
14

Linearization of affine abstract categorial
grammars
R Y

Abstract
The abstract categorial grammar (ACG) is a grammar formalism based on linear

lambda calculus. It is natural to ask how the expressive power of ACGs increases when
we relax the linearity constraint on the formalism. This paper introduces the notion of
affine ACGs by extending the definition of original ACGs, and presents a procedure for
converting a given affine ACG into a linear ACG whose language is exactly the set of
linearλ-terms generated by the original affine ACG.

Keywords A  ,  ,  -
, -  ,  -  , -
 - 

14.1 Introduction
De Groote (2001) has introducedabstract categorial grammars (ACGs), in
which both lexical entriesof the grammar as well asgrammatical combi-
nationsof them are represented by simply typed linearλ-terms. While the
linearity constraint on grammatical combinations is thought to be reasonable,
admitting non-linearλ-terms as lexical entries may allow ACGs to describe
linguistic phenomena in a more natural and concise fashion.

On the other hand, de Groote and Pogodalla (2003, 2004) have shown that
a variety of context-free formalisms, namely, context-free grammars, linear1

context-free tree grammars (linear CFTGs)2 and linear context-free rewrit-

1This paper lets the term “linearity” mean non-duplication and non-deletion. Thus “lin-
ear CFTGs” means non-duplicating non-deleting CFTGs here,though usually “linear CFTGs”
means non-duplicating CFTGs.

2See also Kanazawa and Yoshinaka (2005) for complete proof ofencodability of linear

185

Proceedings of FG-2006.
Editor: Shuly Wintner.
Copyright c© 2007, CSLI Publications.

186 / R Y

ing systems (LCFRSs), is encoded by ACGs in straightforwardways. In this
sense, ACGs can be thought of as a generalization of those grammar for-
malisms. The linearity constraint in those formalisms matches that of the
ACG formalism.

Concerning those grammar formalisms, it is known that the expressive
power does not change when the linearity constraint is relaxed to just non-
duplication, allowing deleting operations. Seki et al. (1991) have shown the
equivalence between LCFRSs and multiple context-free grammars (MCFGs),
which correspond to the relaxed version of LCFRSs that may have deleting
operations. Fujiyoshi (2005) has established the equivalence between lin-
ear monadic CFTGs and non-duplicating monadic CFTGs. Fisher’s result
(Fisher, 1968a,b) is rather general. He has shown that the string IO-languages
generated by general CFTGs coincide with the string IO-languages generated
by non-deleting CFTGs.

Along this line, extending the definition of usual linear ACGs, this paper
introducesaffine ACGs, which have BCKλ-terms as their lexical entries, and
compares the generative power of linear ACGs and affine ACGs. We present
a procedure for converting a given affine ACG into a linear ACG whose lan-
guage is exactly the set of the linearλ-terms generated by the original ACG.
Therefore, affine ACGs are not essentially more expressive than linear ACGs,
since strings and trees are usually represented with linearλ-terms.

As linear ACGs encode linear CFTGs and LCFRSs, affine ACGs encode
non-duplicating CFTGs and MCFGs in straightforward ways. For such affine
ACGs, our linearization method constructs linear ACGs which have the form
corresponding to linear CFTGs or LCFRSs. Thus, our result isa generaliza-
tion of the results we have mentioned above with the exception of Fisher’s,
which covers CFTGs involving duplication.

14.2 Preliminaries

14.2.1 Lambda-Terms

Let A be a finite non-empty set ofatomic types. The setT (A) of typesbuilt
onA is defined as the smallest superset ofA such that

. if α, β ∈ T (A), then (α→ β) ∈ T (A).

Theorder of a type is given by the function ord :T (A)→ N,

. ord(p) = 1 for all p ∈ A ,. ord((α→ β)) = max{ord(α) + 1, ord(β)}.

A higher-order signatureΣ is a triple 〈A ,C , τ〉 whereA is a finite non-
empty set of atomic types,C is a finite set of constants, andτ is a func-

CFTGs by ACGs.

L      / 187

tion from C to T (A). Theorder of the higher-order signature is defined as
ord(Σ) = max{ord(τ(a)) | a ∈ C }.

Let X be a countably infinite set ofvariables. The setΛ(Σ) of λ-terms
(termsfor short) built uponΣ and the type ˆτ(M) of a termM ∈ Λ(Σ) are
defined inductively as follows:

. For everya ∈ C , a ∈ Λ(Σ) andτ̂(a) = τ(a).. For everyx ∈X andα ∈ T (A), xα ∈ Λ(Σ) andτ̂(xα) = α.. For M,N ∈ Λ(Σ), if τ̂(M) = (α → β), τ̂(N) = α, then (MN) ∈ Λ(Σ) and
τ̂((MN)) = β.. For x ∈ X , α ∈ T (A) andM ∈ Λ(Σ), (λxα.M) ∈ Λ(Σ) andτ̂((λxα.M)) =
(α→ τ̂(M)).

