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Linearization of affine abstract categorial
grammars

Ryo Y osHINAKA

Abstract
The abstract categorial grammar (ACG) is a grammar formalsmsed on linear
lambda calculus. It is natural to ask how the expressive pofvACGs increases when
we relax the linearity constraint on the formalism. This graptroduces the notion of
affine ACGs by extending the definition of original ACGs, and prgs a procedure for
converting a given fine ACG into a linear ACG whose language is exactly the set of
linear A-terms generated by the origindfiae ACG.
Keywords ABSTRACT CATEGORIAL GRAMMARS, GENERATIVE CAPACITY, LAMBDA CALCU-
LUS, CONTEXT-FREE TREE GRAMMARS, LINEAR CONTEXT-FREE REWRITING SYSTEMS, MUL-
TIPLE CONTEXT-FREE GRAMMARS

14.1 Introduction

De Groote (2001) has introducedbstract categorial grammars (ACGsh
which bothlexical entriesof the grammar as well agrammatical combi-
nationsof them are represented by simply typed lingaterms. While the
linearity constraint on grammatical combinations is thioitg be reasonable,
admitting non-linean-terms as lexical entries may allow ACGs to describe
linguistic phenomenain a more natural and concise fashion.

On the other hand, de Groote and Pogodalla (2003, 2004) havenghat
a variety of context-free formalisms, namely, contexefggammars, linear
context-free tree grammars (linear CFT&apd linear context-free rewrit-

1This paper lets the term “linearity” mean non-duplicationdanon-deletion. Thus “lin-
ear CFTGs” means non-duplicating non-deleting CFTGs hboeigh usually “linear CFTGs”
means non-duplicating CFTGs.

2See also Kanazawa and Yoshinaka (2005) for complete pro@hoddability of linear
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ing systems (LCFRSSs), is encoded by ACGs in straightforwaags. In this
sense, ACGs can be thought of as a generalization of thosenuga for-
malisms. The linearity constraint in those formalisms rhagcthat of the
ACG formalism.

Concerning those grammar formalisms, it is known that theressive
power does not change when the linearity constraint is eelds just non-
duplication, allowing deleting operations. Seki et al.41Phave shown the
equivalence between LCFRSs and multiple context-free grars (MCFGS),
which correspond to the relaxed version of LCFRSs that mag laleting
operations. Fujiyoshi (2005) has established the equicaldoetween lin-
ear monadic CFTGs and non-duplicating monadic CFTGs. Fsshesult
(Fisher, 1968a,b) is rather general. He has shown thatring $D-languages
generated by general CFTGs coincide with the string 10 Uaiggs generated
by non-deleting CFTGs.

Along this line, extending the definition of usual linear A§&his paper
introducesffine ACGswhich have BCK--terms as their lexical entries, and
compares the generative power of linear ACGs afid@aACGs. We present
a procedure for converting a giveffiae ACG into a linear ACG whose lan-
guage is exactly the set of the linekterms generated by the original ACG.
Therefore, ine ACGs are not essentially more expressive than linear ACGs
since strings and trees are usually represented with lingaims.

As linear ACGs encode linear CFTGs and LCFRSBna ACGs encode
non-duplicating CFTGs and MCFGs in straightforward ways.stich #ine
ACGs, our linearization method constructs linear ACGs Wliiave the form
corresponding to linear CFTGs or LCFRSs. Thus, our resaltgsneraliza-
tion of the results we have mentioned above with the excepmtfd-isher’s,
which covers CFTGs involving duplication.

14.2 Preliminaries
14.2.1 Lambda-Terms

Let o7 be a finite non-empty set atomic typesThe set/ (<) of typesbuilt
on </ is defined as the smallest supersetotuch that

v if @,fe T (&), then @ — B) € T().

Theorder of a type is given by the function ordr («7) — N,
= ord(p) = 1forallpe «,

= ord((@ — B)) = maxord(@) + 1, ord(B)}.

A higher-order signatureZ is a triple (<7, ¢, 7y where.o/ is a finite non-
empty set of atomic types is a finite set of constants, andis a func-

CFTGs by ACGs.
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tion from ¥ to 7 (<7). Theorder of the higher-order signature is defined as
ord®) = maxX ord(r(a)) |a€ ¢ }.

Let 2 be a countably infinite set ofariables The setA(Z) of A-terms
(termsfor short) built uponz and the typer(M) of a termM € A(X) are
defined inductively as follows:

* Foreverya e ¥, a e A(X) andr(a) = 7(a).

