# Causal Premise Semantics 

Stefan Kaufmann

Northwestern / University of Connecticut

Perspectives on Modality Stanford, April 12, 2013

## Outline

(1) Premise Semantics

- Modals
- Conditionals
- Counterfactuals
(2) Implementation
- Premise sets
- Premise set sequences
- Modals and conditionals
(3) Causal Premise Semantics
- Basics
- Modal base
- Ordering source


## Outline

(1) Premise Semantics

- Modals
- Conditionals
- Counterfactuals
(2) Implementation
- Premise sets
- Premise set sequences
- Modals and conditionals
(3) Causal Premise Semantics
- Basics
- Modal base
- Ordering source


## Premise Semantics for modals

## Kratzer (1981a)

(1) John must be at home.
(2) John may be at home.

Must(John home)
May(John home)

## Premise Semantics for modals

 Kratzer (1981a)(1) John must be at home.
(2) John may be at home.

Must(John home)
May(John home)

- Two contextually given bodies of background assumptions:
- Modal base: what is established in the relevant sense
- epistemic (subjective; beliefs)
- circumstantial (objective; facts)
- Ordering source: what is preferred in the relevant sense
- stereotypical (normalcy)
- deontic (obligations)
- bouletic (desires)


## Premise Semantics for modals

 Kratzer (1981a)(1) John must be at home.
(2) John may be at home.

Must(John home)
May(John home)

- Two contextually given bodies of background assumptions:
- Modal base: what is established in the relevant sense
- epistemic (subjective; beliefs)
- circumstantial (objective; facts)
- Ordering source: what is preferred in the relevant sense
- stereotypical (normalcy)
- deontic (obligations)
- bouletic (desires)
et Variety of modal flavors
- [In view of the curfew,] John must be at home.


## Premise Semantics for modals

 Kratzer (1981a)(1) John must be at home.
(2) John may be at home.

Must(John home)
May(John home)

- Two contextually given bodies of background assumptions:
- Modal base: what is established in the relevant sense
- epistemic (subjective; beliefs)
- circumstantial (objective; facts)
- Ordering source: what is preferred in the relevant sense
- stereotypical (normalcy)
- deontic (obligations)
- bouletic (desires)
et Variety of modal flavors
- [In view of the curfew,] John must be at home.
- [In view of what we know,] John may be at home.


## Premise Semantics for modals

 Kratzer (1981a)(1) John must be at home.
(2) John may be at home.
(3) Prejacent: John is at home.

Must(John home)
May (John home) John home

- Interpretation relative to two sets of propositions: modal base $M$; ordering source $O$


## Premise Semantics for modals

 Kratzer (1981a)(1) John must be at home.
(2) John may be at home.
(3) Prejacent: John is at home.

Must(John home)
May (John home)
John home

- Interpretation relative to two sets of propositions: modal base $M$; ordering source $O$
- Try all ways of adding propositions from $O$ to $M$, maintaining consistency.
- If you inevitably get a set that entails (3), then (1) is true.
- If there is a way to keep adding without ruling out (3), then (2) is true.


## Premise Semantics for modals

 Kratzer (1981a)(1) John must be at home.
(2) John may be at home.
(3) Prejacent: John is at home.

Must(John home)
May (John home)
John home

- Interpretation relative to two sets of propositions: modal base $M$; ordering source $O$
- Try all ways of adding propositions from $O$ to $M$, maintaining consistency.
- If you inevitably get a set that entails (3), then (1) is true.
- If there is a way to keep adding without ruling out (3), then (2) is true.
- Terminology
- Premise set: a consistent set of propositions containing $M$ and some subset of $O$.
- $\operatorname{Prem}^{K}(M, O)$ : the set of all premise sets obtained from $M, O$.


## Premise Semantics for conditionals

## Kratzer (1981a)

(4) If the lights are on, John must be at home.
(5) Antecedent: The lights are on.
(3) Consequent: John is at home.

Mustights on (John home)
lights on
John home

## Premise Semantics for conditionals

## Kratzer (1981a)

(4) If the lights are on, John must be at home.
(5) Antecedent: The lights are on.

Mustights on (John home)
lights on
(3) Consequent: John is at home.

- Evaluate the consequent on the supposition that the antecedent is true.


## Premise Semantics for conditionals

## Kratzer (1981a)

(4) If the lights are on, John must be at home.
(5) Antecedent: The lights are on.

Mustights on (John home)
lights on
(3) Consequent: John is at home. John home

- Evaluate the consequent on the supposition that the antecedent is true.
(1) Add the antecedent (temporarily) to the modal base;
(2) Evaluate the matrix clause relative to the modified modal base.


## Premise Semantics for conditionals

## Kratzer (1981a)

(4) If the lights are on, John must be at home.
(5) Antecedent: The lights are on.
(3) Consequent: John is at home.

Mustlights on (John home)
lights on
John home

- Evaluate the consequent on the supposition that the antecedent is true.
(1) Add the antecedent (temporarily) to the modal base;
(2) Evaluate the matrix clause relative to the modified modal base.

Et Mustlights on (John home) is true relative to $(M, O)$ if and only if Must(John home) is true relative to ( $M+$ lights on, $O$ ).

## Premise Semantics for counterfactuals

## Goodman (1947); Kratzer (1981a,b, 1989); Kaufmann (2012)

(6) If that match is scratched, it will light.
(7) If that match were scratched, it would light. [indicative]
(8) If that match had been scratched, it would have lit. [counterf.]

## Premise Semantics for counterfactuals

## Goodman (1947); Kratzer (1981a,b, 1989); Kaufmann (2012)

(6) If that match is scratched, it will light.
(7) If that match were scratched, it would light. [counterf.]
(8) If that match had been scratched, it would have lit. [counterf.]

- 'will' and 'would' are modals.

Present and Past of an underlying modal stem 'woll' .
(Abusch, 1997, 1998; Condoravdi, 2002; Kaufmann, 2005)

## Premise Semantics for counterfactuals

## Goodman (1947); Kratzer (1981a,b, 1989); Kaufmann (2012)

(6) If that match is scratched, it will light.
(7) If that match were scratched, it would light. [counterf.]
(8) If that match had been scratched, it would have lit. [counterf.]

- 'will' and 'would' are modals.

Present and Past of an underlying modal stem 'woll' .
(Abusch, 1997, 1998; Condoravdi, 2002; Kaufmann, 2005)

- 'would' marks counterfactuality.

Adding the antecedent to $M$ requires adjustments to avoid inconsistency.
(Stalnaker, 1975; latridou, 2000; Schulz, 2012)

## Premise Semantics for counterfactuals Goodman (1947); Kratzer (1981a,b, 1989); Kaufmann (2012)

(6) If that match is scratched, it will light. [indicative]
(7) If that match were scratched, it would light. [counterf.]
(8) If that match had been scratched, it would have lit. [counterf.]

- 'will' and 'would' are modals.

Present and Past of an underlying modal stem 'woll' .
(Abusch, 1997, 1998; Condoravdi, 2002; Kaufmann, 2005)

- 'would' marks counterfactuality.

Adding the antecedent to $M$ requires adjustments to avoid inconsistency.
(Stalnaker, 1975; latridou, 2000; Schulz, 2012)

- I am glossing over some morphological details in this talk.
(Kaufmann, 2005; Grønn and von Stechow, 2011; Schulz, 2008, 2012)


## Premise Semantics for counterfactuals Goodman (1947); Kratzer (1981a,b, 1989); Kaufmann (2012)

(6) If that match is scratched, it will light.
(7) If that match were scratched, it would light.
(8) If that match had been scratched, it would have lit. [counterf.]

- 'will' and 'would' are modals.

Present and Past of an underlying modal stem 'woll' .
(Abusch, 1997, 1998; Condoravdi, 2002; Kaufmann, 2005)

- 'would' marks counterfactuality.

Adding the antecedent to $M$ requires adjustments to avoid inconsistency.
(Stalnaker, 1975; latridou, 2000; Schulz, 2012)

- I am glossing over some morphological details in this talk.
(Kaufmann, 2005; Grønn and von Stechow, 2011; Schulz, 2008, 2012)
- I am interested in objective readings of counterfactuals (circumstantial modal base, stereotypical ordering source)


## Premise Semantics for counterfactuals Goodman (1947); Kratzer (1981a,b, 1989); Kaufmann (2012)

(8) If that match had been scratched, it would have lit.

