
6

Program transformations for
optimization of parsing algorithms and
other weighted logic programs
J E  J B

Abstract
Dynamic programming algorithms in statistical natural language processing can be

easily described as weighted logic programs. We give a notation and semantics for such
programs. We then describe several source-to-source transformations that affect a pro-
gram’s efficiency, primarily by rearranging computations for better reuse or by changing
the search strategy. We present practical examples of usingthese transformations, mainly
to optimize context-free parsing algorithms, and we formalize them for use with new
weighted logic programs.

Specifically, we defineweightedversions of the folding and unfolding transforma-
tions, whose unweighted versions are used in the logic programming and deductive
database communities. We then present a novel transformation called speculation—a
powerful generalization of folding that is motivated by gap-passing in categorial gram-
mar. Finally, we give a simpler and more powerful formulation of the magic templates
transformation.1

Keywords   ,  ,  -
,  

6.1 Introduction

In this paper, we show how some algorithmic efficiency tricks used in the nat-
ural language processing (NLP) community, particularly for parsing, can be
regarded as specific instances of transformations on weighted logic programs.

1This material is based upon work supported by the National Science Foundation under
Grants No. 0313193 and 0347822 to the first author.

45

Proceedings of FG-2006.
Editor: Shuly Wintner.
Copyright c© 2007, CSLI Publications.

46 / J E  J B

We define weighted logic programs and sketch the general formof the
transformations, enabling their application to new programs in NLP and other
domains. Several of the transformations (folding, unfolding, magic templates)
have been known in the logic programming community, but are generalized
here to our weighted framework and applied to NLP algorithms. We also
present a powerful generalization of folding—speculation—which appears
new and is able to derive some important parsing algorithms.

We also formalize these transformations in a way that we find more intu-
itive than conventional presentations. Influenced by the mechanisms of cate-
gorial grammar, we introduce “slashed” terms whose values may be regarded
as functions. These slashed terms greatly simplify our constructions. In gen-
eral, our work can be connected to the well-established literature on grammar
transformation.

The framework that we use for specifying the weighted logic programs is
roughly based on that of Dyna (Eisner et al., 2005), an implemented system
that can compile such specifications into efficient C++. Some of the programs
could also be handled by PRISM (Zhou and Sato, 2003), an implemented
probabilistic Prolog.

It is especially useful to have general optimization techniques for dynamic
programming algorithms (a special case in our framework), because compu-
tational linguists regularly propose new such algorithms.Dynamic program-
ming is used to parse many different grammar formalisms, and in syntax-
based approaches to machine translation and language modeling. It is also
used in finite-state methods, stack decoding, and grammar induction.

One might select program transformations either manually or automati-
cally. Our goal here is simply to illustrate the search spaceof semantically
equivalent programs. We do not address the practical question of searching
this space—that is, the question of where and when to apply the transfor-
mations. For some programs and their typical inputs, a transformation will
speed a program up (at least on some machines); in other cases, it will slow it
down. The actual effect can of course be determined empirically by running
the transformed program on typical inputs (or, in some cases, can be rea-
sonably well predicted from runtime profiles of theuntransformedprogram).
Thus, one could in principle use automated methods, such as stochastic lo-
cal search, to search for sets of transformations that provide good practical
speedups.

6.2 Weighted Logic Programming

Before moving to the actual transformations, we will take several pages to
describe our proposed formalism of weighted logic programming.

T     / 47

6.2.1 Logical Specification of Dynamic Programs

We will use context-free parsing as a simple running example. Recall that one
can write a logic program for CKY recognition (Younger, 1967) as follows,
whereconstit(X,I,K) is provable iff the context-free grammar (CFG), starting
at nonterminalX, can generate the input substring from positionI to position
K. The capitalized symbols arevariables.

constit(X,I,K) :- rewrite(X,W), word(W,I,K).
constit(X,I,K) :- rewrite(X,Y,Z), constit(Y,I,J), constit(Z,J,K).
goal :- constit(s,0,N), length(N).

rewrite(s,np,vp). % tiny grammar
rewrite(np,det,n).
rewrite(np,”Dumbo”).
rewrite(np,”flies”).
rewrite(vp,”flies”).

word(”Dumbo”,0,1).% tiny input sentence
word(”flies”,1,2).
length(2).

For example, the second line permits us to prove the proposition constit(X,I,K)
once we can prove that there exist constituentsconstit(Y,I,J) andconstit(Z,J,K)—
which are adjacent2—as well as a context-free grammar rulerewrite(X,Y,Z)
(i.e, X → Y Z) to combine them. This deduction is permitted foranyspecific
values ofX,Y,Z (presumably nonterminals of the grammar) andI,J,K (presum-
ably positions in the sentence).

We suppose in this paper that the whole program above is specified at
compile time. In practice, one might instead wait until runtime to provide the
description of the sentence (theword and length facts) and perhaps even of
the grammar (therewrite facts). In this case our transformations could be used
only on the part of the program specified at compile time.3

The basic objects of the program areterms, defined in the usual way (as
in Prolog). Following parsing terminology, we refer to someterms asitems;
these are terms that the program might prove in the course of its execution,
such asconstit(np,0,1) but notnp (which appears only as asub-termof items)
nor constit(foo(bar),baz).4 Each line in the program is aninference rule (or

2By convention, we regard positions as fallingbetweeninput words, so that the substring
from I to J is immediately adjacent to the substring fromJ to K.

3This is generally safe provided that the runtime rules may not define in the head, nor evaluate
in the body, any term that unifies with the head of a compile-time rule. It is common to assume
further that all the runtime rules are facts, known collectively as thedatabase.

4It is of course impossible to determine precisely which terms the programwill prove without
running it. It is merely helpful to refer to terms as items when we are discussing their provability
or, in the case of weighted logic programs, their value. (“Item” does have a more formal meaning

48 / J E  J B

clause).
Each of the inference rules in the above example isrange-restricted. In

the jargon of logic programming, this means that allvariables (capitalized)
in the rule’s left-hand side (rulehead) also appear in its right-hand side (rule
body). A rule with an empty body is called afact. If all rules are range-
restricted, then all provable terms areground terms, i.e., terms such ascon-
stit(s,0,2) that do not contain any variables.

Logic programs restricted in this way correspond to the “grammatical
deduction systems” discussed by Shieber et al. (1995). Sikkel (1997) gives
many parsing algorithms in this form. More generally, programs that consist
entirely of range-restricted rules correspond to conventional dynamic pro-
gramming algorithms, and we may refer to them informally asdynamic pro-
grams.

Dynamic programs can be evaluated by various techniques. The specific
technique chosen is not of concern to this paper except in section 6.6. How-
ever, for most NLP algorithms, it is common to use a bottom-upor forward
chaining strategy such as the one given by Shieber et al., which iteratively
proves all transitive consequences of the facts in the program. In the exam-
ple above, forward chaining starts with theword, rewrite, andlength facts and
derives successively widerconstit items, eventually derivinggoal iff the input
sentence is grammatical. This corresponds to chart parsing, with the role of
the chart being played by a data structure that remembers which items have
been proved so far.5

This paper deals with general logic programs, not just dynamic programs.
For example, one may wish to state once and for all that an “epsilon” word
is available ateverypositionK in the sentence:word(epsilon,K,K). We allow
this because it will be convenient for most of our transformations to intro-
duce new non-range-restricted rules, which canderivenon-ground items such
as word(epsilon,K,K). The above execution strategies continue to apply, but
the presence of non-ground items means that they must now useunification
matching to find previously derived terms of a given form. Forexample, if the
non-ground itemword(epsilon,K,K) has been derived, representing an infinite
collection of ground terms, then if the program looks up the set of terms in
the chart matchingword(W,2,K), it should find (at least)word(epsilon,2,2).

in a practical setting—where, for efficiency, the user or the compiler declares anitem datatype
that is guaranteed to be able to represent at least all provable terms, though not necessarily all
terms. We then use “item” to refer to terms that can be represented by this explicit datatype.)

5An alternative strategy is Prolog’s top-downbackward-chaining strategy, which starts by
trying to provegoal and tries to prove other items as subgoals. However, this strategy will waste
exponential time by re-deriving the same constituents in different contexts, or will fail to termi-
nate if the grammar is left-recursive. It may be rescued by memoization, also known as “tabling,”
which re-introduces a chart (Sagonas et al., 1994).

T     / 49

One can often eliminate non-range-restricted rules (in particular, the ones
we introduce) to obtain a semantically equivalent dynamic program, but we
do not here explore transformations for doing so systematically.

6.2.2 Weighted Logic Programs

We now define our notion ofweightedlogic programs, of which the most use-
ful in NLP are the semiring-weighted dynamic programs discussed by Good-
man (1999) and Eisner et al. (2005). See the latter paper for adiscussion of
relevant work on deductive databases with aggregation (e.g., Fitting, 2002,
Van Gelder, 1992, Ross and Sagiv, 1992).

In a weighted logic program, each provable item has avalue. Our running
example is the inside algorithm for context-free parsing:

constit(X,I,K) += rewrite(X,W) * word(W,I,K).
constit(X,I,K) += rewrite(X,Y,Z) * constit(Y,I,J) * constit(Z,J,K).
goal += constit(s,0,N) * length(N).

rewrite(s,np,vp) = 1. % p(s→ np vp | s)
rewrite(np,det,n) = 0.5. % p(np→ det n | np)
rewrite(np,”Dumbo”) = 0.4. % p(np→ ”Dumbo” | np)
rewrite(np,”flies”) = 0.1. % p(vp→ ”flies” | vp)
rewrite(vp,”flies”) = 1. % p(vp→ ”flies” | vp)

word(”Dumbo”,0,1) = 1. % 1 for all words in the sentence
word(”flies”,1,2) = 1.
length(2) = 1.

This looks just like the unweighted logic program in section6.2.1, except
that now the body of each inference rule is an arbitraryexpression, and the
:- operator is replaced by anaggregation operatorsuch as+= or max=. One
might call these rules “Horn equations,” by analogy with the(definite) Horn
clauses of the unweighted case. Afact is now a rule whose body is a constant
or an expression on constants.

To understand the meaning of the above program, consider forexam-
ple the itemconstit(s,0,2). The old version of line 2 allowed one toprove
constit(s,0,2) if rewrite(s,Y,Z), constit(Y,0,J), andconstit(Z,J,2) were all true for
at least one tripleY,Z,J. The new version of line 2 insteaddefines the valueof
constit(s,0,2)—or more precisely, as

∑

Y,Z,J

rewrite(s,Y,Z) ∗ constit(Y,0,J) ∗ constit(Z,J,2)

The aggregation operator+= requires a sum over all ways of grounding the
variables that appear only in the rule body, namelyY, Z, andJ. The rest of
the value ofconstit(s,0,2) is added in by line 1. We will formalize all of this in
section 6.2.3 below.

50 / J E  J B

To put this another way, one way of grounding line 2 (i.e., oneway
of substituting a ground term for each of its variables) isconstit(s,0,2) +=
rewrite(s,np,vp) * constit(np,0,1) * constit(vp,1,2). Therefore, one operand to
+= in defining the value ofconstit(s,0,2) will be the value (if defined) of
rewrite(s,np,vp) * constit(np,0,1) * constit(vp,1,2).

The result—for this program—is that the computed value ofconstit(X,I,J)
will be the traditional inside probabilityβX(I, J) for a particular input sentence
and grammar.6

If the heads of two rules unify, then the rules must use the same aggrega-
tion operator, to guarantee that each provable term’s valueis aggregated in a
consistent way. Eachconstit(. . .) term above is aggregated with+=.

Substitutingmax= for += throughout the program would find Viterbi prob-
abilities (best derivation) rather than inside probabilities (sum over deriva-
tions). Similarly, we can obtain the unweighted recognizerof section 6.2.1 by
writing expressions over boolean values:7

constit(X,I,K) |= rewrite(X,Y,Z) & constit(Y,I,J) & constit(Z,J,K).

Of course, these programs are all essentially recognizers rather than
parsers. They only compute a boolean or real value forgoal. To recover
actual parse trees, one can extract the proof trees ofgoal. To make the
parse trees accessible to the program itself, one can define aseparate item
parse(constit(X,I,K)) whose value is a tree.8 We do not give the details here to
avoid introducing new notation and issues that are orthogonal to the scope of
this paper.