For convenience, we simply writeτ instead of ˆτ and often omit the superscript
on a variable if its type is clear from the context. The notions of free variables,
closed terms,β-normal form,βη-normal form, are defined as usual (see Hind-
ley (1997) for instance). A termM is acombinatoriff M is closed andM con-
tains no constants. A termM is said to beaffine if any variable occurs free at
most once in every sub-term ofM. An affine term is said to belinear if every
λ-abstraction binds exactly one occurrence of a variable. The sets of affine
and linear terms are respectively denoted byΛaff(Σ) andΛlin(Σ). As usual, let
։β,=β,=βη, ≡ denoteβ-reduction,β-equality,βη-equality, andα-equivalence
respectively.|M|β and |M|βη respectively represent theβ-normal form and
βη-normal form. We use upper case italic lettersM,N,P, . . . for terms, late
lower case italic lettersx, y, z, . . . for variables, middle lower case italic letters
o, p, . . . for atomic types, Greek lettersα, β, . . . for types, sanserifa,A, . . . for
constants. We writeα → β → γ → δ for (α → (β → (γ → δ))), α3 → δ for
α→ α→ α→ δ, MNPQ for (((MN)P)Q), λxyz.M for (λx.(λy.(λz.M))), and
so on.

14.2.2 Abstract Categorial Grammars

Definition 12 For two sets of atomic typesA0 andA1, a type substitutionσ
is a mapping fromA0 toT (A1), which can be extended homomorphically as

σ(α→ β) = σ(α)→ σ(β).

For two higher-order signaturesΣ0 andΣ1, a term substitutionθ is a mapping
from C0 toΛ(Σ1) such thatθ(a) is closed for alla ∈ C0. For two higher-order
signaturesΣ0 andΣ1, we say that a type substitutionσ : A0 → T (A1) and
a term substitutionθ : C0 → Λ(Σ1) arecompatibleiff σ(τ0(a)) = τ1(θ(a))
holds for alla ∈ C0. A lexiconfrom Σ0 to Σ1 is a compatible pair of a type
substitution and a term substitution. A lexiconL = 〈σ, θ〉 is affine (linear)
iff θ(a) is affine (linear) for alla ∈ C0. For a lexiconL = 〈σ, θ〉, we define
θ̂ as the homomorphic extension ofθ such that̂θ(xα) = xσ(α). Indeed,̂θ(M) is

188 / R Y

always a well-typedλ-term if so isM; if M has typeα, thenθ̂(M) has type
σ(α).

Hereafter we identify a lexiconL = 〈σ, θ〉 with the functionsσ and θ̂. A
lexiconL is n-th orderif ord(L) = max{ord(σ(p)) | p ∈ A0 } ≤ n.

Definition 13 An abstract categorial grammar (ACG)is a quadrupleG =
〈Σ0,Σ1,L , s〉, where

. Σ0 is a higher-order signature, called theabstract vocabulary,

. Σ1 is a higher-order signature, called theobject vocabulary,

. L is a linear lexicon fromΣ0 to Σ1,

. s ∈ A0 is called thedistinguished type.

We sometimes call the triple〈a, τ0(a),L (a)〉 for a ∈ C0 a lexical entry, and
specify an ACG by giving the set of lexical entries and the distinguished type.

Definition 14 An ACG G = 〈Σ0,Σ1,L , s〉 generates two languages, theab-
stract languageA(G) and theobject languageO(G), defined as

A(G) = {M | M ∈ Λlin(Σ0) is a closedβη-normal term of types},

O(G) = { |L (M)|βη | M ∈ A(G) }.

The abstract language can be thought of as a set of abstract grammatical
structures, and the object language is regarded as the set ofconcrete forms
obtained from these abstract structures and the lexicon. Thus, we simply say
the language generated by an ACG for its object language. Thetermabstract
categorial languages (ACLs)means the object languages of ACGs.

Though de Groote’s original definition of an ACG requires thelexicon
to be linear, this paper allows the lexicon to be non-linear.We call an ACG
whose lexicon is affine affine ACG, and denote the class of affine ACGs by
Gaff. We then distinguish affine ACGs whose lexicons are linear, i.e., original
ACGs, by calling themlinear ACGsand letGlin denote the class of linear
ACGs. Note that the abstract language always consists oflinear terms, though
an ACG is not necessarily linear. For eachG∗ ∈ {Glin ,Gaff}, G∗(m, n) denotes
the subclass of ACGs belonging toG∗ such that the order of the abstract
vocabulary is at mostm and the order of the lexicon is at mostn. An ACG is
m-th orderif it belongs toG∗(m, n) for somen.