* Foreveryxe 2 anda € 7 (), x* € A(X) and7r(X?) = a.

= ForM,N € A(), if (M) = (e — B), ©(N) = «, then MN) € A(Z) and
7((MN)) = 8.

* Forxe 2, a € 7(&/) andM € A(Z), (Ax*.M) € A(Z) and7{(Ax*.M)) =
(@ = 7(M)).

For convenience, we simply writeinstead ofr"and often omit the superscript
on avariable if its type is clear from the context. The nogiohfree variables,
closed terms3-normal form Bn-normal form, are defined as usual (see Hind-
ley (1997) for instance). A terrl is acombinatoiiff M is closed andv con-
tains no constants. A teriv is said to begffineif any variable occurs free at
most once in every sub-term M. An affine term is said to bénear if every
A-abstraction binds exactly one occurrence of a variable. §¢is of &ine
and linear terms are respectively denoted\3y(X) andA'" (2). As usual, let
-3, =5, =p,, = denotgs-reduction g-equality,Sy-equality, andv-equivalence
respectively M|z and [M|g, respectively represent thg&normal form and
Bn-normal form. We use upper case italic lettdisN, P, ... for terms, late
lower case italic letters,y, z . .. for variables, middle lower case italic letters
o, p,... foratomic types, Greek lettess 3, . . . for types, sanserd, A, ... for
constants. We writee — 8 — y — d for (@ = (8 — (y = 9))), o® — ¢ for
a— a—a— 3§ MNPQfor ((MN)P)Q), AxyzM for (Ax.(1y.(4zM))), and
SO on.

14.2.2 Abstract Categorial Grammars

Definition 12 For two sets of atomic types; and.«#;, atype substitutiomr
is a mapping fronez to 7 (#1), which can be extended homomorphically as

o(@ = p) = o(a) = o(B).

For two higher-order signatur&s andx;, aterm substitutiom is a mapping
from %5 to A(Z1) such that)(a) is closed for alla € 4. For two higher-order
signaturesy andX;, we say that a type substitutien: < — 7 (<) and
a term substitutiod : 6o — A(Z1) arecompatibleiff o(ro(a)) = 71(6(a))
holds for alla € %p. A lexiconfrom Xy to X1 is a compatible pair of a type
substitution and a term substitution. A lexicofi = (o, 0) is affine (linear)
iff 6(a) is afine (linear) for alla € %o. For a lexicon? = (o, 6), we define
6 as the homomorphic extension@$uch thab(x®) = x”@. Indeed (M) is
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always a well-typedi-term if so isM; if M has type, thend(M) has type
o(a).

Hereafter we identify a lexicoZ = (o, 6) with the functionso andé. A
lexicon.Z is n-th orderif ord(.¥) = maxX ord(c(p)) | p€ o} < n.

Definition 13 An abstract categorial grammar (ACG$ a quadruple/ =
(%0, 21, %, 5), where

= Yy is a higher-order signature, called thlestract vocabulary
= Y, is a higher-order signature, called thigject vocabulary
= Zisalinear lexicon frontg to X4,

» se @ is called thedistinguished type

We sometimes call the tripka, 7o(a), £ (a)) for a € % alexical entry and
specify an ACG by giving the set of lexical entries and théidgglished type.

Definition 14 An ACG ¥ = (X, X1, %, S) generates two languages, thie-
stract languageA(%¢) and theobject languag€(¥), defined as

A(@) = {M | M e A"(%,) is a closegBy-normal term of types},
o) = {1ZM)lgy | M € A(Y) }.

The abstract language can be thought of as a set of abstaoihatical
structures, and the object language is regarded as the senhoffete forms
obtained from these abstract structures and the lexicoms, e simply say
the language generated by an ACG for its object languageterheabstract
categorial languages (ACLsheans the object languages of ACGs.

Though de Groote’s original definition of an ACG requires texicon
to be linear, this paper allows the lexicon to be non-liné.call an ACG
whose lexicon is fine affine ACG and denote the class offime ACGs by
G, We then distinguishfine ACGs whose lexicons are linear, i.e., original
ACGs, by calling thenlinear ACGsand letG'™ denote the class of linear
ACGs. Note that the abstract language always consisitsaatr terms, though
an ACG is not necessarily linear. For ea@he {G'", G2}, G*(m, n) denotes
the subclass of ACGs belonging @&* such that the order of the abstract
vocabulary is at mosh and the order of the lexicon is at mastAn ACG is
m-th orderif it belongs toG*(m, n) for somen.

