Learning Dependency-Based Compositional Semantics

Semantic Representations for Textual Inference Workshop – Mar. 10, 2012

Percy Liang Google/Stanford

joint work with Michael Jordan and Dan Klein

Motivating Problem: Question Answering

Motivating Problem: Question Answering

What is the largest city in California?

Motivating Problem: Question Answering

What is the largest city in California?

What is the largest city in a state bordering California?

What is the largest city in a state bordering California?

What is the largest city in a state bordering California?

What is the largest city in a state bordering California?

What is the largest city in a state bordering California?

 $\texttt{city}(c) \land \exists s.\texttt{state}(s) \land \texttt{loc}(c,s)$

What is the largest city in a state bordering California?

 $\mathtt{city}(c) \land \exists s.\mathtt{state}(s) \land \mathtt{loc}(c,s) \land \mathtt{border}(s,\mathtt{CA})$

What is the largest city in a state bordering California?

 $\texttt{argmax}(\{c:\texttt{city}(c) \land \exists s.\texttt{state}(s) \land \texttt{loc}(c,s) \land \texttt{border}(s,\texttt{CA})\},\texttt{population})$

What is the largest city in a state bordering California?

 $\texttt{argmax}(\{c:\texttt{city}(c) \land \exists s.\texttt{state}(s) \land \texttt{loc}(c,s) \land \texttt{border}(s,\texttt{CA})\},\texttt{population})$

What is the largest city in a state bordering California?

Detailed Supervision (current)

What is the largest city in California?

 $\texttt{argmax}(\{c:\texttt{city}(c) \land \texttt{loc}(c,\texttt{CA})\},\texttt{population})$

Detailed Supervision (current)

What is the largest city in California?

 $\begin{array}{c} & \bullet \\ & \bullet \\ \texttt{argmax}(\{c:\texttt{city}(c) \land \texttt{loc}(c,\texttt{CA})\},\texttt{population}) \end{array}$

Detailed Supervision (current)

- doesn't scale up

What is the largest city in California?

expert

 $\texttt{argmax}(\{c:\texttt{city}(c) \land \texttt{loc}(c,\texttt{CA})\},\texttt{population})$

Detailed Supervision (current)

- doesn't scale up

What is the largest city in California?

expert

 $\texttt{argmax}(\{c:\texttt{city}(c) \land \texttt{loc}(c,\texttt{CA})\},\texttt{population})$

Natural Supervision (new)

What is the largest city in California?

Detailed Supervision (current)

- doesn't scale up

What is the largest city in California?

expert

 $\texttt{argmax}(\{c:\texttt{city}(c) \land \texttt{loc}(c,\texttt{CA})\},\texttt{population})$

Natural Supervision (new)

What is the largest city in California?

Detailed Supervision (current)

- doesn't scale up

What is the largest city in California?

expert

 $\texttt{argmax}(\{c:\texttt{city}(c) \land \texttt{loc}(c,\texttt{CA})\},\texttt{population})$

Natural Supervision (new)

- scales up

What is the largest city in California?

Detailed Supervision (current)

- doesn't scale up
- representation-dependent

What is the largest city in California?

expert

 $\operatornamewithlimits{\texttt{argmax}}(\{c:\texttt{city}(c) \land \texttt{loc}(c,\texttt{CA})\},\texttt{population})$

Natural Supervision (new)

- scales up

What is the largest city in California?

Detailed Supervision (current)

- doesn't scale up
- representation-dependent

What is the largest city in California?

expert

 $\operatorname{argmax}(\{c:\operatorname{city}(c)\wedge\operatorname{loc}(c,\operatorname{CA})\},\operatorname{population})$

Natural Supervision (new)

- scales up
- representation-independent

What is the largest city in California?

Outline

Representation

Learning

Computational: how to efficiently search exponential space?

Computational: how to efficiently search exponential space?

What is the most populous city in California?

Computational: how to efficiently search exponential space?

