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Analogy: Montague’s quantifying in, Carpenter’s scoping constructor
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Learning

Objective Function:

max✓
P

z p(y | z, w) p(z | x, ✓)
Interpretation Semantic parsing

EM-like Algorithm:

parameters ✓ k-best list

(0.3,�1.4, . . . , 0.6)

enumerate/score DCS trees

numerical optimization (L-BFGS)

tree3

tree8

tree2

tree4

tree9
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US Geography Benchmark

Standard semantic parsing benchmark since 1990s

600 training examples, 280 test examples

What is the highest point in Florida?
) answer(A,highest(A,(place(A),loc(A,B),const(B,stateid(florida)))))

How many states have a city called Rochester?
) answer(A,count(B,(state(B),loc(C,B),const(C,cityid(rochester, ))),A))

What is the longest river that runs through a state that borders Tennessee?
) answer(A,longest(A,(river(A),traverse(A,B),state(B),next to(B,C),const(C,stateid(tennessee)))))

Of the states washed by the Mississippi river which has the lowest point?
) answer(A,lowest(B,(state(A),traverse(C,A),const(C,riverid(mississippi)),loc(B,A),place(B))))

· · ·
Supervision in past work: question + program
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US Geography Benchmark

Standard semantic parsing benchmark since 1990s

600 training examples, 280 test examples

What is the highest point in Florida?
) Walton County

How many states have a city called Rochester?
) 2

What is the longest river that runs through a state that borders Tennessee?
) Missouri

Of the states washed by the Mississippi river which has the lowest point?
) Louisiana

· · ·
Supervision in past work: question + program

Supervision in this work: question + answer
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Input to Learning Algorithm

Training data (600 examples)

What is the highest point in Florida? ) Walton County
How many states have a city called Rochester? ) 2
What is the longest river that runs through a state that borders Tennessee? ) Missouri
Of the states washed by the Mississippi river which has the lowest point? ) Louisiana
· · · · · ·
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Input to Learning Algorithm

Training data (600 examples)

What is the highest point in Florida? ) Walton County
How many states have a city called Rochester? ) 2
What is the longest river that runs through a state that borders Tennessee? ) Missouri
Of the states washed by the Mississippi river which has the lowest point? ) Louisiana
· · · · · ·

Lexicon (75 words)

city ) city
state ) state
mountain ) mountain, peak
· · · · · ·

Database

city

San Francisco
Chicago
Boston
· · ·

state

Alabama
Alaska
Arizona
· · ·

loc

Mount Shasta California
San Francisco California
Boston Massachusetts
· · · · · ·

border

Washington Oregon
Washington Idaho
Oregon Washington
· · · · · ·

· · · · · ·
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Experiment 2

On Geo, 600 training examples, 280 test examples
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On Geo, 600 training examples, 280 test examples

System Description Lexicon Logical forms
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Experiment 2

On Geo, 600 training examples, 280 test examples

System Description Lexicon Logical forms
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kzgs10 CCG w/unification [Kwiatkowski et al., 2010]
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Experiment 2

On Geo, 600 training examples, 280 test examples

System Description Lexicon Logical forms

zc05 CCG [Zettlemoyer & Collins, 2005]

zc07 relaxed CCG [Zettlemoyer & Collins, 2007]

kzgs10 CCG w/unification [Kwiatkowski et al., 2010]

dcs our system

dcs

+ our system

zc05

79.3%

zc07

86.1%

kzgs10

88.9%

dcs

88.6%

dcs

+
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Some Intuition on Learning

parameters ✓

(1) search DCS trees (hard!)

(2) numerical optimization

k-best lists

If no DCS tree on k-best list is correct, skip example in (2)
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iteration
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E↵ect: automatic curriculum learning, learning improves search
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Current Limitations

Only using forward information

Execute program to get answer, but want to invert

Non-identifiability of program

If all cities in database are in US, then

can’t distinguish {c : city(c)} and {c : city(c) ^ loc(c, US)}

Unknown facts: How far is Los Angeles from Boston?

Database has no distance information

Unknown concepts: What states are landlocked?

Need to induce database view for landlocked(x) = ¬border(x, ocean)
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Conclusion

Goal: learn to answer questions from question/answer pairs

Empirical result:

DCS (no logical forms) u existing systems (with logical forms)

Conceptual contribution: DCS trees

• Trees: connects dependency syntax with e�cient evaluation

• Mark-Execute: unifying framework for handling scope
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