Example 1 Let str = o→ o andM+N be an abbreviation ofλzo.M(Nz) if the
types ofM andN arestr. Let us consider the affine ACGG = 〈Σ0,Σ1,L , s〉

L      / 189

with the following lexical entries:

x ∈ C0 τ0(x) L (x)
C n λv.v/cat//cats/
M n λv.v/mouse//mice/
J np λy.y/John/P1

R np→ s λx.x(λuv.u+ v/runs//run/)
E np2→ s λx1x2.x2(λuv.u+ v/eats//eat/) + x1(λuv.u)
A n→ np λzy.y(/a/ + zP1)P1

L n→ np λzy.y(/all/ + zP2)P2

where each/xxx/ is a constant of typestr, Pi denotesλustr
1 ustr

2 .ui , L (n) =
(str2 → str) → str, L (np) = (str → (str2 → str) → str) → str, L (s) = str.
The object languageO(G) consists of terms representing some English sen-
tences such asJohn runs, all mice run, all cats eat a mouse, and so on.

14.3 Linearization of Affine ACGs

While linear ACGs can generate languages consisting of linear terms only,
affine ACGs can generate languages containing non-linear terms. Therefore,
affine ACGs define a strictly richer class of languages than linear ACGs. How-
ever, since terms representing strings or trees are linear3, affine terms in the
object languages are not very interesting. This paper showsthat for every
G ∈ Gaff(m, n), we can constructG ′ ∈ Glin(m,max{2, n}) such that

O(G ′) = {P ∈ O(G) | P is linear} (14.8)

Moreover, in case ofm= 2, we can findG ′ ∈ Glin(2, n) satisfying the equation
(14.8). Therefore extending the definition of an ACG to allowlexical entries
affine does not enrich the expressive power of ACGs in an essential way. Be-
fore proceeding with our construction, we mention a partially stronger result
on the special case of this problem on string-generating second-order ACGs,
obtained from Salvati’s work (Salvati, 2006). He presents an algorithm that
converts a linear ACGG ∈ Glin(2, n) generating a string language into an
equivalent LCFRS (via a deterministic tree-walking transducer). Even if an
input is an affine ACGG ∈ Gaff(2, n), his algorithm still outputs an equiv-
alent LCFRS. Since every LCFRS is encodable by a linear ACG belonging
to Glin(2, 4) (de Groote and Pogodalla, 2003, 2004), therefore this entails the
following corollary.

3A string a1 . . .an on an alphabetV is represented byλzo.a1(. . . (anz) . . .) ∈ Λlin(ΣV) where
ΣV = 〈{o},V, τV〉 with τV(a) = str for all a ∈ V as in Example 1. Trees are constructed on some
ranked alphabet. A ranked alphabet〈F, ρ〉, whereF is an alphabet andρ is a rank assignment on
F, can be identified with a higher-order signatureΣ〈F,ρ〉 = 〈{o}, F, τρ〉 such thatτρ(a) = ok → o if
ρ(a) = k for all a ∈ F, and a tree is identified with a variable-free (thus linear) term of the atomic
typeo in the obvious way.

190 / R Y

Corollary 29 For every string-generating affine ACGG ∈ Gaff(2, n), there is
a linear ACGG ′ ∈ Glin(2, 4) such thatO(G ′) = O(G).

14.3.1 Basic Idea

We explain our basic idea for the linearization method for affine ACGs
through a small example. Let us consider the affine ACG G consisting of
the following lexical entries:

x ∈ C0 τ0(x) L (x)

A p→ s λwo2→o.waobo

B p λxoyo.x

whereL (s) = o andL (p) = o2 → o. Corresponding toAB ∈ A(G), we
havea ∈ O(G) by

L (AB) ≡ (λwo→o→o.waobo)(λxoyo.x)→β (λxoyo.x)aobo
։β ao. (14.9)

The occurrences of vacuousλ-abstractionλyo causes the deletion ofb in
(14.9). Such deleting operation is what we want to eliminatein order to lin-

earize the affine ACGG . Let us retypeλyo with λyo and replacebo with b
o

to
indicate that they should be eliminated. Then (14.9) is decorated by bars as

(λwo→o→o.waob
o
)(λxoyo.x)→β (λxoyo.x)aob

o
։β ao, (14.10)

where we retypewo→o→o with wo→o→o, so that the whole term is well-typed.
In our setting, when a term has a barred type, it means that theterm should be
erased duringβ-reduction steps, and vice versa. By eliminating those barred
terms and types from (14.10), we get

(λwo→o.wao)(λxo.x)→β (λxo.x)ao→β ao, (14.11)

which solely consists of linear terms. Hence, the linear ACGG ′ with the
following lexical entries generates the same language as the original ACGG .