Example 1 Letsr = 0 —» ocandM + N be an abbreviation of>. M(N2) if the
types ofM andN aredr. Let us consider thefine ACGY = (Xo,X1,.Z, S
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with the following lexical entries:

Xe %0 To(X) X(X)
C n Av.v/cat//cats/
M n Av.v/mouse//mice/
J np Ay.y/John/P
R np—s AXX(Auv.u + v/runs//run/)
E N’ — s | Ax1X2.X2(AUV.U + v/eats//eat/) + Xy (Auv.u)
A n— np Azyy(/a/ + zP)Py
L n— np Azyy(/all/ + zP,)P,

where eachyxxx/ is a constant of typar, P; denotesiui'uy.u;, .£(n) =

(I > o) - o, Z2(Np) = (F - (F? > o) - &) - o, Z(9 = .
The object languag@(¥) consists of terms representing some English sen-
tences such a¥®hn runsall mice run all cats eat a mousend so on.

14.3 Linearization of Affine ACGs

While linear ACGs can generate languages consisting oétiterms only,
affine ACGs can generate languages containing non-linear t@mesefore,
affine ACGs define a strictly richer class of languages thantliA€4s. How-
ever, since terms representing strings or trees are firafiéme terms in the
object languages are not very interesting. This paper shiloatsfor every
¢ e G¥(m, n), we can construc¥’ € G'(m, max2, n}) such that

O@)={PeO(¥)|Pislinear} (14.8)

Moreover, in case ah = 2, we can find/’ € G'"(2, n) satisfying the equation
(14.8). Therefore extending the definition of an ACG to allewical entries
affine does not enrich the expressive power of ACGs in an esbesatjaBe-
fore proceeding with our construction, we mention a paytistronger result
on the special case of this problem on string-generatingreatorder ACGs,
obtained from Salvati’'s work (Salvati, 2006). He presemtsfgorithm that
converts a linear AC& e G'"(2,n) generating a string language into an
equivalent LCFRS (via a deterministic tree-walking tramset). Even if an
input is an #ine ACG¥ e G&(2,n), his algorithm still outputs an equiv-
alent LCFRS. Since every LCFRS is encodable by a linear AQGnigang
to G'"(2, 4) (de Groote and Pogodalla, 2003, 2004), therefore thaslerhe
following corollary.

3A stringas . ..an on an alphabe¥ is represented byz°.a1(...(an2)...) € A'M(Zy) where
v = ({0}, V,rv) with 7y (a) = or for all a € V as in Example 1. Trees are constructed on some
ranked alphabet. A ranked alphaliEtp), whereF is an alphabet andis a rank assignment on
F, can be identified with a higher-order signatdlg,,) = ({0}, F, 7,) such thatr,(a) = ok - oif
p(a) = kforalla € F, and a tree is identified with a variable-free (thus lineant of the atomic
typeoin the obvious way.
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Corollary 29 For every string-generatingfine ACGY € Ga(2,n), there is
alinear ACG¥’ € G'"(2,4) such thatD(¥4’) = O(¥9).

14.3.1 Basic ldea

We explain our basic idea for the linearization method feiina ACGs
through a small example. Let us consider tligne ACG ¥ consisting of
the following lexical entries:

X € %0 To(X) X(X)
A p— S| AW °wa’he
B p AXCYP. X

where.Z(s) = o0 and.Z(p) = 0> — o. Corresponding té&\B € A(Y), we
havea € O(¥¢) by

ZL(AB) = (AW~ Wa’h%)(AX°Y°.X) —p (AX°Y°.X)a’h°»5 a°.  (14.9)
The occurrences of vacuousabstractionly® causes the deletion df in
(14.9). Such deleting operation is what we want to eliminaterder to lin-

earize the fiine ACGY. Let us retypely® with 1y° and replacé® with 56 to
indicate that they should be eliminated. Then (14.9) is da&ed by bars as

(AWP~30. Wb ) (XYP.X) =5 (1°YP.X)a%h” - @°, (14.10)

where we retyp&°—°~° with we=°-°, so that the whole term is well-typed.
In our setting, when a term has a barred type, it means thégtheshould be
erased during-reduction steps, and vice versa. By eliminating thosedgoharr
terms and types from (14.10), we get

(AWC.Wa®)(Ax°.X) —p (AX°.X)a° —p a°, (14.11)

which solely consists of linear terms. Hence, the linear AZGwith the
following lexical entries generates the same languagesasrtginal ACGY.