What is the most populous city in California?

 $\lambda x.\texttt{state}(x)$

Computational: how to efficiently search exponential space?

What is the most populous city in California?

 $\lambda x.\texttt{city}(x)$

Computational: how to efficiently search exponential space?

What is the most populous city in California?

 $\lambda x.\texttt{city}(x) \wedge \texttt{loc}(x,\texttt{CA})$

Computational: how to efficiently search exponential space?

What is the most populous city in California?

 $\lambda x.\texttt{state}(x) \wedge \texttt{border}(x,\texttt{CA})$

Computational: how to efficiently search exponential space?

What is the most populous city in California?

population(CA)

Computational: how to efficiently search exponential space?

What is the most populous city in California?

 $\texttt{argmax}(\lambda x.\texttt{city}(x) \land \texttt{loc}(x,\texttt{CA}), \lambda x.\texttt{population}(x))$

Computational: how to efficiently search exponential space?

What is the most populous city in California?

Computational: how to efficiently search exponential space?

What is the most populous city in California?

Los Angeles

Statistical: how to parametrize mapping from sentence to logical form?

What is the most populous city in California?

 $\texttt{argmax}(\lambda x.\texttt{city}(x) \land \texttt{loc}(x,\texttt{CA}), \lambda x.\texttt{population}(x))$

Dependency-Based Compositional Semantics (DCS)

What is the most populous city in California?

Dependency-Based Compositional Semantics (DCS)

What is the most populous city in California?

Dependency-Based Compositional Semantics (DCS)

What is the most populous city in California?

Advantages of DCS: nice computational, statistical, linguistic properties
Where do the answers come from?

What is the most populous city in California?

Los Angeles

Where do the answers come from?

What is the most populous city in California?

Database

DCS tree

Database

DCS tree	Constraints	Database
(city)	$c \in \texttt{city}$	city San Francisco
1	$c_1 = \ell_1$	Chicago Boston
loc	$\ell \in \texttt{loc}$	
2	ρ	loc
1	$\ell_2 = s_1$	Mount Shasta California
		San Francisco California
(CA)	$s\in {\sf CA}$	Boston Massachusetts
		••••

DCS tree	Constraints	Database
city	$c \in \texttt{city}$	city San Francisco
1	$c_1 = \ell_1$	Chicago Boston
loc	$\ell \in \texttt{loc}$	•••
2	$\ell_2 = s_1$	
1	$v_2 = v_1$	Mount Shasta California San Francisco California
CA	$s\in {f CA}$	Boston Massachusetts
<u> </u>		•••

DCS tree	Constraints	Database
city	$c \in \texttt{city}$	city San Francisco
1	$c_1 = \ell_1$	Chicago Boston
	$\ell \in \texttt{loc}$	
2	0	loc
	$\ell_2 = s_1$	Mount Shasta California
		San Francisco California
(CA)	$s\inCA$	Boston Massachusetts
		•••

DCS tree	Constraints	Database
city 1 1	$c \in city$ $c_1 = \ell_1$	city San Francisco Chicago Boston
2	$\ell \in loc$ $\ell_0 = \mathfrak{s}_1$	loc
	$s \in CA$	Mount Shasta California San Francisco California Boston Massachusett
Ŭ		

DCS tree	Constraints	Database
(city)	$c \in t{city}$	city
	$c_1 = \ell_1$	San Francisco Chicago Boston
	$\ell \in \texttt{loc}$	•••
2	$\ell_2 = s_1$	loc
		Mount Shasta California
		San Francisco California
(CA)	$s\in {\sf CA}$	Boston Massachusetts
		••••