x ∈ C ′0 τ′0(x) L ′(x)
A′ [p, o→ o→ o] → [s, o] λwo→o.wao

B′ [p, o→ o→ o] λxo.x

where [p, o → o → o] and [s, o] are new atomic types that are mapped
to o → o ando, respectively, and [s, o] is the distinguished type. We have

L (AB) = L ′(A′B′). The termλwo→o→o.waob
o
, which is led toL ′(A′), is

just one possible bar-decoration forL (A). For instance,λwo→o→o.waobo and
λwo→o→o.waobo are also possible. Bars appearing inλwo→o→o.waobo predict
that the sub-terma will be erased, andλwo→o→o.waobo predicts that no sub-
term of it will disappear. Our linearization method also produces lexical en-
tries corresponding to those bar-decorations.

L      / 191

14.3.2 Formal Definition

We first give a formal definition of the set of possible bar-decorations on a
type and a term. Hereafter, we fix a given affine ACGG = 〈Σ0,Σ1,L , s〉.
DefineΣ1 = 〈A1,C1, τ1〉 by

A1 = { p | p ∈ A1 }, C1 = { c | c ∈ C1 }, τ1 = { c 7→ τ1(c) | c ∈ C1 },

whereα→ β = α→ β. LetΣ′1 = 〈A
′

1 ,C
′
1, τ
′
1〉 = 〈A1 ∪A1,C1 ∪ C1, τ1 ∪ τ1〉.

Here, we have the simple lexicoñ· from Σ′1 to Σ1 defined as

p̃ = p̃ = p for p ∈ A1, and̃c ≡ c̃ ≡ c for c ∈ C1.

The set̂T (A1) of possible bar-decorations on types is defined by

T̂ (A1) = {α ∈ T (A ′
1) | if β1 → · · · → βn → p is a subtype ofα

for somep ∈ A1, thenβ1, . . . , βn ∈ T (Σ1) }

Actually, terms inΛaff(Σ′1) that we are concerned with have types inT̂ (A1).

The reason why we ignore types inT (A ′
1) − T̂ (A1) is that if a term is bound

to be erased, then so is every sub-term of it. For instance, ifa variablex has
typeo→ o < T̂ ({o}), then the termxo→oyo has typeo, which, in our setting,
means that it should disappear. But ifxo→oyo disappears, so doesyo, which,
therefore, should have typeo to be consistent with our definition.

The setΛ̂aff(Σ1) of possible bar-decorations on terms is the subset of
Λaff(Σ′1) such thatQ ∈ Λ̂aff(Σ1) iff

. every variable appearing inQ has a type in̂T (A1), and. if λxα.Q′ is a sub-term ofQ and xα does not occur free inQ′, thenα ∈
T (A1).

We are not concerned with terms inΛaff(Σ′1) − Λ̂aff(Σ1).
The following properties are easily seen:

. If Q ∈ Λ̂aff(Σ1), thenτ′1(Q) ∈ T̂ (A1),

. If τ′1(Q) ∈ T (A1) for Q ∈ Λ̂aff(Σ1), every sub-term ofQ is inΛaff(Σ1),

. If Q ∈ Λ̂aff(Σ1) andQ։β Q′, thenQ′ ∈ Λ̂aff(Σ1).

For eachα ∈ T (A1) and P ∈ Λaff(Σ1), Φ gives the set of possible bar-
decorations on them:

Φ(α) = { β ∈ T̂ (A1) | β̃ = α },

Φ(P) = {Q ∈ Λ̂aff(Σ1) | Q̃ ≡ P }.

In other words,Φ and ·̃ are inverse of each other, if we disregard types in
T (A ′

1) − T̂ (A1) and terms inΛaff(Σ′1) − Λ̂aff(Σ1).

192 / R Y

Secondly, we eliminate barred subtypes fromα ∈ T̂ (A1) − T (A1) and
barred sub-terms fromQ ∈ Λ̂aff(Σ1)−Λaff(Σ1). Let us define (α)† and (Q)† as
follows:

(p)† = p for p ∈ A1,

(α→ β)† =


(α)† → (β)† if α < T (A1),

(β)† if α ∈ T (A1),

(xα)† ≡ x(α)† ,

(c)† ≡ c for c ∈ C1,

(λxα.Q)† ≡


λx(α)† .(Q)† if α < T (A1),

(Q)† if α ∈ T (A1),

(Q1Q2)† ≡


(Q1)†(Q2)† if τ′1(Q2) < T (A1),

(Q1)† if τ′1(Q2) ∈ T (A1).