Goodman's idea:

- When we say (8), we mean that conditions are such - i.e. the match is well made, is dry enough, oxygen enough is present, etc. - that "The match lights" can be inferred from "The match is scratched."
- [T]he connection we affirm may be regarded as joining the consequent with the conjunction of the antecedent and other statements that truly describe relevant conditions.


## Premise Semantics for counterfactuals

## Goodman (1947); Kratzer (1981a,b, 1989); Kaufmann (2012)

(8) If that match had been scratched, it would have lit.

Goodman's idea:

- When we say (8), we mean that conditions are such - i.e. the match is well made, is dry enough, oxygen enough is present, etc. - that "The match lights" can be inferred from "The match is scratched."
- [T]he connection we affirm may be regarded as joining the consequent with the conjunction of the antecedent and other statements that truly describe relevant conditions.

Q: What should be added to the antecedent?

## Premise Semantics for counterfactuals

## Goodman (1947); Kratzer (1981a,b, 1989); Kaufmann (2012)

(8) If that match had been scratched, it would have lit.

Goodman's idea:

- When we say (8), we mean that conditions are such - i.e. the match is well made, is dry enough, oxygen enough is present, etc. - that "The match lights" can be inferred from "The match is scratched."
- [T]he connection we affirm may be regarded as joining the consequent with the conjunction of the antecedent and other statements that truly describe relevant conditions.

Q: What should be added to the antecedent?

- $\{$ scratched, was dry $\quad \Rightarrow$ lit


## Premise Semantics for counterfactuals

## Goodman (1947); Kratzer (1981a,b, 1989); Kaufmann (2012)

(8) If that match had been scratched, it would have lit.
(9) If that match had been scratched, it would have been wet. $\chi$

Goodman's idea:

- When we say (8), we mean that conditions are such - i.e. the match is well made, is dry enough, oxygen enough is present, etc. - that "The match lights" can be inferred from "The match is scratched."
- [T]he connection we affirm may be regarded as joining the consequent with the conjunction of the antecedent and other statements that truly describe relevant conditions.

Q: What should be added to the antecedent?

- \{scratched, was dry\}
- \{scratched, didn't light $\quad \Rightarrow$ was wet


## Premise Semantics for counterfactuals

## Goodman (1947); Kratzer (1981a,b, 1989); Kaufmann (2012)

(8) If that match had been scratched, it would have lit.

Kratzer's formalization:

- The modal base $M$ is empty.

Thus the antecedent can be added consistently:
M + scratched $=\{$ scratched $\}$

- The propositions in $O$ characterize the actual state of affairs.


## Premise Semantics for counterfactuals

## Goodman (1947); Kratzer (1981a,b, 1989); Kaufmann (2012)

(8) If that match had been scratched, it would have lit.

Kratzer's formalization:

- The modal base $M$ is empty.

Thus the antecedent can be added consistently:
M + scratched $=\{$ scratched $\}$

- The propositions in $O$ characterize the actual state of affairs.

Et The premise sets favor similarity to what actually happened.

## Premise Semantics for counterfactuals Goodman (1947); Kratzer (1981a,b, 1989); Kaufmann (2012)

(8) If that match had been scratched, it would have lit.
(9) If that match had been scratched, it would have been wet. $\boldsymbol{x}$

Kratzer's formalization:

- The modal base $M$ is empty.

Thus the antecedent can be added consistently:
M + scratched $=\{$ scratched $\}$

- The propositions in $O$ characterize the actual state of affairs.

Et The premise sets favor similarity to what actually happened.

Two problems:
(1) Still no explanation for the falsehood of (9)
(2) Similarity to what happened is not (always) the right criterion.

## Premise Semantics for counterfactuals

## Goodman (1947); Kratzer (1981a,b, 1989); Kaufmann (2012)

[Two fair coins, A and B. Coin A was tossed and came up heads.]
(10) If coin B had been tossed, it would have come up heads. $X$

## Premise Semantics for counterfactuals

## Goodman (1947); Kratzer (1981a,b, 1989); Kaufmann (2012)

[Two fair coins, A and B. Coin A was tossed and came up heads.]
(10) If coin B had been tossed, it would have come up heads. $\boldsymbol{X}$

- Falsehood of (10) not accounted for by similarity.


## Premise Semantics for counterfactuals

## Goodman (1947); Kratzer (1981a,b, 1989); Kaufmann (2012)

[Two fair coins, A and B. Coin A was tossed and came up heads.]
(10) If coin B had been tossed, it would have come up heads. $X$

- Falsehood of (10) not accounted for by similarity.

Two things are important in the construction of premise sets:

- what is/was the case
- what is/was likely


## Premise Semantics for counterfactuals

## Goodman (1947); Kratzer (1981a,b, 1989); Kaufmann (2012)

[Two fair coins, A and B. Coin A was tossed and came up heads.]
(10) If coin B had been tossed, it would have come up heads. $X$

- Falsehood of (10) not accounted for by similarity.

Two things are important in the construction of premise sets:

- what is/was the case $\quad \Rightarrow$ Modal base
- what is/was likely $\quad \Rightarrow$ Ordering source


## Premise Semantics for counterfactuals

## Goodman (1947); Kratzer (1981a,b, 1989); Kaufmann (2012)

[Two fair coins, A and B. Coin A was tossed and came up heads.]
(10) If coin B had been tossed, it would have come up heads. $\boldsymbol{X}$

- Falsehood of (10) not accounted for by similarity.

Two things are important in the construction of premise sets:

- what is/was the case $\quad \Rightarrow$ Modal base
- what is/was likely $\quad \Rightarrow$ Ordering source

E Need to hold on to some of the contents of $M$.

## Premise Semantics for counterfactuals

## Goodman (1947); Kratzer (1981a,b, 1989); Kaufmann (2012)

[Two fair coins, A and B. Coin A was tossed and came up heads.]
(10) If coin B had been tossed, it would have come up heads. $\boldsymbol{X}$

- Falsehood of (10) not accounted for by similarity.

Two things are important in the construction of premise sets:

- what is/was the case $\quad \Rightarrow$ Modal base
- what is/was likely $\quad \Rightarrow$ Ordering source

E Need to hold on to some of the contents of $M$.

Q1: Which parts of $M$ to hold on to?
Q2: How to put those parts of $M$ together with bits of $O$ ?

## Premise Semantics for counterfactuals

(8) If that match had been scratched, it would have lit.

- Two ways of deriving premise sets from $M, O$ :
- by adding subsets of $O$ to $M$
- by adding subsets of $O$ to subsets of $M$


## Premise Semantics for counterfactuals

(8) If that match had been scratched, it would have lit.

- Two ways of deriving premise sets from $M, O$ :
- by adding subsets of $O$ to $M$
- by adding subsets of $O$ to subsets of $M$
- Break up $M$, respecting its structure.


## Premise Semantics for counterfactuals

(8) If that match had been scratched, it would have lit.

- Two ways of deriving premise sets from $M, O$ :
- by adding subsets of $O$ to $M$
- by adding subsets of $O$ to subsets of $M$
- Break up $M$, respecting its structure.
- The relevant structure is a contextual parameter, like $M$ itself.
- temporal precedence
- causal dependencies
- ...


## Premise Semantics for counterfactuals

(8) If that match had been scratched, it would have lit.

- Two ways of deriving premise sets from $M, O$ :
- by adding subsets of $O$ to $M$
- by adding subsets of $O$ to subsets of $M$
- Break up $M$, respecting its structure.
- The relevant structure is a contextual parameter, like $M$ itself.
- temporal precedence
- causal dependencies
- ...
- Different structures $\Rightarrow$ different interpretations.


## Premise Semantics for counterfactuals

(8) If that match had been scratched, it would have lit.

- Two ways of deriving premise sets from $M, O$ :
- by adding subsets of $O$ to $M$
- by adding subsets of $O$ to subsets of $M$
- Break up $M$, respecting its structure.
- The relevant structure is a contextual parameter, like $M$ itself.
- temporal precedence
- causal dependencies
- ...
- Different structures $\Rightarrow$ different interpretations.

BUT not all interpretations are attested for counterfactuals.

## Premise Semantics for counterfactuals

(8) If that match had been scratched, it would have lit.

- Two ways of deriving premise sets from $M, O$ :
- by adding subsets of $O$ to $M$
- by adding subsets of $O$ to subsets of $M$
- Break up $M$, respecting its structure.
- The relevant structure is a contextual parameter, like $M$ itself.
- temporal precedence
[wrong for cf but right for other expressions]
- causal dependencies [right for cf and for yet other expressions]
- Different structures $\Rightarrow$ different interpretations.