A DCS tree encodes a **constraint satisfaction problem** (CSP) **Computation**: dynamic programming \Rightarrow time = O(# nodes)

most populous city in California

most populous city in California

most populous city in California

Syntax

Semantics

 $\texttt{argmax}(\lambda x.\texttt{city}(x) \land \texttt{loc}(x,\texttt{CA}), \lambda x.\texttt{population}(x))$

most populous city in California

Syntax

Semantics

 $\operatorname{argmax}(\lambda x.\mathtt{city}(x) \land \mathtt{loc}(x,\mathtt{CA}),\lambda x.\mathtt{population}(x))$

most populous city in California

Syntax

Semantics

$$extsf{argmax}(\lambda x.\texttt{city}(x) \land \texttt{loc}(x,\texttt{CA}), \lambda x.\texttt{population}(x))$$

Problem: syntactic scope is lower than semantic scope

most populous city in California

Syntax

Semantics

 $\operatorname{argmax}(\lambda x.\mathtt{city}(x) \wedge \mathtt{loc}(x,\mathtt{CA}),\lambda x.\mathtt{population}(x))$

Problem: syntactic scope is lower than semantic scope

If DCS trees look like syntax, how do we get correct semantics?

most populous city in California

most populous city in California

most populous city in California

Execute at semantic scope

Alaska borders no states.

Execute at semantic scope

Some river traverses every city.

Quantification (narrow)

Execute at semantic scope

Some river traverses every city.

Quantification (wide)

Execute at semantic scope

Some river traverses every city.

Quantification (wide)

Analogy: Montague's quantifying in, Carpenter's scoping constructor

Outline

Representation

Learning

database

Graphical Model

Graphical Model

Plan

- What's **possible**? $z \in \mathcal{Z}(x)$
- What's **probable**? $p(z \mid x, \theta)$
- Learning θ from (x,y) data

What is the most populous city in CA ?

Lexical Triggers:

1. String match $CA \Rightarrow CA$

Lexical Triggers:

- 1. String match $CA \Rightarrow CA$
- 2. Function words (20 words) $most \Rightarrow argmax$

				city	city			
				state	state			
				river	river			
			argmax	population	population		CA	
What	is	the	most	populous	city	in	CA	?

Lexical Triggers:

- 1. String match $CA \Rightarrow CA$
- 2. Function words (20 words) $most \Rightarrow argmax$
- 3. Nouns/adjectives $city \Rightarrow city state river population$

 $C_{i,j}$ = set of DCS trees for span [i, j]

1

Plan

- What's **possible**? $z \in \mathcal{Z}(x)$
- What's probable? $p(z \mid x, \theta)$
- Learning θ from (x, y) data

 $\mathsf{score}(x,z) = \mathsf{features}(x,z) \cdot \pmb{\theta}$

 $score(x, z) = features(x, z) \cdot \theta$

$$p(z \mid x, \theta) = \frac{e^{\operatorname{score}(x, z)}}{\sum_{z' \in \mathcal{Z}(x)} e^{\operatorname{score}(x, z')}}$$

Plan

- What's **possible**? $z \in \mathcal{Z}(x)$
- What's **probable**? $p(z \mid x, \theta)$
- \bullet Learning θ from (x,y) data

Objective Function:

 $p(y \mid \boldsymbol{z}, w) p(\boldsymbol{z} \mid \boldsymbol{x}, \boldsymbol{\theta})$

Interpretation Semantic parsing

Objective Function:

 $p(y \mid \boldsymbol{z}, w) p(\boldsymbol{z} \mid \boldsymbol{x}, \boldsymbol{\theta})$

Interpretation Semantic parsing

Objective Function:

