6

Program transformations for
optimization of parsing algorithms and
other weighted logic programs

JAsoN E1sNER AND JOHN Brarz

Abstract

Dynamic programming algorithms in statistical naturalgaage processing can be
easily described as weighted logic programs. We give ainatand semantics for such
programs. We then describe several source-to-sourcefdrarations that fiect a pro-
gram’s éficiency, primarily by rearranging computations for bet&uge or by changing
the search strategy. We present practical examples of treisg transformations, mainly
to optimize context-free parsing algorithms, and we foieeathem for use with new
weighted logic programs.

Specifically, we definaveightedversions of the folding and unfolding transforma-
tions, whose unweighted versions are used in the logic progring and deductive
database communities. We then present a novel transfameadilled speculation—a
powerful generalization of folding that is motivated by gaessing in categorial gram-
mar. Finally, we give a simpler and more powerful formulatiof the magic templates
transformatiort.

Keywords WEIGHTED LOGIC PROGRAMMING, DYNAMIC PROGRAMMING, PROGRAM TRANS-
FORMATION, PARSING ALGORITHMS

6.1 Introduction

In this paper, we show how some algorithmfi@ency tricks used in the nat-
ural language processing (NLP) community, particulartydarsing, can be
regarded as specific instances of transformations on wezidbgic programs.

1This material is based upon work supported by the Nation@&@rBe Foundation under
Grants No. 0313193 and 0347822 to the first author.

Proceedings of FG-2006
Editor: Shuly Wintner.
Copyright© 2007, CSLI Publications.

45

46/ JasoN EisNER AND JOHN BLATZ

We define weighted logic programs and sketch the general @drthe
transformations, enabling their application to new praggén NLP and other
domains. Several of the transformations (folding, unfoddimagic templates)
have been known in the logic programming community, but amegalized
here to our weighted framework and applied to NLP algorithive also
present a powerful generalization of folding—speculatiamhich appears
new and is able to derive some important parsing algorithms.

We also formalize these transformations in a way that we findenmtu-
itive than conventional presentations. Influenced by theharisms of cate-
gorial grammar, we introduce “slashed” terms whose valug Ioe regarded
as functions. These slashed terms greatly simplify ourtcocisons. In gen-
eral, our work can be connected to the well-establishedhtitee on grammar
transformation.

The framework that we use for specifying the weighted loga@gpams is
roughly based on that of Dyna (Eisner et al., 2005), an implaed system
that can compile such specifications infi@ent G++. Some of the programs
could also be handled by PRISM (Zhou and Sato, 2003), an mgnéed
probabilistic Prolog.

Itis especially useful to have general optimization teghes for dynamic
programming algorithms (a special case in our frameworgabnse compu-
tational linguists regularly propose new such algorithBymamic program-
ming is used to parse manyfiirent grammar formalisms, and in syntax-
based approaches to machine translation and language inthdelis also
used in finite-state methods, stack decoding, and gramrdaciion.

One might select program transformations either manuaillgutomati-
cally. Our goal here is simply to illustrate the search spafceemantically
equivalent programs. We do not address the practical qurestisearching
this space—that is, the question of where and when to apglyrénsfor-
mations. For some programs and their typical inputs, a toamstion will
speed a program up (at least on some machines); in other, dagiisslow it
down. The actualféect can of course be determined empirically by running
the transformed program on typical inputs (or, in some casas be rea-
sonably well predicted from runtime profiles of thetransformegbrogram).
Thus, one could in principle use automated methods, suctoekastic lo-
cal search, to search for sets of transformations that geogood practical
speedups.

6.2 Weighted Logic Programming

Before moving to the actual transformations, we will takeesal pages to
describe our proposed formalism of weighted logic programgm

TRANSFORMATIONS ON WEIGHTED LOGIC PROGRAMS / 47

6.2.1 Logical Specification of Dynamic Programs

We will use context-free parsing as a simple running exaniéeall that one
can write a logic program for CKY recognition (Younger, 19638 follows,
whereconstit(X,1,K) is provable ff the context-free grammar (CFG), starting
at nonterminak, can generate the input substring from positiom position
K. The capitalized symbols avariables.

constit(X,l,K) :- rewrite(X,W), word(W,1,K).

constit(X,1,K) :- rewrite(X,Y,Z), constit(Y,l,J), constit(Z,J,K).

goal :- constit(s,0,N), length(N).

rewrite(s,np,vp). % tiny grammar
rewrite(np,det,n).
rewrite(np,”"Dumbo”).
rewrite(np,’flies”).

rewrite(vp,'flies”).

word("Dumbo”,0,1). % tiny input sentence

word("flies”,1,2).

length(2).

For example, the second line permits us to prove the prapostnstit(X,1,K)

once we can prove that there exist constituemistit(Y,1,J) andconstit(z,J,K)—
which are adjaceft—as well as a context-free grammar ruésvrite(X,Y,2)

(i.e,X — Y Z) to combine them. This deduction is permitted &y specific
values ofX,Y,z (presumably nonterminals of the grammar) an# (presum-
ably positions in the sentence).

We suppose in this paper that the whole program above is figubeit
compile time. In practice, one might instead wait until iome to provide the
description of the sentence (therd andlength facts) and perhaps even of
the grammar (theswrite facts). In this case our transformations could be used
only on the part of the program specified at compile time.

The basic objects of the program daeems, defined in the usual way (as
in Prolog). Following parsing terminology, we refer to sotaems astems;
these are terms that the program might prove in the courds ekéecution,
such asonstit(np,0,1) but notnp (which appears only assub-termof items)
nor constit(foo(bar),baz).* Each line in the program is anference rule (or

2By convention, we regard positions as fallibgtweeninput words, so that the substring
from | to J is immediately adjacent to the substring frdno K.

3This is generally safe provided that the runtime rules mayleéine in the head, nor evaluate
in the body, any term that unifies with the head of a compiteetrule. It is common to assume
further that all the runtime rules are facts, known colleji as thedatabase

4Itis of course impossible to determine precisely which &the progranwill prove without
running it. It is merely helpful to refer to terms as items whee are discussing their provability
or, in the case of weighted logic programs, their valuee(tit does have a more formal meaning

48/ JasoN EisNER AND JOHN BLATZ

clause.

Each of the inference rules in the above examplaige-restricted. In
the jargon of logic programming, this means thatvatiables (capitalized)
in the rule’s left-hand side (rulleead) also appear in its right-hand side (rule
body). A rule with an empty body is called fact. If all rules are range-
restricted, then all provable terms ay@und terms, i.e., terms such asn-
stit(s,0,2) that do not contain any variables.

Logic programs restricted in this way correspond to the figratical
deduction systems” discussed by Shieber et al. (1995)e5{{097) gives
many parsing algorithms in this form. More generally, peogs that consist
entirely of range-restricted rules correspond to coneerati dynamic pro-
gramming algorithms, and we may refer to them informallgwasamic pro-
grams.

Dynamic programs can be evaluated by various techniquesspécific
technique chosen is not of concern to this paper except tiroseg.6. How-
ever, for most NLP algorithms, it is common to use a bottonouforward
chaining strategy such as the one given by Shieber et al., whichiitehat
proves all transitive consequences of the facts in the pragin the exam-
ple above, forward chaining starts with terd, rewrite, andlength facts and
derives successively wideonstit items, eventually derivingoal iff the input
sentence is grammatical. This corresponds to chart pansitiy the role of
the chart being played by a data structure that remembeichviteims have
been proved so far.

This paper deals with general logic programs, not just dyognmograms.
For example, one may wish to state once and for all that anltegsvord
is available aeverypositionK in the sentenceword(epsilon,K,K). We allow
this because it will be convenient for most of our transfaiores to intro-
duce new non-range-restricted rules, whichdarivenon-ground items such
as word(epsilon,K,K). The above execution strategies continue to apply, but
the presence of non-ground items means that they must nownifseation
matching to find previously derived terms of a given form. &le, if the
non-ground itenword(epsilon,K,K) has been derived, representing an infinite
collection of ground terms, then if the program looks up teedf terms in
the chart matchingord(w,2,K), it should find (at leastyord(epsilon,2,2).

in a practical setting—where, foiffeciency, the user or the compiler declaresitem datatype
that is guaranteed to be able to represent at least all geotems, though not necessarily all
terms. We then use “item” to refer to terms that can be reptedeby this explicit datatype.)

5An alternative strategy is Prolog’s top-dowackward-chaining strategy, which starts by
trying to provegoal and tries to prove other items as subgoals. However, tlagegly will waste
exponential time by re-deriving the same constituents fiiedint contexts, or will fail to termi-
nate if the grammar is left-recursive. It may be rescued byoigation, also known as “tabling,”
which re-introduces a chart (Sagonas et al., 1994).

TRANSFORMATIONS ON WEIGHTED LOGIC PROGRAMS / 49

One can often eliminate non-range-restricted rules (itiqdar, the ones
we introduce) to obtain a semantically equivalent dynamagpam, but we
do not here explore transformations for doing so systerlitic

6.2.2 Weighted Logic Programs

We now define our notion afieightedogic programs, of which the most use-
ful in NLP are the semiring-weighted dynamic programs dsseud by Good-
man (1999) and Eisner et al. (2005). See the latter paperddcassion of
relevant work on deductive databases with aggregation, (€iting, 2002,
Van Gelder, 1992, Ross and Sagiv, 1992).

In a weighted logic program, each provable item haalae Our running
example is the inside algorithm for context-free parsing:

constit(X,l,K) += rewrite(X,W) * word(W,1,K).

constit(X,l,K) += rewrite(X,Y,Z) * constit(Y,l,J) * constit(Z,J,K).

goal += constit(s,0,N) * length(N).

rewrite(s,np,vp) = 1. % p(s—>npvp|s)
rewrite(np,det,n) = 0.5. % p(hp — det n | np)
rewrite(np,”"Dumbo”) = 0.4. % p(np — "Dumbo” | np)
rewrite(np,"flies”) = 0.1. % p(vp — "flies” | vp)
rewrite(vp,’flies”) = 1. % p(vp — "flies” | vp)
word("Dumbo”,0,1) = 1. % 1 for all words in the sentence
word("flies”,1,2) = 1.

length(2) = 1.

This looks just like the unweighted logic program in sect@@.1, except
that now the body of each inference rule is an arbitegressionand the

.- operator is replaced by aygregation operatorsuch asr= or max=. One
might call these rules “Horn equations,” by analogy with (definite) Horn
clauses of the unweighted casefakt is now a rule whose body is a constant
Or an expression on constants.

To understand the meaning of the above program, consideex@am-
ple the itemconstit(s,0,2). The old version of line 2 allowed one farove
constit(s,0,2) if rewrite(s,Y,Z), constit(Y,0,J), andconstit(z,J,2) were all true for
at least one tripler,z,J. The new version of line 2 insteatkfines the valuef
constit(s,0,2)—o0r more precisely, as

Z rewrite(s,Y,Z) * constit(Y,0,J) * constit(Z,J,2)

Y,Z,J
The aggregation operater requires a sum over all ways of grounding the
variables that appear only in the rule body, namelyg, andJ. The rest of
the value ofconstit(s,0,2) is added in by line 1. We will formalize all of this in
section 6.2.3 below.

50/ JasoN EisNer AND JoHN Brarz

To put this another way, one way of grounding line 2 (i.e., ovay
of substituting a ground term for each of its variables}asstit(s,0,2) +=
rewrite(s,np,vp) * constit(np,0,1) * constit(vp,1,2). Therefore, one operand to
+= in defining the value ofonstit(s,0,2) will be the value (if defined) of
rewrite(s,np,vp) * constit(np,0,1) * constit(vp,1,2).

The result—for this program—is that the computed valueaétit(X,!,J)
will be the traditional inside probabilitg (1, J) for a particular input sentence
and gramma¥.

If the heads of two rules unify, then the rules must use theesaygrega-
tion operator, to guarantee that each provable term’s \Valaggregated in a
consistent way. Eactonstit(. . .) term above is aggregated with.

Substitutingnax= for += throughout the program would find Viterbi prob-
abilities (best derivation) rather than inside probaieiit(sum over deriva-
tions). Similarly, we can obtain the unweighted recognifesection 6.2.1 by
writing expressions over boolean values:

constit(X,1,K) |= rewrite(X,Y,Z) & constit(Y,l,J) & constit(Z,J,K).