BUT not all interpretations are attested for counterfactuals.

## Premise Semantics for counterfactuals

Temporal interpretation: Re-run history

(8) If the match had been scratched (at $t_{1}$ ), it would have lit (at $t_{2}$ ).

- Propositions are indexed to times
- Modal base M: Completely characterizes history until now
- i.e., inconsistent with the antecedent of (8)


## Premise Semantics for counterfactuals

## Temporal interpretation: Re-run history

(8) If the match had been scratched (at $t_{1}$ ), it would have lit (at $t_{2}$ ).

- Propositions are indexed to times
- Modal base M: Completely characterizes history until now
- i.e., inconsistent with the antecedent of (8)
- Collect all subsets $m$ of $M$ which
- characterize initial sub-histories and
- are consistent with the antecedent.


## Premise Semantics for counterfactuals

## Temporal interpretation: Re-run history

(8) If the match had been scratched (at $t_{1}$ ), it would have lit (at $t_{2}$ ).

- Propositions are indexed to times
- Modal base M: Completely characterizes history until now - i.e., inconsistent with the antecedent of (8)
- Collect all subsets $m$ of $M$ which
- characterize initial sub-histories and
- are consistent with the antecedent.
- Prem $(M, O)$ is the set of pairs $(m, o)$ such that
- $m$ is an initial sub-history consistent with scratched;
- $o$ is a subset of $O$ consistent with $m+s c r a t c h e d$.


## Premise Semantics for counterfactuals

## Temporal interpretation: Re-run history

(8) If the match had been scratched (at $t_{1}$ ), it would have lit (at $t_{2}$ ).

- Propositions are indexed to times
- Modal base M: Completely characterizes history until now
- i.e., inconsistent with the antecedent of (8)
- Collect all subsets $m$ of $M$ which
- characterize initial sub-histories and
- are consistent with the antecedent.
- Prem $(M, O)$ is the set of pairs $(m, o)$ such that
- $m$ is an initial sub-history consistent with scratched;
- $o$ is a subset of $O$ consistent with $m+s c r a t c h e d$.
- In ranking these pairs, the m-part takes precedence over the o-part.


## Premise Semantics for counterfactuals

## Temporal interpretation: Re-run history

(8) If the match had been scratched (at $t_{1}$ ), it would have lit (at $t_{2}$ ).

- Propositions are indexed to times
- Modal base M: Completely characterizes history until now
- i.e., inconsistent with the antecedent of (8)
- Collect all subsets $m$ of $M$ which
- characterize initial sub-histories and
- are consistent with the antecedent.
- Prem $(M, O)$ is the set of pairs $(m, o)$ such that
- $m$ is an initial sub-history consistent with scratched;
- $o$ is a subset of $O$ consistent with $m+s c r a t c h e d$.
- In ranking these pairs, the m-part takes precedence over the o-part.

Brimary preference: long $m$; secondary preference: rich o.

## Premise Semantics for counterfactuals

## Temporal interpretation: Re-run history

(8) If the match had been scratched (at $t_{1}$ ), it would have lit (at $t_{2}$ ).

- Propositions are indexed to times
- Modal base M: Completely characterizes history until now
- i.e., inconsistent with the antecedent of (8)
- Collect all subsets $m$ of $M$ which
- characterize initial sub-histories and
- are consistent with the antecedent.
- Prem $(M, O)$ is the set of pairs $(m, o)$ such that
- $m$ is an initial sub-history consistent with scratched;
- $o$ is a subset of $O$ consistent with $m+s c r a t c h e d$.
- In ranking these pairs, the m-part takes precedence over the o-part.
$\boldsymbol{s}$ Primary preference: long $m$; secondary preference: rich $o$.
BUT does this work for other counterfactuals?


## Premise Semantics for counterfactuals

## Temporal interpretation: Re-run history

(8) If the match had been scratched (at $t_{1}$ ), it would have lit (at $t_{2}$ ).

- Propositions are indexed to times
- Modal base M: Completely characterizes history until now - i.e., inconsistent with the antecedent of (8)
- Collect all subsets $m$ of $M$ which
- characterize initial sub-histories and
- are consistent with the antecedent.
- Prem $(M, O)$ is the set of pairs $(m, o)$ such that
- $m$ is an initial sub-history consistent with scratched;
- $o$ is a subset of $O$ consistent with $m+s c r a t c h e d$.
- In ranking these pairs, the m-part takes precedence over the o-part.
$\boldsymbol{s t}$ Primary preference: long $m$; secondary preference: rich $o$.
BUT does this work for other counterfactuals?


## Premise Semantics for counterfactuals

A problem for past predominance
[A fair coin is about to be tossed. At $t_{1}$, you bet on heads. At $t_{2}$, the coin is tossed. At $t_{3}$, it comes up heads and you win.]
(11) If I had bet on tails, I would have lost.

## Premise Semantics for counterfactuals

## A problem for past predominance

[A fair coin is about to be tossed. At $t_{1}$, you bet on heads. At $t_{2}$, the coin is tossed. At $t_{3}$, it comes up heads and you win.]
(11) If I had bet on tails, I would have lost.

- Temporal precedence does not explain why (11) is true.
- Before $t_{1}$, both heads and tails are possible.
- Neither outcome is more likely than the other.
(11) is predicted to be false.


## Premise Semantics for counterfactuals

## A problem for past predominance

[A fair coin is about to be tossed. At $t_{1}$, you bet on heads. At $t_{2}$, the coin is tossed. At $t_{3}$, it comes up heads and you win.]
(11) If I had bet on tails, I would have lost.

- Temporal precedence does not explain why (11) is true.
- Before $t_{1}$, both heads and tails are possible.
- Neither outcome is more likely than the other.
(11) is predicted to be false.
- What went wrong:

The toss comes after the betting, yet is unaffected by it.

## Premise Semantics for counterfactuals

## A problem for past predominance

[A fair coin is about to be tossed. At $t_{1}$, you bet on heads. At $t_{2}$, the coin is tossed. At $t_{3}$, it comes up heads and you win.]
(11) If I had bet on tails, I would have lost.

- Temporal precedence does not explain why (11) is true.
- Before $t_{1}$, both heads and tails are possible.
- Neither outcome is more likely than the other.
(11) is predicted to be false.
- What went wrong:

The toss comes after the betting, yet is unaffected by it.

- Instead of temporal precedence, consider causal precedence.


## Premise Semantics for counterfactuals

## Causality

Pearl (2000):
(12) In the last decade, owing partly to advances in graphical models, causality has undergone a major transformation: from a concept shrouded in mystery into a mathematical object with well-defined semantics and well-founded logic
...Put simply, causality has been mathematized.

## Premise Semantics for counterfactuals

## Causal networks

- Causal network: ordered set $\langle U, E\rangle$
- U: set of variables (questions)
- E: asymmetric relation over U
- Arrows indicate causal influence



## Premise Semantics for counterfactuals

## Causal networks

- Causal network: ordered set $\langle U, E\rangle$
- U: set of variables (questions)
- E: asymmetric relation over U
- Arrows indicate causal influence
- The answers to $X$ 's parents determine how $X$ is answered. (Markov Assumption)



## Premise Semantics for counterfactuals

## Causal networks

- Two modes of inference:
- Observation: finding the sprinkler on (left)
- Intervention: turning the sprinkler on (right)



## Premise Semantics for counterfactuals

## Causal networks

- Two modes of inference:
- Observation: finding the sprinkler on (left)
- Intervention: turning the sprinkler on (right)
- Intervention is said to be involved in counterfactual inference.
(Pearl, 2000)



## Premise Semantics for counterfactuals

## Causal networks

- Two modes of inference:
- Observation: finding the sprinkler on (left)
- Intervention: turning the sprinkler on (right)
- Intervention is said to be involved in counterfactual inference.
(Pearl, 2000)
- This is true with some caveats
(Sloman and Lagnado, 2004; Dehghani, Iliev, and Kaufmann, 2012)



## Premise Semantics for counterfactuals

## Causal networks

## Premise Semantics:

- No explicit representation of the graph.
- Rather: a characterization of the parameters that give rise to a causal interpretation.



## Premise Semantics for counterfactuals

## Causal networks

## Premise Semantics:

- No explicit representation of the graph.
- Rather: a characterization of the parameters that give rise to a causal interpretation.
- Modal base: Contains answers to all questions in the graph (circumstantia - no epistemic ignorance)
- Ordering source: Encodes, for each possible answer to $X$, how (un)likely it is given the settings of $X$ 's parents, for all $X$



## Premise Semantics for counterfactuals

## Temporal vs. causal interpretation

(11) If I had bet on tails, I would have lost.