The above examples, like most of our examples, can be handledby the
framework of Goodman (1999). However, we allow a wider classof rules.
Goodman allows only range-restricted rules (cf. our section 6.2.1), and he
requires all values to fall in a single semiring and all rulesto use only the
semiring operations. The latter requirements—in particular the distributivity
property of the semiring—imply that an item’s value can be found by sep-
arately computing values for all of its complete proof treesand then aggre-
gating them at the end. That is not the case for neural networks, game trees,

6However, unlike probabilistic programming languages (Zhou and Sato, 2003), we do not
enforce that values be reals in [0, 1] or have probabilistic interpretations.

7Using | for “or” and & for “and.” The aggregation operators|= and&= can be regarded as
implementing existential and universal quantification.

8Another option is to say that the value ofconstit(X,I,K) is not just a number but a (num-
ber,tree) pair, and to definemax= over such pairs Goodman (1999). This resembles the use
of semantic attachments to build output in programming language parsers. However, it requires
building a tree (indeed, many trees, of which the best is kept) for eachconstit, including con-
stituents that do not appear in the final parse. Our preferredscheme is to hold the best tree in
a separateparse(constit(X,I,K)) item. Then we can choose to use backward chaining, or the
magic templates transformation of section 6.6, to limit ourcomputation of parse trees to those
that are needed to assemble the final tree,parse(goal).

T     / 51

practical NLP systems that mix summation and maximization,or other useful
systems of equations that can be handled in our more general framework.

6.2.3 Semantics of Weighted Logic Programs

We now formalize the semantics of a weighted logic program, and define
what it means for a program transformation to preserve the semantics. Read-
ers who are interested in the actual transformations may skip this section,
except for the brief definitions of the special aggregation operator= and of
side conditions.

In an unweighted logic program, the semantics is the set of provable
ground terms.9 For aweightedlogic program, the semantics is a partial func-
tion, thevaluation function, that maps each provable ground termr to a
value JrK. All items in our example above take values inR. However, one
could use values of any type or of multiple types.

The domain of the valuation functionJ·K is the set of ground terms for
which there exist finite proofs under theunweightedversion of the program.
We extendJ·K in the obvious way to expressions on provable ground terms:
for example,Jx * yK

def
= JxK * JyK provided thatJxK andJyK are defined.

For each ground termr that is provable in programP, let P(r) be the
non-empty multiset of all expressionsE, over provable ground terms, such
thatr ⊕r = E grounds some rule ofP. Here⊕r= denotes the single aggregation
operator shared by all those rules.

We now interpret the weighted rules as a set of simultaneous equations
that constrain theJ·K function. If ⊕r = is +=, then we require that

JrK =
∑

E∈P(r)

JEK

(perhaps permittingJrK = ∞ if the sum diverges). More generally, we require
that

JrK = JE1K ⊕r JE2K ⊕r . . .

whereP(r) = {E1,E2, . . .}. For this to be well-defined,⊕r must be associative
and commutative. If⊕r = is the special operator=, as in the final rules of our
example, then we setJrK = JE1K if P(r) is a singleton set{E1}, and generate
a runtime error otherwise.

Example. In the example of section 6.2.2, lines 1–2, this means that for any
particularX, I ,K for which constit(X,I ,K) is a provable item,Jconstit(X, I ,K)K
equals

9Note that if a non-ground term can be proved under the program, so can any one of the
infinitely many ground terms that instantiates (specializes) that non-ground term. Our formal
semantics are described in terms of these ground terms only.

52 / J E  J B

∑
WJrewrite(X,W)K ∗ Jword(W,I ,J)K

+
∑

J,Y,ZJrewrite(X,Y,Z)K ∗ Jconstit(Y,I ,J)K ∗ Jconstit(Z,J,K)K

where, for example, the second summation ranges over term triples J,Y,Z
such that the summand has a value. We sum overJ,Y,Z because they do not
appear in the rule’s headconstit(X, I ,K), which is being defined.

Remark. Our constraints on the valuation functionJ·K are equivalent to say-
ing that it is a fixed point of an “equational update” operatorTP,10 which acts
on valuation functionsI and is analogous to the “monotone consequence”
operator for unweighted logic programs. Such a fixed point need not be
unique.11 Operationally, one may seek a single fixpoint by initializing I = {},
repeatedly updatingI to TP(I), and hoping for convergence. That is the basic
idea of the forward-chaining algorithm in section 6.2.4 below.

Side conditions. A mechanism for handling “side conditions” (e.g., Good-
man, 1999) is to use rules like12

a += b * c whenever ?d.

We defineJb * c whenever ?dK
def
= Jb * cK, independent of the value ofd. But by

our earlier definitions, it will appear inP(a) and be added intoJaK only if the
side conditiond, along withb andc, is provable.

Definition. Roughly speaking, a program transformationP → P′ is said
to besemantics-preservingiff it preserves the partial functionJ·K. In other
words, exactly the same ground terms must be provable under both programs,
and they must have the same values.

We make two adjustments to this rough definition. First, for generality, we
must handle the case whereP andP′ do not both have uniquely determined
semantics. In general, we say that the transformation is semantics-preserving
iff it preserves thesetof valuation functions.

Second, we would like a program transformation to be able to introduce
new provable items for its own use. Therefore, we only require that it preserve

10That is,J·K = TP(J·K). Given a valuation functionI , TP(I) is defined as follows: for ordinary
ground termsr , put

(TP(I))(r) =
⊕

r

E such thatE is a ground expression where
I (E) is defined andr ⊕r= E grounds some rule ofP

I(E)

if this sum is non-empty, and leave it undefined otherwise. Then extendTP(I) over expressions
as usual.

11There is a rich line of research that attempts to more precisely characterize which fixed point
gives the “intuitive” semantics of a logic program with negation or aggregation (see e.g. Fitting,
2002, Van Gelder, 1992, Ross and Sagiv, 1992).

12whenever ?d is defined to mean “whenever d is provable,” whereaswhenever d would mean
“whenever d’s value istrue.” The latter construction is also useful, but not needed in this paper.

T     / 53

the restriction of J·K to the Herbrand base ofP (more precisely, to the Her-
brand base of all expressible constants and the functors inP). Thus, a trans-
formed version of the inside algorithm would be allowed to prove additional
temp(. . .) items, but not additionalconstit(. . .) items. The user may therefore
safely interrogate the transformed program to find out whether constit(np,0,5)
is provable and if so, what its value is.

Notice that a two-step transformationP → P′′ → P′ might introduce
new temp(. . .) items in the first step and eliminate them in the second. This
composite transformation may still be semantics preserving even though its
second stepP′′ → P′ is not.

All of the transformations developed in this paper are intended to be
semantics-preserving (except for rule elimination and magic templates, which
preserve the semantics of only a subset of the ground terms).To prove this
formally, one would show that every fixed point ofTP′ is also a fixed point
of TP, when restricted to the Herbrand base ofP, and conversely, that every
fixed point ofP can be extended to a fixed point ofTP′ .

6.2.4 Computing Semantics by Forward Chaining

A basic strategy for computing a semantic interpretation is“forward chain-
ing.” The idea is to maintain current values for all proved items, and to prop-
agate updates to these values, from the body of a rule to its head, until all
the equations are satisfied. This may be done in any order, or in parallel (as
for the equational update operator of section 6.2.3). Note that in the presence
of cycles such asx += 0.9 * x, the process can still convergenumericallyin
finite time (to finite values or to∞, representing divergence). Indeed, the for-
ward chaining strategy terminates in practice for many programs of practical
interest.13

As already noted in section 6.2.1, Shieber et al. (1995) gavea forward
chaining algorithm (elsewhere called “semi-naive bottom-up evaluation”) for
unweighteddynamicprograms. Eisner et al. (2005) extended this to handle ar-
bitrary semiring-weighted dynamic programs. Goodman (1999) gave a mixed
algorithm.

Dealing with our full class of weighted logic programs—not just semiring-
weighted dynamic programs—is a substantial generalization. Once we allow
inference rules that are not range-restricted, the algorithm must derive non-
ground items and store them and their values in the chart, andobtain the value
of foo(3,3), if not explicitly derived, by “backing off” to the derived value of
non-ground items such asfoo(X,X) or foo(X,3), which are preferred in turn to

13Of course, no strategy can possibly terminate on all programs, because the language (even
when limited to unweighted range-restricted rules) is powerful enough to construct arbitrary Tur-
ing machines. We remark that forward chaining may fail to terminate either because of oscillation
or because infinitely many items are derived (e.g.,s(N) = N).

54 / J E  J B

the less specificfoo(X,Y). Once we drop the restriction to semirings, the algo-
rithm must propagate arbitrary updates (notice that it is not trivial to update
the result ofmax= if one of its operands decreases). Certain aggregation op-
erators also allow important optimizations thanks to theirspecial properties
such as distributivity and idempotence. Finally, we may wish to allow rules
such asreciprocal(X) = 1/X that cannot be handled at all by forward chaining.
We defer all these algorithmic details to a separate paper, focusing instead on
the denotational semantics.

6.3 Folding: Factoring Out Subexpressions
Weighted logic programs are schemata that define possibly infinite systems of
simultaneous equations. Finite systems of equations can often be rearranged
without affecting their solutions (e.g., Gaussian elimination). In the same way,
weighted logic programs can be transformed to obtain new programs with
better runtime.

Notation. We will henceforth adopt a convention of underlining any vari-
ables that appear only in a rule’s body, to more clearly indicate the range of
the summation. We will also underline any variables that appear only in the
rule’s head; these indicate that the rule is not range-restricted.

Example. Consider first our previous rule from section 6.2.2,

constit(X,I,K) += rewrite(X,Y,Z) * constit(Y,I,J) * constit(Z,J,K).

If the grammar hasN nonterminals, and the input is ann-word sentence
or ann-state lattice, then the above rule can be grounded in onlyO(N3 · n3)
different ways. For this—and the other parsing programs we consider here—
it turns out that the runtime of forward chaining can be kept down to O(1)
time per grounding.14 Thus the runtime isO(N3 · n3).

However, the following pair of rules is equivalent:

temp(X,Y,Z,I,J) = rewrite(X,Y,Z) * constit(Y,I,J).
constit(X,I,K) += temp(X,Y,Z,I,J) * constit(Z,J,K).

We have just performed a weighted version of the classicalfolding trans-
formation for logic programs (Tamaki and Sato, 1984). The original body
expression would be explicitly parenthesized as(rewrite(X,Y,Z) * constit(Y,I,J))
* constit(Z,J,K); we have simply introduced a “temporary item” (like a tem-
porary variable in a traditional language) to hold the result of the parenthe-
sized subexpression, then “folded” that temporary item into the computation

14Assuming that the grammar is acyclic (in that it has no unary rule cycles) and so is the
input lattice. Even without such assumptions, a meta-theorem of McAllester (1999) allows one
to derive asymptotic run-times of appropriately-indexed forward chaining from the number of
instantiations. However, that meta-theorem applies only to unweighted dynamic. Similar results
in the weighted case require acyclicity. Then one can use thetwo-phase method of Goodman
(1999), which begins by running forward chaining on an unweighted version of the program.

T     / 55

of constit. The temporary item mentions all the capitalized variablesin the
expression.

Distributivity. A more important use appears when we combine folding
with the distributive law. In the example above, the second rule’s body sums
over the (underlined) free variables,J, Y, andZ. However,Y appears only
in the temp item. We could therefore have summed over values ofY before
multiplying by constit(Z,J,K), obtaining the following transformed program
instead:

temp2(X,Z,I,J) += rewrite(X,Y,Z) * constit(Y,I,J).
constit(X,I,K) += temp2(X,Z,I,J) * constit(Z,J,K).

This version of the transformation is permitted only because + distributes
over*.15 By “forgetting” Y as soon as possible, we have reduced the runtime
of CKY from O(N3 · n3) to O(N3 · n2 + N2 · n3).