Of course, these programs are all essentially recognizther than
parsers. They only compute a boolean or real valuegéat. To recover
actual parse trees, one can extract the proof treegoaf To make the
parse trees accessible to the program itself, one can deBepaaate item
parse(constit(X,1,K)) whose value is a tré&We do not give the details here to
avoid introducing new notation and issues that are orthaljorthe scope of
this paper.

The above examples, like most of our examples, can be habgl¢de
framework of Goodman (1999). However, we allow a wider classules.
Goodman allows only range-restricted rules (cf. our sec@®.1), and he
requires all values to fall in a single semiring and all ruiesise only the
semiring operations. The latter requirements—in pargictie distributivity
property of the semiring—imply that an item’s value can berfd by sep-
arately computing values for all of its complete proof treesl then aggre-
gating them at the end. That is not the case for neural netygedme trees,

6However, unlike probabilistic programming languages (Zlamd Sato, 2003), we do not
enforce that values be reals in [or have probabilistic interpretations.

“Using| for “or” and & for “and.” The aggregation operatogs and&= can be regarded as
implementing existential and universal quantification.

8Another option is to say that the value oonstit(X,l,K) is not just a number but a (num-
ber,tree) pair, and to defirmax= over such pairs Goodman (1999). This resembles the use
of semantic attachments to build output in programming Uagg parsers. However, it requires
building a tree (indeed, many trees, of which the best is)Kepteachconstit, including con-
stituents that do not appear in the final parse. Our prefescheéme is to hold the best tree in
a separatgarse(constit(X,1,K)) item. Then we can choose to use backward chaining, or the
magic templates transformation of section 6.6, to limit computation of parse trees to those
that are needed to assemble the final tpegse(goal).

TRANSFORMATIONS ON WEIGHTED LOGIC PROGRAMS / 51

practical NLP systems that mix summation and maximizatowther useful
systems of equations that can be handled in our more genanag¥work.

6.2.3 Semantics of Weighted Logic Programs

We now formalize the semantics of a weighted logic programd, define
what it means for a program transformation to preserve timanécs. Read-
ers who are interested in the actual transformations may tsl$ section,
except for the brief definitions of the special aggregatiperator= and of
side conditions.

In an unweighted logic program, the semantics is the set o¥gtie
ground terms.For aweightedogic program, the semantics is a partial func-
tion, thevaluation function, that maps each provable ground terno a
value [r]. All items in our example above take valueskn However, one
could use values of any type or of multiple types.

The domain of the valuation functiofi] is the set of ground terms for
which there exist finite proofs under th@weightedrersion of the program.
We extend[-] in the obvious way to expressions on provable ground terms:
for example[x*y] = [x] * [y] provided thafx] and[y] are defined.

For each ground term that is provable in prograr®, let £(r) be the
non-empty multiset of all expressiots over provable ground terms, such
thatr &= E grounds some rule @®. Herea,= denotes the single aggregation
operator shared by all those rules.

We now interpret the weighted rules as a set of simultanequat®ns
that constrain thé-] function. If &= is +=, then we require that

= > [E]
EeP(r)
(perhaps permittindr] = « if the sum diverges). More generally, we require
that
[[I’ﬂ = [[El]] D [[Ezﬂ S ...
where®(r) = {Ea, Ey, .. .}. For this to be well-definedy, must be associative
and commutative. I, = is the special operatet, as in the final rules of our
example, then we sét] = [E;] if P(r) is a singleton setE;}, and generate
a runtime error otherwise.

Example. In the example of section 6.2.2, lines 1-2, this means thiatrip
particularX, I, K for which constit(X,1,K) is a provable item[constit(X, I, K)]
equals

9Note that if a non-ground term can be proved under the progsantan any one of the
infinitely many ground terms that instantiates (specializhat non-ground term. Our formal
semantics are described in terms of these ground terms only.

52/ JasoN EisNer AND JoHN Brarz

Ywrewrite(X,W)] = [word(W,1,J)]
+ X gyzlrewrite(X,Y,Z)] * [constit(Y,I,J)] * [constit(Z,J,K)]

where, for example, the second summation ranges over téolastd, Y, Z
such that the summand has a value. We sum @véZ because they do not
appear in the rule’s headnstit(X, I, K), which is being defined.

Remark. Our constraints on the valuation functipf are equivalent to say-
ing that it is a fixed point of an “equational update” operdtpr'® which acts

on valuation functiong and is analogous to the “monotone consequence”
operator for unweighted logic programs. Such a fixed poirgdneot be
uniquel! Operationally, one may seek a single fixpoint by initialgin= {},
repeatedly updatingto Tp(l), and hoping for convergence. That is the basic
idea of the forward-chaining algorithm in section 6.2.40vel

Side conditions. A mechanism for handling “side conditions” (e.g., Good-
man, 1999) is to use rules like

a +=b * c whenever ?2d.

We define]b * c whenever 2d] = [b *], independent of the value df But by
our earlier definitions, it will appear iff(a) and be added intfa] only if the
side conditiord, along withb andc, is provable.

Definition. Roughly speaking, a program transformatin— %’ is said
to besemantics-preservingff it preserves the partial functign]. In other
words, exactly the same ground terms must be provable uotlepbograms,
and they must have the same values.

We make two adjustments to this rough definition. First, fmerality, we
must handle the case whePeand?’ do not both have uniquely determined
semantics. In general, we say that the transformation issgos-preserving
iff it preserves theetof valuation functions.

Second, we would like a program transformation to be ablat@duce
new provable items for its own use. Therefore, we only regjhiat it preserve

0Thatis,[-] = Te([-]). Given a valuation functioh, T»(1) is defined as follows: for ordinary
ground terms, put

(Te()(r) = D I(E)
E such thak is a ground expression where
I(E) is defined and €@, = E grounds some rule ¢

if this sum is non-empty, and leave it undefined otherwiseeriféxtendl (1) over expressions
as usual.

11There is arich line of research that attempts to more prigai@aracterize which fixed point
gives the “intuitive” semantics of a logic program with néga or aggregation (see e.g. Fitting,
2002, Van Gelder, 1992, Ross and Sagiv, 1992).

12yhenever ?d is defined to mean “whenever d is provable,” wherghsnever d would mean
“whenever d’s value igrue.” The latter construction is also useful, but not neededis paper.

TRANSFORMATIONS ON WEIGHTED LOGIC PROGRAMS / 53

therestriction of [-] to the Herbrand base @t (more precisely, to the Her-
brand base of all expressible constants and the funct@?$.imhus, a trans-
formed version of the inside algorithm would be allowed toyar additional
temp(...) items, but not additionalonstit(. . .) items. The user may therefore
safely interrogate the transformed program to find out wérettmstit(np,0,5)

is provable and if so, what its value is.

Notice that a two-step transformatigh — #” — £’ might introduce
newtemp(...) items in the first step and eliminate them in the second. This
composite transformation may still be semantics presgreiren though its
second stef?”’ — P’ is not.

All of the transformations developed in this paper are idezhto be
semantics-preserving (except for rule elimination andim@gnplates, which
preserve the semantics of only a subset of the ground teffmg)rove this
formally, one would show that every fixed point & is also a fixed point
of Ty, when restricted to the Herbrand basefpfand conversely, that every
fixed point of? can be extended to a fixed pointD# .

6.2.4 Computing Semantics by Forward Chaining

A basic strategy for computing a semantic interpretatiotidevard chain-
ing.” The idea is to maintain current values for all provesis, and to prop-
agate updates to these values, from the body of a rule to &d, hatil all
the equations are satisfied. This may be done in any orden, margllel (as
for the equational update operator of section 6.2.3). Nweih the presence
of cycles such asg += 0.9 * x, the process can still convergemericallyin
finite time (to finite values or too, representing divergence). Indeed, the for-
ward chaining strategy terminates in practice for many ot of practical
interest!®

As already noted in section 6.2.1, Shieber et al. (1995) gaf@ward
chaining algorithm (elsewhere called “semi-naive bottoprevaluation”) for
unweightedlynamigorograms. Eisner et al. (2005) extended this to handle ar-
bitrary semiring-weighted dynamic programs. Goodman) @@ve a mixed
algorithm.

Dealing with our full class of weighted logic programs—natt semiring-
weighted dynamic programs—is a substantial generaliza@mce we allow
inference rules that are not range-restricted, the alyorihust derive non-
ground items and store them and their values in the charplatadih the value
of foo(3,3), if not explicitly derived, by “backing fi” to the derived value of
non-ground items such & (X,X) or foo(X,3), which are preferred in turn to

130f course, no strategy can possibly terminate on all progrdmecause the language (even
when limited to unweighted range-restricted rules) is ptwv@nough to construct arbitrary Tur-
ing machines. We remark that forward chaining may fail tonieate either because of oscillation
or because infinitely many items are derived (esN) = N).

54/ JasoN EisNErR AND JoHN Brarz

the less specifibo(X,Y). Once we drop the restriction to semirings, the algo-
rithm must propagate arbitrary updates (notice that it istriaal to update

the result ofmax= if one of its operands decreases). Certain aggregation op-
erators also allow important optimizations thanks to tiseiecial properties
such as distributivity and idempotence. Finally, we mayhis allow rules
such aseciprocal(X) = 1/X that cannot be handled at all by forward chaining.
We defer all these algorithmic details to a separate papeusing instead on
the denotational semantics.

6.3 Folding: Factoring Out Subexpressions

Weighted logic programs are schemata that define possitajtensystems of
simultaneous equations. Finite systems of equations dan bé rearranged
without afecting their solutions (e.g., Gaussian elimination). lmghme way,
weighted logic programs can be transformed to obtain newrpras with
better runtime.

Notation. We will henceforth adopt a convention of underlining anyivar
ables that appear only in a rule’s body, to more clearly iagi¢che range of
the summation. We will also underline any variables thateapmnly in the
rule’s head; these indicate that the rule is not rangeicéstk.

Example. Consider first our previous rule from section 6.2.2,
constit(X,1,K) += rewrite(X,Y,2) * constit(Y,l,J) * constit(Z,J,K).

If the grammar ha®l nonterminals, and the input is amword sentence
or ann-state lattice, then the above rule can be grounded in N - n®)
different ways. For this—and the other parsing programs we denkere—
it turns out that the runtime of forward chaining can be kepwd to O(1)
time per grounding? Thus the runtime i©(N?® - n).

However, the following pair of rules is equivalent:

temp(X,Y,Z,1,J) =rewrite(X,Y,Z) * constit(Y,l,J).

constit(X,I,K) +=temp(X,Y,Z,1,J) * constit(Z,J,K).

We have just performed a weighted version of the claséidding trans-
formation for logic programs (Tamaki and Sato, 1984). Thiginal body
expression would be explicitly parenthesizedrasrite(X,Y,Z) * constit(Y,1,J))

* constit(Z,J,K); we have simply introduced a “temporary item” (like a tem-
porary variable in a traditional language) to hold the restithe parenthe-
sized subexpression, then “folded” that temporary itera the computation

14Assuming that the grammar is acyclic (in that it has no unatg cycles) and so is the
input lattice. Even without such assumptions, a meta-trmaasf McAllester (1999) allows one
to derive asymptotic run-times of appropriately-indexedaard chaining from the number of
instantiations. However, that meta-theorem applies anlyntweighted dynamic. Similar results
in the weighted case require acyclicity. Then one can uséwbeghase method of Goodman
(1999), which begins by running forward chaining on an umgtgd version of the program.

TRANSFORMATIONS ON WEIGHTED LOGIC PROGRAMS / 55

of constit. The temporary item mentions all the capitalized varialitethe
expression.

Distributivity. A more important use appears when we combine folding
with the distributive law. In the example above, the secarid's body sums
over the (underlined) free variables, Y, andz. However,Y appears only
in thetemp item. We could therefore have summed over values before
multiplying by constit(z,J,K), obtaining the following transformed program
instead:

temp2(X,Z,1,J) += rewrite(X,Y,Z) * constit(Y,l,J).

constit(X,I,K) +=temp2(X,Z,1,J) * constit(Z,J,K).

This version of the transformation is permitted only beeaudistributes
over=*.1® By “forgetting” Y as soon as possible, we have reduced the runtime
of CKY from O(N2 - n®) to O(N2 - n? + N2 - n%).

Using the distributive law to improve runtime is a well-knovechnique.