Temporal order

Bet Toss Win/Lose

Causal structure


## Premise Semantics for counterfactuals

## Temporal vs. causal interpretation

(11) If I had bet on tails, I would have lost.

Temporal order

Bet Toss Win/Lose

Causal structure


Interruption: Changing $\overline{\mathrm{Bet}}$ Intervention: Changing Bet leaves discards everything after Bet. the path to Toss intact.

- (11) is evaluated relative to pairs ( $m, o$ ), where:
- $m$ is a subset of $M$, closed under causal ancestors
- 0 is a subset of $O$
- in ranking pairs, $m$ takes precedence over o


## Premise Semantics for counterfactuals

## Temporal vs. causal interpretation

(11) If I had bet on tails, I would have lost.

Temporal order


Interruption: Changing Bet discards everything after Bet.

Causal structure


- (11) is evaluated relative to pairs ( $m, o$ ), where:
- $m$ is a subset of $M$, closed under causal ancestors
- 0 is a subset of $O$
- in ranking pairs, $m$ takes precedence over o
- Similar to the temporal case, but relative to a non-linear order.


## Summary so far

A uniform rule for building premise sets from $\mathrm{M}, \mathrm{O}$ :

- pairs (m+Antecedent, o), where
- $m$ is a subset of $M$, subject to some condition (initial history, closed under causal ancestors, etc.)
- 0 is a subset of $O$
- in ranking these pairs, $m$ takes precedence over $o$.


## Summary so far

A uniform rule for building premise sets from $\mathrm{M}, \mathrm{O}$ :

- pairs ( $m+$ Antecedent, $o$ ), where
- $m$ is a subset of $M$, subject to some condition (initial history, closed under causal ancestors, etc.)
- 0 is a subset of $O$
- in ranking these pairs, $m$ takes precedence over $o$.
- Observations:
- If the antecedent is consistent with $M$, the internal structure of $M$ has no effect: In this case the highest-ranked pairs are of the form ( $M+$ Antecedent, $o$ ).
E) Indicatives are not sensitive to the temporal/causal contrast.


## Summary so far

A uniform rule for building premise sets from $\mathrm{M}, \mathrm{O}$ :

- pairs ( $m+$ Antecedent, $o$ ), where
- $m$ is a subset of $M$, subject to some condition (initial history, closed under causal ancestors, etc.)
- $O$ is a subset of $O$
- in ranking these pairs, $m$ takes precedence over o.
- Observations:
- If the antecedent is consistent with $M$, the internal structure of $M$ has no effect: In this case the highest-ranked pairs are of the form ( $M+$ Antecedent, o).
E) Indicatives are not sensitive to the temporal/causal contrast.
- Which way the modal base is split depends not only on the context: Counterfactual conditionals seem to favor a causal interpretation.
$\leftrightarrows$ Is this the same for all counterfactual inferences, including those which arise with other linguistic expressions?


## Outline

## (1) Premise Semantics

- Modals
- Conditionals
- Counterfactuals
(2) Implementation
- Premise sets
- Premise set sequences
- Modals and conditionals
(3) Causal Premise Semantics
- Basics
- Modal base
- Ordering source


## Kratzer Premise Semantics for modals

- Modal base $f$, ordering source $g$ : functions from possible worlds to sets of propositions.


## Kratzer Premise Semantics for modals

- Modal base $f$, ordering source $g$ : functions from possible worlds to sets of propositions.
- Set of Kratzer premise sets for $f, g$ at world $w$ :

$$
\Phi:=\{f(w) \cup X \mid X \subseteq g(w) \text { and } f(w) \cup X \text { is consistent }\}
$$

## Kratzer Premise Semantics for modals

- Modal base $f$, ordering source $g$ : functions from possible worlds to sets of propositions.
- Set of Kratzer premise sets for $f, g$ at world $w$ :

$$
\Phi:=\{f(w) \cup X \mid X \subseteq g(w) \text { and } f(w) \cup X \text { is consistent }\}
$$

- Proposition $p$ is a necessity relative to $\Phi$ iff

$$
\forall X \in \Phi \exists Y \in \Phi[X \subseteq Y \text { and } \cap Y \subseteq p]
$$

(Possibility is the dual.)

## Kratzer Premise Semantics for modals

- Modal base $f$, ordering source $g$ : functions from possible worlds to sets of propositions.
- Set of Kratzer premise sets for $f, g$ at world $w$ :

$$
\Phi:=\{f(w) \cup X \mid X \subseteq g(w) \text { and } f(w) \cup X \text { is consistent }\}
$$

- Proposition $p$ is a necessity relative to $\Phi$ iff

$$
\forall X \in \Phi \exists Y \in \Phi[X \subseteq Y \text { and } \cap Y \subseteq p]
$$

(Possibility is the dual.)

- $\operatorname{Must}(p)$ is true at $f, g, w$ iff $p$ is a necessity relative to $\Phi$. $\operatorname{May}(p)$ is true at $f, g, w$ iff $p$ is a possibility relative to $\Phi$.


## Kratzer Premise Semantics for modals

- Modal base $f$, ordering source $g$ : functions from possible worlds to sets of propositions.
- Set of Kratzer premise sets for $f, g$ at world $w$ :

$$
\Phi:=\{f(w) \cup X \mid X \subseteq g(w) \text { and } f(w) \cup X \text { is consistent }\}
$$

- Proposition $p$ is a necessity relative to $\Phi$ iff

$$
\forall X \in \Phi \exists Y \in \Phi[X \subseteq Y \text { and } \cap Y \subseteq p]
$$

(Possibility is the dual.)

- $\operatorname{Must}(p)$ is true at $f, g, w$ iff $p$ is a necessity relative to $\Phi$. $\operatorname{May}(p)$ is true at $f, g, w$ iff $p$ is a possibility relative to $\Phi$.
- Notation: $\operatorname{Prem}^{K}(f(w), g(w))$ instead of $\Phi$ for Kratzer premise sets.


## Kratzer Premise Semantics for conditionals

- Update of modal base $f$ with proposition $p$ :

$$
f[p]:=\lambda w[f(w) \cup\{p\}]
$$

## Kratzer Premise Semantics for conditionals

- Update of modal base $f$ with proposition $p$ :

$$
f[p]:=\lambda w[f(w) \cup\{p\}]
$$

- $\operatorname{Modal}_{p}(q)$ is true at $f, g, w$ iff $\operatorname{Modal}(q)$ is true at $f[p], g, w$.


## Basic idea

- Kratzer premise sets again:

$$
\stackrel{K}{\operatorname{Prem}}(f(w), g(w))=\{f(w) \cup Y \mid Y \subseteq g(w) \text { and } f(w) \cup X \text { is consistent }\}
$$

## Basic idea

- Kratzer premise sets again:

$$
\stackrel{K}{\operatorname{Prem}}(f(w), g(w))=\{f(w) \cup Y \mid Y \subseteq g(w) \text { and } f(w) \cup X \text { is consistent }\}
$$

- Goal: "break up" $f(w)$.

$$
\operatorname{Prem}(f(w), g(w))=\{X \cup Y \mid X \subseteq f(w), Y \subseteq g(w) \text { and } \ldots\}
$$

## Premise set pairs

- Let $f(w)=\{p, q\}, \quad g(w)=\{r, s\}$

Then $\operatorname{Prem}^{K}(f(w), g(w))=\{\{p, q\},\{p, q, r\},\{p, q, s\},\{p, q, r, s\}\}$

## Premise set pairs

- Let $f(w)=\{p, q\}, \quad g(w)=\{r, s\}$

Then $\operatorname{Prem}^{K}(f(w), g(w))=\{\{p, q\},\{p, q, r\},\{p, q, s\},\{p, q, r, s\}\}$

- Premise background: maps worlds to sets of sets of propositions.
- $\mathbf{f}_{i d}(v):=\{f(v)\}$ for all $v$. $\mathbf{f}_{\wp}(v):=\wp(f(v))$ for all $v$.
- $\mathbf{g}_{\wp}(v):=\wp(g(v))$ for all $v$.