Using the distributive law to improve runtime is a well-known technique.
Aji and McEliece (2000) present what they call a “generalized distributive
law,” which is equivalent to repeated application of the folding transforma-
tion. While their inspiration was the junction-tree algorithm for probabilistic
inference in graphical models (discussed below), they demonstrate the ap-
proach to be useful on a broad class of weighted logic programs.
A categorial grammar view of folding. From a parsing viewpoint, notice
that the itemtemp2(X,Z,I,J) can be regarded as a categorial grammar con-
stituent: an incompleteX missing a subconstituentZ at its right (i.e., anX/Z)
that spans the substring fromI to J. This leads us to an interesting and appar-
ently novel way to write the transformed program:

constit(X,I,K)/constit(Z,J,K) += rewrite(X,Y,Z) * constit(Y,I,J).
constit(X,I,K) += constit(X,I,K)/constit(Z,J,K) * constit(Z,J,K).

HereA/B is syntactic sugar forslash(A,B). That is,/ is used as an infix functor
and does not denote division, However, it is meant tosuggestdivision: as the
second rule shows,A/B is an item which, if multiplied byB, yields a summand
of A. In effect, the first rule above is derived from the original rule at the
start of this section by dividing both sides byconstit(Z,J,K). The second rule
multiplies the missing factorconstit(Z,J,K) back in, now that the first rule has
summed overY.

Notice thatK appears free (and hence underlined) in the head of the first
rule. The only slashed items that are actuallyprovableby forward chaining
are non-ground terms such asconstit(s,0,K)/constit(vp,1,K). That is, they have
the formconstit(X,I,K)/constit(Z,J,K) whereX,I,J are ground variables butK re-
mains free. The way thatK appears twice in the slashed item (i.e., internal

15All semiring-weighted programs enforce a similar distributive property. In particular, the
trick can be applied equally well to common cases discussed in section 6.2.2: Viterbi parsing
(max distributes over either* or +) and unweighted recognition (| distributes over&.

56 / J E  J B

unification) indicates that the missingZ is always at theright of theX, while
the fact thatK remains a variable means that the shared right edge of the full
X and missingZ are still unknown (and will remain unknown until the second
rule fills in a particularZ). Thus, the first rule performs a computation once
for all possibleK—always the source of folding’s efficiency.

Our earlier program withtemp2 could now be obtained by a further au-
tomatic transformation that replaces allconstit(X,I,K)/constit(Z,J,K) having free
K with the more compactly storedtemp2(X,Z,I,J). The resulting rules are all
range-restricted.

We emphasize that although our slashed items are inspired bycategorial
grammars, they can be used to describe folding inany weighted logic pro-
gram. Section 6.5 will further exploit the analogy to obtaina novel “specula-
tion” transformation.

Further applications. The folding transformation unifies various ideas that
have been disparate in the natural language processing literature. Eisner and
Satta (1999) speed up parsing with bilexical context-free grammars from
O(n5) to O(n4), using precisely the above trick (see section 6.4 below). Huang
et al. (2005) employ the same “hook trick” to improve the complexity of
syntax-based MT with ann-gram language model.

Another parsing application is the common “dotted rule” trick (Earley,
1970). If one’s CFG contains ternary rulesX → Y1 Y2 Y3, the naive CKY-
like algorithm takesO(N4 · n4) time:

constit(X,I,L) += ((rewrite(X,Y1,Y2,Y3) * constit(Y1,I,J))
* constit(Y2,J,K)) * constit(Y3,K,L).

Fortunately, folding allows one to sum first overY1 before summing sepa-
rately overY2 andJ, and then overY3 andK:

temp3(X,Y2,Y3,I,J) += rewrite(X,Y1,Y2,Y3) * constit(Y1,I,J).
temp4(X,Y3,I,K) += temp3(X,Y2,Y3,I,J) * constit(Y2,J,K).
constit(X,I,L) += temp4(X,Y3,I,K) * constit(Y3,K,L).

This restoresO(n3) runtime (more precisely,O(N4 ·n2+N3 ·n3+N2 ·n3))16 by
reducing the number of nested loops. Even if we had declined to sum overY1
andY2 in the first two rules, then the summation overJ would already have
obtainedO(n3) runtime, in effect by binarizing the ternary rule. For exam-
ple, temp4(X,Y1,Y2,Y3,I,K) would have corresponded to a partial constituent
matching thedottedrule X→ Y1 Y2 . Y3. The additional summations overY1
andY2 result in a more efficient dotted rule that “forgets” the names of the
nonterminals matched so far,X → ? ? . Y3. This takes further advantage of
distributivity by aggregating dotted-rule items (with+=) that will behave the
same in subsequent computation.

16For a dense grammar, which may have up toN4 ternary rules. Tighter bounds on grammar
size would yield tighter bounds on runtime.

T     / 57

The variable elimination algorithm for graphical models can be viewed as
repeated folding. An undirected graphical model expressesa joint probability
distribution overP,Q by marginalizing (summing) over a product of clique
potentials. In our notation,

marginal(P,Q) += p1(. . .) * p2(. . .) * · · · * pn(. . .).

where a function such asp5(Q,X,Y) represents a clique potential over graph
nodes corresponding to the random variablesQ,X,Y. Assume without loss of
generality that variableX appears as an argument only topk+1, pk+2, . . . , pn.
We mayeliminatevariableX by transforming to

temp5(. . .) += pk+1(. . . , X, . . .) * · · · * pn(. . . , X, . . .).
marginal(P,Q) += p1(. . .) * · · · * pk(. . .) * temp5(. . .).

Line 2 no longer mentionsX because line 1 has summed over it. To elimi-
nate the remaining variables one at a time, the variable elimination algorithm
applies this procedure repeatedly to the last line.17

Common subexpression elimination.Folding can also be used multiple
times to eliminate common subexpressions. Consider the following code,
which is part of an inside algorithm forbilexicalCKY parsing:18

constit(X:H,I,K) += rewrite(X:H,Y:H,Z:H2)
* constit(Y:H,I,J) * constit(Z:H2,J,K).

constit(X:H,I,K) += rewrite(X:H,Y:H2,Z:H)
* constit(Y:H2,I,J) * constit(Z:H,J,K).

HereX:H is syntactic sugar forntlex(X,H), meaning a nonterminalX whose
head word is the lexical itemH. The grammar uses two types of lexicalized
binary productions (defined byrewrite facts not shown here), which pass the
head word to the left or right child, respectively.

We could fold together the last two factors of the first rule toobtain

temp6(Y:H,Z:H2,I,K) += constit(Y:H,I,J) * constit(Z:H2,J,K).
constit(X:H,I,K) += rewrite(X:H,Y:H,Z:H2) * temp6(Y:H,Z:H2,I,K).
constit(X:H,I,K) += rewrite(X:H,Y:H2,Z:H)

* constit(Y:H2,I,J) * constit(Z:H,J,K).

We canreusethis definition of thetemp rule to fold together the last two fac-
tors of line 3—which is the same subexpression, modulo variable renaming.

17Determining the optimal elimination order is NP-complete.However, there are many heuris-
tics in the literature (such as min-width) that could be usedif automatic optimization of long rules
is needed.

18This algorithm is obviously an extension of the ordinary inside algorithm in section 6.2.2.
The other rules are

constit(X:H,I,K) += rewrite(X,H) * word(H,I,K).

goal += constit(s:H,0,N) * length(N).

58 / J E  J B

Given a new ruleR in the formr ⊕= F[s] (which will be used to replace a
group of rulesR1, . . . ,Rn in P). Let S1, . . . ,Sn be the complete list of rules
in P whose heads unify withs. Suppose that all rules in this list use⊙ as
their aggregation operator.
Now for eachi, whens is unified with the head ofSi , the tuple (r, F, s,Si)19

takes the form (r i , Fi , si , si ⊙= Ei). Suppose that for eachi, there is a distinct
ruleRi in the program that is equal tor i ⊕= Fi [Ei], modulo renaming of its
variables.
Then the folding transformation deletes then rulesR1, . . . ,Rn, and replaces
them with the new ruleR, provided that

.Any variable that occurs in any of theEi which also occurs in eitherFi

or r i must also occur insi .20

.Either⊙= is simply=,21 or else the distributive propertyJF[µ] ⊕ F[ν]K =
JF[µ ⊙ ν]K holds for all assignments of terms to variables and all valuation
functionsJ·K.22

19Before forming this 4-tuple, rename the variables inSi so that they do not conflict with
those inr, F, s. Perform the desired unification within the 4-tuple by unifying it with the fixed
term(R,F,S,S ⊙= E), which contains two copies ofS.

20This ensures that computingsi by ruleSi does not sum over this variable, which would break
the covariation ofEi with F or r as required by the original ruleRi .

21For instance, in the very first example of section 6.3, thetemp item was defined using=
and therefore performed no aggregation (see section 6.2.3). No distributivity was needed.

22That is, all valuation functions over the space of ground terms, including dummy termsµ
andν, when extended over expressions in the usual way.

FIGURE 1 The weighted folding transformation.

(Below, for clarity, we explicitly and harmlessly swap the names ofH2 andH
within the temp rule.)

temp7(Y:H2,Z:H,I,K) += constit(Y:H2,I,J) * constit(Z:H,J,K).
constit(X:H,I,K) += rewrite(X:H,Y:H,Z:H2) * temp7(Y:H,Z:H2,I,K).
constit(X:H,I,K) += rewrite(X:H,Y:H2,Z:H) * temp7(Y:H2,Z:H,I,K).

Using the sametemp7 rule (modulo variable renaming) in both folding
transformations, rather than introducing a new temporary item for each fold,
gives us a constant-factor improvement in time and space.

Formal definition of folding. Our definition, shown in Figure 1, may seem
surprisingly complicated. Its most common use is to replacea single rule
r ⊕= F[E] with r ⊕= F[s] in the presence of a rules⊙= E. However, we have
given a more general form that is best understood as precisely reversing the
weighted unfolding transformation to be discussed in the next section (Fig-
ure 2). In unfolding, it is often useful fors to be defined by a group of rules

T     / 59

whose heads unify withs (i.e., they may be more general or specific patterns
thans). We define folding to allow the same flexibility.

In particular, this definition of folding allows an additional use of distribu-
tivity. Both the original itemr and the temp items may aggregate values
not just within a single rule (summing over free variables inthe body), but
also acrossn rules. In ordinary mathematical notation, we are performing a
generalized version of the following substitution:

Before After
r =

∑n
i=1 (f ∗ Ei) ⇒ r = f ∗ s

s=
∑n

i=1 Ei ⇒ s=
∑n

i=1 Ei

given the distributive property
∑

i(f ∗Ei) = f ∗
∑

i Ei . The common context in
the original rules is the function “multiply by expressionf ,” so the temp item
splays the role ofr/ f .

Figure 1 also generalizes beyond “multiply byf .” It allows an arbitrary
common contextF—a sort of function. In Figure 1 and throughout the paper,
we use the notationF[E] to denote theliteral substitution of expressionE for
all instances ofµ in an expressionF over items, even ifX contains variables
that appear inE or elsewhere in the rule containingF[E]. We assume thatµ
is a distinguished symbol that does not appear elsewhere.

Generalized distributivity. Figure 1 states the required distributive prop-
erty as generally as possible in terms ofF. An interesting example is
Jlog(p) + log(q)K = Jlog(p * q)K, which says thatlog distributes over* and
changes it to+. This means that the definitions(J) *= e(J,K) may be used
to replacer += b(I,J) * log(e(J,K)) with r += b(I,J) * log(s(J)). Here n = 1,
F = b(I,J) * log(µ), E1 = e(J,K), ands= s(J).

By contrast, the definitions += e(J) maynotbe used to replacer += e(J)*e(J)
with r += s*s, which would incorrectly replace a sum of squares with a square
of sums. If we takeF to bee(J)*µ or µ*e(J), it is blocked by the first require-
ment in Figure 1 (variable occurrence). If we takeF to beµ*µ, it is blocked
by the second requirement (distributivity).

Introducing slashed definitions for folding. Notice that Figure 1 requires
the rules defining the temp items to be in the programalreadybefore folding
occurs. If necessary, their presence may be arranged by a trivial definition in-
troduction transformation that addsslash(r ,F) ⊙= Ei for eachi, whereslash is
a new functor not used elsewhere inP, and⊙ is chosen to ensure the required
distributive property. We then takes to beslash(r ,F) (or if one wants to use
syntactic sugar,r /F).