The following properties are easily seen (α ∈ T̂ (A1) − T (A1) andQ,Q′ ∈
Λ̂aff(Σ1) − Λaff(Σ1)):

. (α)† ∈ T (A1) and (Q)† ∈ Λlin(Σ1),

. τ1((Q)†) = (τ′1(Q))†,

. If Q is β-normal, then so is (Q)†,

. Q =β Q′ implies (Q)† =β (Q′)†.

Lemma 30 For every closed term Q∈ Λ̂aff(Σ1), τ′1(Q) ∈ T (A1) iff (Q)† =β
Q =β Q̃.

Lemma 31 For every closed term P∈ Λaff(Σ1), |P|β is linear iff there is Q∈
Φ(P) whose type is inT (A1).

Second-Order Case

We say that an abstract atomic typep ∈ A0 is uselessif there is noM ∈ A(G)
that has a sub-term whose type containsp. An abstract constanta ∈ C0 is
uselessif there is noM ∈ A(G) containinga. If an ACG is second-order,
it is easy to check whether the abstract vocabulary containsuseless atomic
types or constants, and if so, we can eliminate useless abstract atomic types
and constants. This can be done in a way similar to the elimination of useless
nonterminal symbols and production rules from a context-free grammar.

Definition 15 LetG = 〈Σ0,Σ1,L , s〉 be a second-order ACG that has no use-
less abstract atomic types or constants. We defineG ′ = 〈Σ′0,Σ1,L

′, [s,L (s)]〉

L      / 193

as follows: defineΣ′0 = 〈A
′

0 ,C
′
0, τ
′
0〉 by

A
′

0 = { [p, β] | p ∈ A0, β ∈ Φ(L (p)) − T (A1) },

C
′
0 = { [[a,Q]] | a ∈ C0, Q ∈ Φ(L (a)) − Λaff(Σ1) },

τ′0 = { [[a,Q]] 7→ ([τ0(a), τ′1(Q)])‡ },

where ([p, β])‡ = [p, β],

([α→ γ, β→ δ])‡ =


([α, β])‡ → ([γ, δ])‡ if β < T (A1),

([γ, δ])‡ if β ∈ T (A1),

andL ′ by

L
′([p, β]) = (β)†, L

′([[a,Q]]) = (Q)†.

G ′ is linear, but it may contain useless abstract atomic types or constants. The
linearized ACGG l for G is the result of eliminating all the useless abstract
atomic types and constants fromG ′.

Lemma 32 LetG andG ′ be as in Definition 15.
For every variable-free M∈ Λlin(Σ0) of an atomic type and every Q∈

Φ(L (M)) − Λaff(Σ1), there is N∈ Λlin(Σ′0) such thatτ′0(N) = [τ0(M), τ′1(Q)]
andL

′(N) ≡ (Q)†.
Conversely, for every variable-free N∈ Λlin(Σ′0) of an atomic type,

there are M ∈ Λlin(Σ0) and Q ∈ Φ(L (M)) − Λaff(Σ1) such thatτ′0(N) =
[τ0(M), τ′1(Q)] andL ′(N) ≡ (Q)†.

Theorem 33 For every affine ACGG ∈ Gaff(2, n), there is a linear ACG
G l ∈ Glin(2, n) such thatO(G l) = {P ∈ O(G) | P is linear}.

Proof. Use Lemmas 31, 32, and 30. ⊔⊓

De Groote and Pogodalla (2003, 2004) have presented encoding methods
for linear CFTGs and LCFRSs by linear ACGs. Their methods canalso be
applied to non-duplicating CFTGs and MCFGs.

Example 2 Let a non-duplicating CFTGG consist of the following produc-
tions:4

S→ P(a, b), P(x1, x2)→ P(c(x1), c(S)) | d(x1, x2),

where the ranks ofS, P, a, b, c, d are 0, 2, 0, 0, 1, 2, respectively. De Groote
and Pogodalla’s method transformsG into the following affine ACGG :

x ∈ C0 τ0(x) L (x)

A p→ s λyo2→o
p .ypaobo

B s→ p→ p λyo
sy

o2→o
p xo

1xo
2.yp(co→ox1)(co→oys)

C p λxo
1xo

2.d
o2→ox1x2

4The notation adopted here follows de Groote and Pogodalla.