$$
\begin{array}{r}
\mathbf{f}_{i d}(w)=\{\{p, q\}\} \\
\mathbf{f}_{\mathfrak{p}}(w)=\{\emptyset,\{p\},\{q\},\{p, q\}\} \\
\mathbf{g}_{\wp}(w)=\{\emptyset,\{r\},\{s\},\{r, s\}\}
\end{array}
$$

## Premise set pairs

- Let $f(w)=\{p, q\}, \quad g(w)=\{r, s\}$

Then $\operatorname{Prem}^{K}(f(w), g(w))=\{\{p, q\},\{p, q, r\},\{p, q, s\},\{p, q, r, s\}\}$

- Premise background: maps worlds to sets of sets of propositions.
- $\mathbf{f}_{i d}(v):=\{f(v)\}$ for all $v$.

$$
f_{\wp}(v):=\wp(f(v)) \text { for all } v .
$$

$$
\begin{array}{r}
\mathbf{f}_{j d}(w)=\{\{p, q\}\} \\
\mathbf{f}_{\vartheta}(w)=\{\emptyset,\{p\},\{q\},\{p, q\}\} \\
\mathbf{g}_{\vartheta}(w)=\{\emptyset,\{r\},\{s\},\{r, s\}\}
\end{array}
$$

- $\mathbf{g}_{\wp}(v):=\wp(g(v))$ for all $v$.
- Cartesian product (writing ' $X . Y$ ' for $\langle X, Y\rangle$ ):

$$
\begin{aligned}
\mathbf{f}_{i d}(w) \times \mathbf{g}_{\vartheta}(w) & =\{\text { pq., pq.r, pq.s, pq.rs }\} \\
\mathbf{f}_{p}(w) \times \mathbf{g}_{\vartheta}(w) & =\{., \text { p., q.,.r,.s, p.r, p.s, q.r, q.s, ..., pq.rs }\}
\end{aligned}
$$

## Premise set pairs

- Let $f(w)=\{p, q\}, \quad g(w)=\{r, s\}$

Then $\operatorname{Prem}^{K}(f(w), g(w))=\{\{p, q\},\{p, q, r\},\{p, q, s\},\{p, q, r, s\}\}$

- Premise background: maps worlds to sets of sets of propositions.
- $\mathbf{f}_{i d}(v):=\{f(v)\}$ for all $v$.

$$
f_{\wp}(v):=\wp(f(v)) \text { for all } v .
$$

$$
\begin{array}{r}
\mathbf{f}_{f_{d}}(w)=\{\{p, q\}\} \\
\mathbf{f}_{\mathfrak{p}}(w)=\{\emptyset,\{p\},\{q\},\{p, q\}\} \\
\mathbf{g}_{\wp}(w)=\{\emptyset,\{r\},\{s\},\{r, s\}\}
\end{array}
$$

- $\mathbf{g}_{\wp}(v):=\wp(g(v))$ for all $v$.
- Cartesian product (writing ' $X . Y$ ' for $\langle X, Y\rangle$ ):

$$
\begin{aligned}
\mathbf{f}_{i d}(w) \times \mathbf{g}_{\vartheta}(w) & =\{\text { pq., pq.r, pq.s, pq.rs }\} \\
\mathbf{f}_{p}(w) \times \mathbf{g}_{\vartheta}(w) & =\{., \text { p., q.,.r,.s, p.r, p.s, q.r, q.s, ..., pq.rs }\}
\end{aligned}
$$

- Lexicographic order:

$$
X . Y \leq X^{\prime} . Y^{\prime} \text { iff (i) } X \subseteq X^{\prime} \text { and (ii) if } X=X^{\prime} \text { then } Y \subseteq Y^{\prime}
$$

## Premise set pairs



## Premise set pairs



## Premise set pairs



## Premise set sequences

- Sequence structures recursively defined:
- If $\Phi$ is a set of sets of propositions, then $\langle\Phi, \subseteq\rangle$ is a sequence structure.
- If $\left\langle\Phi_{1}, \leq_{1}\right\rangle,\left\langle\Phi_{2}, \leq_{2}\right\rangle$ are sequence structures, then so is $\left\langle\Phi_{1}, \leq_{1},\right\rangle *\left\langle\Phi_{2}, \leq_{2}\right\rangle$, defined as $\left\langle\Phi_{1} \times \Phi_{2}, \leq_{1} * \leq_{2}\right\rangle$.
( ${ }^{\prime} *$ ': lexicographic order)


## Premise set sequences

- Sequence structures recursively defined:
- If $\Phi$ is a set of sets of propositions, then $\langle\Phi, \subseteq\rangle$ is a sequence structure.
- If $\left\langle\Phi_{1}, \leq_{1}\right\rangle,\left\langle\Phi_{2}, \leq_{2}\right\rangle$ are sequence structures, then so is $\left.\left\langle\Phi_{1}, \leq_{1}\right\rangle\right\rangle\left\langle\Phi_{2}, \leq_{2}\right\rangle$, defined as $\left\langle\Phi_{1} \times \Phi_{2}, \leq_{1} * \leq_{2}\right\rangle$.
( $* *$ ': lexicographic order)

Comments:

- Sequence structures are partially ordered (set inclusion for basic structures; preserved by lexicographic order)
- Product formation by ' $*$ ' is associative (since both Cartesian products and lexicographic orders are)


## Premise structures

- For logical properties, internal structure doesn't matter e.g., $X . Y$ is consistent iff $X \cup Y$ is

For ranking among sequences, internal structure does matter.

## Premise structures

- For logical properties, internal structure doesn't matter e.g., $X . Y$ is consistent iff $X \cup Y$ is

For ranking among sequences, internal structure does matter.

- Given a sequence structure $\langle\Phi, \leq\rangle$ :

The premise structure $\operatorname{Prem}(\Phi, \leq)$ is the pair $\left\langle\Phi^{\prime}, \leq^{\prime}\right\rangle$, where

- $\Phi^{\prime}$ is the set of consistent sequences in $\Phi$;
- $\leq^{\prime}$ is the restriction of $\leq$ to $\Phi^{\prime}$.


## Premise structures

- For logical properties, internal structure doesn't matter e.g., $X . Y$ is consistent iff $X \cup Y$ is

For ranking among sequences, internal structure does matter.

- Given a sequence structure $\langle\Phi, \leq\rangle$ :

The premise structure $\operatorname{Prem}(\Phi, \leq)$ is the pair $\left\langle\Phi^{\prime}, \leq^{\prime}\right\rangle$, where

- $\Phi^{\prime}$ is the set of consistent sequences in $\Phi$;
- $\leq^{\prime}$ is the restriction of $\leq$ to $\Phi^{\prime}$.
- Proposition $p$ is a necessity relative to $\operatorname{Prem}(\Phi, \leq)$ iff

$$
\forall X \in \operatorname{Prem}(\Phi, \leq) \exists Y \in \operatorname{Prem}(\Phi, \leq)[X \leq Y \text { and } \cap Y \subseteq p]
$$

Possibility is the dual.

## Premise structures

- For logical properties, internal structure doesn't matter e.g., $X . Y$ is consistent iff $X \cup Y$ is

For ranking among sequences, internal structure does matter.

- Given a sequence structure $\langle\Phi, \leq\rangle$ :

The premise structure $\operatorname{Prem}(\Phi, \leq)$ is the pair $\left\langle\Phi^{\prime}, \leq^{\prime}\right\rangle$, where

- $\Phi^{\prime}$ is the set of consistent sequences in $\Phi$;
- $\leq^{\prime}$ is the restriction of $\leq$ to $\Phi^{\prime}$.
- Proposition $p$ is a necessity relative to $\operatorname{Prem}(\Phi, \leq)$ iff

$$
\forall X \in \operatorname{Prem}(\Phi, \leq) \exists Y \in \operatorname{Prem}(\Phi, \leq)[X \leq Y \text { and } \cap Y \subseteq p]
$$

Possibility is the dual.
Et Kratzer-style premise sets are a special case.

## Modals and conditionals

- $\operatorname{Must}(q)$ is true at $\mathbf{f}, \mathbf{g}, w$ iff $q$ is a necessity at $\operatorname{Prem}((\mathbf{f} * \mathbf{g})(w))$. $\operatorname{May}(q)$ is true at $\mathbf{f}, \mathbf{g}, w$ iff $q$ is a possibility at $\operatorname{Prem}((\mathbf{f} * \mathbf{g})(w))$.