Note that thensi will be slash(r i ,Fi), which automatically satisfies the re-
quirement in Figure 1 that certain variables that occur inFi or r i must also
occur insi . This technique of introducing slashed items will reappearin sec-
tion 6.5, where it forms a fundamental part of our speculation transformation.

60 / J E  J B

Let R be a rule inP, given in the formr ⊕= F[s]. Let S1, . . . ,Sn be the
complete list of rules inP whose heads unify withs. Suppose that all rules
in this list use⊙ as their aggregation operator.
Now for eachi, whens is unified with the head ofSi , the tuple (r, F, s,Si)23

takes the form (r i , Fi , si , si ⊙= Ei).
Then the unfolding transformation deletes the ruleR, replacing it with the
new rulesr i ⊕= Fi [Ei] for 1 ≤ i ≤ n. The transformation is allowed under
the same two conditions as for the weighted folding transformation:

.Any variable that occurs in any of theEi which also occurs in eitherFi

or r i must also occur insi ..Either ⊙ = is simply =, or else we have the distributive property
JF[µ] ⊕ F[ν]K = JF[µ ⊙ ν]K.

23Before forming this tuple, rename the variables inSi so that they do not conflict with those
in r, F, s.

FIGURE 2 The weighted unfolding transformation.

If no operator⊙ can be found such that the distributive property will hold,
andn = 1, then one can still use folding without the distributive property
(as in the example that opened this section). In this case, introduce a rule
temp(E1) = E1, and takes to be temp(E1), which “memoizes” the value of
expressionE1. Again, this satisfies the requirements of Figure 1.

6.4 Unfolding and Rule Elimination: Inlining Subroutines

Unfolding. The inverse of the folding transformation, calledunfolding (Fig-
ure 2), replacess with its definition inside the rule bodyr ⊕= F[s]. This def-
inition may comprise several rules whose heads unify withs. If s is regarded
as a subroutine call, then unfolding is tantamount to inlining that call.

Recall that afolding transformation leaves the asymptotic runtime alone,
or may improve it when combined with the distributive law. Henceunfolding
makes the asymptotic runtime the same or worse. However, it may help the
practical runtime by reducing overhead. (This is exactly the usual argument
for inlining subroutine calls.)

An obvious example is program specialization. Consider theinside algo-
rithm in section 6.2.2. If we take the second line,

constit(X,I,K) += rewrite(X,Y,Z) * constit(Y,I,J) * constit(Z,J,K).

and unfoldrewrite(X,Y,Z) inside it, then we replace the above rule with asetof
rules, one for each binary production of the grammar (i.e., each rule whose
head unifies withrewrite(X,Y,Z)):

T     / 61

constit(s,I,K) += 1 * constit(np,I,J) * constit(vp,J,K).
constit(np,I,K) += 0.5 * constit(det,I,J) * constit(n,J,K).

The resulting parser is specialized to the grammar, perhapsproviding a
constant-time speedup. It avoids having to look up the valueof rewrite(s,np,vp)
or rewrite(np,det,n) since these are now “hard-coded” into specialized infer-
ence rules. A compiled version can also “hard-code” patternmatching rou-
tines against specialized patterns such asconstit(np,I,J); such pattern matches
are used during forward or backward chaining to determine which rules to
invoke.

Note that recursive calls can also be unfolded. For example,constit is re-
cursively defined in terms of itself. If we unfold theconstit(np,I,J) inside the
first of the new rules above, we get

constit(s,I,K) += 1 * 0.5 * constit(det,I,L) * constit(n,L,J) * constit(vp,J,K).
constit(s,I,K) += 1 * 0.4 * word(”Dumbo”,I,J) * constit(vp,J,K).
constit(s,I,K) += 1 * 0.1 * word(”flies”,I,J) * constit(vp,J,K).

Unfolding is often a precursor to other transformations. For example, the
patternconstit(vp,I,J) above can now be transformed toconstit vp(I,J) for more
efficient storage. Furthermore, constant subexpressions like1 * 0.5 can now be
replaced in the source code by their values—a transformation that is known,
not coincidentally, as constant folding. We will see another useful example of
this unfold-refold pattern below, and yet another when we derive the (Eisner
and Satta, 1999) algorithm in section 6.5.1.

Rule elimination. A practically useful transformation that is closely related
to unfolding is what we callrule elimination (Figure 3). Rather than fully
expanding one call to subroutines, it removes one of the defining clauses of
sand requiresall of its callers to do the work formerly done by that clause.

This may change or eliminate the definition ofs, so the transformation is
not semantics-preserving. The advantage of changing the semantics is that
if some s items become no longer provable, then it is no longer necessary
to store them in the chart.26 Thus,rule elimination saves space. It also shares
the advantages of unfolding—it can specialize a program, move unification to
compile-time, eliminate intermediate steps, and serve as aprecursor to other

26A similar space savings—while preserving semantics—couldbe arranged simply by elect-
ing not to memoize these items, so that they are computed on demand rather than stored. Indeed,
if we extend our formalism so that a program can specify what to memoize, then it is not hard
to combine folding and unfolding to define a transformation that acts just like rule elimination
(in that the callers are specialized) and yet preserves semantics. The basic idea is to fold together
all of theother clauses that defines, then unfold all calls tos (which accomplishes the special-
ization), and finally declare thats (which is no longer called) should not be memoized (which
accomplishes the space savings). However, we suppress the details as beyond the scope of this
paper. Our main interest in rule elimination in this paper isto eliminate rules fortemp items,
whose semantics were introduced by a previous transformation and need not be preserved.

62 / J E  J B

Let S be a rule ofP to eliminate, with heads. Let R1,R2, . . .Rn be a com-
plete list of rules inP whose bodies may depend ons.24 Suppose that each
Ri can be expressed in the formr i ⊕i= Fi [si], wheresi is a term that unifies
with sandFi is an expression that is independent ofs.25

For eachi, whensi is unified with the head ofS, the tuple (r i , Fi , si ,S) takes
the form (r ′i , F

′
i , s
′
i , s
′
i ⊙= E′i). Then the rule elimination transform removes

rule S from P and, for eachi, adds the new ruler ′i ⊕= F′i [E
′
i] (while also

retainingRi). The transformation is allowed under the same two conditions
as for weighted folding and unfolding:

.Any variable that occurs in any of theE′i which also occurs in eitherF′i
or r ′i must also occur ins′i ..Either ⊙ = is simply =, or else we have the distributive property
JF[µ] ⊕ F[ν]K = JF[µ ⊙ ν]K.

Warning: This transformation alters the semantics of ground terms that
unify with s.

24That is, the bodies of all other rules inP must be independent ofs. The notion of indepen-
dence relies on the semantics of expressions, not on the particular programP. An expressionE
is said to beindependentof a terms if for any two valuation functions on ground terms that
differ only in the values assigned to groundings ofs, the extensions of these valuation functions
over expressions assign the same values to all groundings ofE.

25For example, supposes is s(X,X). Then the ruler(X) += s(X,Y) * t(Y) should be expressed
asr(X) += (µ * t(Y))[s(X,Y)], while r(X) min= s(X,Y) * s(X,Y) should be expressed asr(X) += (µ *
µ)[s(X,Y)] andr min= 3 can be expressed asr min= 3[s(X,X)]. However,r(X) += s(X,Y) * s(Y,Z)
cannot be expressed in the required form at all. We regardµ as a ground term in considering
whetherFi is independent ofs.

FIGURE 3 The weighted rule elimination transformation.

transformations.
To see the difference between rule elimination and unfolding, let us start

with the same example as before, and selectively eliminate just the single bi-
nary productionrewrite(np,det,n) = 0.5. In contrast to unfolding, this no longer
replaces the original general rule

constit(X,I,K) += rewrite(X,Y,Z) * constit(Y,I,J) * constit(Z,J,K).

with a slew of specialized rules. Rather, itkeepsthe general rule but adds a
specialization

constit(np,I,K) += 0.5 * constit(det,I,J) * constit(n,J,K).

while deletingrewrite(np,det,n) = 0.5 so that it does notalsofeed into the gen-
eral rule.

A recursive example of rule elimination. An interesting recursive exam-
ple is shown below. The original program is in the first column. Eliminating

T     / 63

its second or third rule gives the program in the second or third column, re-
spectively. Each of these changes damages the semantics ofs, as warned, but
preserves the value ofr.27

s += 1. s += 1.

s += 0.5*s. s += 0.5*s.
s += 0.5*1. s += 0.5*0.5*s.

r += s. r += s. r += s.
r += 1. r += 0.5*s.

JsK = 2, JrK = 2 JsK = 1, JrK = 2 JsK = 4
3 , JrK = 2

Unfolding or rule elimination followed by folding. 28 Recall the bilexical
CKY parser given near the end of section 6.3. The first rule originally shown
there has runtimeO(N3 · n5), since there areN possibilities for each ofX,Y,Z
andn possibilities for each ofI,J,K,H,H2. Suppose that instead of that slow
rule, the original programmer had written the following folded version:

temp8(X:H,Z:H2,I,J) += rewrite(X:H,Y:H,Z:H2) * constit(Y:H,I,J).
constit(X:H,I,K) += temp8(X:H,Z:H2,I,J) * constit(Z:H2,J,K).

This partial program has asymptotic runtimeO
(
N3 · n4 + N2 · n5

)
. and needs

O
(
N2 · n4

)
space to store the items (rule heads) it derives.

By either unfolding the call totemp8 or eliminating thetemp8 rule, we
recover the first rule of the original program:

constit(X:H,I,K) += rewrite(X:H,Y:H,Z:H2)
* constit(Y:H,I,J) * constit(Z:H2,J,K).

This worsens the time complexity toO
(
N3 · n5

)
. The payoff is that now we

can refold this rule differently—either as follows (Eisner and Satta, 1999),

temp9(X:H,Y:H,J,K) += rewrite(X:H,Y:H,Z:H2) * constit(Z:H2,J,K).
constit(X:H,I,K) += temp9(X:H,Y:H,J,K) * constit(Y:H,I,J).

or alternatively as already shown in section 6.3 (whosetemp item had the ad-
ditional advantage of being reusable). Either way, the asymptotic time com-
plexity is nowO

(
N3 · n4 + N2 · n4

)
—better than the original programmer’s

version.
How about the asymptotic space complexity? If the first step used rule

elimination rather than unfolding, then it actually eliminated storage for the
temp8 items, reducing the storage requirements fromO

(
N2 · n4

)
to O

(
N · n3

)
.

27Sincer was defined to equal the (original) value ofs, it provides a way to recover the original
semantics ofs. Compare the similar construction sketched in footnote 26.

28Rule elimination can also be usedafter another transformation, such as speculation, to clean
away unnecessary temp items. See footnote 42.

64 / J E  J B

Regardless, the refolding step increased the space complexity back to the
original programmer’sO

(
N2 · n4

)
.

6.5 Speculation: Factoring Out Chains of Computation

In the most important contribution of this paper, we now generalize fold-
ing to handle unbounded sequences of rules, including cycles. Thisspecu-
lation transformation, which is novel as far as we know, is reminiscent of
gap-passing in categorial grammar. It has many uses; we limit ourselves to
two real-world examples.

6.5.1 Examples of the Speculation Transformation

Unary rule closure. Unary rule closure is a standard optimization on cont-
ext-free grammars, including probabilistic ones (Stolcke, 1995). We derive
it here as an instance of speculation. Suppose we begin with aversion of
the inside algorithm that allows unary nonterminal rules aswell as the usual
binary ones:

constit(X,I,K) += rewrite(X,W) * word(W,I,K).
constit(X,I,K) += rewrite(X,Y) * constit(Y,I,K).
constit(X,I,K) += rewrite(X,Y,Z) * constit(Y,I,J) * constit(Z,J,K).

Suppose that the grammar includes a unary rule cycle. For example, sup-
pose thatrewrite(np,s) andrewrite(s,np) are both provable. Then the values of
constit(np,I,K) andconstit(s,I,K) “feed into each other.” Under forward chaining,
updating either one will cause the other to be updated; this process repeats un-
til numerical convergence.29

This computation is somewhat time-consuming—yet it is essentially the
same for everyconstit(np,I,K) we may start with, regardless of the particular
spanI–K or the particular input sentence. We would prefer to do the compu-
tation only once, “offline.”