194 / R Y

When we apply the linearization method given in Definition 15to G , we get
the following linear ACGG l whose distinguished type is [s, o]:

x ∈ C l
0 L

l(x)
τl

0(x)

[[A, λyo→o→o
p .ypab]]

λyo2→o
p .ypab

[p, o→ o→ o] → [s, o]
[[A, λyo→o→o

p .ypab]]
λyo→o

p .ypa
[p, o→ o→ o] → [s, o]

[[B, λyo
sy

o→o→o
p xo

1xo
2.yp(cx1)(cys)]]

λyo
sy

o2→o
p xo

1.yp(cx1)(cys)[s, o] → [p, o→ o→ o] → [p, o→ o→ o]
[[B, λyo

sy
o→o→o
p xo

1xo
2.yp(cx1)(cys)]] λyo→o

p xo
1.yp(cx1)

[p, o→ o→ o] → [p, o→ o→ o]
[[C, λxo

1xo
2.dx1x2]]

λxo
1xo

2.dx1x2[p, o→ o→ o]

The linearized ACGG
l is actually the encoding of the linear CFTGG′ con-

sisting of the following productions:

S→ P(a, b) | P′(a), P′(x1)→ P(c(x1), c(S)) | P′(c(x1)),

P(x1, x2)→ d(x1, x2),

where the ranks of nonterminalsS, P, P′ are 0, 2, 1, respectively.G, G , G
l ,

andG′ generate the same tree language.

The following corollary generalizes the result by Fujiyoshi (2005), which
covers themonadiccase only.

Corollary 34 For every non-duplicating CFTG G, there is a linear CFTG G′

such that G and G′ generate the same tree language.

LetG be the affine ACG that encodes an MCFGG. The linearized ACGG l

is indeed in the form that is the encoding of an LCFRS5 (butG ′ is not). There-
fore, our result covers the following theorem shown by Seki et al. (1991).

Corollary 35 For every MCFG G, there is an LCFRS G′ such that the lan-
guages generated by G and G′ coincide.

Third or Higher-Order Case
Definition 15 itself does not depend on the order of the given affine ACG
except that in the general case, we do not know how to find and eliminate
useless abstract atomic types and constants. For the general case, however, the
linearized ACG given in Definition 15 may generate a strictlylarger language

5The LCFRS obtained from an MCFG through our linearization method may have nonter-
minals of rank 0. The reason why usual definitions of an LCFRS do not allow nonterminals
to have rank 0 is just to avoid redundancy. Mathematically speaking, allowing or disallowing
nonterminals of rank 0 does not matter at all.

L      / 195

than the original affine ACG. In the remainder of this paper, we present a
linearization method for general affine ACGs.

Example 3 Suppose that an affine ACGG ∈ Gaff(3, 1) consists of the fol-
lowing lexical entries:

x ∈ C0 τ0(x) L (x)
A q #
B p→ q→ q λyozo.bo→oz
C q→ s λzo.z
D (p→ s)→ s λxo→o.ao→o(xeo)

We seeO(G) = {

n-times︷ ︸︸ ︷
a(. . . (a(

n-times︷ ︸︸ ︷
b(. . . (b #) . . .)) . . .) | n ≥ 0 }. The linear ACGG ′

by Definition 15 consists of the following lexical entries:

x ∈ C ′0 τ′0(x) L ′(x)
[[A, #]] [q, o] #

[[B, λyozo.bz]] [q, o] → [q, o] λzo.bz
[[C, λzo.z]] [q, o] → [s, o] λzo.z

[[D, λxo→o.a(xe)]] [s, o] → [s, o] λxo.ax
[[D, λxo→o.a(xe)]] ([p, o] → [s, o]) → [s, o] λxo→o.a(xe)

The last lexical entry is useless. We have

O(G ′) = {

m-times︷ ︸︸ ︷
a(. . . (a(

n-times︷ ︸︸ ︷
b(. . . (b #) . . .)) . . .) | m, n ≥ 0 }) O(G).

Though any term of typep that is the first argument of an occurrence ofB is
bound to be erased in the original ACGG , we cannot ignore the occurrence of
the typep, because that occurrence ofp balances the numbers of occurrences
of B andD in a term inA(G).

Our new linearization method gives the linear ACGG ′′ consisting of the
following lexical entries (useless lexical entries are suppressed):

x ∈ C ′′0 τ′′0 (x) L ′′(x)
[[A, #]] [q, o] #

[[B, λyozo.bz]] [p, o] → [q, o] → [q, o] λyo→ozo.y(bz)
[[C, λzo.z]] [q, o] → [s, o] λzo.z

[[D, λxo→o.a(xe)]] ([p, o] → [s, o]) → [s, o] λx(o→o)→o.a(x(λzo.z))

where [p, o] is mapped too→ o. We haveO(G) = O(G ′′).

Now, we give the formal definition of our new linearization method for
general affine ACGs. For simplicity, we assume thatA1 = {o} here, but it is
possible to lift this assumption. The new linearized ACGG ′′ has the form

196 / R Y

G ′′ = 〈Σ′′0 ,Σ1,L
′′, [s,L (s)]〉, whereΣ′′0 = 〈A

′′
0 ,C

′′
0 , τ

′′
0 〉 is defined by

A
′′

0 = { [p, β] | p ∈ A0, β ∈ Φ(L (p)) },

C
′′
0 = { [[a,Q]] | a ∈ C0, Q ∈ Φ(L (a)) },

τ′′0 = { [[a,Q]] 7→ [τ0(a), τ′1(Q)] }

where [α→ γ, β→ δ] = [α, β] → [γ, δ].