## Modals and conditionals

- $\operatorname{Must}(q)$ is true at $\mathbf{f}, \mathbf{g}, w$ iff $q$ is a necessity at $\operatorname{Prem}((\mathbf{f} * \mathbf{g})(w))$. $\operatorname{May}(q)$ is true at $\mathbf{f}, \mathbf{g}, w$ iff $q$ is a possibility at $\operatorname{Prem}((\mathbf{f} * \mathbf{g})(w))$.
- Hypothetical update of premise background $\mathbf{f}$ with proposition $p$ :

$$
\mathbf{f}[p]:=\lambda w[\{\{p\}\} * \mathbf{f}(w)]
$$

## Modals and conditionals

- $\operatorname{Must}(q)$ is true at $\mathbf{f}, \mathbf{g}, w$ iff $q$ is a necessity at $\operatorname{Prem}((\mathbf{f} * \mathbf{g})(w))$. $\operatorname{May}(q)$ is true at $\mathbf{f}, \mathbf{g}, w$ iff $q$ is a possibility at $\operatorname{Prem}((\mathbf{f} * \mathbf{g})(w))$.
- Hypothetical update of premise background $\mathbf{f}$ with proposition $p$ :

$$
\mathbf{f}[p]:=\lambda w[\{\{p\}\} * \mathbf{f}(w)]
$$

- $\mathbf{f}_{i d}[r](w)=\{\{r\}\} * \mathbf{f}_{i d}(w)=\{r . p q\}$
- $\mathbf{f}_{c}[r](w)=\{\{r\}\} * \mathbf{f}_{c}(w)=\{r ., r . p, r . p q\}$


## Modals and conditionals

- $\operatorname{Must}(q)$ is true at $\mathbf{f}, \mathbf{g}, w$ iff $q$ is a necessity at $\operatorname{Prem}((\mathbf{f} * \mathbf{g})(w))$. $\operatorname{May}(q)$ is true at $\mathbf{f}, \mathbf{g}, w$ iff $q$ is a possibility at $\operatorname{Prem}((\mathbf{f} * \mathbf{g})(w))$.
- Hypothetical update of premise background $\mathbf{f}$ with proposition $p$ :

$$
\mathbf{f}[p]:=\lambda w[\{\{p\}\} * \mathbf{f}(w)]
$$

- $\mathbf{f}_{i d}[r](w)=\{\{r\}\} * \mathbf{f}_{i d}(w)=\{r . p q\}$
- $\mathbf{f}_{c}[r](w)=\{\{r\}\} * \mathbf{f}_{c}(w)=\{r ., r . p, r . p q\}$
- $\operatorname{Modal}_{p}(q)$ is true at $\mathbf{f}, \mathbf{g}, w$ iff $\operatorname{Modal}(q)$ is true at $\mathbf{f}[p], \mathbf{g}, w$.


## Outline

## (1) Premise Semantics

- Modals
- Conditionals
- Counterfactuals
(2) Implementation
- Premise sets
- Premise set sequences
- Modals and conditionals
(3) Causal Premise Semantics
- Basics
- Modal base
- Ordering source


## Basics



## Causal Networks Possible worlds

Outcome Possible world
Event
Proposition
Variable
Partition

## Modal base



| $x$ | $\bar{X}$ |
| :--- | :--- |


| $y$ |
| :--- |
| $\bar{y}$ |


| -w |  |
| :---: | :---: |


| $\cdot w$ |
| :--- |
| $\vdots$ |
| $-\ldots \ldots$ |

- A causal structure for $W$ is a pair $C=\langle U,<\rangle$, where
- $U$ is a set of finite partitions on $W$;
- < is a directed acyclic graph over $U$.


## Modal base



- A causal structure for $W$ is a pair $C=\langle U,<\rangle$, where
- $U$ is a set of finite partitions on $W$;
- < is a directed acyclic graph over $U$.
- $\Pi^{U}$ (causally relevant propositions): set of all cells of all partitions in $U$.
- $\Pi_{w}^{U}$ (causally relevant truths at $w$ ): set of causally relevant propositions that are true at $w$.


## Modal base



- A causal structure for $W$ is a pair $C=\langle U,<\rangle$, where
- $U$ is a set of finite partitions on $W$;
- < is a directed acyclic graph over $U$.
- $\Pi^{U}$ (causally relevant propositions): set of all cells of all partitions in $U$.
- $\Pi_{w}^{U}$ (causally relevant truths at $w$ ): set of causally relevant propositions that are true at $w$.
- At each world $w$, the premise background $\mathbf{f}_{c}$ returns the set of those subsets of $\Pi_{w}^{U}$ that are closed under ancestors.


## Modal base



Let $X=$ 'whether it is sunny'; $Y=$ 'whether the streets are dry'

- $\mathbf{f}_{c}(w):=\left\{X \subseteq \Pi_{w} \mid X\right.$ is closed under ancestors in $\left.\Pi_{w}\right\}$


## Modal base



Let $X=$ 'whether it is sunny'; $Y=$ 'whether the streets are dry'

- $\mathbf{f}_{c}(w):=\left\{X \subseteq \Pi_{w} \mid X\right.$ is closed under ancestors in $\left.\Pi_{w}\right\}$
- $\Pi=\{x, \bar{x}, y, \bar{y}\}$
$\Pi_{w}=\{x, y\}$
[for $w \in x y]$
$\mathbf{f}_{\mathrm{c}}(w)=\{\emptyset,\{x\},\{x, y\}\}$
$\operatorname{Prem}\left(\mathbf{f}_{c}[\bar{x}](w)\right)=\{\bar{x}$.
$\operatorname{Prem}\left(\mathbf{f}_{c}[\bar{y}](w)\right)=\{\bar{y} ., \bar{y} \cdot x\}$


## Modal base



Let $X=$ 'whether it is sunny'; $Y=$ 'whether the streets are dry'

- $\mathrm{f}_{c}(w):=\left\{X \subseteq \Pi_{w} \mid X\right.$ is closed under ancestors in $\left.\Pi_{w}\right\}$
- $\Pi=\{x, \bar{x}, y, \bar{y}\}$
$\Pi_{w}=\{x, y\}$
[for $w \in x y]$
$\mathbf{f}_{\mathrm{C}}(w)=\{\emptyset,\{x\},\{x, y\}\}$
$\operatorname{Prem}\left(\mathbf{f}_{c}[\bar{x}](w)\right)=\{\bar{x}$.
$\operatorname{Prem}\left(\mathbf{f}_{c}[\bar{y}](w)\right)=\{\bar{y} ., \bar{y} . x\}$
a. If were $\bar{x}$, would (still) be $y$.
b. If were $\bar{y}$, would (still) be $x$.
[false at $w \in x y$ ] [true at $w \in x y]$


## Modal base



Let $X=$ 'whether it is sunny'; $Y=$ 'whether the streets are dry'

- $\mathbf{f}_{c}(w):=\left\{X \subseteq \Pi_{w} \mid X\right.$ is closed under ancestors in $\left.\Pi_{w}\right\}$
- $\Pi=\{x, \bar{x}, y, \bar{y}\}$
$\Pi_{w}=\{x, y\}$
[for $w \in x y]$
$\mathbf{f}_{\mathrm{C}}(w)=\{\emptyset,\{x\},\{x, y\}\}$
$\operatorname{Prem}\left(\mathbf{f}_{c}[\bar{x}](w)\right)=\{\bar{x}$.
$\operatorname{Prem}\left(\mathbf{f}_{c}[\bar{y}](w)\right)=\{\bar{y} ., \bar{y} . x\}$
(13)
a. If were $\bar{x}$, would (still) be $y$.
b. If were $\bar{y}$, would (still) be $x$.
[false at $w \in x y$ ]
[true at $w \in x y]$
(14) a. If it were raining, the streets would (still) be dry.
b. If the streets were wet, it would (still) be sunny.


## Ordering source


(15) If that match had been scratched, it would have lit.

## Ordering source


(15) If that match had been scratched, it would have lit.
(16)
a. $\quad \Pi=\{s, \bar{s}, o, \bar{o}, l, \bar{l}\}$
b. $\quad \Pi_{w}=\{\bar{s}, o, \bar{l}\}$
c. $\quad \mathbf{f}_{c}(w)=\{\emptyset,\{\bar{s}\},\{0\},\{\bar{s}, o, \bar{i}\}\}$
d. $\operatorname{Prem}\left(\mathbf{f}_{c}[s](w)\right)=\{s ., s .0\}$

## Ordering source


(15) If that match had been scratched, it would have lit.
(16)
a. $\quad \Pi=\{s, \bar{s}, o, \bar{o}, I, \bar{l}\}$
b. $\quad \Pi_{w}=\{\bar{s}, o, \bar{l}\}$
c. $\quad \mathbf{f}_{c}(w)=\{\emptyset,\{\bar{s}\},\{0\},\{\bar{s}, o, \bar{l}\}\}$
d. $\quad \operatorname{Prem}\left(\mathbf{f}_{c}[s](w)\right)=\{s ., s .0\}$

Et (17) is correctly predicted to be true at w:
(17) If that match had been scratched, there would (still) have been oxygen.