A difficulty is that the computation does incorporate the particular real
value of theconstit(np,I,K) that we start with. However, if we simply ignore
this factor during our “offline” computation, we can multiply it in later when
we get an actualconstit(np,I,K). That is, we computespeculativelybefore the
particularconstit(np,I,K) and its value actually arrive.

In the transformed code below,temp(X,X0) represents the inside probabil-
ity of building up aconstit(X,I0,K0) from aconstit(X0,I0,K0) by a sequence of
0 or more unary rules. In other words, it is the total probability of all (pos-
sibly empty) unary-rewrite chainsX →∗ X0. While line 2 of the transformed

29If we gave the Viterbi algorithm instead, withmax= in place of+=, then convergence would
occur in finite time (at least for a PCFG, where allrewrite items have values in [0, 1]). The same
algorithm applies.

T     / 65

program still computes these items by numerical iteration,it only needs to
compute them once for eachX,X0, since they are now independent of the par-
ticular spanI0–K0 covered by these two constituents.30

temp(X0,X0) += 1.
temp(X,X0) += rewrite(X,Y) * temp(Y,X0).
other(constit(X,I,K)) += rewrite(X,W) * word(W,I,K).
other(constit(X,I,K)) += rewrite(X,Y,Z) * constit(Y,I,J) * constit(Z,J,K).
constit(X,I,K) += temp(X,X0)*other(constit(X0,I,K)).

The temp(s,np) item sums the probabilities of the infinitely many unary-
rewrite chainss →∗ np, which build np up into s using only line 2 of the
original program. Now, to get values likeconstit(s,4,6) for a particular input
sentence, we can simply sum finite products liketemp(s,np)
* other(constit(np,4,6)), whereother(constit(np,4,6)) sums up ways of building
anconstit(np,4,6) other thanby line 2 of the original program.31

The semantics of this program, which can derive non-ground terms. fully
defined by section 6.2.3. We omit further discussion of how itexecutes di-
rectly under forward chaining (section 6.2.4). However, note that the program
could be transformed into a more conventional dynamic program by applying
rule elimination to the first rule (the only one that is not range-restricted).32

For efficiency, our formal transformation adds a “filter clause” to each of
the temp rules:

temp(X0,X0) += 1 needed only if constit(X0,I0,K0).
temp(X,X0) += rewrite(X,Y)*temp(Y,X0) needed only if constit(X0,I0,K0).

The exact meaning of this clause will be discussed in section6.5.2. It permits
laziness, so that we compute portions of the unary rule closure only when
they will be needed. Its effect is that for each nonterminalX0, thetemp items

30We remark that the firstn steps of this iterative computation could be moved to compile
time, by eliminating line 1 as discussed below, specializing line 2 to the grammar by unfolding
rewrite(X,Y), and then computing the series sums by alternately unfolding thetemp items and
performing constant folding to consolidate eachtemp item’s summands.

31For example, it includes derivations where thenp is built from a determiner and a noun, or
directly from a word, but not where it is built directly from somes or anothernp. Excluding the
last option prevents double-counting of derivations.

32Here is the result, which alters the semantics of the slashedtemp item to ignore derivations
of length 0:

temp(X,X0) += rewrite(X,Y) * temp(Y,X0).
temp(X,X0) += rewrite(X,X0) * 1.
other(constit(X,I,K)) += rewrite(X,W) * word(W,I,K).
other(constit(X,I,K)) += rewrite(X,Y,Z) * constit(Y,I,J) * constit(Z,J,K).
constit(X,I,K) += temp(X,X0)*other(constit(X0,I,K)).
constit(X0,I,K) += 1*other(constit(X0,I,K)).

66 / J E  J B

are proved or updated only once someconstit(X0,I0,K0) constituent has been
built.33 At that time, all thetemp(X,X0) values for thisX0 will be computed
once and for all, since there is now something for them to combine with.
Usefully, these values will then remain static while the grammar does, even if
the sentence changes.

Adopting the categorial view we introduced in section 6.3, we can regard
temp(s,np) as merely an abbreviation for thenon-groundslashed itemcon-
stit(s,I0,K0)/constit(np,I0,K0): the cost of building up aconstit(s,I0,K0) if we al-
ready had aconstit(np,I0,K0). This cost is independent ofI0 andK0, which is
why we only need to compute a single item to hold it, albeit onethat contains
variables.

As we will see, the slashed notation is not merely expository. Our for-
mal speculation transformation will actually produce a program with slashed
terms, essentially as follows:

constit(X0,I0,K0)/constit(X0,I0,K0) += 1.
constit(X,I,K)/constit(X0,I0,K0) += rewrite(X,Y)

* constit(Y,I,K)/constit(X0,I0,K0).
other(constit(X,I,K)) += rewrite(X,W) * word(W,I,K).
other(constit(X,I,K)) += rewrite(X,Y,Z)

* constit(Y,I,J) * constit(Z,J,K).
constit(X,I,K) += (constit(X,I,K)/constit(X0,I0,K0))

* other(constit(X0,I0,K0)).

A variable-free example. To understand better how the slash andother
mechanisms work, consider this artificial variable-free program, illustrated
by the hypergraph in Figure 4:

a += b * c.
b += r.
c += f * c.
c += d * e * x.
c += g.
x += . . .

The values ofa andc depend onx. We elect to create speculative versions of
the first, third, and fourth rules. The resulting program is drawn in Figure 5. It
includes rules to compute slashed versions ofa, c andx itself that are “missing
anx”:

a/x += b * c/x.
c/x += f * c/x.
c/x += d * e * x/x.
x/x += 1.

33In this example, the filter clause on the second rule is redundant. Runtime analysis or static
analysis could determine that it has no actual filtering effect, allowing us to drop it.

T     / 67a
b c

r d e f g
x

FIGURE 4 A simple variable-free program before applying the speculation
transformation.

a / x
b c / x

r d e f g
o t h e r (a) o t h e r (c)x

a c

FIGURE 5 The program of Figure 4 after applying the speculation transformation. The
x/x rule and variousother(. . .) rules have been eliminated for simplicity.

68 / J E  J B

It also reconstitutes full-fledged versions ofa, c, andx. Each is defined
by a sum that is split into two cases: summands that were builtfrom an x
using a sequence of≥ 0 of the selected rules, and “other” summands that
were not. (Notice that the first rule isnot a += a/x * x; this is becausex might
in general include derivations that are built from anotherx (though not in
this example), and this would lead to double-counting. By using a += a/x *
other(x), we split each derivation ofa uniquely into a maximal sequence of
selected rules, applied to a minimal instance ofx.)

a += a/x * other(x).
c += c/x * other(x).
x += x/x * other(x).
a += other(a).
c += other(c).

Finally, the program must define the “other” summands:

other(a) += b * other(c).
other(c) += f * other(c).
other(c) += g.
other(x) += . . .

In Figure 5, this program has been further simplified by eliminating the
rules forx/x andother(x).

Split bilexical grammars. For our next example, consider a “split” bilexical
CFG, in which a head word must combine with all of its right children before
any of its left children. The naive algorithm for bilexical context-free parsing
is O(n5). In the split case, we will show how to derive theO(n4) andO(n3)
algorithms of Eisner and Satta (1999).

The “inside algorithm” below34 builds up rconstit items by successively
adding 0 or more child constituents to the right of aword, then builds up
constit items by adding 0 or more child constituents to the left of this rconstit.
As before,X:H represents a nonterminalX whose head word isH.

rconstit(X:H,I,K) += rewrite(X,H) * word(H,I,K). % 0 right children so far
rconstit(X:H,I,K) += rewrite(X:H,Y:H,Z:H2) % add right child

* rconstit(Y:H,I,J) * constit(Z:H2,J,K).
constit(X:H,I,K) += rconstit(X:H,I,K). % 0 left children so far
constit(X:H,I,K) += rewrite(X:H,Y:H2,Z:H) % add left child

* constit(Y:H2,I,J) * constit(Z:H,J,K).
goal += constit(s:H,0,N) * length(N).

34We deal here with context-free grammars, rather than the head-automaton grammars of Eis-
ner and Satta. In particular, our complete constituents carry nonterminal categories and not just
head words. Note that the algorithm is correct only for a “split” grammar (formally, one that
does not contain two rules of the formrewrite(X:H1,Y:H2,Z:H1) andrewrite(V:H1,X:H1,W:H3)),
since otherwise the grammar would license trees that cannotbe constructed by the algorithm.

T     / 69

This obvious algorithm has runtimeO(N3 · n5) (dominated by line 4). We
now speed it up by exploiting the conditional independence of left children
from right children. To build up aconstit whose head word starts atI, we will
no longer start with aparticular, existingrconstit from I to K (line 3) and then
add left children (line 4). Rather, we transform the programso that it ab-
stracts away the choice of startingrconstit. It can then build up theconstit item
speculatively, adding left children without having committed to any particular
rconstit. As this work is independent of therconstit, the items derived during it
do not have to specify any value forK. Thus, work is shared across all values
of K, improving the asymptotic complexity. Only after finishingthis specu-
lative computation does the program fill in each of the various rconstit items
that could have been chosen at the start. To accomplish this transformation,
replace lines 3–4 with

lconstit(X0:H0,X0,J0,J0) += 1.
lconstit(X:H0,X0,I,J0) += rewrite(X:H0,Y:H2,Z:H)

* constit(Y:H2,I,J) * lconstit(Z:H0,X0,J,J0).
constit(X:H0,I,K0) += lconstit(X:H0,X0,I,J0) * rconstit(X0:H0,J0,K0).

The new temp itemlconstit(X:H0,X0,I,J0) represents theleft half of a con-
stituent, stretching fromI to J0. We can regard it again in categorial terms: as
the last line suggests, it is just a more compact notation foraconstit missing its
rconstit right half fromJ0 to someK0. This can be written more perspicuously
asconstit(X:H0,I,K0)/rconstit(X0:H0,J0,K0), whereK0 is always a free variable,
so thatlconstit need not specify any particular value forK0.

The first lconstit rule introduces an empty left half. This is extended with
its left children by recursing through the secondlconstit rule, allowingX andI
to diverge fromX0 andJ0 respectively. Finally, the last rule fills in the missing
right half rconstit.

Again, our speculation transformation will actually produce the slashed
notation as its output. Specifically, it will replace lines 3–4 of the original
untransformed program with the following.35

rconstit(X0:H0,J0,K0)/rconstit(X0:H0,J0,K0) += 1
needed only if rconstit(X0:H0,J0,K0).

constit(X:H,J,K)/rconstit(X0:H0,J0,K0)
+= rconstit(X:H,J,K)/rconstit(X0:H0,J0,K0)
needed only if rconstit(X0:H0,J0,K0).

35In fact our transformation in Figure 6 will produce something a bit more complicated.
The version shown has been simplified by using rule elimination (section 6.4) to trim away all
other(. . .) items, which do not play a significant role in this example. That is because the only
slashed items areconstit/rconstit, and there is no other way to build aconstit except from an
rconstit.

70 / J E  J B

constit(X:H,I,K)/rconstit(X0:H0,J0,K0)
+= rewrite(X:H,Y:H2,Z:H) * constit(Y:H2,I,J)

* constit(Z:H,J,K)/rconstit(X0:H0,J0,K0)
needed only if rconstit(X0:H0,J0,K0).

constit(X:H,I,K) += constit(X:H,I,K)/rconstit(X0:H0,J0,K0)
* rconstit(X0:H0,J0,K0).

The first line introduces a slashed item. The next two lines are the result of
slashingrconstit(X0:H0,J0,K0) out of the original lines 3–4; note thatX0, H0,
J0, andK0 appeared nowhere in the original program. The final line reconsti-
tutes theconstit item defined by the original program, so that the transformed
program preserves the original program’s semantics.

By inspecting this program, one can see that the only provable items of
the formconstit(X:H,I,K)/rconstit(X0:H0,J0,K0) actually haveH=H0, K=K0, and
K0 a free variable.36 These conditions are true for the slashed item that is
introduced in the first line, and they are then preserved by every rule that
derives a new slashed item. This is why in our earlier presentation of this
code, we were able to abbreviate such a slashed item bylconstit(X:H0,X0,I,J0),
which uses only 5 variables rather than 8. Discovering such abbreviations
by static analysis is itself a transformation that we do not investigate in this
paper.