X € 6 7o(%) Z'(x)
A [p,o—>0— 0] = [s0] | AW °wa°
B’ [p,o—>0— Q] AX0.X

where p,0 —» 0 — 0] and [s, 0] are new atomic types that are mapped
to o — o0 ando, respectively, andq o] is the distinguished type. We have
Z(AB) = Z'(A'B’). The termawP~2~°.wa°h , which is led to.Z’(A"), is
just one possible bar-decoration f&#(A). For instanceaw®~°~°.wa’h° and
AWC~°~° walh® are also possible. Bars appearinglis®°°.wa’b° predict
that the sub-terra will be erased, andw®~°~°.wa®h° predicts that no sub-
term of it will disappear. Our linearization method also gwioes lexical en-
tries corresponding to those bar-decorations.
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14.3.2 Formal Definition

We first give a formal definition of the set of possible baratations on a
type and a term. Hereafter, we fix a givefire ACGY = (X0,%1,.Z, S).
Definex; = (&, 61, 71) by

h={(Plpea}, G1=(Clcet), Ti={C n(0) | ce %},
wherea — =@ — . LetY) = (o, €}, 7}) = (94 U 94,61 U 61,11 UTD).
Here, we have the simple lexiconfrom X7 to X; defined as
P=p=pforpe o, andc=C=cforce .

The set‘?(;zfl) of possible bar-decorations on types is defined by

‘7’(42%1)={ae7’(4z%l’)|ifﬁl—>---—>ﬁn—>ﬁisasubtypeoix
for somep € A, thenp, ..., B € T(Z1) )

Actually, terms inA®T(Z;) that we are concerned with have typeﬁﬂg%l).
The reason why we ignore typesin(.«7,') — ‘7’(42%1) is that if a term is bound
to be erased,Athen so is every sub-term of it. For instaneeydfriablex has
typeo — G ¢ 7 ({0}), then the termx°=%° has typed, which, in our setting,
means that it should disappear. Buk?°y° disappears, so dog8, which,
therefore, should have ty@eto be consistent with our definition.

The setA¥(Z;) of possible bar-decorations on terms is the subset of
A (2)) such tha € A¥ (%) iff
= every variable appearing @ has a type ir'?(;z%l), and
» if Ax*.Q’ is a sub-term ofQ and x* does not occur free i, thena €

T ().
We are not concerned with termsAf™ (2) - NS ().

The following properties are easily seen:
« If Qe A¥'(xy), thent(Q) € T (),
« If 74(Q) € T () for Q € A¥(%,), every sub-term oQ is in A¥ (%),
» If Qe A¥(Z;) andQ 5 Q', thenQ € A (Zy).

For eache € 7 (<) andP € A% (%), ® gives the set of possible bar-
decorations on them:

O(a) = (B €T () |p = a),
®(P) = {Qe A¥(Z1) | Q= P},

In other words® and™ are inverse of each other, if we disregard types in
T (o)) - T (<4) and terms im@(27) — A¥(%,).
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Secondly, we eliminate barred subtypes frane {?:(szl) - 7 (%) and
barred sub-terms fro® € A (2,) — A (Z1). Let us defined)” and Q) as
follows:

(p)'=p forpe.an,

R
()" = X,
(c)'=c force %,
(x.Q)f = {ﬂx@?*.(o)f g ()
Q' i e T ()
"(Q)f if 7
cor - {5 LHR5E

The following properties are easily seen ¢ :7:(&71) — T () andQ,Q’ €
AM(Z1) - AT(Zy)):

* (@) e T (@) and Q) € A"(Zy),
= 1((Q)) = (r(Q)",

» If Qisp-normal, then so isQ)",

« Q=4 Q implies @' = Q).
Lemma 30 For every closed term @ A%'(54), 74(Q) € 7 () iff (Q)F =5
Q=4 Q.

Lemma 31 For every closed term R A (Z,), |P|s is linear jff there is Qe
®(P) whose type is iff ().