## Ordering source


(15) If that match had been scratched, it would have lit.
a. $\quad \Pi=\{s, \bar{s}, o, \bar{o}, I, \bar{l}\}$
b. $\quad \Pi_{w}=\{\bar{s}, o, \bar{l}\}$
c. $\mathbf{f}_{c}(w)=\{\emptyset,\{\bar{s}\},\{0\},\{\bar{s}, o, \bar{l}\}\}$
d. $\operatorname{Prem}\left(\mathbf{f}_{c}[s](w)\right)=\{s ., s .0\}$

Et (17) is correctly predicted to be true at w:
(17) If that match had been scratched, there would (still) have been oxygen.

BUT But the truth of (15) is not yet accounted for.

## Ordering source


(15) If that match had been scratched, it would have lit.
(16) $\quad$ a. $\quad \Pi=\{s, \bar{s}, o, \bar{o}, I, \bar{i}\}$
b. $\quad \Pi_{w}=\{\bar{s}, o, \bar{l}\}$
c. $\mathbf{f}_{c}(w)=\{\emptyset,\{\bar{s}\},\{0\},\{\bar{s}, o, \bar{l}\}\}$
d. $\operatorname{Prem}\left(\mathbf{f}_{c}[s](w)\right)=\{s ., s .0\}$

Et (17) is correctly predicted to be true at w:
(17) If that match had been scratched, there would (still) have been oxygen.

BUT But the truth of (15) is not yet accounted for. That's what the ordering source does.

## Ordering source



- I make minimal assumption as to what is in the ordering source $\mathbf{g}$.
- Except that it respects a Causal Markov Condition relative to the causal structure.
- Roughly: If $p$ is a (conditional) necessity/possibility under $\mathbf{g}$ given only p's parents, it is also a necessity/possibility given its parents and other non-descendants.
(For details, ask me for the paper.)


## Ordering source


(18) If that match had been scratched, it would have lit.

## Ordering source


(18) If that match had been scratched, it would have lit.
(19)
a. $\operatorname{Prem}\left(\mathbf{f}_{c}[s](w)\right)=\{s ., s . o\}$
b. $\quad \mathbf{g}_{\ell}(w)=\{\emptyset,\{0\},\{(s \wedge 0) \leftrightarrow I\},\{0,(s \wedge 0) \leftrightarrow I\}\}$
c. $\quad \max \operatorname{Prem}\left(\left(\mathbf{f}_{c}[s] * \mathbf{g}_{\ell}\right)(w)\right)=\{s . o .((s \wedge 0) \leftrightarrow I)\}$

## Ordering source


(18) If that match had been scratched, it would have lit.
(19) $\quad$ a. $\operatorname{Prem}\left(\mathbf{f}_{c}[s](w)\right)=\{s ., s .0\}$
b. $\quad \mathbf{g}_{\ell}(w)=\{\emptyset,\{0\},\{(s \wedge 0) \leftrightarrow I\},\{0,(s \wedge 0) \leftrightarrow I\}\}$
c. $\quad \max \operatorname{Prem}\left(\left(\mathbf{f}_{c}[s] * \mathbf{g}_{\ell}\right)(w)\right)=\{$ s.o. $((s \wedge 0) \leftrightarrow I)\}$

- (18) comes out true at $w$.


## Ordering source


(18) If that match had been scratched, it would have lit.
(19) a. $\operatorname{Prem}\left(\mathbf{f}_{c}[s](w)\right)=\{s ., s . o\}$
b. $\quad \mathbf{g}_{\ell}(w)=\{\emptyset,\{0\},\{(s \wedge 0) \leftrightarrow I\},\{0,(s \wedge 0) \leftrightarrow I\}\}$
c. $\quad \max \operatorname{Prem}\left(\left(\mathbf{f}_{c}[s] * \mathbf{g}_{\ell}\right)(w)\right)=\{s . o .((s \wedge o) \leftrightarrow I)\}$

- (18) comes out true at $w$.

Consider a world, $v$ just like $w$, except that oxygen was not present.
(20) a. $\operatorname{Prem}\left(\mathbf{f}_{c}[s](v)\right)=\{s ., s . \bar{o}\}$
b. $\quad \mathbf{g}_{\ell}(v)=\{\emptyset,\{0\},\{(s \wedge 0) \leftrightarrow I\},\{0,(s \wedge 0) \leftrightarrow I\}\}$
c. $\left.\quad \max \operatorname{Prem}\left(\left(\mathbf{f}_{c}[s] * \mathbf{g}_{\ell}\right)(v)\right)=\{s . \bar{o} \cdot(s \wedge 0) \leftrightarrow I\}\right\}$

## Ordering source


(18) If that match had been scratched, it would have lit.
(19) $\quad$ a. $\quad \operatorname{Prem}\left(\mathbf{f}_{c}[s](w)\right)=\{s ., s .0\}$
b. $\quad \mathbf{g}_{\ell}(w)=\{\emptyset,\{0\},\{(s \wedge 0) \leftrightarrow I\},\{0,(s \wedge 0) \leftrightarrow I\}\}$
c. $\quad \max \operatorname{Prem}\left(\left(\mathbf{f}_{c}[s] * \mathbf{g}_{\ell}\right)(w)\right)=\{s . o .((s \wedge o) \leftrightarrow I)\}$

- (18) comes out true at $w$.

Consider a world, $v$ just like $w$, except that oxygen was not present.
(20) a. $\operatorname{Prem}\left(\mathbf{f}_{c}[s](v)\right)=\{s ., s . \bar{o}\}$
b. $\quad \mathbf{g}_{\ell}(v)=\{\emptyset,\{0\},\{(s \wedge 0) \leftrightarrow I\},\{0,(s \wedge 0) \leftrightarrow I\}\}$
c. $\left.\quad \max \operatorname{Prem}\left(\left(\mathbf{f}_{c}[s] * \mathbf{g}_{\ell}\right)(v)\right)=\{s . \bar{o} \cdot(s \wedge o) \leftrightarrow I\}\right\}$
$\boldsymbol{m}(18)$ comes out false at $v$.

## Ordering source

```
\(\operatorname{Prem}\left(\left(\mathbf{f}_{c}[s] * \mathbf{g}_{\ell}\right)(w)\right)\)
    s.0.0 ((s^0) \(\rightarrow 1)\)
    s.0.0 S.o. \(((s \wedge 0) \leftrightarrow I)\)
        s.o.
\(s . . o((s \wedge 0) \leftrightarrow I)\)
    S..O \(\quad\).. \(((s \wedge 0) \leftrightarrow I)\)
        S..
```


## $\operatorname{Prem}\left(\left(\mathbf{f}_{c}[s] * \mathbf{g}_{\ell}\right)(v)\right)$

$$
s . . o((s \wedge 0) \leftrightarrow I)
$$

$$
\text { s..o } \quad s . .((s \wedge 0) \leftrightarrow I)
$$

S..

## Ordering source

$$
\begin{aligned}
& \operatorname{Prem}\left(\left(\mathbf{f}_{c}[s] * \mathbf{g}_{\ell}\right)(w)\right) \\
& \text { s.0.0 ((s^0) } \rightarrow 1)
\end{aligned}
$$

- $o$ is likely under $\mathbf{g}$, but at $v$ this is overridden by the facts.

E Modal base f pushes for similarity with the world of evaluation Ordering source $\mathbf{g}$ does not care; may pull away

## Ordering source


(21) If that match had not lit, it would not have been scratched.
(22) If that match had not lit, there would have been no oxygen.

Consider an ordering source $\mathbf{g}_{1 \ell}$ just like $\mathbf{g}_{\ell}$, but indifferent towards $\mathrm{O}_{2}$.

## Ordering source


(21) If that match had not lit, it would not have been scratched.
(22) If that match had not lit, there would have been no oxygen.