Filter clauses can improve asymptotic runtime. The special filter clause
needed only if rconstit(X0:H0,J0,K0) is added solely for efficiency, as always.
It says that it is not necessary to build a left half that mightbe useless (i.e.,
purely speculatively), but only when there is at least one right half for it to
combine with.

In this example, the filter clause is subtly responsible for avoiding an extra
factor of V in the runtime, whereV ≫ n is the size of the vocabulary. For
simplicity, let us return to the unslashed notation:

lconstit(X:H0,X0,I,J0) += rewrite(X:H0,Y:H2,Z:H)
* constit(Y:H2,I,J) * lconstit(Z:H0,X0,J,J0).

needed only if rconstit(X0:H0,J0,K0).

The intent is to build only left halveslconstit(H:H0,X0,I,J0) whose
head word H0 will actually be found starting at the right edgeJ0.
However, without the filter, the above rule could be far more specula-
tive, combining a finished left child such asconstit(np:dumbo,4,5) with a
rewrite rule such asrewrite(s:flies,np:dumbo,vp:flies) and the non-ground item
lconstit(X0:H0,X0,J0,J0) (defined elsewhere with value 1) to obtainlcon-
stit(s:flies,vp,4,5)—regardless of whetherflies actually starts at position 5 or
even appears in the input sentence at all! This would lead to aproliferation of

36By contrast, we already noted thatX and I could diverge fromX0 andJ0 respectively, in
this particular program.

T     / 71

O(V) lconstit items with speculative head words such asflies thatmightstart at
position 5. The filter clause prevents this by “looking ahead” to see whether
any items of the formrconstit(vp:flies,5,K0) have actually been proved.

As a result, the runtime is nowO
(
n4

)
(as compared toO

(
n5

)
for the un-

transformed program).37 This is so because the rule above may be grounded
in O

(
n4

)
ways reflecting different bindings ofI, J, J0, and wordH2, whereH2

may in practice be any of the words in the spanI–J. Although the rule also
mentionsH0, the filter clause has ensured thatH0’s binding is completely
determined byJ0’s.

As a bonus, we can now apply the unfold-refold pattern to obtain theO
(
n3

)

algorithm of Eisner and Satta (1999). Starting with our transformed program,
unfold constit in the body of each rule where it appears,38 giving

rconstit += rconstit * rewrite * (lconstit′ * rconstit′).
lconstit += (lconstit′ * rconstit′) * rewrite * lconstit.

where the′ symbol marks the halves of the unfoldedconstit, and the three ad-
jacent half-constituents are written in left-to-right order. Now re-parenthesize
these rules as

rconstit += (rconstit * (rewrite * lconstit′)) * rconstit′.
lconstit += lconstit′ * ((rconstit′ * rewrite) * lconstit).

and fold out each parenthesized subexpression, using distributivity to sum
over its free variables. The items introduced when folding the large subex-
pressions correspond, respectively, to Eisner and Satta’s“right trapezoid” and
“left trapezoid” items. The speedup arises because there areO(n) fewer possi-
ble trapezoids thanconstits: aconstit had to specify a head word that could be
any of the words covered by theconstit, but a trapezoid’s head word is always
the word at its left or right edge.

6.5.2 Semantics and Operation of Filter Clauses

Our approach to filtering is novel. Ourneeded only if clauses may be regarded
as “relaxed” versions of side conditions (Goodman, 1999). In the denotational
semantics (section 6.2.3), they relax the restrictions on the valuation function,
allowing more possible valuations for the transformed program. (In the case
of speculation, these valuations may disagree on the new slashed items, but
all of them preserve the semantics of the original program.)

Specifically, when constructingP(r) to determine whether a ground item
r is provable and what its value is, we mayoptionallyomit the summand cor-

37We could also have achievedO
(
n4

)
simply by folding the original program as discussed

in section 6.3. However, that would not have allowed the further reduction toO
(
n3

)
discussed

below.
38Including if desired thegoal rule, not discussed here. The oldconstit rule is then useless,

except perhaps to the user, and may be trimmed away if desiredby rule elimination.

72 / J E  J B

responding to a grounded ruler ⊕r = E if this rule has an attached filter clause
needed only if C such that no consistent grounding ofC has been proved.39

How does this help operationally, in the forward chaining algorithm?
When a rule triggers an update to a groundor non-ground item, but carries
a (partly instantiated) filter clause that does not unify with any proved item,
then the update has infinitely low priority and need not be propagated further
by forward chaining. The update must still be carried out if the filter clause is
proved later.

The optionality of the filter is crucial for two reasons. First, if a filter be-
comes false, the forward-chaining algorithm is not required to retract updates
that were performed when the filter was true. In the examples of section 6.5.1
above or section 6.6.3 below, the filter clauses ensure that entries are filled
into the unary-rule-closure and left-corner tables only asneeded. Once this
work has been done, however, these entries are allowed to persist even when
they are no longer needed, e.g., once the facts describing the input sentence
are retracted. This means that we can reuse them for a future sentence rather
than re-deriving them every time they are needed.

Second, the forward-chaining algorithm is not required to bind variables in
the rule when it checks for consistent groundings of the filter clause. Consider
this rule from earlier:

constit(X:H,I,K)/rconstit(X0:H0,J0,K0)
+= rewrite(X:H,Y:H2,Z:H) * constit(Y:H2,I,J)

* constit(Z:H,J,K)/rconstit(X0:H0,J0,K0)
needed only if rconstit(X0:H0,J0,K0).

Recall that the onlyconstit/rconstit items that are actually derived are non-
ground items in whichK=K0 and is free, such asconstit(s:flies,4,K0)/ rcon-
stit(vp:flies,5,K0). Such a non-ground item actually represents an infinite
collection of possible ground items that specialize it. Thesemantics of
needed only if, which are defined over ground terms, say that we only need
to derive a subset of this collection: rather than proving the non-ground item
above, we are welcome to prove only the “needed” ground instantiations,
with specific values ofK0 such thatrconstit(vp:flies,5,K0) has been proved.
However, in general, this would proveO(n) ground items rather than a single
non-ground item. It would destroy the whole point of speculation, which is
to achieve a speedup by leavingK0 free until specificrconstit items are multi-
plied back in at the end. Thus, the forward-chaining algorithm is better off ex-
ploiting the optionality of filtering and proving the non-ground version—thus

39The “consistent” groundings are those in which variables ofC that are shared withr or
E are instantiated accordingly. In the speculation transformation, all variables ofC are in fact
shared withr andE. If they were not,C could have many consistent groundings, but we would
still aggregate only one copy ofE, just as if the filter clause were absent, not one per copy per
consistent grounding.

T     / 73

proving more than is strictly needed—as long as at least one of its groundings
is needed (i.e., as long as some item that unifies withrconstit(vp:flies,4,K0) has
already been proved).

For a simpler example, consider
rconstit(X0:H0,J0,K0)/rconstit(X0:H0,J0,K0) += 1

needed only if rconstit(X0:H0,J0,K0).

A reasonable implementation of forward chaining will provethe non-ground
item rconstit(X0:H0,J0,K0)/rconstit(X0:H0,J0,K0)—just as if the filter clause
were not present—provided thatsomegrounding ofrconstit(X0:H0,J0,K0) has
been proved. It is not required to derive a separate grounding of the slashed
item for eachgrounding ofrconstit(X0:H0,J0,K0); this would also be correct
but would be less efficient.

6.5.3 Formalizing Speculation for Semiring-Weighted Program
Fragments

To formalize the speculation transformation, we begin witha useful common
case that suffices to handle our previous examples. This definition (Figure6)
allows us to speculate over a set of rules that manipulate values in a semiring
of weightsW. Such rules must all use the same aggregation operator, which
we call⊕=, with identity element̄0. Furthermore, each rule body must be
a simple product of one or more items, using an associative binary operator
⊗ that distributes over⊕ and has an identity element̄1. This version of the
transformation is only able to slash the final term in such a product; however,
if ⊗ is commutative, then the terms in a product can be reordered to make any
term the final term.

Our previous examples of speculation can be handled by taking the semir-
ing (W,⊕,⊗, 0̄, 1̄) to be (R, +, *, 0, 1). Moreover, any unweighted program can
be handled by taking (W,⊕,⊗, 0̄, 1̄) to be ({F, T}, |, &, F, T).

Intuitively, other(A) in Figure 6 accumulates ways of buildingA other than
groundings ofFi1 ⊗ Fi2 ⊗ · · · ⊗ Fi j ⊗ x for j > 0. Meanwhile,slash(A,x)
accumulates ways of buildingA by grounding products of the formFi1 ⊗

Fi2 ⊗ · · · ⊗ Fi j for j ≥ 0. To “fill in the gap” and recover the final value ofA
(as is required to preserve semantics), we multiplyslash(A,x) only byother(x)
(rather than byx), in order to prevent double-counting (which is analogous to
spurious ambiguity in a categorial grammar).

To apply our formal transformation in the unary-rule elimination example,
takex=constit(X0,I0,K0). As required,X0,I0,K0 do not appear in the original
program. TakeR1 to be the “unary”constit rule of the original program where
t1 is the last item in the body ofRi . Herek = 0.

To apply our formal specification in the artificial variable-free example
of Figures 4–5, takex = x, R1 = a += b * c, R2 = c += f * c, and R3 =

c += (d * e) * x. Since, among theti , only t3 unifies withx, we havek = 2.

74 / J E  J B

Given a semiring (W,⊕,⊗, 0̄, 1̄).
Given a termx to slash out, where any variables inx do not occur any-
where in the programP. Given distinct rulesR1, . . . ,Rn in P from which
to simultaneously slashx out, where eachRi has the formr i ⊕= Fi ⊗ ti for
some expressionFi (which may bē1) and some itemti .
Let k be the index40 such that 0≤ k ≤ n and
• For i ≤ k, ti does not unify withx.
• For i > k, ti unifies withx; moreover, their unification equalsti .41

Then the speculation transformation constructs the following new pro-
gram. Recall that⊕r denotes the aggregation operator forr (which may
or may not be⊕). Let slash, other, andmatches x be new functors that do
not already appear inP.
• slash(x,x) ⊕x= 1̄ needed only if x.
• (∀1 ≤ i ≤ n) slash(r i , x) ⊕= Fi ⊗ slash(ti , x) needed only if x.
• (∀1 ≤ i ≤ k) other(r i) ⊕= Fi ⊗ other(ti).
• (∀ rulesp ⊕p= E not among theRi) other(p) ⊕p= E.42

• matches x(x) |= true. • matches x(A) |= false.
• A ⊕A= other(A) if not matches x(A).43

• A ⊕A= slash(A,x) ⊗ other(x).

40If necessary, the program can be pre-processed so that such an index exists. Any rule can be
split into three more specialized rules: ani ≤ k rule, ani > k rule, and a rule not among theRi .
Some of these rules may require boolean side conditions to restrict their applicability.

41That is,ti is “more specific” thanx: it matches a non-empty subset of the ground terms that
x does.

42It is often worth following the speculation transformationwith a rule elimination transfor-
mation (section 6.4) that removes some of theseother items. In particular, ifp does not unify
with x or any of theti , then the only rule that usesother(p) is A ⊕A= other(A). In this case,
eliminating the old ruleother(p) ⊕p= E simply restores the original rulep ⊕p= E.

43Note thatA ranges over all ground terms. (Except those that unify withx, which are covered
by the next rule.) The aggregation into a particular ground term A must be handled using the
appropriate aggregation operator for that ground term, here denoted⊕A=. (⊕x= was similarly
used above.) In the example programs, this awkward notationwas avoided by splitting this rule
into several rules, which handle variousdisjointclasses of itemsA that have different aggregation
operators.

FIGURE 6 The semiring-weighted speculation transformation.

To apply our formal transformation in the split bilexical grammar example,
takex=rconstit(X0:H0,J0,K0), theRi to be the two rules definingconstit, each
ti to be the last item in the body ofRi , andk = 1.