Second-Order Case

We say that an abstract atomic type .« is uselessf there is noM € A(¥)
that has a sub-term whose type contgn#\n abstract constard € % is
uselesdf there is noM e A(¥) containinga. If an ACG is second-order,
it is easy to check whether the abstract vocabulary contesetess atomic
types or constants, and if so, we can eliminate uselessaabstiomic types
and constants. This can be done in a way similar to the elitioimaf useless
nonterminal symbols and production rules from a contes¢-fyrammar.

Definition 15 Let¥ = (Xo,21,.Z, S) be a second-order ACG that has no use-
less abstract atomic types or constants. We défine (X;, ~1, £, [s, Z(9)])
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as follows: define = (<, 63, 7,) by
gy ={[p.Bl| pe ., BedL(p)-T ()},
%5 =1{[a.Ql | a€ %, Qe ®(L(a)) - A™(Z1) ),
75 = {[a, Q] ~ ([70(a), 71(QD* ),
where (p. 81)* = [p. ],

o @B - ) B T ()
(le=rf=ob ‘{([7,61)* f e T(A),
and.Z’ by

Z'(pA) =@, 2 (aQ)=Q"
¢’ is linear, but it may contain useless abstract atomic typesistants. The
linearized ACG¥' for ¢ is the result of eliminating all the useless abstract
atomic types and constants fragi.

Lemma 32 Let¥ and¥’ be as in Definition 15.

For every variable-free Me A'M(Zo) of an atomic type and every @
O(Z(M)) — A¥(Zy), there is Ne An(z0) such thatry(N) = [1o(M), 74(Q)]
and.Z’(N) = (Q)'.

Conversely, for every variable-free N A'"(() of an atomic type,
there are Me AM(Zp) and Q € O(Z(M)) — A% (Z;) such thatr{(N) =
[ro(M), 74(Q)] and.2”(N) = (Q)".

Theorem 33 For every gine ACGY e G&(2,n), there is a linear ACG
4" € G'"(2,n) such thaiO(¢') = {P € O(¥) | P is linear).
Proof. Use Lemmas 31, 32, and 30. O

De Groote and Pogodalla (2003, 2004) have presented emrodithods
for linear CFTGs and LCFRSs by linear ACGs. Their methodsalaa be
applied to non-duplicating CFTGs and MCFGs.

Example 2 Let a non-duplicating CFT& consist of the following produc-
tions#

S — P(a,b), P(x1,x2) = P(c(x1), c(S)) | d(x1, X2),
where the ranks db, P, a, b,c,dare 0, 2,0, 0, 1, 2, respectively. De Groote
and Pogodalla’s method transfor@snto the following dfine ACG¥:

X € 6o 70(X) Z(x)
A p— s Y% ~°.ypa°h®
B[ s> p—p | 33 xyp(c®0x:)(c°%e)
C p Ax‘{xg.doz”oxlxz

4The notation adopted here follows de Groote and Pogodalla.
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When we apply the linearization method given in Definitiontd%’, we get
the following linear ACG4' whose distinguished type is,[o]:

X € 6, |
) <
—0—0

[A, 13 ° °ypa] -

[p,o— 0— 0] —[s0]

[A, 2y57°~C.ypab] o

(.05 050 - [s0] e ee

[B. 45~ yp(cxa)(cys)l 0

[5,0] N [p,_0p—>_0 _)101 _p) [p’lo 50— O] /ly(sjy?) Xflj'yP(CX1)(Cys)
s s HOHOXO . S, —0

D oad 2 [pb g ar| Y (x)

|[C, /lXng.de_Xz]l

[p,o— 0— 0]

/lXng.dX]_Xg

The linearized ACG¢' is actually the encoding of the linear CFT& con-
sisting of the following productions:
S— P(ab)|P'(a), P'(x)— Plc(x),c(S)) | P'(c(xa)),
P(X1, X2) — d(X1, X2),
where the ranks of nonterminals P, P’ are 0, 2, 1, respectivel®, ¢, ¢',
andG’ generate the same tree language.

The following corollary generalizes the result by Fujiyp§h005), which
covers thenonadiccase only.

Corollary 34 For every non-duplicating CFTG G, thereis alinear CFTG G
such that G and Ggenerate the same tree language.

Let¥ be the #fine ACG that encodes an MCR& The linearized AC®'
is indeed in the form that is the encoding of an LCPR&It%” is not). There-
fore, our result covers the following theorem shown by Sekile(1991).