Consider an ordering source $\mathbf{g}_{1 \ell}$ just like $\mathbf{g}_{\ell}$, but indifferent towards $\mathrm{O}_{2}$.
(23) a. $\quad f_{c}(w)=\{\emptyset,\{s\},\{o\},\{s, o, f\}\}$
b. $\quad \mathbf{f}_{c}[\bar{l}](w)=\{\bar{I} ., \bar{I} . s, \bar{l} .0\}$
c. $\quad \mathbf{g}_{1}(w)=\{\emptyset,\{(s \wedge 0) \leftrightarrow I\}\}$
d. $\quad \max \operatorname{Prem}\left(\left(\mathbf{f}[\bar{l}] * \mathbf{g}_{1}\right)(w)\right)=$
$\{\bar{I} . s .((s \wedge 0) \leftrightarrow I), \bar{I} . o .((s \wedge 0) \leftrightarrow I)\}$

## Ordering source


(21) If that match had not lit, it would not have been scratched.
(22) If that match had not lit, there would have been no oxygen.

Consider an ordering source $\mathbf{g}_{1 \ell}$ just like $\mathbf{g}_{\ell}$, but indifferent towards $\mathrm{O}_{2}$.
(23) a. $\quad f_{c}(w)=\{\emptyset,\{s\},\{o\},\{s, o, I\}\}$
b. $\quad \mathbf{f}_{c}[\bar{l}](w)=\{\bar{I} ., \bar{I} . s, \bar{l} .0\}$
c. $\quad \mathbf{g}_{1}(w)=\{\emptyset,\{(s \wedge 0) \leftrightarrow I\}\}$
d. $\quad \max \operatorname{Prem}\left(\left(\mathbf{f}[\bar{l}] * \mathbf{g}_{1}\right)(w)\right)=$
$\{\bar{I} . s .((s \wedge 0) \leftrightarrow I), \bar{I} . o .((s \wedge 0) \leftrightarrow I)\}$
Et Both (21) and (22) are false.
BUT each is true relative to one of the maximal sequences.

## Ordering source

$$
\begin{aligned}
& \operatorname{Prem}\left(\left(\mathbf{f}_{c}[\bar{l}] * \mathbf{g}_{1}\right)(w)\right) \\
& \text { Ī.s. }((s \wedge o) \leftrightarrow I) \quad \text { İ.o. }((s \wedge o) \leftrightarrow I) \\
& \underbrace{\text { İ.s. }}_{\bar{I} . .((s \wedge 0) \leftrightarrow I)} \text {. } \\
& \text { i.. }
\end{aligned}
$$

## Ordering source

$$
\begin{gathered}
\operatorname{Prem}\left(\left(\mathbf{f}_{c}[\bar{l}] * \mathbf{g}_{1}\right)(w)\right) \\
\text { ī.s. }((s \wedge o) \leftrightarrow I) \quad \overline{\text { I }} .0 .((s \wedge o) \leftrightarrow I) \\
\begin{array}{c}
\text { Ís. } \\
\bar{I} . .((s \wedge o) \leftrightarrow I) \\
\bar{l} . .
\end{array}
\end{gathered}
$$

Et Multiple non-equivalent maximal sequences.

## Ordering source

$$
\begin{aligned}
& \operatorname{Prem}\left(\left(\mathbf{f}_{c}[\bar{l}] * \mathbf{g}_{1}\right)(w)\right) \\
& \text { İ.s. }((\underset{-\mid}{s \wedge o)} \leftrightarrow I) \quad \text { İ.o. }((s \wedge o) \leftrightarrow I) \\
& \text { I.s. } \\
& \bar{I} . .((s \wedge 0) \leftrightarrow I) \\
& \text { i.. }
\end{aligned}
$$

Et Multiple non-equivalent maximal sequences.

- I call this an inquisitive premise structure.


## Disjunctions

$$
\begin{array}{cc}
\operatorname{Prem}\left(\left(\{\{r\},\{s\}\} * \mathbf{f}_{c}\right)(w)\right) \\
r . p q & \text { s.pq } \\
\mid & \text { l } \\
\text { r.p } & \text { s.p } \\
\text { | } & \text { l } \\
\text { r. } & \text { s. }
\end{array}
$$

(24) $\quad$ a. $\quad f_{c}(w)=\{\emptyset,\{p\},\{p, q\}\}$
b. Assume that ' $r$ or $s$ ' denotes $\{\{r\},\{s\}\}$.

## Disjunctions

$$
\begin{array}{cc}
\operatorname{Prem}\left(\left(\{\{r\},\{s\}\} * \mathbf{f}_{c}\right)(w)\right) \\
r . p q & s . p q \\
\mid & 1 \\
\text { r.p } & \text { s.p } \\
\text { l } & 1 \\
\text { r. } & \text { s. }
\end{array}
$$

(24) a. $\quad f_{c}(w)=\{\emptyset,\{p\},\{p, q\}\}$
b. Assume that ' $r$ or $s$ ' denotes $\{\{r\},\{s\}\}$.

As a consequence, (25a) entails (25b):
(25) a. If were 'r or s', would be $t$.
b. If were ' $r$ ', would be $t$ and if were ' $s$ ', would be $t$.

## Disjunctions

$$
\begin{array}{cc}
\operatorname{Prem}\left(\left(\{\{r\},\{s\}\} * \mathbf{f}_{c}\right)(w)\right) \\
\text { r.pq } & \text { s.pq } \\
\text { r.p } & \text { l.p } \\
\text { l } & 1 \\
\text { r. } & \text { s. }
\end{array}
$$

(24) a. $\quad f_{c}(w)=\{\emptyset,\{p\},\{p, q\}\}$
b. Assume that ' $r$ or $s$ ' denotes $\{\{r\},\{s\}\}$.

As a consequence, (25a) entails (25b):
(25) $a$. If were ' $r$ or $s$ ', would be $t$.
b. If were ' $r$ ', would be $t$ and if were ' $s$ ', would be $t$.

Similarly for interrogative antecedents (unconditionals).

The end

## References I

Abusch, D. 1997. Sequence of tense and temporal de re. Linguistics and Philosophy, 20: 1-50.
Abusch, D. 1998. Generalizing tense semantics for future contexts. In Rothstein, S., editor, Events and Grammar, volume 70 of Studies in Linguistics and Philosophy, pages 13-33. Kluwer.
Condoravdi, C. 2002. Temporal interpretation of modals: Modals for the present and for the past. In Beaver, D. I., L. Casillas, B. Clark, and S. Kaufmann, editors, The Construction of Meaning, pages 59-88. CSLI Publications.
Dehghani, M., R. Iliev, and S. Kaufmann. 2012. Causal explanation and fact mutability in counterfactual reasoning. Mind \& Language, 27(1):55-85.
Goodman, N. 1947. The problem of counterfactual conditionals. The Journal of Philosophy, 44:113-128.
Grønn, A. and A. von Stechow. 2011. On the temporal organisation of indicative conditionals. http://www.sfs.uni-tuebingen.de/~astechow/Aufsaetze/ IndicativeCond_corr_7_April_2011.pdf.
latridou, S. 2000. The grammatical ingredients of counterfactuality. Linguistic Inquiry, 31(2): 231-270.
Kaufmann, S. 2005. Conditional truth and future reference. Journal of Semantics, 22: 231-280.

## References II

Kaufmann, S. 2012. Causal premise semantics. Ms., Northwestern University/University of Connecticut. http:
//faculty.wcas.northwestern.edu/kaufmann/Papers/PearlRumelhart02.pdf.
Kratzer, A. 1981a. The notional category of modality. In Eikmeyer, H.-J. and H. Riesner, editors, Words, Worlds, and Contexts, pages 38-74. Walter de Gruyter.
Kratzer, A. 1981b. Partition and revision: The semantics of counterfactuals. Journal of Philosophical Logic, 10:201-216.
Kratzer, A. 1989. An investigation of the lumps of thought. Linguistics and Philosophy, 12: 607-653.
Pearl, J. 2000. Causality: Models, Reasoning, and Inference. Cambridge University Press. Schulz, K. 2008. Non-deictic tenses in conditionals. In Friedman, T. and S. Ito, editors, Proceedings of SAL18, pages 694-710, Ithaca, NY. Cornell University.
Schulz, K. 2012. Fake tense in conditional sentences: A modal approach. http: //home.medewerker.uva.nl/k.schulz/bestanden/FakeTense-april2012.pdf. Sloman, S. A. and D. A. Lagnado. 2004. Do we 'do'? To appear in Cognitive Science. Stalnaker, R. 1975. Indicative conditionals. Philosophia, 5:269-286.