Aji and McEliece (2000) present what they call a “generaligéstributive
law,” which is equivalent to repeated application of thedfoy transforma-
tion. While their inspiration was the junction-tree aldbm for probabilistic
inference in graphical models (discussed below), they destnate the ap-
proach to be useful on a broad class of weighted logic program

A categorial grammar view of folding. From a parsing viewpoint, notice
that the itemtemp2(X,z,1,J) can be regarded as a categorial grammar con-
stituent: an incomplet® missing a subconstitueatat its right (i.e., arx/z)

that spans the substring frarto J. This leads us to an interesting and appar-
ently novel way to write the transformed program:

constit(X,l,K)/constit(Z,J,K) += rewrite(X,Y,Z) * constit(Y,I,J).

constit(X,l,K) += constit(X,l,K)/constit(Z,J,K) * constit(Z,J,K).

HereA/B is syntactic sugar faslash(A,B). Thatis,/ is used as an infix functor
and does not denote division, However, it is mearsguggestivision: as the
second rule showsgyB is an item which, if multiplied by, yields a summand
of A. In effect, the first rule above is derived from the original rule Fa t
start of this section by dividing both sides bynstit(z,J,K). The second rule
multiplies the missing factatonstit(z,J,K) back in, now that the first rule has
summed ovey.

Notice thatk appears free (and hence underlined) in the head of the first
rule. The only slashed items that are actugligvableby forward chaining
are non-ground terms such ashstit(s,0,K)/constit(vp,1,K). That is, they have
the formconstit(X,l,K)/constit(Z,J,K) whereX,1,J are ground variables butre-
mains free. The way that appears twice in the slashed item (i.e., internal

15All semiring-weighted programs enforce a similar disttibel property. In particular, the
trick can be applied equally well to common cases discussesétion 6.2.2: Viterbi parsing
(max distributes over eithef or +) and unweighted recognitiondistributes ove&.

56/ JasoN EisNer AND JoHN Brarz

unification) indicates that the missiZgs always at theight of the X, while

the fact thak remains a variable means that the shared right edge of the ful
X and missing are still unknown (and will remain unknown until the second
rule fills in a particulaz). Thus, the first rule performs a computation once
for all possiblex—always the source of folding’diéciency.

Our earlier program withemp2 could now be obtained by a further au-
tomatic transformation that replacesalhstit(X,1,K)/constit(z,J,K) having free
K with the more compactly storedmp2(X,z,1,J). The resulting rules are all
range-restricted.

We emphasize that although our slashed items are inspireategorial
grammars, they can be used to describe foldingrigweighted logic pro-
gram. Section 6.5 will further exploit the analogy to obtainovel “specula-
tion” transformation.

Further applications. The folding transformation unifies various ideas that
have been disparate in the natural language processirgflite. Eisner and
Satta (1999) speed up parsing with bilexical context-fresrgnars from
O(n°) to O(n*), using precisely the above trick (see section 6.4 below}rig

et al. (2005) employ the same “hook trick” to improve the coexjty of
syntax-based MT with an-gram language model.

Another parsing application is the common “dotted ruletkriEarley,
1970). If one’s CFG contains ternary rulgs— Y1 Y2 Y3, the naive CKY-
like algorithm take€D(N* - n%) time:

constit(X,l,L) += ((rewrite(X,Y1,Y2,Y3) * constit(Y1,1,J))

* constit(Y2,J,K)) * constit(Y3,K,L).
Fortunately, folding allows one to sum first ovet before summing sepa-
rately overy2 andJ, and then over3 andK:

temp3(X,Y2,Y3,1,J) += rewrite(X,Y1,Y2,Y3) * constit(Y1,1,J).

temp4(X,Y3,ILK) +=temp3(X,Y2,Y3,1,J) * constit(Y2,J,K).

constit(X,l,L) += temp4(X,Y3,1,K) * constit(Y3,K,L).

This restore©(n®) runtime (more preciselD(N*-n? + N2-n®+ N?-n3))16 by
reducing the number of nested loops. Even if we had declimedin oveiv1
andY2 in the first two rules, then the summation ovawould already have
obtainedO(n®) runtime, in éfect by binarizing the ternary rule. For exam-
ple, temp4(X,Y1,Y2,Y3,l,K) would have corresponded to a partial constituent
matching thedottedrule X — Y1 Y2 . Y3. The additional summations ovet
andY2 result in a more #icient dotted rule that “forgets” the names of the
nonterminals matched so fat,— ? ? . Y3. This takes further advantage of
distributivity by aggregating dotted-rule items (with) that will behave the
same in subsequent computation.

18For a dense grammar, which may have ugNfoternary rules. Tighter bounds on grammar
size would yield tighter bounds on runtime.

TRANSFORMATIONS ON WEIGHTED LOGIC PROGRAMS / 57

The variable elimination algorithm for graphical models e viewed as
repeated folding. An undirected graphical model expreasgeist probability
distribution overP,Q by marginalizing (summing) over a product of clique
potentials. In our notation,

marginal(PQ) += p1(...) *p2(...)*--- *pn(...).

where a function such g%(Q,X,Y) represents a clique potential over graph
nodes corresponding to the random varialgdesy. Assume without loss of
generality that variabl& appears as an argument onlyptQ1, pk:2, - - - » Pn-
We mayeliminatevariablex by transforming to

temp5(...) = preal. X) T T pp(el, X L),

marginal(PQ) +=pa(...) e r () * temp5(....).
Line 2 no longer mentiong because line 1 has summed over it. To elimi-
nate the remaining variables one at a time, the variabldrgition algorithm
applies this procedure repeatedly to the last tihe.

Common subexpression elimination. Folding can also be used multiple
times to eliminate common subexpressions. Consider tHewfislg code,
which is part of an inside algorithm fdwilexical CKY parsing*8
constit(X:H,I,K) += rewrite(X:H,Y:H,Z:H2)
* constit(Y:H,1,J) * constit(Z:H2,J,K).
constit(X:H,I,K) += rewrite(X:H,Y:H2,Z:H)
* constit(Y:H2,1,J) * constit(Z:H,J,K).

Here X:H is syntactic sugar fontlex(X,H), meaning a nonterminal whose
head word is the lexical iterd. The grammar uses two types of lexicalized
binary productions (defined bgwrite facts not shown here), which pass the
head word to the left or right child, respectively.

We could fold together the last two factors of the first rul@lain

temp6(Y:H,Z:H2,1,K) += constit(Y:H,l,J) * constit(Z:H2,J,K).

constit(X:H,1,K) += rewrite(X:H,Y:H,Z:H2) * temp6(Y:H,Z:H2,|,K).

constit(X:H,1,K) += rewrite(X:H,Y:H2,Z:H)

* constit(Y:H2,1,J) * constit(Z:H,J K).

We canreusethis definition of theemp rule to fold together the last two fac-
tors of line 3—which is the same subexpression, modulo krieenaming.

1"Determining the optimal elimination order is NP-compléiewever, there are many heuris-
tics in the literature (such as min-width) that could be u§adtomatic optimization of long rules
is needed.

18This algorithm is obviously an extension of the ordinaryidesalgorithm in section 6.2.2.

The other rules are
constit(X:H,I,K) += rewrite(X,H) * word(H,I,K).
goal += constit(s:H,0,N) * length(N).

58/ JasoN EisNer AND JoHN Brarz

Given a new ruldR in the formr e= F[g] (which will be used to replace a
group of rulesRy, ..., R,in P). LetSy, ..., S, be the complete list of rulgs
in £ whose heads unify witls. Suppose that all rules in this list use as
their aggregation operator.

Now for each, whensis unified with the head &, the tuple (, F, s, S;)*°
takes the formr{, Fi, 5, 5 o= E;). Suppose that for eachthere is a disting
rule R in the program that is equal tpe= Fi[E;], modulo renaming of its
variables.

Then the folding transformation deletes theiulesRy, . . ., Ry, and replace
them with the new rul®, provided that

—

[2)

= Any variable that occurs in any of tHg which also occurs in eithdf;
or r; must also occur irg.?°

»Eithero= is simply=,2! or else the distributive properf{[u] ® F[v]] =
[F[« @ v]] holds for all assignments of terms to variables and all v@na
functions[-].?

19Before forming this 4-tuple, rename the variablesSinso that they do not conflict with
those inr, F, s. Perform the desired unification within the 4-tuple by umityit with the fixed
term(R,F,S,S ©= E), which contains two copies &.

20This ensures that computirggby ruleS; does not sum over this variable, which would break
the covariation of; with F or r as required by the original rulg.

2IFor instance, in the very first example of section 6.3, tér@p item was defined using
and therefore performed no aggregation (see section 6No3jistributivity was needed.

22That is, all valuation functions over the space of grounch&rincluding dummy terms
andv, when extended over expressions in the usual way.

FIGURE 1 The weighted folding transformation.

(Below, for clarity, we explicitly and harmlessly swap themes ofH2 andH
within thetemp rule.)

temp7(Y:H2,Z:H,1,K) += constit(Y:H2,1,J) * constit(Z:H,J,K).
constit(X:H,1,K) += rewrite(X:H,Y:H,Z:H2) * temp7(Y:H,Z:H2,1,K).
constit(X:H,1,K) += rewrite(X:H,Y:H2,Z:H) * temp7(Y:H2,Z:H,| K).

Using the sameemp7 rule (modulo variable renaming) in both folding
transformations, rather than introducing a new tempoiterm ifor each fold,
gives us a constant-factor improvement in time and space.

Formal definition of folding. Our definition, shown in Figure 1, may seem
surprisingly complicated. Its most common use is to repkacingle rule
r &= F[E] with r &= F[g] in the presence of a rulee= E. However, we have
given a more general form that is best understood as prgcseatrsing the
weighted unfolding transformation to be discussed in thd section (Fig-
ure 2). In unfolding, it is often useful fasto be defined by a group of rules

TRANSFORMATIONS ON WEIGHTED LOGIC PROGRAMS / 59

whose heads unify witk (i.e., they may be more general or specific patterns
thans). We define folding to allow the same flexibility.

In particular, this definition of folding allows an additialuse of distribu-
tivity. Both the original itemr and the temp itens may aggregate values
not just within a single rule (summing over free variableghia body), but
also acros# rules. In ordinary mathematical notation, we are perfogran
generalized version of the following substitution:

Before After
r=Y",(f«xE) = r="fxs
S= Zinzl Ei = S= Zin:l Ei

given the distributive property,;(f = Ej) = f = >, E;. The common context in
the original rules is the function “multiply by expressibfi so the temp item
splays the role of / f.

Figure 1 also generalizes beyond “multiply By It allows an arbitrary
common contexE—a sort of function. In Figure 1 and throughout the paper,
we use the notatioR[E] to denote thditeral substitution of expressiada for
all instances of: in an expressiofr over items, even iK contains variables
that appear irE or elsewhere in the rule containifidE]. We assume that
is a distinguished symbol that does not appear elsewhere.

Generalized distributivity. Figure 1 states the required distributive prop-
erty as generally as possible in terms Bf An interesting example is
[log(p) + log(a)] = [log(p * @)], which says thatog distributes over- and
changes it tor. This means that the definitiosd) *= e(J,K) may be used
to replacer += b(1,J) * log(e(J,K)) with r += b(1,J) * log(s(J)). Heren = 1,

F = b(1,9) * log(u), E1 = e(J,K), ands = s(J).

By contrast, the definition+= e(J) maynotbe used to replacer= e(J)*e(J)
with r += s*s, which would incorrectly replace a sum of squares with a sgjua
of sums. If we takd- to bee(J)*u or u*e(J), it is blocked by the first require-
ment in Figure 1 (variable occurrence). If we tadkeo beu*y, it is blocked
by the second requirement (distributivity).

Introducing slashed definitions for folding. Notice that Figure 1 requires
the rules defining the temp itesto be in the programalreadybefore folding
occurs. If necessary, their presence may be arranged wed tiéfinition in-
troduction transformation that addsash(r,F) o= E; for eachi, whereslash is

a new functor not used elsewhereffnando is chosen to ensure the required
distributive property. We then taketo beslash(r,F) (or if one wants to use
syntactic sugar/F).

Note that thers will be slash(r;,F;), which automatically satisfies the re-
quirement in Figure 1 that certain variables that occufiiror ri must also
occur ins. This technique of introducing slashed items will reappeaec-
tion 6.5, where it forms a fundamental part of our specutettiansformation.