Folding as a special case of speculation.As was mentioned earlier, the
folding transformation is a special case of the speculationtransformation, in
which application is restricted to rules with a single ground term at their head,

T     / 75

and the item to be slashed out must appear literally in each affected rule. For
ease of presentation, however, the formulations above are not quite parallel. In
folding, we adopt the convention that a common functionF is being “slashed
out” of a set of rules, and the different items to which that function applies
are aggregated first into a new intermediate item. In speculation, we take the
opposite view, where there is a common item to be slashed out present as the
argument to different functions, so that the functions get aggregated into a
new lambda term. We chose the former presentation for folding to avoid the
needless complication of using the lambda calculus, but we needed the flex-
ibility of the latter for a fully general version of speculation. In the case of
ordinary semiring-weighted programs , this distinction istrivial; when slash-
ing out itema from a rule likef += a * b, we can equally easily say that we are
slashing out the function “multiply bya” from its argumentb or that we are
slashing out the itema from inside the function “multiply byb”. However,
in general, being able to leave behind functions allows us toconstruct inter-
mediate terms which don’t carry a numerical value; for example, we could
choose to slash out thea item from a rule likef += log(a) and propagate just
the functionslash(f, a) += λx log(x).

6.5.4 Formalizing Speculation for Arbitrary Weighted Logic Programs

The speculation transformation becomes much more complicated when it
is not restricted to semiring-weighted programs. In general, the value of a
slashed item is afunction, just like the semantics of a slashed constituent in
categorial grammar. Functions are aggregated pointwise: that is, we define
(λz. f (z)) ⊕ (λz. g(z)) = λz. (f (z) ⊕ g(z)).

As in categorial grammar semantics, gaps are introduced with the iden-
tity function, passed with function composition, and eliminated with function
application.

In the commutative semiring-weighted programs discussed above, all
functions had the form “multiply byw” for some weightw. We were able
to avoid the lambda-calculus there by representing such a function simply as
w, and by usinḡ1 for the identity function, semiring multiplication⊗ for both
composition and application, and semiring addition⊕ for pointwise addition.

We defer the details of the formal transformation to a later paper. It is sig-
nificantly more complicated than Figure 6 because we can no longer rely on
the mathematical properties of the semiring. As in folding and unfolding (Fig-
ures 1–2), we must demand a kind of distributive-law property to ensure that
the semantics will be preserved (recall the log example fromsection 6.3). This
property is harder to express for speculation, which is likefolding through un-
bounded sequences of rules, including cycles.

Consider the semiring-weighted program in Figures 4–5. Theoriginal pro-
gram only used the itemx early in the computation, multiplying it byd * e.

76 / J E  J B

The transformed program had to reconstitutea from a/x andx (andc from
c/x andx). This meant multiplyingx in later, only after the originald * e had
passed through several levels of* and+= in the rulea += b * c and the cyclic
rule c += f * c.

In general, we want to be sure that delaying the introductionof x until after
several intermediate functions and aggregations does not change the value of
the result. Hence, a version of the distributive property must be enforced at
eachintermediate rule affecting the slashed items.

Furthermore, if the slashed-out itemx contains variables, then introduc-
ing it will aggregate over those variables. For example, therule a(B,C) +=
(a(B,C)/x(B0,C0,D0))(x(B0,C0,D0)) not only applies a function to an argument,
but also aggregates overB0, C0, andD0. In the original version of the pro-
gram, these aggregations might have been performed with various operators.
Whena(B,C) is reconstituted in the transformed version, we must ensurethat
thesamesequence of aggregations is observed. In order to do this correctly,
it is necessary to keep track of the association between the variables being
aggregated in the original program and the variables in the slashed item, so
that we can ensure that the same aggregations are performed.

6.6 Magic Templates: Filtering Useless Items
The bottom-up “forward-chaining” execution strategy of section 6.2.4 will (if
it converges) compute values for all provable items. Typically, however, the
user is primarily interested in certain items (often justgoal) and perhaps the
other items involved in deriving them.

In parsing, for example, the user may not care about buildingall legal
constituents—only those that participate in a full parse. Similarly, in a pro-
gram produced by speculation, the user does not care about building all pos-
sible slashed itemsr/x—only those that can ultimately combine with some
actualx to reconstitute an itemr of the original program.

Can we prevent forward chaining from building at least some of the “use-
less” items? In the speculation transformation (section 6.5 and Figure 6), we
accomplished this by filtering our derivations withneeded only if clauses.

We now give a transformation that explains and generalizes this strategy.
It prevents the generation of some “useless” items by automatically adding
needed only if filter clauses to an existing program. A version of thismagic
templates transformation was originally presented in a well-known paper
by Ramakrishnan (1991), generalizing an earlier transformation called magic
sets.

6.6.1 An Overview of the Transformation

Since this transformation makes some terms unprovable, it cannot be
semantics-preserving. We will say that a ground terma is charmed if we

T     / 77

shouldpreserve its semantics.44 In other words, the semantic valuation func-
tions of the transformed program and the original program will agree on at
least the charmed terms. The program will determine at runtime which terms
are charmed: a ground terma is considered charmed iff the termmagic(a) is
provable (inevitably with valuetrue).

The user should explicitly charm the ground terms of interest to him or her
by writing rules such as

magic(goal) |= true.
magic(rewrite(X,Y,Z)) |= true.
magic(rewrite(X,W)) |= true.
magic(word(W,I,J)) |= true.
magic(length(N) |= true.

The transformation will then add rules that charm additional terms by proving
additionalmagic(. . .) items (known as magic templates). Informally, a term
needs to be charmed if it might contribute to the value of another charmed
term. A formal description appears in Figure 7.

Finally, filter clauses are added to say that among the groundterms prov-
able under the original program, only the charmed ones actually need to be
proved. This means in practice (see section 6.5.2) that forward chaining will
only prove an item if at least one grounding of that item is charmed.

The filter clauses in the speculation transformation were effectively intro-
duced by explicitly charming all non-slashed items, running the magic tem-
plates transformation, and simplifying the result.

6.6.2 Examples of Magic Templates

Deriving Earley’s algorithm. What happens if we apply this transformation
to the CKY algorithm of section 6.2.1, after explicitly charming the items
shown above?

Remarkably, as previously noticed by Minnen (1996), the transformed pro-
gram acts just like Earley’s (1970) algorithm. We can derivea weighted ver-
sion of Earley’s algorithm by beginning with a weighted version of CKY (the
inside algorithm of section 6.2.2).45 The transformation adds filter clauses to
theconstit rules, saying that the rule’s head is needed only if charmed:

constit(X,I,K) += rewrite(X,W) * word(W,I,K)
needed only if magic(constit(X,I,K)).

constit(X,I,K) += rewrite(X,Y,Z) * constit(Y,I,J) * constit(Z,J,K)
needed only if magic(constit(X,I,K)).

44This terminology does not appear in previous literature on magic templates.
45At least, Earley’s algorithm restricted to grammars in Chomsky Normal Form, since those

are the only grammars that CKY handles before we transform it. The full Earley’s algorithm
in roughly our notation can be found in (Eisner et al., 2005);it allows arbitrary CFG rules to
be expressed using lists, as inrewrite(np,[”the”,adj,n]). Section 6.3 already sketched how to
handle ternary rules efficiently.

78 / J E  J B

Based on the structure of theconstit rules, the transformation also adds the
following magic rules to the ones provided earlier by the user. Recall that
?rewrite(X,Y,Z) is considered to be true iff rewrite(X,Y,Z) is provable (foot-
note 12).

magic(constit(s,0,N)) | = magic(goal).
magic(constit(Y,I,J)) | = ?rewrite(X,Y,Z) & magic(constit(X,I,K)).
magic(constit(Z,J,K)) | = ?rewrite(X,Y,Z) & ?constit(Y,I,J)

& magic(constit(X,I,K)).

What do these rules mean? The secondmagic rule above says to charm all
the possible left childrenconstit(Y,I,J) of a charmed constituentconstit(X,I,K).
The thirdmagic rule says to charm all possible right children of a charmed
constituent whose left child has already been proved.

By inspecting these rules, one can see inductively that theyprove only
magic templates of the formmagic(constit(X,I,K)) whereX,I are bound andK is
free.46

The charmed constituents are exactly those constituents that are possible
given the context to their left. As in Earley’s algorithm, these are the only ones
that we try to build. Where Earley’s algorithm would predicta vp constituent
starting at position 5, we charm all potential constituentsof that form by
proving the non-ground itemmagic(constit(vp,5,K)).

Just as Earley’s predictions occur top-down, themagic rules reverse the
proof order of the original rule—they charm items in the bodyof the original
rule once the head is charmed. Themagic rules also work left to right within an
original rule, so we only need to charmconstit(vp,5,K) once we have proved
a receptive context such asrewrite(s,np,vp) * constit(np,4,5). This context is
analogous to having the dotted rules→ np . vp in column 5 of Earley’s parse
table.

In effect, the transformed program uses forward chaining to simulate the
backward-chaining proof order of a strategy like that of pure Prolog.47 The
magic templates correspond to query subgoals that would appear during back-
ward chaining. The filter clauses prevent the program from proving items that

46Note that it would not be appropriate to replace. . . & ?rewrite(X,Y,Z) with
. . . needed only if ?rewrite(X,Y,Z), since that would make this condition optional, allowing the
compiler to relax it and therefore charm more terms than intended. Concretely, in this example,
forward chaining with our usual efficient treatment ofneeded only if (section 6.5.2) would
prove overly general magic templates of the formmagic(constit(X,I,K)) where not onlyK but
alsoK was free.

47However, pure Prolog’s backtracking is deterministic, whereas forward chaining is free to
propagate updates in any order. It is more precise to say thatthe transformed program simulates
a breadth-firstor parallel version of Prolog which, when it has several ways to match a query
subgoal, pursues them along parallel threads (whose actualoperation on a serial computer may
be interleaved in any way). Furthermore, since forward chaining uses a chart to avoid duplicate
work, the transformed version acts like a version of Prolog with tabling (see footnote 5).

T     / 79

do not yet match any of these subgoals.
Shieber et al. (1995), specifying CKY and Earley’s algorithm, remark that

“proofs of soundness and completeness [for the Earley’s case] are some-
what more complex . . . and are directly related to the corresponding proofs
for Earley’s original algorithm.” In our perspective, the correctness of Ear-
ley’s emerges directly from the correctness of CKY and the correctness of the
magic templates transformation (i.e., the fact that it preserves the semantics
of charmed terms).

On-demand computation of reachable states in a finite-statemachine.
Another application is “on-the-fly” intersection of weighted finite-state au-
tomata, which recalls the left-to-right nature of Earley’salgorithm.48

In automaton intersection, an arcQ1
X
→ R1 (in some automatonM1) may

be paired with a similarly labeled arcQ2
X
→ R2 (in some automatonM2,

perhaps equal toM1). This yields an arc in the intersected machineM1 ∩ M2
whose weight is the product of the original arcs’ weights:

arc(Q1:Q2,R1:R2,X) = arc(Q1,R1,X) * arc(Q2,R2,X).

However, including this rule in a forward-chained program will pairs all
compatible arcs in all known machines (including arcs in thenew machine
M1 ∩ M2, leading to infinite regress). A magic templates transformation can
restrict this to arcs that actually need to be derived in the service of some
larger goal—just as if the definition above were backward-chained.

Consider for example the following useful program (which uses Prolog’s
notation for bracketed lists):

sum(Q,[]) += final(Q). % weight of stopping at final state Q
sum(Q,[X | Xs]) += arc(Q,R,X) * sum(R,Xs).

Now the value ofsum(q,[”a”,”b”,”c”]) is the total weight of all paths from state
q that accept the stringabc.

We might like to find (for example)sum(q1:q2,[”a”,”b”,”c”]), constructing just
the necessary paths from stateq1:q2 in the intersection ofq1’s automaton with
q2’s automaton. To enable such queries, apply magic templatestransforma-
tion to thesum rules and thearc intersection rule, charming nothing in ad-
vance. We can then setmagic(sum(q1:q2, [”a”,”b”,”c”])) to true at runtime. This
results in charm spreading forward fromq1:q2 along paths in the intersected
machine, and spreading “top-down” from each arc along this path to the arcs
that must be intersected to produce it (and which may themselves be the result
of intersections). This permits the weights of all relevantarcs to be computed
“bottom-up” and multiplied together along the desired paths.

48Composition of finite-state transducers is similar.