Here we have two simple lexiconsL0 : Σ′′0 → Σ0 andL1 : Σ′′0 → Σ
′
1;

L0([p, β]) = p, L0([[a,Q]]) = a, L1([p, β]) = β, L1([[a,Q]]) = Q.

We haveL̃1(N) ≡ L ◦L0(N) for N ∈ Λlin(Σ′′0). For anyM ∈ Λlin(Σ0) andQ ∈
Φ(L (M)), one can find a termχ(M,Q) ∈ Λlin(Σ′′0) such thatL0(χ(M,Q)) ≡
M andL1(χ(M,Q)) ≡ Q.

Lemma 36 For every Q∈ Λ̂aff(Σ1) andα ∈ T (A0), the following statements
are equivalent:

1. There is M∈ Λlin(Σ0) of typeα such thatL (M) ≡ Q̃.
2. There is N∈ Λlin(Σ′′0) of type[α, τ′1(Q)] such thatL1(N) ≡ Q.

Lemmas 31 and 36 imply

{M ∈ A(G) | |L (M)|β is linear} = {L0(N) | N ∈ A(G ′′) }.

Since (L1(N))† =β L̃1(N) ≡ L ◦L0(N) for everyN ∈ A(G ′′) by Lemma 30,
it is enough to define a new lexiconL ′′ so that

L
′′(N) =βη (L1(N))† (14.12)

for everyN ∈ A(G ′′).
We define the type substitutionσ : A

′′
0 → T ({o}) of L

′′ = 〈σ, θ〉 as

σ([p, β]) =


(β)† if β < T ({o}),

o→ o if β ∈ T ({o}).

Here we identifyσ with its homomorphic extension. As a preparation for
defining the term substitutionθ of L ′′, we give three kinds of linear combi-
nators. For [α, β] ∈ T (A ′′

0) such thatβ ∈ T ({o}), letσ([α, β]) = γ1 → · · · →

γm → o → o andγi = γi,1 → · · · → γi,ki → o → o. Zσ([α,β]) is a linear
combinator of typeσ([α, β]) defined as

Zσ([α,β]) ≡ λyγ1

1 . . .yγm
m zo.R1(R2(. . . (Rmz) . . .))

whereRi ≡ yγi

i Zγi,1 . . .Zγi,ki .

For each [α, β] ∈ T (A ′′
0) such thatβ ∈ T̂ ({o}) − T ({o}), we define two linear

combinatorsXβ
α of typeσ([α, β]) → (β)† andYβ

α of type (β)† → σ([α, β]) by
mutual induction. Let [α, β] = [α1, β1] → · · · → [αm, βm] → [p, β0] with
[p, β0] ∈ A ′′

0 and the set{1, . . . ,m} be partitioned into two subsetsI andJ so

L      / 197

thatβi < T ({o}) iff i ∈ I . Let I = {i1, . . . , ik} (i j < i j+1) andJ = { j1, . . . , j l}.
Let

Xβ
α ≡ λyσ([α,β]) x

(βi1)†

i1
. . . x

(βik)†

ik
.yσ([α,β]) P1 . . .Pm

where Pi ≡


Yβi
αi

x(βi)†

i if i ∈ I ,

Zσ([αi ,βi]) if i ∈ J,

and

Yβ
α ≡ λx(β)†yσ([α1,β1])

1 . . . yσ([αm,βm])
m ~z.M j1(. . . (M j l (x

(β)†Li1 . . . Lik~z)) . . .)

where~z is short forzγ1

1 . . . zγn
n for (β0)† = γ1→ · · · → γn → o, and


Li ≡ Xβi

αi
yσ([αi ,βi])

i for i ∈ I ,

Mi ≡ Zσ([αi ,βi])→o→oyσ([αi ,βi])
i for i ∈ J.

Note that if [α, β] = [p, β0] ∈ A ′′
0 , thenXβ0

p =βη Yβ0
p =βη λz(β0)† .z.

Now, we give a new linearization method as follows.

Definition 16 For a given affine ACGG , we define a new linear ACG as
G ′′ = 〈Σ′′0 ,Σ1,L

′′, [s,L (s)]〉, whereL ′′ = 〈σ, θ〉 for σ as above and

θ([[a,Q]]) ≡


|Y
τ′1(Q)
τ0(a) (Q)†|β if τ′1(Q) < T ({o}),

Zσ(τ′′0 ([[a,Q]])) if τ′1(Q) ∈ T ({o}).

If G ∈ Gaff(m, n), thenG ′′ ∈ Glin(m,max{2, n}).