Corollary 35 For every MCFG G, there is an LCFRS Guch that the lan-
guages generated by G and &incide.

Third or Higher-Order Case

Definition 15 itself does not depend on the order of the giviéme ACG
except that in the general case, we do not know how to find andneite
useless abstract atomic types and constants. For the §easeahowever, the
linearized ACG given in Definition 15 may generate a stritdhger language

5The LCFRS obtained from an MCFG through our linearizatiorthmé may have nonter-
minals of rank 0. The reason why usual definitions of an LCFRShet allow nonterminals
to have rank 0 is just to avoid redundancy. Mathematicallgakmg, allowing or disallowing
nonterminals of rank 0 does not matter at all.
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than the original iine ACG. In the remainder of this paper, we present a

linearization method for generaffane ACGs.

Example 3 Suppose that anfiizne ACG¥ e G#(3,1) consists of the fol-

lowing lexical entries:

X e %0 To(X) g(X)
A q #
B p—>g—q AY°Z°. b0z
C g—s Az
D (p— 9 — s | AX°7°.2°7°(xe”)
n- tlmes n- tlmes
We see0(¥) = ( (a(b( .(b#)...))...) | n > 0}. The linear ACG¥’

by Definition 15 consists of the following lexical entries:

X € 64 75(X) Z'(x)
[A#] [9. 0] i
[B, 1y°Z.bZ] [g.0] — [q,0] AZ2.bz
[C, 2.7 [g,0] = [s 0] 1.z
[D, Ax°~°.a(xe)] [s,0] = [s 0] Ax°.ax
[D, ax*~°.a(xe)] | ([p.o] — [s,0]) — [s,0] | AX°~°.a(xe)

The last lexical entry is useless. We have
m—tlmes n- tlmes

0(@") = (a(...(@(b(...(b#)...))...) Imn > 0} 2 O(#).

Though any term of type that is the first argument of an occurrencedas
bound to be erased in the original AG% we cannotignore the occurrence of
the typep, because that occurrencembalances the numbers of occurrences
of B andD in a term inA(%Y).

Our new linearization method gives the linear A@G consisting of the
following lexical entries (useless lexical entries areegsed):

X €6y 75 (X) 2" (x)
[A.#] [0, 0] 7
[B.y°Z.bz] | [p,0] — [q,0] — [q,0] AY°~°2.y(bz)
[C, A7 [g,0] = [s 0] APz
[D,xX°.a(@)] | ([p,0] — [s0]) — [s 0] | AX°~)~0.a(x(12°.2))

where [p, 0] is mapped t@® — 0. We haved(¥¢) = O(¢").

Now, we give the formal definition of our new linearization timed for
general &ine ACGs. For simplicity, we assume that = {0} here, but it is
possible to lift this assumption. The new linearized A@G has the form
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G = (X, 21, 2", [s Z(9]), whereX = (o, 6y, 1) is defined by
Ay ={[p.Bl I pe 0, Be@(ZL(p)},
%y =1[a.Ql lae %, Qe ®(L(a))},
70 = {[2, Q] ~ [7o(a). 73 (Q)] }
where r —» v, — 6] = [e, f] — [7.4].

Here we have two simple lexicot®, : X — X and.#7 : X — X7;
Z(p.p) =p, “([a.Ql) =a ZA(p.p) =8 -“A(aQ])=Q
We haveZ(N) = Zo.%(N) for N e A™ (). ForanyM e A™™(5) andQ e
®(Z(M)), one can find a term(M, Q) € A™(Zy) such thatZ(x(M, Q)) =

M and. % (y(M, Q) = Q.
Lemma 36 For every Qe Kaﬁ(zl) anda € 7 (<), the following statements
are equivalent:
1. There is Me A'"(Z) of typea such thatZ (M) = Q.
2. There is Ne A'"(2y) of type[e, 7;(Q)] such that#;(N) = Q.
Lemmas 31 and 36 imply
{MeAY) | |.Z(M)|g is linear} = { Zp(N) | N € A(¥") ).

Since (Z(N))" =5 Z(N) = £ 0. %(N) for everyN € A(%") by Lemma 30,
it is enough to define a new lexicayf” so that
ZL"(N) =g, (Z2(N))" (14.12)

for everyN € A(Y").
We define the type substitutian: «7;" — 7 ({o}) of £ = (0, 0) as

f if 8¢ 7({0)),

oppy={P AT
o—o0 IifgeT({0}).