60/ JasoN EisNer AND JoHN Brarz

Let R be a rule inP, given in the formr @= F[g]. Let Sy,..., S, be the
complete list of rules i? whose heads unify witk. Suppose that all rules
in this list useo as their aggregation operator.

Now for each, whensis unified with the head &;, the tuple (, F, s, S;)?3
takes the formr(, Fi, s, 5 o= E)).

Then the unfolding transformation deletes the mleeplacing it with the
new rulesr; = Fi[Ej] for 1 < i < n. The transformation is allowed under
the same two conditions as for the weighted folding tramsédion:

= Any variable that occurs in any of thHg which also occurs in eithdf;
or ri must also occur irs.
*Either © = is simply =, or else we have the distributive propejrty

[Flu] @ F[V]] = [Fluov]].

23Before forming this tuple, rename the variablesSjrso that they do not conflict with those
inr,F, s

FIGURE2 The weighted unfolding transformation.

If no operator can be found such that the distributive property will hold,
andn = 1, then one can still use folding without the distributiveperty
(as in the example that opened this section). In this caseduace a rule
temp(E;) = E;, and takes to betemp(E;), which “memoizes” the value of
expressiork;. Again, this satisfies the requirements of Figure 1.

6.4 Unfolding and Rule Elimination: Inlining Subroutines

Unfolding. The inverse of the folding transformation, callenfolding (Fig-
ure 2), replaces with its definition inside the rule bodye= F[9]. This def-
inition may comprise several rules whose heads unify witli sis regarded
as a subroutine call, then unfolding is tantamount to infirthat call.

Recall that d&olding transformation leaves the asymptotic runtime alone,
or may improve it when combined with the distributive law.rtdeunfolding
makes the asymptotic runtime the same or worse. Howeverytmelp the
practical runtime by reducing overhead. (This is exactly the usualaent
for inlining subroutine calls.)

An obvious example is program specialization. Consideiirible algo-
rithm in section 6.2.2. If we take the second line,

constit(X,l,K) += rewrite(X,Y,Z) * constit(Y,l,J) * constit(Z,J,K).
and unfoldrewrite(X,Y,2) inside it, then we replace the above rule witbediof

rules, one for each binary production of the grammar (i&cherule whose
head unifies withewrite(X,Y,2)):

TRANSFORMATIONS ON WEIGHTED LOGIC PROGRAMS / 61

constit(s,I,K) += 1 * constit(np,l,J) * constit(vp,J,K).
constit(np,l,K) += 0.5 * constit(det,l,J) * constit(n,J,K).

The resulting parser is specialized to the grammar, perpepsding a
constant-time speedup. It avoids having to look up the valuenrite(s,np,vp)
or rewrite(np,det,n) since these are now “hard-coded” into specialized infer-
ence rules. A compiled version can also “hard-code” patteatching rou-
tines against specialized patterns suchaastit(np,1,J); such pattern matches
are used during forward or backward chaining to determinihviules to
invoke.

Note that recursive calls can also be unfolded. For exampiatit is re-
cursively defined in terms of itself. If we unfold thenstit(np,1,J) inside the
first of the new rules above, we get

constit(s,I,K) += 1 * 0.5 * constit(det,l,L) * constit(n,L,J) * constit(vp,J,K).

constit(s,I,K) += 1 * 0.4 * word("Dumbo”,1,J) * constit(vp,J,K).

constit(s,I,K) += 1 * 0.1 * word("flies”,1,J) * constit(vp,J,K).

Unfolding is often a precursor to other transformations. &le, the
patternconstit(vp,1,J) above can now be transformeddmstit_vp(1,J) for more
efficient storage. Furthermore, constant subexpressionsiie can now be
replaced in the source code by their values—a transformé#tiat is known,
not coincidentally, as constant folding. We will see anotiseful example of
this unfold-refold pattern below, and yet another when wivdehe (Eisner
and Satta, 1999) algorithm in section 6.5.1.

Rule elimination. A practically useful transformation that is closely rethte
to unfolding is what we caltule elimination (Figure 3). Rather than fully
expanding one call to subroutirsgit removes one of the defining clauses of
sand requiresll of its callers to do the work formerly done by that clause.
This may change or eliminate the definitionfso the transformation is
not semantics-preserving. The advantage of changing tharges is that
if some s items become no longer provable, then it is no longer necgssa
to store them in the chaf®. Thus,rule elimination saves spack also shares
the advantages of unfolding—it can specialize a progranvemaification to
compile-time, eliminate intermediate steps, and serve@seursor to other

267 similar space savings—while preserving semantics—cbelérranged simply by elect-
ing not to memoize these items, so that they are computedroantérather than stored. Indeed,
if we extend our formalism so that a program can specify whahémoize, then it is not hard
to combine folding and unfolding to define a transformatibat tacts just like rule elimination
(in that the callers are specialized) and yet preservesrg@saTlhe basic idea is to fold together
all of the other clauses that defing then unfold all calls te (which accomplishes the special-
ization), and finally declare that (which is no longer called) should not be memoized (which
accomplishes the space savings). However, we suppresetdits dis beyond the scope of this
paper. Our main interest in rule elimination in this papetoi€liminate rules fotemp items,
whose semantics were introduced by a previous transfasmatid need not be preserved.

62/ JasoN EisNer AND JoHN Brarz

Let S be a rule ofP to eliminate, with head. LetR;, Ry, ... R, be a com
plete list of rules i whose bodies may depend ef* Suppose that eagh
R can be expressed in the fomre;= Fi[s], wheres is a term that unifie
with sandF; is an expression that is independensgf

For each, whens is unified with the head @8, the tuple (;, Fi, 5, S) takeg
the form ¢/, F{, 5, § o= E/). Then the rule elimination transform remoyes
rule S from # and, for each, adds the new rulg e= F/[E[] (while also
retainingR). The transformation is allowed under the same two conaitio
as for weighted folding and unfolding:

[

= Any variable that occurs in any of tHg which also occurs in eithef/
orr/ must also occur irg.

sEither © = is simply =, or else we have the distributive property
[Flul @ FVI] = [Fluov].
Warning: This transformation alters the semantics of ground terrag th
unify with s.

2That is, the bodies of all other rules fhmust be independent sf The notion of indepen-
dence relies on the semantics of expressions, not on thepartprogran®. An expressiore
is said to bendependentof a terms if for any two valuation functions on ground terms that
differ only in the values assigned to groundings,ahe extensions of these valuation functions
over expressions assign the same values to all groundings of

25For example, supposgis s(X,X). Then the rule(X) += s(X,Y) * t(Y) should be expressed
asr(X) += (u * t(Y))[s(X,Y)], while r(X) min=s(X,Y) * s(X,Y) should be expressed g¥X) += (u *
w[s(X,Y)] andr min= 3 can be expressed amin= 3[s(X,X)]. However,r(X) += s(X,Y) * s(Y,Z)
cannot be expressed in the required form at all. We regaad a ground term in considering
whetherF; is independent o$.

FIGURE 3 The weighted rule elimination transformation.

transformations.

To see the dierence between rule elimination and unfolding, let us start
with the same example as before, and selectively eliminstale single bi-
nary productiomewrite(np,det,n) = 0.5. In contrast to unfolding, this no longer
replaces the original general rule

constit(X,l,K) += rewrite(X,Y,Z) * constit(Y,l,J) * constit(Z,J,K).
with a slew of specialized rules. Ratherkéepsthe general rule but adds a
specialization

constit(np,l,K) += 0.5 * constit(det,l,J) * constit(n,J,K).
while deletingrewrite(np,det,n) = 0.5 so that it does nadlsofeed into the gen-
eral rule.

A recursive example of rule elimination. An interesting recursive exam-
ple is shown below. The original program is in the first colufaliminating

TRANSFORMATIONS ON WEIGHTED LOGIC PROGRAMS / 63

its second or third rule gives the program in the second od ttolumn, re-
spectively. Each of these changes damages the semansicasofvarned, but
preserves the value of”

s+=1. s+=1.
s += 0.5*s. s += 0.5*s.

s += 0.5*1. s += 0.5*0.5*s.
r+=s. r+=s. r+=s.

r+=1. r += 0.5%s.

Fl=2[=2|El=L[1=2]|l=211=2

Unfolding or rule elimination followed by folding. 28 Recall the bilexical
CKY parser given near the end of section 6.3. The first rulgioailly shown
there has runtim®(N2 - n°), since there ar#l possibilities for each oX,Y,z
andn possibilities for each of,J,K,H,H2. Suppose that instead of that slow
rule, the original programmer had written the followingdet! version:

temp8(X:H,Z:H2,1,J) += rewrite(X:H,Y:H,Z:H2) * constit(Y:H,I1,J).

constit(X:H,1,K) += temp8(X:H,Z:H2,1,.J) * constit(Z:H2,J,K).

This partial program has asymptotic runtimeéNe' -n* 4+ N?- n5). and needs

O(N2 . n“) space to store the items (rule heads) it derives.
By either unfolding the call taemp8 or eliminating thetemps rule, we
recover the first rule of the original program:
constit(X:H,I,K) += rewrite(X:H,Y:H,Z:H2)
* constit(Y:H,l,J) * constit(Z:H2,J,K).

This worsens the time complexity ©(N® - n°). The paydf is that now we
can refold this rule dferently—either as follows (Eisner and Satta, 1999),
temp9(X:H,Y:H,J,K) += rewrite(X:H,Y:H,Z:H2) * constit(Z:H2,J,K).
constit(X:H,1,K) +=temp9(X:H,Y:H,J,K) * constit(Y:H,1,J).
or alternatively as already shown in section 6.3 (whes® item had the ad-
ditional advantage of being reusable). Either way, the gggtit time com-
plexity is nowO(N3 n*+ N2 n4)—better than the original programmer’s
version.
How about the asymptotic space complexity? If the first stepdurule
elimination rather than unfolding, then it actually elirated storage for the
temp8 items, reducing the storage requirements fm(mZ . n“) toO (N . n3).

27Sincer was defined to equal the (original) valuesfit provides a way to recover the original
semantics o6. Compare the similar construction sketched in footnote 26.

28Rule elimination can also be usafter another transformation, such as speculation, to clean
away unnecessary temp items. See footnote 42.

64 / JasoN EisNer AND JoHN Brarz

Regardless, the refolding step increased the space coitypleck to the
original programmer’s)(N2 : n4).

6.5 Speculation: Factoring Out Chains of Computation

In the most important contribution of this paper, we now gahee fold-
ing to handle unbounded sequences of rules, including sy@leisspecu-
lation transformation, which is novel as far as we know, is remesmf
gap-passing in categorial grammar. It has many uses; wé dunselves to
two real-world examples.

6.5.1 Examples of the Speculation Transformation

Unary rule closure. Unary rule closure is a standard optimization on cont-
ext-free grammars, including probabilistic ones (StoJck&95). We derive
it here as an instance of speculation. Suppose we begin wigrsion of
the inside algorithm that allows unary nonterminal rulesvaf as the usual
binary ones:

constit(X,l,K) += rewrite(X,W) * word(W,1,K).

constit(X,l,K) += rewrite(X,Y) * constit(Y,I,K).

constit(X,l,K) += rewrite(X,Y,Z) * constit(Y,I,J) * constit(Z,J,K).

Suppose that the grammar includes a unary rule cycle. Fongea sup-
pose thatewrite(np,s) andrewrite(s,np) are both provable. Then the values of
constit(np,|,K) andconstit(s,I,K) “feed into each other.” Under forward chaining,
updating either one will cause the other to be updated; thisgss repeats un-
til numerical convergenc®.

This computation is somewhat time-consuming—yet it is et$aklty the
same for everyonstit(np,l,K) we may start with, regardless of the particular
spani— or the particular input sentence. We would prefer to do thepo
tation only once, “dline.”

A difficulty is that the computation does incorporate the pasdicugal
value of theconstit(np,|,K) that we start with. However, if we simply ignore
this factor during our “@line” computation, we can multiply it in later when
we get an actualonstit(np,|,K). That is, we computspeculativelybefore the
particularconstit(np,I,K) and its value actually arrive.

