perry McDowell of the Naval

Postgraduate School, and Lt. Jonathan Hopkins and Lt. Tyson Young of the

Surface Warfare Officers School for providing valuable information about

the language of the damage control domain. We are responsible for any er-

rors in our use of their information.

References

Barras, Claude, Geoffrois, Edouard, Wu, Zhibiao, and Liberman, Mark. 2000.

Transcriber: development and use of a tool for assisting speech cor-

pora production. Speech Communication special issue on Speech

Annotation and Corpus Tools, Vol 33, No 1-2, January 2000.

Black, Alan W. and Lenzo, Kevin A. 2003. Building Synthetic Voices for

FestVox 2.0 Edition. Available at http://www.festvox.org/bsv/

Bulitko, Vadim V., & Wilkins., David C. 1999. Automated instructor assis-

tant for ship damage control. In Proceedings of AAAI-99.

Dowding, John., Gawron, Jean Mark, Appelt, Doug, Cherny, Lynn, Moore,

Robert and Moran, Doug. 1993. Gemini: A Natural Language System

for Spoken Language Understanding. In the Proceedings of the 31
st

Annual Meeting of the Association for Computational Linguistics,

Columbus, OH.

Jones, Bevan, Bratt, Elizabeth Owen, and Schultz, Karl. 2007. The Prosody

of Uncertainty for Spoken Dialogue Intelligent Tutoring Systems.

Manuscript in preparation.

Lemon, Oliver, Anne Bracy, Alexander Gruenstein, and Stanley Peters. 2001.

The WITAS Multi-Modal Dialogue System I. In Proceedings of Eu-

roSpeech 2001.

Moore, Robert. 1998. Using natural language knowledge sources in speech

recognition. In Proceedings of the NATO Advanced Studies Institute.

Nass, Clifford. and Brave, Scott. 2005. Wired for speech: How voice acti-

vates and advances the human-computer relationship. Cambridge,

MA: MIT Press.

Pon-Barry, Heather, Schultz, Karl, Bratt, Elizabeth Owen, Clark, Brady, and

Peters, Stanley. 2006. Responding to Student Uncertainty in Spoken

Tutorial Dialogue Systems. In International Journal of Artificial In-

telligence in Education (IJAIED) Volume 16, 171-194. Special Issue

"Best of ITS 2004" (editors James Lester, Rosa Maria Vicari and

Fabio Paraguaçu).

Reeves, Byron. and Nass, Clifford. 1996. The media equation: How people

treat computers, televeision, and new media like real people and

places. New York: Cambridge University Press/CSLI.

Schultz, Karl, Bratt, Elizabeth Owen, Clark, Brady; Peters, Stanley, Pon-

Barry, Heather, and Treeratpituk, Pucktada. 2003. A Scalable, Reus-

able Spoken Conversational Tutor: SCoT. In AIED 2003 Supplemen-

tary Proceedings, University of Sydney. 367-377.

Taylor, Paul A., Black, Alan, and Richard Caley. 1998. The architecture of

the Festival speech synthesis system. In The Third ESCA Workshop

in Speech Synthesis, pages 147-151, Jenolan Caves, Australia.

U.S. Navy Guide to the phonetic alphabet.

http://www.history.navy.mil/faqs/faq101-1.htm