Here we identifyo- with its homomorphic extension. As a preparation for
defining the term substitutiohof .2, we give three kinds of linear combi-
nators. For ., 5] € 7 («7’) such thag € 7({0}), leto([a.B]) =y1 — - —
Ym — 0 —» oandy; = yi1 — --- = ik — 0 — 0. Z2°0¢A) s a linear
combinator of typer([«, 8]) defined as

270 = a2ty Ri(Re(. .. (Rmd) .. )

whereR = y"'Zs . Z%k,

For each, ] € 7(<7") such thap € 7 ({0}) — 7 ({o}), we define two linear
combinators<? of typeo([a.B]) — (B)" andY? of type ()" — o([a.]) by
mutual induction. Letd, 8] = [@1,B1] — -+ = [am,Bm] — [p,Bo] With
[p.Bo] € 75" and the setl, ..., m} be partitioned into two subsetsandJ so
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thatg, ¢ 7((0)) iffi € I. Letl = {is,....ik} (ij < ;1) andd = {jo..... ji)-
Let

) f )
X6 = ay eyl B yeledpy py

Yﬁi X'(:Bi)f if i el
where Pj=4{_ "1 ’
! {Z(J’([(Ii»ﬁi]) ifie J,

and
Y8 = @ yglenpid) - yelemBrdz vy vy, AL, L, D) )
whereZis short forzZ ...z for (30)" =y1 — --- = yn > 0,and
Li = XGy7 e sd foriel,
M; = ZD’([di,ﬁi])—)OHOyiU([aisﬁi]) forie J.
Note that if . 8] = [, 8ol € <7, thenXp® =g, Y&° =4, 12%9 .z
Now, we give a new linearization method as follows.
Definition 16 For a given &ine ACG¥, we define a new linear ACG as
G =(Zy,21, 2", [8 Z(9]), whereZ” = (o, 0) for o as above and
T/l(Q) T H ’ =
ot op = | Mo@ Q'ls if 7(Q) € 73D,
zot QD) if 74 (Q) € T({T}).
If 4 € G¥(m, n), then¥” e G'"(m, max2, n}).
Lemma 37 Given N € A(Zj) of type[a,p] such thatg ¢ 7({o}) and
Z£(N) € A¥(2,), we have
(L))" = X0-2" (N)n
wheregy is the substitution on the free variables&f’(N) such that
el g YEx®' i x has the typée, 8] in N andg ¢ 7 ({o}),
zoA)  otherwise.
Theorem 38 For every dfine ACGY € G (m, n), there is a linear ACG
4" € G'"(m max2, n}) such thaD(¥¢”) = {P € O(¥) | P is lineary).
Proof. Lemma 37 entails the equation (14.12). O

14.4 Concluding Remarks

We have shown that the generative capacity of linear ACGsligh as that of
affine ACGs, that s, the non-deletion constraint on linear AGGsiperficial.
Our linearization method, however, increases the sizeefithen grammar
exponentially due to the definition df, so there may still exist an advan-
tage of allowing deleting operations in the ACG formalisrar Fastance, the
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atomic typenp of the abstract vocabulary of the ACG in Example 1 will be
divided up into three new atomic types which correspond tonnghrases as
third person singular subjects, plural subjects, and ¢&jeespectively.

One attractive feature of ACGs is that they can be thoughsaf gener-
alization of several well-established grammar formaligde Groote, 2002,
de Groote and Pogodalla, 2003, 2004). This paper demossttet the ACG
formalism also generalizes some “operation” on those grarapmamely,
conversion from non-duplicating grammars into non-dwgilitg and non-
deleting ones.

Recall that Fisher (1968a,b) showed that every CFTG hasrasmrnding
non-deleting CFTG whose string 10-language is equivalésta general-
ization of his result, the author conjectures that one camimhte vacuous
A-abstraction fromsemi-gfine ACGspreserving the orders of the abstract
vocabularies and the lexicons, where a termsami-gfine if for every free
variablex of any sub-term, eithex occurs at most once, or has at most
second-order type. Actually, every CFTG has a correspgndami-dfine
ACG such that the tree I0-language of the CFTG coincides thighob-
ject language of the ACG, and the senfiiide ACG encoding a hon-deleting
CFTG has no vacuoukabstraction. If the conjecture is correct, this implies
that every CFTG has a corresponding non-deleting CFTG witregstring
IO-language is equivalent.
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