In the transformed code belowmp(X,X0) represents the inside probabil-
ity of building up aconstit(X,10,k0) from aconstit(X0,10,K0) by a sequence of
0 or more unary rules. In other words, it is the total proligbdf all (pos-
sibly empty) unary-rewrite chains —* X0. While line 2 of the transformed

29 we gave the Viterbi algorithm instead, withax= in place of+=, then convergence would
occur in finite time (at least for a PCFG, whereraivrite items have values in [@]). The same
algorithm applies.

TRANSFORMATIONS ON WEIGHTED LOGIC PROGRAMS / 65

program still computes these items by numerical iteratioanly needs to
compute them once for eatXo, since they are now independent of the par-
ticular spano—ko covered by these two constituerfs.

temp(X0,X0) += 1.

temp(X,X0) += rewrite(X,Y) * temp(Y,X0).

other(constit(X,1,K)) += rewrite(X,W) * word(W,I,K).
other(constit(X,1,K)) += rewrite(X,Y,Z) * constit(Y,l,J) * constit(Z,J,K).
constit(X,l,K) += temp(X,X0)*other(constit(X0,I,K)).

The temp(s,np) item sums the probabilities of the infinitely many unary-
rewrite chainss —* np, which buildnp up intos using only line 2 of the
original program. Now, to get values likenstit(s,4,6) for a particular input
sentence, we can simply sum finite products téeep(s,np)

* other(constit(np,4,6)), Whereother(constit(np,4,6)) sums up ways of building
anconstit(np,4,6) other thanby line 2 of the original prograrit

The semantics of this program, which can derive non-groands. fully
defined by section 6.2.3. We omit further discussion of hoex#cutes di-
rectly under forward chaining (section 6.2.4). Howevetertbat the program
could be transformed into a more conventional dynamic @nogsy applying
rule elimination to the first rule (the only one that is notgarrestricted§?

For dficiency, our formal transformation adds a “filter clause” &xle of
thetemp rules:

temp(X0,X0) += 1 needed_only_if constit(X0,10,K0).

temp(X,X0) += rewrite(X,Y)*temp(Y,X0) needed_only_if constit(X0,10,K0).

The exact meaning of this clause will be discussed in seétib12. It permits
laziness, so that we compute portions of the unary rule cbosuly when
they will be needed. Itsfeect is that for each nonterminad, thetemp items

30Wwe remark that the first steps of this iterative computation could be moved to coenpil
time, by eliminating line 1 as discussed below, speciaiidine 2 to the grammar by unfolding
rewrite(X,Y), and then computing the series sums by alternately unfplietemp items and
performing constant folding to consolidate edemp item’s summands.

31For example, it includes derivations where tigis built from a determiner and a noun, or
directly from a word, but not where it is built directly fronomes or anothemp. Excluding the
last option prevents double-counting of derivations.

32Here is the result, which alters the semantics of the slatdmag item to ignore derivations
of length 0:

temp(X,X0) += rewrite(X,Y) * temp(Y,X0).

temp(X,X0) += rewrite(X,X0) * 1.

other(constit(X,1,K)) += rewrite(X,w) * word(W,I,K).
other(constit(X,1,K)) += rewrite(X,Y,Z) * constit(Y,l,J) * constit(Z,J,K).
constit(X,1,K) += temp(X,X0)*other(constit(X0,1,K)).

constit(X0,1,K) += 1*other(constit(X0,1,K)).

66/ JasoN EisNer AND JOHN Brarz

are proved or updated only once soboestit(X0,10,K0) constituent has been
built.3® At that time, all thetemp(X,X0) values for thisxo will be computed
once and for all, since there is now something for them to doenkwith.
Usefully, these values will then remain static while thengnaar does, even if
the sentence changes.

Adopting the categorial view we introduced in section 6.8,e&n regard
temp(s,np) as merely an abbreviation for th@n-groundslashed itenton-
stit(s,10,K0)/constit(np,10,K0): the cost of building up aonstit(s,10,K0) if we al-
ready had &onstit(np,10,K0). This cost is independent af andKo, which is
why we only need to compute a single item to hold it, albeit tha contains
variables.

As we will see, the slashed notation is not merely expositGuyr for-
mal speculation transformation will actually produce agseon with slashed
terms, essentially as follows:

constit(X0,10,K0)/constit(X0,10,K0) += 1.

constit(X,l,K)/constit(X0,10,K0) += rewrite(X,Y)

* constit(Y,I,K)/constit(X0,10,K0).

other(constit(X,1,K)) += rewrite(X,W) * word(W,1,K).
other(constit(X,1,K)) += rewrite(X,Y,Z)

* constit(Y,l1,J) * constit(Z,J,K).
constit(X,l,K) += (constit(X,l,K)/constit(X0,10,K0))

* other(constit(X0,10,K0)).

A variable-free example. To understand better how the slash anieker
mechanisms work, consider this artificial variable-freeguam, illustrated
by the hypergraph in Figure 4:

a+=b*c.

b+=r.

c+=f*c.

c+=d*e*x

c+=g.

X+=...

The values ok andc depend orx. We elect to create speculative versions of
the first, third, and fourth rules. The resulting programrieh in Figure 5. It
includes rules to compute slashed versions ofandx itself that are “missing

anx .
a/x +=b * c/x.
c/x +=f*c/x.

c/x +=d* e * x/x.
XIX += 1.

33In this example, the filter clause on the second rule is reainindRuntime analysis or static
analysis could determine that it has no actual filterifiga, allowing us to drop it.

TRANSFORMATIONS ON WEIGHTED LOGIC PROGRAMS / 67

FIGURE4 A simple variable-free program before applying the spdauia
transformation.

FIGURE5 The program of Figure 4 after applying the speculation fiamsation. The
x/x rule and variousther(. . .) rules have been eliminated for simplicity.

68/ JasoN EisNer AND JoHN Brarz

It also reconstitutes full-fledged versions afc, andx. Each is defined
by a sum that is split into two cases: summands that were foaitt anx
using a sequence of 0 of the selected rules, and “other” summands that
were not. (Notice that the first rule i®t a += a/x * x; this is because might
in general include derivations that are built from anothgthough not in
this example), and this would lead to double-counting. Bygia += a/x *
other(x), we split each derivation of uniquely into a maximal sequence of
selected rules, applied to a minimal instance.pf

a += a/x * other(x).

C += c/x * other(x).

X += X/X * other(x).

a += other(a).

¢ += other(c).

Finally, the program must define the “other” summands:
other(a) += b * other(c).

other(c) += f * other(c).

other(c) +=g.

other(x) += ...

In Figure 5, this program has been further simplified by elating the
rules forx/x andother(x).

Split bilexical grammars. For our next example, consider a “split” bilexical
CFG, in which a head word must combine with all of its rightidren before
any of its left children. The naive algorithm for bilexicalmtext-free parsing
is O(n®). In the split case, we will show how to derive tt¥n*) and O(n?)
algorithms of Eisner and Satta (1999).

The “inside algorithm” belo# builds uprconstit items by successively
adding 0 or more child constituents to the right ofverd, then builds up
constit items by adding 0 or more child constituents to the left of tbinstit.
As before X:H represents a nonterminawhose head word ig.

rconstit(X:H,l,K) += rewrite(X,H) * word(H,I,K). % O right children so far

rconstit(X:H,I,K) += rewrite(X:H,Y:H,Z:H2) % add right child

* rconstit(Y:H,1,J) * constit(Z:H2,J,K).
constit(X:H,l,K) += rconstit(X:H,I,K). % 0 left children so far
constit(X:H,I,K) +=rewrite(X:H,Y:H2,Z:H) % add left child

* constit(Y:H2,1,J) * constit(Z:H,J,K).
goal += constit(s:H,0,N) * length(N).

34We deal here with context-free grammars, rather than thé-hetomaton grammars of Eis-
ner and Satta. In particular, our complete constituentsycaonterminal categories and not just
head words. Note that the algorithm is correct only for aitsgrammar (formally, one that
does not contain two rules of the fomewrite(X:H1,Y:H2,Z:H1) andrewrite(V:H1,X:H1,W:H3)),
since otherwise the grammar would license trees that cdieoonstructed by the algorithm.

TRANSFORMATIONS ON WEIGHTED LOGIC PROGRAMS / 69

This obvious algorithm has runtin@N? - n®) (dominated by line 4). We
now speed it up by exploiting the conditional independerfdefb children
from right children. To build up aonstit whose head word starts latve will
no longer start with g@atrticular, existingrconstit from1 to K (line 3) and then
add left children (line 4). Rather, we transform the progrsonthat it ab-
stracts away the choice of startirgnstit. It can then build up theonstit item
speculativelyadding left children without having committed to any peutar
rconstit. As this work is independent of theonstit, the items derived during it
do not have to specify any value far Thus, work is shared across all values
of K, improving the asymptotic complexity. Only after finishitigs specu-
lative computation does the program fill in each of the vesicuonstit items
that could have been chosen at the start. To accomplishréimisformation,
replace lines 3—4 with

Iconstit(X0:H0,X0,J0,J0) += 1.

Iconstit(X:H0,X0,1,J0) += rewrite(X:HO,Y:H2,Z:H)

* constit(Y:H2,1,J) * Iconstit(Z:H0,X0,J,J0).
constit(X:HO0,1,K0) += Iconstit(X:HO0,X0,1,J0) * rconstit(X0:H0,J0,K0).

The new temp itemconstit(X:H0,X0,1,J0) represents théeft half of a con-
stituent, stretching fromto Jo. We can regard it again in categorial terms: as
the last line suggests, it is just a more compact notatioadonstit missing its
rconstit right half fromJo to somexo. This can be written more perspicuously
asconstit(X:HO,1,K0)/rconstit(X0:H0,J0,K0), whereKo is always a free variable,
so thaticonstit need not specify any particular value .

The firsticonstit rule introduces an empty left half. This is extended with
its left children by recursing through the secaewhstit rule, allowingX and|
to diverge fromxo andJo respectively. Finally, the last rule fills in the missing
right half rconstit.

Again, our speculation transformation will actually preduthe slashed
notation as its output. Specifically, it will replace lines43of the original
untransformed program with the followir?g.

rconstit(X0:H0,J0,K0)/rconstit(X0:H0,J0,K0) += 1

needed_only_if rconstit(X0:H0,J0,KO0).

constit(X:H,J,K)/rconstit(X0:H0,J0,K0)
+= rconstit(X:H,J,K)/rconstit(X0:H0,J0,K0)
needed_only_if rconstit(X0:H0,J0,KO0).

35In fact our transformation in Figure 6 will produce somethia bit more complicated.
The version shown has been simplified by using rule elimima¢section 6.4) to trim away all
other(. . .) items, which do not play a significant role in this exampleaflis because the only
slashed items areonstit/rconstit, and there is no other way to buildcanstit except from an
rconstit.

70/ JasoN EisNer AND JoHN Brarz

constit(X:H,l,K)/rconstit(X0:H0,J0,K0)
+= rewrite(X:H,Y:H2,Z:H) * constit(Y:H2,1,J)
* constit(Z:H,J,K)/rconstit(X0:H0,J0,K0)
needed_only_if rconstit(X0:H0,J0,KO0).
constit(X:H,I,K) += constit(X:H,l,K)/rconstit(X0:H0,J0,K0)
* rconstit(X0:H0,J0,KO0).

The first line introduces a slashed item. The next two lineglze result of
slashingrconstit(X0:H0,J0,K0) out of the original lines 3—4; note thab, HO,
Jo, andko appeared nowhere in the original program. The final linemsteo
tutes theconstit item defined by the original program, so that the transformed
program preserves the original program’s semantics.

By inspecting this program, one can see that the only previddns of
the formconstit(X:H,I,K)/rconstit(X0:H0,J0,K0) actually haved=Ho, K=Ko0, and
Ko a free variablé® These conditions are true for the slashed item that is
introduced in the first line, and they are then preserved leyyemle that
derives a new slashed item. This is why in our earlier predimt of this
code, we were able to abbreviate such a slashed itelnofwfit(X:H0,X0,1,J0),
which uses only 5 variables rather than 8. Discovering suiireviations
by static analysis is itself a transformation that we do naéstigate in this
paper.

Filter clauses can improve asymptotic runtime. The special filter clause
needed_only_if rconstit(X0:H0,J0,K0) is added solely for féiciency, as always.
It says that it is not necessary to build a left half that migatuseless (i.e.,
purely speculatively), but only when there is at least ogétrhalf for it to
combine with.