 $\max_{\theta} \sum_{z} p(y \mid z, w) p(z \mid x, \theta)$

Interpretation Semantic parsing

Objective Function:

$$\max_{\theta} \sum_{z} p(y \mid z, w) p(z \mid x, \theta)$$

Interpretation Semantic parsing

EM-like Algorithm:

parameters θ

 $(0,0,\ldots,0)$

Objective Function:

$$\max_{\theta} \sum_{z} p(y \mid z, w) p(z \mid x, \theta)$$

Interpretation Semantic parsing

EM-like Algorithm:

parameters θ

enumerate/score DCS trees

 $(0,0,\ldots,0)$

Objective Function:

$$\max_{\theta} \sum_{z} p(y \mid z, w) p(z \mid x, \theta)$$

Interpretation Semantic parsing

Objective Function:

$$\max_{\theta} \sum_{z} p(y \mid z, w) p(z \mid x, \theta)$$

Interpretation Se

Semantic parsing

Objective Function:

$$\max_{\theta} \sum_{z} p(y \mid z, w) p(z \mid x, \theta)$$

Interpretation S

Semantic parsing

Objective Function:

$$\max_{\theta} \sum_{z} p(y \mid z, w) p(z \mid x, \theta)$$

Interpretation Se

Semantic parsing

Objective Function:

$$\max_{\theta} \sum_{z} p(y \mid z, w) p(z \mid x, \theta)$$

Interpretation S

Semantic parsing

Outline

Representation

Learning

Standard semantic parsing benchmark since 1990s 600 training examples, 280 test examples

Standard semantic parsing benchmark since 1990s 600 training examples, 280 test examples

What is the highest point in Florida?

How many states have a city called Rochester?

What is the longest river that runs through a state that borders Tennessee?

Of the states washed by the Mississippi river which has the lowest point?

Standard semantic parsing benchmark since 1990s 600 training examples, 280 test examples

What is the highest point in Florida? ⇒ answer(A,highest(A,(place(A),loc(A,B),const(B,stateid(florida))))) How many states have a city called Rochester? ⇒ answer(A,count(B,(state(B),loc(C,B),const(C,cityid(rochester,_))),A)) What is the longest river that runs through a state that borders Tennessee? ⇒ answer(A,longest(A,(river(A),traverse(A,B),state(B),next_to(B,C),const(C,stateid(tennessee))))) Of the states washed by the Mississippi river which has the lowest point? ⇒ answer(A,lowest(B,(state(A),traverse(C,A),const(C,riverid(mississippi)),loc(B,A),place(B))))

Supervision in past work: question + program

Standard semantic parsing benchmark since 1990s 600 training examples, 280 test examples

What is the highest point in Florida? ⇒ Walton County

How many states have a city called Rochester? $\Rightarrow 2$

What is the longest river that runs through a state that borders Tennessee? ⇒ Missouri

Of the states washed by the Mississippi river which has the lowest point? \Rightarrow Louisiana

Supervision in past work: question + program Supervision in this work: question + answer

Input to Learning Algorithm

Training data (600 examples)

What is the highest point in Florida?	\Rightarrow	Walton County
How many states have a city called Rochester?	\Rightarrow	2
What is the longest river that runs through a state that borders Tennessee?	\Rightarrow	Missouri
Of the states washed by the Mississippi river which has the lowest point?	\Rightarrow	Louisiana
•••		•••

Input to Learning Algorithm

Training data (600 examples)

What is the highest point in Florida?	\Rightarrow	Walton County
How many states have a city called Rochester?	\Rightarrow	2
What is the longest river that runs through a state that borders Tennessee?	\Rightarrow	Missouri
Of the states washed by the Mississippi river which has the lowest point?	\Rightarrow	Louisiana
•••		•••

Lexicon (75 words)

city	\Rightarrow	city
state	\Rightarrow	state
mountain	\Rightarrow	mountain, peak
• • •		•••

Input to Learning Algorithm

Training data (600 examples)

What is the highest point in Florida? \Rightarrow Walton CountyHow many states have a city called Rochester? \Rightarrow 2What is the longest river that runs through a state that borders Tennessee? \Rightarrow MissouriOf the states washed by the Mississippi river which has the lowest point? \Rightarrow Louisiana............