Lemma 37 Given N ∈ Λ(Σ′′0) of type [α, β] such thatβ < T ({o}) and

L1(N) ∈ Λ̂aff(Σ1), we have

(L1(N))† =βη Xβ
αL

′′(N)φN

whereφN is the substitution on the free variables ofL ′′(N) such that

xσ([α,β])φN =


Yβ
αx(β)† if x has the type[α, β] in N andβ < T ({o}),

Zσ([α,β]) otherwise.

Theorem 38 For every affine ACGG ∈ Gaff(m, n), there is a linear ACG
G ′′ ∈ Glin(m,max{2, n}) such thatO(G ′′) = {P ∈ O(G) | P is linear}.

Proof. Lemma 37 entails the equation (14.12). ⊔⊓

14.4 Concluding Remarks
We have shown that the generative capacity of linear ACGs is as rich as that of
affine ACGs, that is, the non-deletion constraint on linear ACGsis superficial.
Our linearization method, however, increases the size of the given grammar
exponentially due to the definition ofΦ, so there may still exist an advan-
tage of allowing deleting operations in the ACG formalism. For instance, the

198 / R Y

atomic typenp of the abstract vocabulary of the ACG in Example 1 will be
divided up into three new atomic types which correspond to noun phrases as
third person singular subjects, plural subjects, and objects, respectively.

One attractive feature of ACGs is that they can be thought of as a gener-
alization of several well-established grammar formalisms(de Groote, 2002,
de Groote and Pogodalla, 2003, 2004). This paper demonstrates that the ACG
formalism also generalizes some “operation” on those grammars, namely,
conversion from non-duplicating grammars into non-duplicating and non-
deleting ones.

Recall that Fisher (1968a,b) showed that every CFTG has a corresponding
non-deleting CFTG whose string IO-language is equivalent.As a general-
ization of his result, the author conjectures that one can eliminate vacuous
λ-abstraction fromsemi-affine ACGspreserving the orders of the abstract
vocabularies and the lexicons, where a term issemi-affine if for every free
variablex of any sub-term, eitherx occurs at most once, orx has at most
second-order type. Actually, every CFTG has a corresponding semi-affine
ACG such that the tree IO-language of the CFTG coincides withthe ob-
ject language of the ACG, and the semi-affine ACG encoding a non-deleting
CFTG has no vacuousλ-abstraction. If the conjecture is correct, this implies
that every CFTG has a corresponding non-deleting CFTG whosetree/string
IO-language is equivalent.

Acknowledgment

The author is grateful to Makoto Kanazawa for initiating this research and
giving advice throughout this work. The author would like tothank to Sylvain
Salvati for his invaluable comments on the draft of this paper. In particular,
he inspired the author to get the conjecture stated in the last section.

References
de Groote, Philippe. 2001. Towards abstract categorial grammars. InAssociation

for Computational Linguistics, 39th Annual Meeting and 10th Conference of the
European Chapter, Proceedings of the Conference, pages 148–155.

de Groote, Philippe. 2002. Tree-adjoining grammars as abstract categorial grammars.
In TAG+6, Proceedings of the 6th International Workshop on Tree Adjoining Gram-
mars and Related Frameworks, pages 145–150. Università di Venezia.

de Groote, Philippe and Sylvain Pogodalla. 2003.m-linear context-free rewriting sys-
tems as abstract categorial grammars. In R. T. Oehrle and J. Rogers, eds.,Proceed-
ings of Mathematics of Language - MOL-8, Bloomington, Indiana, U. S., pages
71–80.

R / 199

de Groote, Philippe and Sylvain Pogodalla. 2004. On the expressive power of abstract
categorial grammars: Representing context-free formalisms.Journal of Logic, Lan-
guage and Information13(4):421–438.

Fisher, Michael J. 1968a.Grammars with Macro-Like Productions. Ph.D. thesis,
Harvard University.

Fisher, Michael J. 1968b. Grammars with macro-like productions. InProceedings of
the 9th IEEE Conference on Switching and Automata Theory, pages 131–142.

Fujiyoshi, Akio. 2005. Linearity and nondeletion on monadic context-free tree gram-
mars.Information Processing Letters93(3):103–107.

Hindley, J. Roger. 1997.Basic Simple Type Theory. Cambridge University Press.

Kanazawa, Makoto and Ryo Yoshinaka. 2005. Lexicalization of second-order ACGs.
Tech. Rep. NII-2005-012E, National Institute of Informatics.

Salvati, Sylvain. 2006. Encoding second order string ACGs with deterministic tree
walking transducers. InProceedings of the 11th conference on Formal Grammar.

Seki, Hiroyuki, Takashi Matsumura, Mamoru Fujii, and TadaoKasami. 1991. On
multiple context-free grammars.Theoretical Computer Science88(2):191–229.