In this example, the filter clause is subtly responsible fmiding an extra
factor of V in the runtime, wher&/ > n is the size of the vocabulary. For
simplicity, let us return to the unslashed notation:

Iconstit(X:HO0,XO0,1,J0) += rewrite(X:H0,Y:H2,Z:H)

* constit(Y:H2,1,J) * Iconstit(Z:HO0,X0,J,JO).
needed_only_if rconstit(X0:H0,J0,K0).

The intent is to build only left halvesconstit(H:H0,X0,1,J0) whose
head wordHO will actually be found starting at the right edgm.
However, without the filter, the above rule could be far mopecsila-
tive, combining a finished left child such asnstit(np:dumbo,4,5) with a
rewrite rule such agwrite(s:flies,np:dumbo,vp:flies) and the non-ground item
Iconstit(X0:H0,X0,J0,J0) (defined elsewhere with value 1) to obtaion-
stit(s:flies,vp,4,5)—regardless of whethdiies actually starts at position 5 or
even appears in the input sentence at all! This would leagtolderation of

36By contrast, we already noted th¥tand| could diverge fromX0 andJO respectively, in
this particular program.

TRANSFORMATIONS ON WEIGHTED LOGIC PROGRAMS / 71

O(V) Iconstit items with speculative head words suchilias thatmightstart at
position 5. The filter clause prevents this by “looking aieéadsee whether
any items of the fornaconstit(vp:flies,5,K0) have actually been proved.

As a result, the runtime is no@(n“) (as compared t®(n5) for the un-
transformed prograny. This is so because the rule above may be grounded
in O(n“) ways reflecting dferent bindings of, J, Jo, and wordH2, whereH2
may in practice be any of the words in the span Although the rule also
mentionsHo, the filter clause has ensured thi's binding is completely
determined byo’s.

As a bonus, we can now apply the unfold-refold pattern toiokkee O n3)
algorithm of Eisner and Satta (1999). Starting with our$farmed program,
unfold constit in the body of each rule where it appedtgiving

rconstit += rconstit * rewrite * (Iconstit” * rconstit’).
Iconstit += (Iconstit’ * rconstit’) * rewrite * Iconstit.

where the symbol marks the halves of the unfoldeshstit, and the three ad-
jacent half-constituents are written in left-to-right erdNow re-parenthesize
these rules as

rconstit += (rconstit * (rewrite * lconstit’)) * rconstit’.
Iconstit += Iconstit” * ((rconstit’ * rewrite) * Iconstit).

and fold out each parenthesized subexpression, usingbdibtity to sum
over its free variables. The items introduced when foldimg large subex-
pressions correspond, respectively, to Eisner and Séatighs trapezoid” and
“left trapezoid” items. The speedup arises because thel@(a) fewer possi-
ble trapezoids thaconstits: aconstit had to specify a head word that could be
any of the words covered by thenstit, but a trapezoid’s head word is always
the word at its left or right edge.

6.5.2 Semantics and Operation of Filter Clauses

Our approach to filtering is novel. Ongeded_only.if clauses may be regarded
as “relaxed” versions of side conditions (Goodman, 19%8hé denotational
semantics (section 6.2.3), they relax the restrictionfievaluation function,
allowing more possible valuations for the transformed paog (In the case
of speculation, these valuations may disagree on the nahesaitems, but
all of them preserve the semantics of the original program.)

Specifically, when constructing(r) to determine whether a ground item
r is provable and what its value is, we magtionallyomit the summand cor-

3"We could also have achieve(ﬂ(n“) simply by folding the original program as discussed

in section 6.3. However, that would not have allowed thehiertreduction ttO(n3) discussed
below.

38Including if desired thegoal rule, not discussed here. The aldnstit rule is then useless,
except perhaps to the user, and may be trimmed away if ddgyrede elimination.

72/ JasoN EisNER AND JOHN BLATZ

responding to a grounded rule, = E if this rule has an attached filter clause
needed_only_if C such that no consistent grounding®has been provet?.

How does this help operationally, in the forward chainingoaithm?
When a rule triggers an update to a growmchon-ground item, but carries
a (partly instantiated) filter clause that does not unifyhvéhy proved item,
then the update has infinitely low priority and need not beppgated further
by forward chaining. The update must still be carried outé filter clause is
proved later.

The optionality of the filter is crucial for two reasons. Fjii§ a filter be-
comes false, the forward-chaining algorithm is not recqitceretract updates
that were performed when the filter was true. In the examglesaion 6.5.1
above or section 6.6.3 below, the filter clauses ensure titges are filled
into the unary-rule-closure and left-corner tables onlyasded. Once this
work has been done, however, these entries are allowedsspeven when
they are no longer needed, e.g., once the facts describénigplut sentence
are retracted. This means that we can reuse them for a figoterse rather
than re-deriving them every time they are needed.

Second, the forward-chaining algorithm is not requiredallyariables in
the rule when it checks for consistent groundings of therfilleuse. Consider
this rule from earlier:

constit(X:H,1,K)/rconstit(X0:H0,J0,K0)

+= rewrite(X:H,Y:H2,Z:H) * constit(Y:H2,1,J)
* constit(Z:H,J,K)/rconstit(X0:H0,J0,K0)
needed_only_if rconstit(X0:H0,JO,KO0).

Recall that the onlyconstit/rconstit items that are actually derived are non-
ground items in whiclk=Ko and is free, such asonstit(s:flies,4,K0)/ rcon-
stit(vp:flies,5,K0). Such a non-ground item actually represents an infinite
collection of possible ground items that specialize it. T&mantics of
needed_only_if, which are defined over ground terms, say that we only need
to derive a subset of this collection: rather than provirgribn-ground item
above, we are welcome to prove only the “needed” ground nitistizons,
with specific values ok0 such thatrconstit(vp:flies,5,K0) has been proved.
However, in general, this would pro@{n) ground items rather than a single
non-ground item. It would destroy the whole point of spetafg which is

to achieve a speedup by leavikg free until specifiaconstit items are multi-
plied back in at the end. Thus, the forward-chaining alanits better & ex-
ploiting the optionality of filtering and proving the nonegmd version—thus

39The “consistent” groundings are those in which variable€dhat are shared with or
E are instantiated accordingly. In the speculation trams&tion, all variables o€ are in fact
shared withr andE. If they were notC could have many consistent groundings, but we would
still aggregate only one copy @, just as if the filter clause were absent, not one per copy per
consistent grounding.

TRANSFORMATIONS ON WEIGHTED LOGIC PROGRAMS / 73

proving more than is strictly needed—as long as at least bitegroundings
is needed (i.e., as long as some item that unifies wmfiistit(vp:flies,4,K0) has
already been proved).
For a simpler example, consider
rconstit(X0:H0,J0,K0)/rconstit(X0:H0,J0,K0) += 1
needed_only_if rconstit(X0:H0,J0,KO0).

A reasonable implementation of forward chaining will prakie non-ground
item rconstit(X0:H0,J0,K0)/rconstit(X0:H0,J0,K0)—just as if the filter clause
were not present—provided thedmegrounding ofrconstit(X0:H0,J0,K0) has
been proved. It is not required to derive a separate grografithe slashed
item for eachgrounding ofrconstit(X0:H0,J0,K0); this would also be correct
but would be lessfécient.

6.5.3 Formalizing Speculation for Semiring-Weighted Progam
Fragments

To formalize the speculation transformation, we begin witiseful common
case that dtices to handle our previous examples. This definition (Figyre
allows us to speculate over a set of rules that manipulateegah a semiring

of weightsW. Such rules must all use the same aggregation operatorhiwhic
we call =, with identity elemenD. Furthermore, each rule body must be
a simple product of one or more items, using an associativarpioperator

® that distributes ove® and has an identity elemeft This version of the
transformation is only able to slash the final term in suchoalpct; however,

if ® is commutative, then the terms in a product can be reordenedke any
term the final term.

Our previous examples of speculation can be handled bydakisemir-
ing (W, ®,®,0,1)tobe R, +,*0,1). Moreover, any unweighted program can
be handled by takingW/, @, ®, 0,1) to be (F, T},|,&F, T).

Intuitively, other(A) in Figure 6 accumulates ways of buildiagother than
groundings ofFi, ® Fi, ® --- ® Fj, ® x for j > 0. Meanwhile,slash(A,x)
accumulates ways of building by grounding products of the for;, ®
Fi,®---®Fj for j > 0. To *fill in the gap” and recover the final value af
(as is required to preserve semantics), we multidyh(A,x) only by other(x)
(rather than by), in order to prevent double-counting (which is analogaus t
spurious ambiguity in a categorial grammar).

To apply our formal transformation in the unary-rule eliaion example,
take x=constit(X0,10,K0). As requiredX0,10,k0 do not appear in the original
program. TakdR; to be the “unary’constit rule of the original program where
ty is the last item in the body d%. Herek = 0.

To apply our formal specification in the artificial variabftee example
of Figures 4-5, takex = x, Ry = a+=b*c, Ry = c+=f*c, andR; =
c += (d *) * x. Since, among thg, only t3 unifies withx, we havek = 2.

74/ JasoN EisNer AND JoHN Brarz

Given a semiring, o, ®, 0, 1).

Given a termx to slash out, where any variablesxndo not occur any
where in the prograr®. Given distinct ruleszy, . . ., R, in # from which
to simultaneously slaskout, where eack; has the fornr; e= F; ® t; for
some expressioR; (which may bel) and some iter.

Letk be the indef° such that < k < nand

e Fori <k, tj does not unify withx.

e Fori > k, t; unifies withx; moreover, their unification equatis*

Then the speculation transformation constructs the fallgwnew pro-
gram. Recall tha®, denotes the aggregation operator fafwhich may|
or may not bep). Let slash, other, andmatches_x be new functors that do
not already appear iR.

@ slash(X,X) ®y= 1 needed_only_if x.

e (Y1 <i<n)slash(ri,x) &= F; ® slash(t;, X) needed_only_if x.
e (V1 <i < K) other(r;) @= F; ® other(t;).

e (¥ rulesp @p= E not among th&)) other(p) &= E.*?

e matches_x(X) |= true. e matches_x(A) |= false.

o A ®a= other(A) if not matches_x(A).43

o A ®p= slash(A,x) ® other(X).

40If necessary, the program can be pre-processed so thatsintiex exists. Any rule can be
split into three more specialized rules: iag k rule, ani > k rule, and a rule not among tti.
Some of these rules may require boolean side conditionstaatetheir applicability.

“That is,t; is “more specific” tharx: it matches a non-empty subset of the ground terms that
x does.

421t is often worth following the speculation transformatiafith a rule elimination transfor-
mation (section 6.4) that removes some of thether items. In particular, ifp does not unify
with x or any of thet;, then the only rule that usegher(p) is A @p = other(A). In this case,
eliminating the old rulether(p) ®,= E simply restores the original rulg@p= E.

“3Note thatA ranges over all ground terms. (Except those that unify witithich are covered
by the next rule.) The aggregation into a particular growrchtA must be handled using the
appropriate aggregation operator for that ground terrme denotedbs =. (&x= was similarly
used above.) In the example programs, this awkward notatamavoided by splitting this rule
into several rules, which handle variadisjoint classes of item# that have dierent aggregation
operators.

FIGURE6 The semiring-weighted speculation transformation.

To apply our formal transformation in the split bilexicabgnmar example,
take X=rconstit(X0:H0,J0,K0), the R; to be the two rules definingpnstit, each
t; to be the last item in the body &, andk = 1.

Folding as a special case of speculationAs was mentioned earlier, the
folding transformation is a special case of the speculdtiamsformation, in
which application is restricted to rules with a single grdterm at their head,

TRANSFORMATIONS ON WEIGHTED LOGIC PROGRAMS / 75

and the item to be slashed out must appear literally in efiebtad rule. For
ease of presentation, however, the formulations abovertiguite parallel. In
folding, we adopt the convention that a common functois being “slashed
out” of a set of rules, and the ftiérent items to which that function applies
are aggregated first into a new intermediate item. In spgonlave take the
opposite view, where there is a common item to be slashedresépt as the
argument to dferent functions, so that the functions get aggregated into a
new lambda term. We chose the former presentation for fgltbravoid the
needless complication of using the lambda calculus, buteesled the flex-
ibility of the latter for a fully general version of specutat. In the case of
ordinary semiring-weighted programs , this distinctiotrigal; when slash-
ing out itema from a rule likef += a * b, we can equally easily say that we are
slashing out the function “multiply byg” from its argumenb or that we are
slashing out the item from inside the function “multiply by”. However,

in general, being able to leave behind functions allows utwstruct inter-
mediate terms which don’t carry a numerical value; for exiemwe could
choose to slash out theitem from a rule likef += log(a) and propagate just
the functionslash(f, a) += Ax log(X).