80 / J E  J B

6.6.3 Second-order magic

Earley’s algorithm does top-down prediction quite aggressively, since it pre-
dicts all possible constituents that are consistent with the left context. Many
of these predictions could be ruled out with one word of lookahead—an im-
portant technique when using Earley’s algorithm in practice.49 This is known
as a “left-corner” filter: we should only bother to provemagic(constit(X,I,K))
if there is some chance of provingconstit(X,I,K), in the sense that there is a
word(W,I,J) that could serve as the first word (“left corner”) in a phrasecon-
stit(X,I,K).

Remarkably, we can get this behavior automatically by applying the magic
templates transformation asecondtime. We now require themagic items
themselves to be charmed before we will derive them. This activation flows
bottom-up in the parse tree: we first charmmagic(constit(X,I,K)) whereX can
rewrite directly asW, then move up to nonterminals that can rewrite starting
with X, and so on.

Thus, the original CKY algorithm proved constituents bottom-up; the
transformed Earley’s algorithm filtered these constituents by top-down pre-
dictions; and the doubly transformed algorithm will filter the predictions by
bottom-up propagation of left corners.

Before illustrating this transformation, we point out somesimplifications
that are possible with second-order magic. This time we willusemagic2 to
indicate charmed items, to avoid conflict with themagic predicate that already
appears in the input program. We also assume that the user is willing to ex-
plicitly charm everything but themagic terms—since any other terms that the
user regards as uninteresting are presumably already beingfiltered by the last
transformation. Suppose that the original program contained the rulea += b *
c. The input program then also usually contains

magic(b) |= magic(a).
magic(c) |= ?b & magic(a).

However, either of these rules may be omitted if the user explicitly charmed
its head during the first round of magic (i.e., by statingmagic(b) |= true or
magic(c) |= true). As we will see, omitting these rules when possible will re-
duce the work that second-order magic has to do.

If we apply a second round of magic literally, the above rules(when
present) respectively yield the new rules

magic2(magic(a)) |= magic2(magic(b)).

and
magic2(b) |= magic2(magic(c)).
magic2(magic(a)) |= ?b & magic2(magic(c)).

These rules propagate charm on themagic items, frommagic(b) or magic(c)

49Earley (1970) himself described how to usek words of lookahead.

T     / 81

up to magic(a). However, it turns out that the second and often the third of
thesemagic2 rules can be discarded, as they are redundant with more lenient
rules that prove the same heads. The second is redundant because the user
has already explicitly stated thatmagic2(b) |= true. The third is redundantif
the first is present, since if the program has provedb then it must have previ-
ously provedmagic(b) and before thatmagic2(magic(b)), so that the first rule
(if present) would already have been able to provemagic2(magic(a)).

The input program also contains
a += b * c needed only if magic(a).

We want to provemagic(a) if it will be useful in such a clause, so the second
round of magic will also generate

magic2(magic(a)) |= ?b & ?c & magic2(a).

This is the rule that initiates the desired bottom-up charming ofmagic items. It
too can be simplified. We can drop themagic2(a) condition, since the user has
already explicitly stated thatmagic2(a) |= true. We can drop the?c condition
if the third magic2 rule above is present, and drop the entire rule if the first
magic2 rule above is present. (Thus, we will end up discarding the rule unless
b was charmed by the user prior to the first round of magic—making it the
appropriate “bottom” where bottom-up propagation begins.)

Applying second-order magic with these simplifications to our version of
Earley’s algorithm, we obtain the following natural rules for introducing and
propagating left corners. Note that these affect only theconstit terms. Intu-
itively, the other terms of the original program do not needmagic2 templates
to entitle them to acquire first-order charm, as they were explicitly charmed
by the user prior to first-order magic.

magic2(magic(constit(X,I,K))) |= rewrite(X,W) & word(W,I,K).
magic2(magic(constit(X,I,K))) | = ?rewrite(X,Y,Z).

& magic2(magic(constit(Y,I,J))).

The transformation then applies the left-corner filter to the magic templates
defined by first-order magic:

magic(constit(s,0,N)) | = magic(goal)
needed only if magic2(magic(constit(s,0,N))).

magic(constit(Y,I,J)) | = ?rewrite(X,Y,Z)
& magic(constit(X,I,K))

needed only if magic2(magic(constit(Y,I,J))).
magic(constit(Z,J,K)) | = ?rewrite(X,Y,Z) & ?constit(Y,I,J)

& magic(constit(X,I,K)).
needed only if magic2(magic(constit(Z,J,K))).

Note that themagic2(constit(X,I,K)) items proved above are specific to the
spanI–K in the current sentence: they haveX,I,K all bound. However, one
could remove this dependence onI,K by using the speculation transformation
(section 6.5). Then the first time a particular wordW is observed via some fact

82 / J E  J B

Given a unary predicatemagic that may already appear inP. We say that a
termt is already charmed50 if P contains a rulemagic(s) |= true wheres is
at least as general ast.
For each ruleRi inP, of the formr i ⊕i= Ei , given an orderingei1, . . . , eiki of
the items whose values are combined byEi (including any filter clauses).51

foreach rule Ri

unless r i is already charmed
append “needed only if magic(r i)” to Ri

for j = 1, 2, . . . ki

unless ei j is already charmed
add “magic(ei j) |= ?ei1 & · · · & ?ei(j−1) & magic(r i)” to P
optionally relax this new rule by generalizing its head52

50This test is used only to simplify the output.
51In the examples in the text, this is taken to be the order of mention, which is a reasonable

default.
52That is, replace the head with a more general pattern. For example, one may replace some

variables or other sub-terms in the head with variables thatdo not appear in the rule body. See
section 6.6.4 for discussion.

FIGURE 7 The magic templates transformation.

word(W,I,K), the program will derivemagic2(constit(X,I0,K0))/word(W,I0,K0) for
each nonterminalX of whichW is a possible left corner. These left corner table
entries leaveI0,K0 free, so once they are computed, they can be combined not
only with word(W,I,K) but also with later appearances of the same word, such
asword(W,I2,K2).

6.6.4 Formalizing Magic Templates

Our version of magic templates is shown in Figure 7. Readers who are
familiar with Ramakrishnan (1991) should note that our presentation focuses
on the case that Ramakrishnan calls “full sips,” where each term used in a
rule’s body constrains the bindings of variables in subsequent terms.

However, to allow other “sips” (sideways information-passing strategies),
we can optionally rename variables in the heads ofmagic(. . .) |= · · · rules so
that they become free. This results in proving fewer, more generalmagic(. . .)
items.53

Ramakrishnan’s construction instead attempts todrop these variables—as
well as other variables that provably remain free. However,his construction

53This may even avoid an asymptotic slowdown. Why? It is possible to prove more magic
templates than items in the original program, becausemagic(a) (proved top-down) may acquire
bindings for variables that are still free ina (proved bottom-up). It is wise to drop such variables
from magic(a) or leave them free.

T     / 83

is less flexible because it only drops variables that appear as direct arguments
to the top-level predicate. It also leads to a proliferationof new and non-
interacting predicates (such asmagic constitbb f /2), which correspond to differ-
ent binding patterns in the top-level predicate.

Dropping variables rather than freeing them does have the advantage that
it makes terms smaller, perhaps resulting in constant-timereductions of speed
and space. However, we opt to defer this kind of “abbreviation” of terms to
an optional subsequent transformation—the same transformation (not given
in this paper) that we would use to abbreviate theslash(. . .) items introduced
by speculation in section 6.5.1. Pushing abbreviation intoa separate trans-
formation keeps our Figure 7 simple. The abbreviation transformation could
also attempt more ambitious simplifications than Ramakrishnan (1991), who
does not simplify away nested free variables, duplicated bound variables, or
constants, nor even detect all free variables that are arguments to the top-level
predicate.

6.7 Conclusions

This paper has introduced the formalism of weighted logic programming,
a powerful declarative language for describing a wide rangeof useful algo-
rithms.

We outlined several fundamental techniques for rearranging a weighted
logic program to make it more efficient. Each of the techniques is connected
to ideas in both logic programming and in parsing, and has multiple uses
in natural language processing. We used them to recovered several known
parsing optimizations, such as

. unary rule cycle elimination. Earley’s (1970) algorithm with an added left corner filter. Eisner and Satta’s (1999)O(n3) bilexical parsing. on-the-fly intersection of weighted automata

as well as various other small rearrangements of algorithms, such as a slight
improvement to lexicalized CKY parsing.

We showed how weighted logic programming can be made more expres-
sive and its transformations simplified by allowing non-ground items to be
derived, and we introduced a new kind of side condition that does not bind
variables—theneeded only if construction—to streamline the use of non-
ground items.

Our specific techniques included weighted generalizationsof folding and
unfolding; the speculation transformation (an original generalization of fold-
ing); and an improved formulation of the magic templates transformation.
This work does not exhaust the set of useful transformations. For example,

84 / J E  J B

Eisner et al. (2005) briefly discuss transformations that derive programs to
compute gradients of, or bounds on, the values computed by the original dy-
namic program. We intend in the future to give formal treatments of these.
We also plan to investigate other potentially useful transformations, in partic-
ular, transformations that exploit program invariants to perform tasks such as
“abbreviating” complex items.

We hope that the paradigm presented here proves useful to those who wish
to further study the problems to which weighted logic programming can be
applied, as well as to those who wish to apply it to those problems themselves.

In the long run, we hope that by detailing a set of possible program trans-
formation steps, we can work toward creating a system that would search au-
tomatically for practically effective transformations of a given weighted logic
program, by incorporating observations about the program’s structure as well
as data collected from experimental runs. Such an implemented system could
be of great practical value.

References
Aji, S. and R. McEliece. 2000. The generalized distributivelaw. IEEE Transactions

on Information Theory46(2):325–343.

Earley, J. 1970. An efficient context-free parsing algorithm.Comm. ACM13(2):94–
102.

Eisner, J., E. Goldlust, and N. A. Smith. 2005. Compiling comp ling: Weighted dy-
namic programming and the Dyna language. InProc of HLT/EMNLP.

Eisner, J. and G. Satta. 1999. Efficient parsing for bilexical context-free grammars and
head-automaton grammars. InProc. of ACL, pages 457–464.

Fitting, M. 2002. Fixpoint semantics for logic programminga survey. TCS278(1-
2):25–51.

Goodman, J. 1999. Semiring parsing.Computational Linguistics25(4):573–605.

Huang, L., H. Zhang, and D. Gildea. 2005. Machine translation as lexicalized parsing
with hooks. InProc. of IWPT, pages 65–73.

McAllester, D. 1999. On the complexity analysis of static analyses. InProc of 6th
Internat. Static Analysis Symposium.

Minnen, G. 1996. Magic for filter optimization in dynamic bottom-up processing. In
Proc 34th ACL, pages 247–254.

Ramakrishnan, R. 1991. Magic templates: a spellbinding approach to logic programs.
J. Log. Prog.11(3-4):189–216.

R / 85

Ross, K. A. and Y. Sagiv. 1992. Monotonic aggregation in deductive databases. In
PODS ’92, pages 114–126.

Sagonas, Konstantinos, Terrance Swift, and David S. Warren. 1994. XSB as an effi-
cient deductive database engine.ACM SIGMOD Record23(2):442–453.

Shieber, S. M., Y. Schabes, and F. Pereira. 1995. Principlesand implementation of
deductive parsing.J. Logic Prog.24(1–2):3–36.

Sikkel, Klaus. 1997.Parsing Schemata: A Framework for Specification and Analysis
of Parsing Algorithms. Texts in Theoretical Computer Science. Springer-Verlag.

Stolcke, A. 1995. An efficient probabilistic context-free parsing algorithm that com-
putes prefix probabilities.Computational Linguistics21(2):165–201.

Tamaki, H. and T. Sato. 1984. Unfold/fold transformation of logic programs. InProc
2nd ICLP, pages 127–138.

Van Gelder, A. 1992. The well-founded semantics of aggregation. In PODS ’92,
pages 127–138. New York, NY, USA: ACM Press. ISBN 0-89791-519-4.

Younger, D. H. 1967. Recognition and parsing of context-free languages in timen3.
Info. and Control10(2):189–208.

Zhou, N.-F.. and T. Sato. 2003. Toward a high-performance system for symbolic and
statistical modeling. InProc of IJCAI Workshop on Learning Stat. Models from
Relational Data.