Lexicon (75 words)

city	\Rightarrow	city
state	\Rightarrow	state
mountain	\Rightarrow	mountain, peak
•••		• • •

Database

On GEO, 250 training examples, 250 test examples

On GEO, 250 training examples, 250 test examples

SystemDescriptionLexicon (gen./spec.)Logical formsCGCR10FunQL [Clarke et al., 2010]

On GEO, 250 training examples, 250 test examples

SystemDescriptionLexicon (gen./spec.)Logical formsCGCR10FunQL [Clarke et al., 2010]<</td>DCSour system

On GEO, 250 training examples, 250 test examples

System	Description	Lexicon (gen./spec.)	Logical forms
CGCR10	FunQL [Clarke et al., 2010]	<i>↓ ↓</i>	×
DCS	our system	🛹 🗶	×
DCS^+	our system	✓ ✓	X

On GEO, 600 training examples, 280 test examples

On GEO, 600 training examples, 280 test examples **System Description**

Lexicon Logical forms

On GEO, 600 training examples, 280 test examples

SystemDescriptionZC05CCG [Zettlemoyer & Collins, 2005]

Lexicon Logical forms

On GEO, 600 training examples, 280 test examples

System Description Lexicon Logical forms CCG [Zettlemoyer & Collins, 2005] ZC05XX

zc07 relaxed CCG [Zettlemoyer & Collins, 2007]

XX

On GEO, 600 training examples, 280 test examples

SystemDescriptionLexiconLogical formsZC05CCG [Zettlemoyer & Collins, 2005]X X✓ZC07relaxed CCG [Zettlemoyer & Collins, 2007]X X✓KZGS10CCG w/unification [Kwiatkowski et al., 2010]X X✓

On $\mathrm{GEO},\,600$ training examples, 280 test examples

SystemDescriptionLexiconLogical formsZC05CCG [Zettlemoyer & Collins, 2005]X X✓ZC07relaxed CCG [Zettlemoyer & Collins, 2007]X X✓KZGS10CCG w/unification [Kwiatkowski et al., 2010]X X✓DCSour system✓ XX

On $\mathrm{GEO},\,600$ training examples, 280 test examples

If no DCS tree on k-best list is correct, skip example in (2)

If no DCS tree on k-best list is correct, skip example in (2)

If no DCS tree on k-best list is correct, skip example in (2)

Effect: automatic curriculum learning, learning improves search

Only using forward information

Execute program to get answer, but want to invert

Only using forward information

Execute program to get answer, but want to invert

Non-identifiability of program

If all cities in database are in US, then

can't distinguish $\{c: \mathtt{city}(c)\}\ \mathtt{and}\ \{c: \mathtt{city}(c) \land \mathtt{loc}(c, \mathtt{US})\}\$

Only using forward information

Execute program to get answer, but want to invert

Non-identifiability of program

If all cities in database are in US, then can't distinguish $\{c : city(c)\}\$ and $\{c : city(c) \land loc(c, US)\}\$

Unknown facts: How far is Los Angeles from Boston?

Database has no distance information

Only using forward information

Execute program to get answer, but want to invert

Non-identifiability of program

If all cities in database are in US, then can't distinguish $\{c: city(c)\}\$ and $\{c: city(c) \land loc(c, US)\}\$

Unknown facts: *How far is Los Angeles from Boston?*

Database has no distance information

Unknown concepts: What states are landlocked?

Need to induce database view for $landlocked(x) = \neg border(x, ocean)$

Goal: learn to answer questions from question/answer pairs

Goal: learn to answer questions from question/answer pairs

Empirical result:

DCS (no logical forms) \approx existing systems (with logical forms)

Goal: learn to answer questions from question/answer pairs

Empirical result:

DCS (no logical forms) \approx existing systems (with logical forms)

Conceptual contribution: DCS trees

• Trees: connects dependency syntax with efficient evaluation

Goal: learn to answer questions from question/answer pairs

Empirical result:

DCS (no logical forms) \cong existing systems (with logical forms)

Conceptual contribution: DCS trees

- Trees: connects dependency syntax with efficient evaluation
- Mark-Execute: unifying framework for handling scope