6.5.4 Formalizing Speculation for Arbitrary Weighted Logic Programs

The speculation transformation becomes much more congticahen it
is not restricted to semiring-weighted programs. In gelné¢na value of a
slashed item is &unction just like the semantics of a slashed constituent in
categorial grammar. Functions are aggregated pointwise:i$, we define
(1z 1(2) ® (12 9(2) = 1z (f(2) © 9(2).

As in categorial grammar semantics, gaps are introducdd té iden-
tity function, passed with function composition, and ehatied with function
application.

In the commutative semiring-weighted programs discusdsu/ey all
functions had the form “multiply by’ for some weightw. We were able
to avoid the lambda-calculus there by representing suchetiin simply as
w, and by usindL for the identity function, semiring multiplicatia for both
composition and application, and semiring additifor pointwise addition.

We defer the details of the formal transformation to a latgyep. It is sig-
nificantly more complicated than Figure 6 because we canmgelorely on
the mathematical properties of the semiring. As in foldind anfolding (Fig-
ures 1-2), we must demand a kind of distributive-law properensure that
the semantics will be preserved (recall the log example Beation 6.3). This
property is harder to express for speculation, which isflikging through un-
bounded sequences of rules, including cycles.

Consider the semiring-weighted program in Figures 4-5.dftggnal pro-
gram only used the item early in the computation, multiplying it by * e.

76/ JasoN EisNer AND JoHN Brarz

The transformed program had to reconstitattom a/x andx (andc from
c/x andx). This meant multiplying in later, only after the originad * e had
passed through several levels*and+= in the rulea += b * ¢ and the cyclic
rulec+=f*c.

In general, we want to be sure that delaying the introduafocuntil after
several intermediate functions and aggregations doeshaoige the value of
the result. Hence, a version of the distributive propertystthe enforced at
eachintermediate ruleféecting the slashed items.

Furthermore, if the slashed-out itexncontains variables, then introduc-
ing it will aggregate over those variables. For example,rthie a(B,C) +=
(a(B,C)/x(B0,C0,D0))(x(B0,C0,D0)) not only applies a function to an argument,
but also aggregates ovBo, Co, andD0. In the original version of the pro-
gram, these aggregations might have been performed wiithugaoperators.
Whena(B,C) is reconstituted in the transformed version, we must erthiaite
the samesequence of aggregations is observed. In order to do thisatby,
it is necessary to keep track of the association betweendhables being
aggregated in the original program and the variables in fd&hed item, so
that we can ensure that the same aggregations are performed.

6.6 Magic Templates: Filtering Useless Items

The bottom-up “forward-chaining” execution strategy aftien 6.2.4 will (if

it converges) compute values for all provable items. Tylpichowever, the
user is primarily interested in certain items (often jgsil) and perhaps the
other items involved in deriving them.

In parsing, for example, the user may not care about buildih¢egal
constituents—only those that participate in a full pargmil@rly, in a pro-
gram produced by speculation, the user does not care abitdiniguall pos-
sible slashed items/x—only those that can ultimately combine with some
actualx to reconstitute an itemof the original program.

Can we prevent forward chaining from building at least sofée “use-
less” items? In the speculation transformation (secti@e®d Figure 6), we
accomplished this by filtering our derivations witbeded_only_if clauses.

We now give a transformation that explains and generallzissstrategy.
It prevents the generation of some “useless” items by auioaily adding
needed_only_if filter clauses to an existing program. A version of tiiagic
templates transformation was originally presented in a well-knowmpégra
by Ramakrishnan (1991), generalizing an earlier transition called magic
sets.

6.6.1 An Overview of the Transformation

Since this transformation makes some terms unprovableaiinat be
semantics-preserving. We will say that a ground teriis charmed if we

TRANSFORMATIONS ON WEIGHTED LOGIC PROGRAMS / 77

shouldpreserve its semantié$.In other words, the semantic valuation func-
tions of the transformed program and the original prograthagree on at
least the charmed terms. The program will determine atmentivhich terms
are charmed: a ground terais considered charmed ithe termmagic(a) is
provable (inevitably with valueue).

The user should explicitly charm the ground terms of inteticekim or her
by writing rules such as

magic(goal) |= true.

magic(rewrite(X,Y,2)) |= true.

magic(rewrite(X,W)) |=true.

magic(word(W,1,J)) |=true.

magic(length(N) |=true.

The transformation will then add rules that charm addititerans by proving
additionalmagic(. . .) items (known as magic templates). Informally, a term
needs to be charmed if it might contribute to the value of a@otharmed
term. A formal description appears in Figure 7.

Finally, filter clauses are added to say that among the grtennas prov-
able under the original program, only the charmed ones lytueed to be
proved. This means in practice (see section 6.5.2) thatai@hwehaining will
only prove an item if at least one grounding of that item isrofed.

The filter clauses in the speculation transformation wéiexgvely intro-
duced by explicitly charming all non-slashed items, rugrtimee magic tem-
plates transformation, and simplifying the result.

6.6.2 Examples of Magic Templates

Deriving Earley’s algorithm. What happens if we apply this transformation
to the CKY algorithm of section 6.2.1, after explicitly chang the items
shown above?

Remarkably, as previously noticed by Minnen (1996), thesfarmed pro-
gram acts just like Earley’s (1970) algorithm. We can deawgeighted ver-
sion of Earley’s algorithm by beginning with a weighted wensof CKY (the
inside algorithm of section 6.2.2y.The transformation adds filter clauses to
theconstit rules, saying that the rule’s head is needed only if charmed:

constit(X,l,K) += rewrite(X,W) * word(W,I,K)

needed_only_if magic(constit(X,l,K)).
constit(X,l,K) += rewrite(X,Y,Z) * constit(Y,l,J) * constit(Z,J,K)
needed_only_if magic(constit(X,l,K)).

44This terminology does not appear in previous literature agimtemplates.

45At least, Earley’s algorithm restricted to grammars in CkynNormal Form, since those
are the only grammars that CKY handles before we transformhié full Earley’s algorithm
in roughly our notation can be found in (Eisner et al., 20063llows arbitrary CFG rules to
be expressed using lists, asriewrite(np,["the”,adj,n]). Section 6.3 already sketched how to
handle ternary rulesfiéciently.

78/ JasoN EisNer AND JoHN Brarz

Based on the structure of thenstit rules, the transformation also adds the
following magic rules to the ones provided earlier by the user. Recall that
?rewrite(X,Y,2) is considered to be truefirewrite(X,Y,2) is provable (foot-
note 12).

magic(constit(s,0,N)) | = magic(goal).

magic(constit(Y,1,J)) | = ?rewrite(X,Y,Z) & magic(constit(X,l,K)).

magic(constit(Z,J,K)) | = ?rewrite(X,Y,Z) & ?constit(Y,l,J)

& magic(constit(X,1,K)).

What do these rules mean? The secmiadic rule above says to charm all
the possible left childrenonstit(Y,1,J) of a charmed constituerbnstit(X,1,K).
The thirdmagic rule says to charm all possible right children of a charmed
constituent whose left child has already been proved.

By inspecting these rules, one can see inductively that gieye only
magic templates of the formagic(constit(X,1,K)) wherex,I are bound and is
free®

The charmed constituents are exactly those constitueatstk possible
given the contextto their left. As in Earley’s algorithmetie are the only ones
that we try to build. Where Earley’s algorithm would prediatp constituent
starting at position 5, we charm all potential constituesftgshat form by
proving the non-ground itemagic(constit(vp,5,K)).

Just as Earley’s predictions occur top-down, theic rules reverse the
proof order of the original rule—they charm items in the bofithe original
rule once the head is charmed. Thagic rules also work left to right within an
original rule, so we only need to chareanstit(vp,5,K) once we have proved
a receptive context such aswrite(s,np,vp) * constit(np,4,5). This context is
analogous to having the dotted rgles np . vp in column 5 of Earley’s parse
table.

In effect, the transformed program uses forward chaining to sitauhe
backward-chaining proof order of a strategy like that ofgpBrolog?’ The
magic templates correspond to query subgoals that woulekaluring back-
ward chaining. The filter clauses prevent the program froowipg items that

“6Note that it would not be appropriate to replace.& ?rewrite(X,Y,Z) with
...needed_only.if ?rewrite(X,Y,Z), since that would make this condition optional, allowing th
compiler to relax it and therefore charm more terms thamiatee. Concretely, in this example,
forward chaining with our usualfigcient treatment oheeded_only_if (section 6.5.2) would
prove overly general magic templates of the famagic(constit(X,l,K)) where not onlyK but
alsoK was free.

4"However, pure Prolog’s backtracking is deterministic, velas forward chaining is free to
propagate updates in any order. It is more precise to sayitbatansformed program simulates
a breadth-firstor parallel version of Prolog which, when it has several ways to matchexyqu
subgoal, pursues them along parallel threads (whose ampeshtion on a serial computer may
be interleaved in any way). Furthermore, since forwardrihgiuses a chart to avoid duplicate
work, the transformed version acts like a version of Proldth tabling (see footnote 5).

TRANSFORMATIONS ON WEIGHTED LOGIC PROGRAMS / 79

do not yet match any of these subgoals.

Shieber et al. (1995), specifying CKY and Earley’s algaritmemark that
“proofs of soundness and completeness [for the Earley's]ca® some-
what more complex ...and are directly related to the cooedjmg proofs
for Earley’s original algorithm.” In our perspective, thercectness of Ear-
ley’s emerges directly from the correctness of CKY and threaminess of the
magic templates transformation (i.e., the fact that it press the semantics
of charmed terms).

On-demand computation of reachable states in a finite-statenachine.
Another application is “on-the-fly” intersection of weiglt finite-state au-
tomata, which recalls the left-to-right nature of Earlegfgorithm#@

. . X .
In automaton intersection, an & — Ry (in some automatoivl;) may

. . o X .
be paired with a similarly labeled ai@, — R (in some automatoiy,

perhaps equal t¥;). This yields an arc in the intersected machivien M,
whose weight is the product of the original arcs’ weights:

arc(Q1:Q2,R1:R2,X) = arc(Q1,R1,X) * arc(Q2,R2,X).

However, including this rule in a forward-chained prograifi pairs all
compatible arcs in all known machines (including arcs inribes machine
M1 N My, leading to infinite regress). A magic templates transfdimmecan
restrict this to arcs that actually need to be derived in #rwise of some
larger goal—just as if the definition above were backwardiobd.

Consider for example the following useful program (whiclesi®rolog’s
notation for bracketed lists):

sum(Q,[]) += final(Q). % weight of stopping at final state Q
sum(Q,[X | Xs]) += arc(Q,R,X) * sum(R,Xs).

Now the value ofsum(g,[’a”;b""c”]) is the total weight of all paths from state
g that accept the stringpc.

We might like to find (for examplegum(ql:g2,[’a”,’b",’c"]), constructing just
the necessary paths from statey2 in the intersection ofi1’s automaton with
g2's automaton. To enable such queries, apply magic templietasforma-
tion to thesum rules and therc intersection rule, charming nothing in ad-
vance. We can then seiagic(sum(ql:q2, ['a”’b”’c’])) to true at runtime. This
results in charm spreading forward frammg2 along paths in the intersected
machine, and spreading “top-down” from each arc along thik o the arcs
that must be intersected to produce it (and which may theraséle the result
of intersections). This permits the weights of all relevats to be computed
“bottom-up” and multiplied together along the desired gath

48Composition of finite-state transducers is similar.

80/ JasoN EisNer AND JoHN Brarz

6.6.3 Second-order magic

Earley’s algorithm does top-down prediction quite agguetg since it pre-
dicts all possible constituents that are consistent wighleft context. Many
of these predictions could be ruled out with one word of |dwad—an im-
portant technique when using Earley’s algorithm in pracifcThis is known
as a “left-corner” filter: we should only bother to prowegic(constit(X,,K))

if there is some chance of provirgnstit(X,1,K), in the sense that there is a
word(W,1,J) that could serve as the first word (“left corner”) in a phrase
stit(X,1,K).

Remarkably, we can get this behavior automatically by appglthe magic
templates transformation secondtime. We now require thenagic items
themselves to be charmed before we will derive them. Thisatain flows
bottom-up in the parse tree: we first chairagic(constit(X,,K)) whereX can
rewrite directly asn, then move up to nonterminals that can rewrite starting
with X, and so on.

Thus, the original CKY algorithm proved constituents bottap; the
transformed Earley’s algorithm filtered these constitadiyt top-down pre-
dictions; and the doubly transformed algorithm will filtéetpredictions by
bottom-up propagation of left corners.

Before illustrating this transformation, we point out sosi@plifications
that are possible with second-order magic. This time we ug#magic2 to
indicate charmed items, to avoid conflict with thhegic predicate that already
appears in the input program. We also assume that the usdlingwo ex-
plicitly charm everything but thenagic terms—since any other terms that the
user regards as uninteresting are presumably already filééngd by the last
transformation. Suppose that the original program coeththe rulea +=b *
c. The input program then also usually contains

magic(b) |= magic(a).

magic(c) |= ?b & magic(a).
However, either of these rules may be omitted if the userieitglcharmed
its head during the first round of magic (i.e., by statinggic(b) |= true or
magic(c) |= true). As we will see, omitting these rules when possible will re-
duce the work that second-order magic has to do.

If we apply a second round of magic literally, the above rul@ken
present) respectively yield the new rules

magic2(magic(a)) |= magic2(magic(b)).
and

magic2(b) |= magic2(magic(c)).

magic2(magic(a)) |= ?b & magic2(magic(c)).

These rules propagate charm on thagic items, frommagic(b) or magic(c)

49Earley (1970) himself described how to Uswords of lookahead.

TRANSFORMATIONS ON WEIGHTED LOGIC PROGRAMS / 81

up to magic(a). However, it turns out that the second and often the third of
thesemagic2 rules can be discarded, as they are redundant with morentenie
rules that prove the same heads. The second is redundaniskettee user
has already explicitly stated thaiagic2(b) |= true. The third is redundarit
the first is present, since if the program has pravéten it must have previ-
ously provednagic(b) and before thathagic2(magic(b)), so that the first rule
(if present) would already have been able to praggic2(magic(a)).

The input program also contains

a +=b * c needed_only_if magic(a).
We want to provenagic(a) if it will be useful in such a clause, so the second
round of magic will also generate

magic2(magic(a)) |= ?b & ?c & magic2(a).

This is the rule that initiates the desired bottom-up chagif magic items. It

too can be simplified. We can drop ttmagic2(a) condition, since the user has
already explicitly stated thatagic2(a) |= true. We can drop thec condition

if the third magic2 rule above is present, and drop the entire rule if the first
magic2 rule above is present. (Thus, we will end up discarding theeunless

b was charmed by the user prior to the first round of magic—nwakithe
appropriate “bottom” where bottom-up propagation begins.

Applying second-order magic with these simplifications tw wersion of
Earley’s algorithm, we obtain the following natural rules fntroducing and
propagating left corners. Note that thesBeet only theconstit terms. Intu-
itively, the other terms of the original program do not needic2 templates
to entitle them to acquire first-order charm, as they werdi@ip charmed
by the user prior to first-order magic.

magic2(magic(constit(X,1,K))) |= rewrite(X,W) & word(W,,K).

magic2(magic(constit(X,l,K))) | = ?rewrite(X,Y,2).

& magic2(magic(constit(Y,1,J))).
The transformation then applies the left-corner filter te thagic templates
defined by first-order magic:

magic(constit(s,0,N)) | = magic(goal)

needed_only_if magic2(magic(constit(s,0,N))).
magic(constit(Y,1,J)) | = ?rewrite(X,Y,Z)
& magic(constit(X,1,K))
needed_only_if magic2(magic(constit(Y,l,J))).
magic(constit(Z,J,K)) | = ?rewrite(X,Y,Z) & ?constit(Y,l,J)
& magic(constit(X,1,K)).
needed_only_if magic2(magic(constit(Z,J,K))).

Note that themagic2(constit(X,1,K)) items proved above are specific to the
spani— in the current sentence: they haxgK all bound. However, one
could remove this dependenceigaby using the speculation transformation
(section 6.5). Then the first time a particular wavds observed via some fact

82/ JasoN EisNer AND JoHN Brarz

==

Given a unary predicateagic that may already appearfn We say that ¢
termt is already charmed® if # contains a rulenagic(s) |= true wheresis
at least as general &s

For each rul® in P, of the formr; = E;, given an orderingy, . . ., &k, of
the items whose values are combined®yincluding any filter clauses):

foreach rule R
unless r; is already charmed
append “needed_only_if magic(r;)” to R;
for j=1,2,...k
unless g; is already charmed
add “magic(g;) |- 761 & - -+ & ?€(j-1) & magic(r;)" to P
optionally relax this new rule by generalizing its head®?

50This test is used only to simplify the output.

51In the examples in the text, this is taken to be the order oftimenwhich is a reasonable
default.

52That is, replace the head with a more general pattern. Fonjgiea one may replace some
variables or other sub-terms in the head with variablesdbatot appear in the rule body. See
section 6.6.4 for discussion.

FIGURE7 The magic templates transformation.

word(W,1,K), the program will derivenagic2(constit(X,10,K0))/word(W,10,K0) for

each nonterminad of whichw is a possible left corner. These left corner table
entries leaveo,Ko free, so once they are computed, they can be combined not
only with word(W,1,K) but also with later appearances of the same word, such
asword(W,12,K2).

6.6.4 Formalizing Magic Templates

Our version of magic templates is shown in Figure 7. Readérs are
familiar with Ramakrishnan (1991) should note that our eneéation focuses
on the case that Ramakrishnan calls “full sips,” where eaom tused in a
rule’s body constrains the bindings of variables in subsatjterms.

However, to allow other “sips” (sideways information-pagsstrategies),
we can optionally rename variables in the headsadic(...) |= --- rules so
that they become free. This results in proving fewer, moregamagic(. . .)
items>3

Ramakrishnan’s construction instead attemprtp these variables—as
well as other variables that provably remain free. Howelvisrconstruction

53This may even avoid an asymptotic slowdown. Why? It is pdssib prove more magic
templates than items in the original program, becamsagic(a) (proved top-down) may acquire
bindings for variables that are still free an(proved bottom-up). It is wise to drop such variables
from magic(a) or leave them free.

TRANSFORMATIONS ON WEIGHTED LOGIC PROGRAMS / 83

is less flexible because it only drops variables that appediract arguments
to the top-level predicate. It also leads to a proliferatidmew and non-
interacting predicates (such magic_constit®®’/2), which correspond to éier-
ent binding patterns in the top-level predicate.

Dropping variables rather than freeing them does have theradge that
it makes terms smaller, perhaps resulting in constant+t@dections of speed
and space. However, we opt to defer this kind of “abbrewviéitaf terms to
an optional subsequent transformation—the same tranafam(not given
in this paper) that we would use to abbreviatedfash(...) items introduced
by speculation in section 6.5.1. Pushing abbreviation &ngeparate trans-
formation keeps our Figure 7 simple. The abbreviation fiansation could
also attempt more ambitious simplifications than Ramakash(1991), who
does not simplify away nested free variables, duplicatathdovariables, or
constants, nor even detect all free variables that are agtsto the top-level
predicate.

6.7 Conclusions

This paper has introduced the formalism of weighted logagpsmming,

a powerful declarative language for describing a wide raofggseful algo-
rithms.

We outlined several fundamental techniques for rearranginveighted
logic program to make it moreflécient. Each of the techniques is connected
to ideas in both logic programming and in parsing, and hadipieluses
in natural language processing. We used them to recoveredasdnown
parsing optimizations, such as

= unary rule cycle elimination

= Earley’s (1970) algorithm with an added left corner filter
» Eisner and Satta’s (199@)n®) bilexical parsing

= on-the-fly intersection of weighted automata

as well as various other small rearrangements of algoritsowh as a slight
improvement to lexicalized CKY parsing.

We showed how weighted logic programming can be made monegsxp
sive and its transformations simplified by allowing non4grd items to be
derived, and we introduced a new kind of side condition ttwegsdnot bind
variables—theneeded_only_if construction—to streamline the use of non-
ground items.

Our specific techniques included weighted generalizatidrislding and
unfolding; the speculation transformation (an originahgelization of fold-
ing); and an improved formulation of the magic templatesgfarmation.
This work does not exhaust the set of useful transformatibasexample,

84 / JasoN EisNer AND JoHN Brarz

Eisner et al. (2005) briefly discuss transformations thaivdgrograms to
compute gradients of, or bounds on, the values computedebgrtginal dy-
namic program. We intend in the future to give formal treaitaeof these.
We also plan to investigate other potentially useful transfations, in partic-
ular, transformations that exploit program invariantseofprm tasks such as
“abbreviating” complex items.

We hope that the paradigm presented here proves usefulde Wit wish
to further study the problems to which weighted logic prognasing can be
applied, as well as to those who wish to apply it to those mnoislthemselves.

In the long run, we hope that by detailing a set of possiblgm trans-
formation steps, we can work toward creating a system thatdsearch au-
tomatically for practically &ective transformations of a given weighted logic
program, by incorporating observations about the progsatnicture as well
as data collected from experimental runs. Such an implexdesytstem could
be of great practical value.

References

Aji, S. and R. McEliece. 2000. The generalized distributase. IEEE Transactions
on Information Theory6(2):325-343.

Earley, J. 1970. Anfécient context-free parsing algorithnComm. ACM13(2):94—
102.

Eisner, J., E. Goldlust, and N. A. Smith. 2005. Compiling gding: Weighted dy-
namic programming and the Dyna languagePioc of HLTEMNLP.

Eisner, J. and G. Satta. 1999fiEient parsing for bilexical context-free grammars and
head-automaton grammars. Rroc. of ACL, pages 457-464.

Fitting, M. 2002. Fixpoint semantics for logic programmiagsurvey. TCS278(1-
2):25-51.

Goodman, J. 1999. Semiring parsir@omputational Linguistic25(4):573-605.

Huang, L., H. Zhang, and D. Gildea. 2005. Machine transtedi®lexicalized parsing
with hooks. InProc. of IWPT, pages 65-73.

McAllester, D. 1999. On the complexity analysis of stati@algses. InProc of 6th
Internat. Static Analysis Symposium

Minnen, G. 1996. Magic for filter optimization in dynamic barh-up processing. In
Proc 34th ACL pages 247-254.

Ramakrishnan, R. 1991. Magic templates: a spellbindingagmh to logic programs.
J. Log. Prog.11(3-4):189-216.

RereRENCES / 85

Ross, K. A. and Y. Sagiv. 1992. Monotonic aggregation in dtde databases. In
PODS '92 pages 114-126.

Sagonas, Konstantinos, Terrance Swift, and David S. Wali@. XSB as anfi-
cient deductive database engifeéCM SIGMOD Recor@3(2):442—-453.

Shieber, S. M., Y. Schabes, and F. Pereira. 1995. Princgsidimplementation of
deductive parsingJ. Logic Prog.24(1-2):3—-36.

Sikkel, Klaus. 1997 Parsing Schemata: A Framework for Specification and Anglysi
of Parsing AlgorithmsTexts in Theoretical Computer Science. Springer-Verlag.

Stolcke, A. 1995. An fiicient probabilistic context-free parsing algorithm thate
putes prefix probabilitiesComputational Linguistic21(2):165-201.

Tamaki, H. and T. Sato. 1984. Unfgldld transformation of logic programs. Froc
2nd ICLP, pages 127-138.

Van Gelder, A. 1992. The well-founded semantics of aggregatIn PODS '92
pages 127-138. New York, NY, USA: ACM Press. ISBN 0-89792-81

Younger, D. H. 1967. Recognition and parsing of contex¢-fenguages in time®.
Info. and Control10(2):189-208.

Zhou, N.-F.. and T. Sato. 2003. Toward a high-performansgesy for symbolic and
statistical modeling. IProc of IJCAI Workshop on Learning Stat. Models from
Relational Data

